
Solar Panels and LoRaWAN

Supervisor 1:
Erik Poll

By:
Max Leijtens
s4548027@ru.nl

Supervisor 2:
Pol van Aubel

June 18, 2018

Abstract

This thesis explores the possibilities of the Long Range Wide Area Network
(LoRaWAN) for monitoring solar panels. LoRaWAN is a network similar to
GSM except for consuming less energy at the expense of having less bandwidth.

The explored possibilities are mainly focused around whether or not it is
possible to use this network for solar panel measurements. Other than the pos-
sibility, the pros and cons of using either LoRaWAN or WiFi are discussed in
general, but also specifically for this particular application scenario with the
solar panels on the roof of the Huygens Building of the Radboud University.

This particular application scenario currently consists of a solar sensor con-
nected to a microprocessor that transmits its data over WiFi to the nearest
router, which requires it to be placed close to one because WiFi has a too weak
signal for long range connections. This data is then sent from the router to
the Particle Cloud, a cloud based IoT platform, which processes it and sends it
through to the client’s server.

A Proof of Concept made to prove the possibilities of the network is un-
successful, mainly because the coverage of the network was too small and the
hardware used was unsuitable for the job.

In principle however, switching from WiFi to LoRaWAN is perfect to solve
all the posed problems that this particular scenario has.

2

Contents

1 Introduction 6
1.1 Why LoRaWAN? . 7
1.2 Document outline . 7

2 Background on LoRaWAN 8
2.1 High level description of LoRaWAN characteristics 8
2.2 Version details . 9
2.3 Architecture . 9
2.4 End Devices . 10

2.4.1 Class A Device . 10
2.4.2 Class B Device . 11
2.4.3 Class C Device . 11

2.5 LoRaWAN Environments . 11
2.6 LoRaWAN Setup . 11
2.7 LoRaWAN Communication . 13
2.8 Security vulnerabilities of LoRaWAN 13

2.8.1 Unauthorised activation of end-devices 13
2.8.2 Random numbers . 14
2.8.3 Beaconing vulnerability 14
2.8.4 Complete Denial of Service 14

3 Scenario outline 15
3.1 Limitations of the current setup 15
3.2 Solution requirements . 16

3.2.1 Functional requirements 16
3.2.2 Operational requirements 16
3.2.3 Security and privacy . 17

3.3 Why LoRaWAN would be a better solution 17
3.3.1 Fulfillment of the functional requirements 17
3.3.2 Operational fulfillment . 17
3.3.3 Security and privacy . 18

4 Comparison between the LoRaWAN- and the WiFi-solution 19
4.1 Comparison LoRaWAN and WiFi in general 19

4.1.1 Range and connectivity 19
4.1.2 Energy consumption and material costs 19

4.2 Settings and passwords . 20
4.3 Security Analysis . 20

3

4 CONTENTS

4.3.1 Required security . 20
4.3.2 Provided security . 21

5 LoRaWAN Proof of Concept 23
5.1 Toy Example . 23

5.1.1 Hello world locally . 23
5.1.2 Data over LoRaWAN . 24

5.2 Device Choice . 25
5.2.1 Specifications and costs 25
5.2.2 Motivation for this device 26
5.2.3 Alternative device . 26
5.2.4 Alternative power usage 26

6 Future Work 28
6.1 Completing the Proof of Concept sensor 28
6.2 Continuation of this project . 28

6.2.1 Build a gateway . 28
6.2.2 Self sustaining sensor . 28
6.2.3 Energy consumption . 29

6.3 Other Ideas . 29
6.4 Alternatives to LoRaWAN . 29

7 Conclusions 30
7.1 Global conclusion . 30
7.2 Pros and cons of LoRaWAN . 30
7.3 Technical conclusions . 31
7.4 Practical problems with the PoC 32
7.5 Changes for future research . 32

Bibliography 33

Appendices 35

A Code used in the Proof of Concept 37

B Log of PoC procedure 41
B.1 Getting the Seeeduino to work 41
B.2 Hello world locally . 41
B.3 Data over LoRaWAN . 42

B.3.1 Acquiring network keys 42
B.3.2 Adapting the code . 43

B.4 Code changes for ABP connection 45
B.5 Code optimisations . 45

CONTENTS 5

Terminology

Some of the important terms used in this thesis:1

• LoRaWAN - Long Range Wide Area Network.

• End Device, Node - an object with an embedded LoRaWAN commu-
nication device.

• Network Server - servers that route messages from End Devices to the
right Application, and back.

• Gateway - antennas that receive broadcasts from End Devices and send
data back to End Devices.

• Uplink Message - a message from a Device to an Application

• Downlink Message - a message from an Application to a Device or from
the Network Server to a Device.

• Denial of Service (DoS) - an end-device, gateway or network server no
longer responds to requests and communication ceases to function to some
degree. (Could be complete or partial.)

• Over the Air Activation (OTAA) - The activation protocol used by
end-devices to automatically configure their settings to set up communi-
cations with a specific network server.

• Authentication By Personalisation (ABP) - The manual configu-
ration of end-devices to set up communications with a specific network
server.

1Partially from: https://www.TheThingsNetwork.org/docs/lorawan/

https://www.The Things Network.org/docs/lorawan/

Chapter 1

Introduction

A Low-Power Wide-Area Network (LPWAN) is, as its name shows, a long range
network that consumes relatively little power. A few examples of these net-
works are Sigfox1, Narrowband-IoT2 and Long Range Wide Area Network (Lo-
RaWAN) [1]. This thesis only looks at LoRaWAN.

The LoRaWAN is a network with a range of up to 5 km that can be used
in similar ways as WiFi or mobile data internet. Even though it has a clear
advantage over WiFi when concerning range, its disadvantage is that it allows
only quite a low bandwidth.

LoRaWAN has been designed for communication with Internet of Things
(IoT) devices; a low bandwidth network with a long range that requires very
little power to operate. One of the Dutch LoRa network providers is KPN.
On their website3 they claim that even a simple device, working on two AA-
batteries, is able to operate and communicate with a server for up to 10 years.
They also claim to have national coverage, both inside and outside of buildings.

The Radboud University has a number of solar panels on the roof of the
Huygens Building of which the performance is currently being measured by a
solar sensor. This solar sensor measures the strength of the light it senses. It
then communicates this data over a WiFi network to a server in which the data
is processed. It could be a lot more practical and applicable on a larger scale if
this connection would work using LoRaWAN.

Therefore, this thesis investigates whether these communications can be
achieved through LoRaWAN and then compares the LoRaWAN-solution to the
current WiFi-solution. This thesis is based on the following research question:

Is it possible to use LoRaWAN for solar sensor measurement com-
munications and what are the pros/cons compared to the current
situation?

The research question is answered by creating a Proof of Concept (PoC) and
by theoretical analysis of the requirements given the LoRaWAN capabilities. In
this PoC, the solar sensor is modified to use LoRaWAN instead of WiFi. After

1https://www.sigfox.com/
2https://www.gsma.com/iot/narrow-band-internet-of-things-nb-iot/
3https://www.kpn.com/zakelijk/grootzakelijk/internet-of-things/lora-netwerk.

htm

6

https://www.sigfox.com/
https://www.gsma.com/iot/narrow-band-internet-of-things-nb-iot/
https://www.kpn.com/zakelijk/grootzakelijk/internet-of-things/lora-netwerk.htm
https://www.kpn.com/zakelijk/grootzakelijk/internet-of-things/lora-netwerk.htm

1.1. WHY LORAWAN? 7

modifying it in this way, the two setups are compared and the pros and cons
are concluded from the results.

The Proof of Concept (PoC) is done in several steps. First, the theoretical
differences between the WiFi solution and the LoRaWAN solution and their
own advantages and disadvantages are discussed in Chapter 4.

Then the PoC begins with a toy example to acquaintance you with the
possibilities of LoRaWAN. Finally the possibilities of LoRaWAN are tested to
see whether or not it is able to replace the WiFi solution. The PoC can be
found in Chapter 5.

1.1 Why LoRaWAN?

Since the solar sensor does not transmit a lot of data and because currently its
deployment is limited by the range of the WiFi router, switching to LoRaWAN
seems to be an ideal solution. For a broader explanation of why LoRaWAN
would be a better solution than WiFi, see Section 3.3. To get an overview of all
the differences between WiFi and LoRaWAN, see Chapter 4.

1.2 Document outline

Chapter 2: Background on LoRaWAN. In this chapter the LoRaWAN
specification and the most important factors related to this research are dis-
cussed.

Chapter 3: Current Setup. This chapter describes the current setup of the
solar sensor and reviews the posed problem of the sensor communicating over
WiFi.

Chapter 4: Comparison between the LoRaWAN- and the WiFi-solution.
In this chapter the LoRaWAN-solution is compared with the current WiFi-
solution.

Chapter 5: LoRaWAN Proof of Concept. In this chapter the procedure
of building the PoC is described and the hardware choices will be explained.

Chapter 6: Future Work. This chapter describes future work that can be
done as a continuation of this research project.

Chapter 7: Conclusions. Based on the previous chapters, the final conclu-
sions are described in this chapter.

Chapter 2

Background on LoRaWAN

The long range wide area network, LoRaWAN, the network used for this re-
search, is a form of wireless communication that requires only a low amount of
energy. Just like WiFi, this network can be used to transfer data. Unlike WiFi,
it can only be used for small amounts of data-transfer. However, it can transfer
this data at a much longer range than the average WiFi-device is able to.

In some online sources the terms LoRa and LoRaWAN are used interchange-
ably. However, they are not the same; LoRa is the Physical Layer (OSI layer
11); the radio waves used for this system. Because whenever LoRa is concerned,
the LoRa Radio Frequencies are concerned, these frequencies are also referred
to as LoRa RF. LoRaWAN is the media access control (MAC) layer protocol
(layer 2); the protocol using these LoRa radio waves. In this thesis these terms
are used as described here.

In this chapter the more technical details of LoRaWAN will be discussed.
Section 2.1 gives a high level overview of what exactly LoRaWAN is. In Section
2.2 an overview of the used versions of LoRaWAN is given.

Section 2.3 describes the usual architecture of a LoRaWAN network. In
Section 2.4 the different end-devices that exist in LoRaWAN are described.
Section 2.6 describes the procedure to connect an end-device to an existing
network, along with the requirements of setting up a LoRaWAN. Then Section
2.7 is a list of the different communications between network servers and end-
devices.

Finally, Section 2.8 describes security vulnerabilities found in LoRaWAN
and their relevance to this research.

2.1 High level description of LoRaWAN charac-
teristics

LoRaWAN is a form of Low-Power Wide-Area Network, which means that it
consumes only a small amount of energy, but is still able to communicate at
long ranges [2] with a gateway. The long range here can reach up to 5 km in
urban areas and up to 10 km in suburban areas.

1https://en.wikipedia.org/wiki/OSI_model

8

https://en.wikipedia.org/wiki/OSI_model

2.2. VERSION DETAILS 9

Figure 2.1: An overview of the topology of LoRaWAN. [6]

The low consumption of energy of LoRaWAN allows LoRaWAN devices to
be operational for up to 10 years [3]. Because all the gateways of a network
are connected to only one network server, devices using LoRaWAN are able to
operate on a regional, national or global scale.

For the communication with end-devices, LoRaWAN specifies a LoRa Radio
Frequency network. This specification allows a number of frequencies, with
868MHz being common in Europe and 915MHz in North America [4]. One
major downside to LoRaWAN is that it only allows low data rates of at most
0.5 kbps[5].

2.2 Version details

The LoRaWAN details in this document are based on the LoRaWAN specifica-
tion version 1.1 [1] and Regional Parameters version 1.1 [4], This is currently the
most recent version of the LoRaWAN specification. This version is backwards
compatible with version 1.0 and is almost the same, except that in version 1.1
some security flaws that would have impacted this thesis have been fixed, as
discussed in Section 2.8.

2.3 Architecture

A LoRaWAN setup consists of end-devices (a.k.a. end nodes), gateways, a
network server and usually one or more application servers. See Figure 2.1 for
an overview.

The end-goal of the network is to have an end-device communicate with an
application. This happens in several steps. First, an end-device uses the LoRa
Radio Frequency to communicate with one or more gateways. Then a gateway
creates a virtual bridge between the LoRa Radio Frequency on one end and a

10 CHAPTER 2. BACKGROUND ON LORAWAN

standard IP connection (over Ethernet) with the network server on the other
end.

The Network Server has two tasks, on one hand it processes the end-device
data in such a way that it can be provided to the application servers which
can relay it to their applications for further processing. On the other hand it
controls the network.

This network control is important because most end-devices do not send their
data specifically to a certain gateway, but instead they broadcasts their uplink
messages. These broadcasts cause the messages to be able to be received and
relayed by multiple gateways. Here the network server filters out the duplicated
network packets [6]. Based on certain criteria of the latest received uplink
messages (like signal strength), the network server selects a gateway that is best
for downlink messages.

Even though downlink messages are possible, they are sent with a much
higher latency than uplink messages because there is less bandwidth available
for downlink. This causes the downlink messages to be used less than uplink
messages.

2.4 End Devices

The LoRaWAN specification [1] defines three device types (Class A, B and C).
The difference between these types is a trade-off between battery lifetime and
up- and downlink communication options. All devices have to implement Class
A, whereas both Class B and C are extensions to the Class A specification.
Every device starts out as a Class A device, but can be reconfigured at any time
by the application to become a Class B or Class C device. This reconfiguration
can also be undone at any time.

2.4.1 Class A Device

Class A Devices support bi-directional communication between a device and
a gateway. This class is optimised for battery-powered end-devices and is the
Class that uses the lowest amount of power. Class A has to be supported by
all devices on the LoRaWAN and every device starts their communications as
a Class A end-device.

Class A end-devices can send uplink messages at any time (unscheduled).
After the uplink communications end, the device opens two receive windows at
regionally specified times, most often at one and two seconds after the ending
of the transmission. During these receive windows, the server can open down-
link communications (which are allowed to last longer than the time the receive
windows stay open). The receive windows only dictate the time during which
a downlink transmission can be opened. A server can use either the first or
the second timeslot to start its communication, but not both during the same
downlink.

If the server does not use either of these two time frames, the next oppor-
tunity for the server to communicate with the end-device will be after the next
uplink transmission from the device.

2.5. LORAWAN ENVIRONMENTS 11

2.4.2 Class B Device

Class B Devices extend Class A by adding a scheduled receive window for syn-
chronised downlink transmissions (receive windows) from the server. The ad-
vantage of these these time-synchronised receive windows is that the end-device
is ready for reception on a predictable and specific time, rather than depending
on non-deterministic downlink windows available in the default Class A speci-
fication. These added synchronised receive windows are created in addition to
those created in the Class A operations. This extra scheduling and these extra
receiving windows require more power than Class A, but Class B is still opti-
mised enough to be used in battery-powered end-devices.

The scheduling in this operation mode happens every (regionally specified)
Beacon Period (usually between 2 and 3 minutes). At the start of this period,
all Class B devices receive a beacon frame (transmitted by the gateways) which
contains a specific receive window time during which the server is able to send
communications to all Class B devices in the area of that gateway, but is also
able to send specific listen times to a certain device.

2.4.3 Class C Device

Class C Devices extend Class A by keeping the receive windows open unless
they are transmitting. This allows for low-latency communication, but is many
times more energy consuming than both Class A and B devices.

This Class provides the maximum amount of send/receive possibilities; the
network server can initiate downlink communication at any time as long as the
end-device is not already transmitting. However, having a constant communi-
cation window costs more energy compared to Classes A and B and is therefore
only used by devices that have sufficient power available.

2.5 LoRaWAN Environments

There are several LoRaWAN environment choices available, either you can set
up your own network, or ask permission to use an already existing network.
Examples of already existing networks in the Netherlands are KPN-Things or
the open initiative The Things Network (TTN)2. KPN-Things is a commercial
LoRaWAN network that claims to have national coverage both inside and out-
side of buildings in the Netherlands.

The Things Network is an open network to which everyone can add their
own gateway and is free of charge to use. The downside of this network is that
it does not have any guarantees about its coverage.

The final option is to set up your own network, this would, depending on
the area you wish to cover, involve much larger costs, as explained in Section
4.1.2.

2.6 LoRaWAN Setup

To get the LoRaWAN environment working, some steps need to be taken before
the network is operational. These steps can be seen in Figure 2.2. First you

2https://www.TheThingsNetwork.org/

https://www.The Things Network.org/

12 CHAPTER 2. BACKGROUND ON LORAWAN

would need to deploy a Network Server, which also has to be configured. Then
you would need to deploy and configure one or – most likely – more gateways.
Only then can you start adding end-devices.

Since we will make use of already existing networks, namely The Things
Network and KPN-Things, the Networks Server and Gateways have already
been deployed and configured and the end-devices can immediately start being
deployed.

Figure 2.2: A high level overview of LoRaWAN lifecycle. [6]

Once you deploy an end-device, it has to be activated within a certain Lo-
RaWAN environment. The activation process is described in Section 2.7. Once
activated its up- and downlink functionality can be used.

These functionalities can be used until the device is de-activated. De-
activation can occur when the device stops being synchronised with the net-
work server in respect to security keys and other configuration settings. This
can happen for example after power loss on the end-device, or by turning the
end-device off for a while. Re-activation is simply a matter of running the
activation procedure again.

2.7. LORAWAN COMMUNICATION 13

2.7 LoRaWAN Communication

LoRaWAN specifies several different types of communication between network
server and end-devices, each with a specific use-case in mind [6].

Activating an End-Device As shown in Figure 2.2, an end-device needs
to be activated before it is able to send or receive data. There are two ways
to activate an end-device, either by manually configuring the network details,
called Authentication By Personalisation (ABP), or by allowing for Over-the-
Air-Activation (OTAA), in which after selecting a network, the rest of the
configuration is done automatically.

The LoRaWAN specification defines two messages for OTAA. A Join-Request,
which requests the network server to be allowed on the network and a Join-
Accept, which is send by the network server when accepting the end-device on
the network. This second message also contains the end-device configuration
details.

Sending data The reason this network exists is to be able to transfer data.
This is possible, both as an uplink transmission (end-device to network server)
and as a downlink transmission (network server to end-device).

Multiple End-Device communication It is also possible to send downlink
communication to multiple end-devices at once if required. This is only possible
if a group of end-devices is assigned the same device address.

Media Access Control commands These commands can be used to man-
age the network. They can be used to change communication speeds, frequen-
cies, request a device’s status, etcetera.

Beaconing Finally it is possible to generate and broadcast time-synchronisation
beacons used by Class B devices. These beacons contain timing references and
optionally gateway information.

2.8 Security vulnerabilities of LoRaWAN

Like most network protocols, LoRaWAN also has some vulnerabilities [6]. The
most relevant works about vulnerabilities in the network are from Avoine, G.
[7], Zulian, S.[8] and Yang, X.[9]. However, these vulnerabilities have either
been patched in LoRaWAN version 1.1 or are not relevant for this study.

2.8.1 Unauthorised activation of end-devices

Avoine [7] published a work on the LoRaWAN specification v1.0. In this work a
combination of vulnerabilities is discussed, namely: the enforcement of re-using
sessions keys, the replay of Join-Request/Join-Accept messages, and the misuse
of shared root keys. The combination of these vulnerabilities could be used
by a third party to activate end-devices. However, since this vulnerability is
mitigated in the LoRaWAN specification v1.1 [1], which is the version used in
this project, it will not be discussed further.

14 CHAPTER 2. BACKGROUND ON LORAWAN

2.8.2 Random numbers

In 2016, Zulian [8] published an article describing weaknesses in the Random
Number Generator of the hardware that is used in most LoRaWAN hardware.
Furthermore Zulian describes an issue related to nonce generation in the Over
the Air Activation, which allowed for impersonation of servers when setting up
a new device. However, just like Avoine’s vulnerabilities, these issues have been
mitigated in v1.1.

2.8.3 Beaconing vulnerability

Another article about LoRaWAN vulnerabilities, published in July 2017, made
by Yang [9], found two new weaknesses. The first is an ACK spoofing attack,
this is possible because there is no indication which message is confirmed. This
weakness has again been mitigated in v1.1.

The second vulnerability is to eavesdrop beaconing frames that are broadcast
by gateways and used by Class B end-devices to calculate ping slots for downlink
traffic. This causes the end-devices to calculate a wrong beacon slot, which
causes a Denial of Service (DOS) for traffic from the server to the end-device.

This vulnerability is not mitigated in v1.1 of the specification. However, this
attack is of little importance in this study for two reasons. First of all, there
are currently no plans for downlink traffic that could not be transmitted during
the Class A downlink timeslot in this study. Secondly, the hardware used in
this project only allows for Class A and Class C, which leaves this attack vector
useless.

2.8.4 Complete Denial of Service

Finally Van Es [6] found a vulnerability in v1.1 that allows for a complete Denial
of Service of a certain end-device. In it, an attacker eavesdrops and then replays
an older network frame during the end-device registration process, which causes
the end-device to calculate a wrong security context, which in turn causes this
specific end-device to be unable to communicate with the server in any way.

Currently the only way to avert this vulnerability is to manually check
whether after Over the Air Activation the device is transmitting data to the
server. If it is not, the OTAA has to be restarted, which, if it completes suc-
cessfully, will restore communications. This is the only vulnerability that is
currently still in existence but poses no real risk to this Proof of Concept.

Chapter 3

Scenario outline

ReRa Solutions1 has developed a solar sensor that measures the light intensity
across a broad spectrum.

These sensors are deployed near solar panels to be able to determine the
efficiency of these panels and detect possible defects. This is done by having the
sensor measure the amount of light hitting it (and the solar panels), then by
calculating the theoretical amount of energy that solar panels should produce
under the measured circumstances and then comparing this theoretical energy
yield to the actual energy yield.

Once enough sensors have been deployed over a large enough surface area,
(for instance, evenly spread across a country) these sensors could also aid in
making more accurate weather predictions.

Unfortunately, the sensor currently transmits its collected data over WiFi
which limits its deployability, as further explained in Section 3.1. Therefore
ReRa Solutions wants to find an alternative to WiFi that is more flexible but
still allows for their data to be transmitted to their server.

3.1 Limitations of the current setup

ReRa Solutions is looking to expand the deployment of the sensor throughout
the country. This would allow them to do more with the data collected by each
sensor.

That in itself is not a problem. Unfortunately, these sensors currently com-
municate their data through WiFi. Safely using a WiFi connection requires a
router protected with a password which has to be configured in the sensor man-
ually and if this password happens to change over time, it has to be manually
reconfigured in each sensor.

Another problem that arises by having the system work over WiFi is that
these routers have to be placed near the sensor to be able to be connected to
it, since WiFi has a very limited range. On some occasions it might even be
required to adapt the structure where the sensor is placed at to be able to get a
router close enough. Both of these points could cause extra costs, which makes
the sensor less attractive for companies to invest in.

1https://www.rerasolutions.com/

15

https://www.rerasolutions.com/

16 CHAPTER 3. SCENARIO OUTLINE

Figure 3.1: The ReRa Solutions solar sensor installed next to a solar panel.
Photo by ReRa Solutions.

Because of the problems arising when using WiFi, ReRa Solutions wants an
alternative to WiFi.

3.2 Solution requirements

Below are the requirements set by ReRa Solutions for a solution for their WiFi
sensor problem.

3.2.1 Functional requirements

What ReRa Solutions wants to achieve is their solar sensor working in such a
way that it can still transmit its data, at least once every 10 minutes to their
server (for which network latency is of less importance).

The data consists of a few variables with a total size of eight floats (32 bytes).
This data size should be allowed to grow to 40 bytes because hooking up a smart
meter to the sensor would add two floats of data. The specifics of the smart
meter is discussed in more detail below in Section 3.3.

3.2.2 Operational requirements

Furthermore they want this to be done as simple as possible so that sensors are
still at least as easy to deploy as they are in the current WiFi-solution. The new

3.3. WHY LORAWAN WOULD BE A BETTER SOLUTION 17

solution would have to be operable without human-intervention for at least as
long as the current solution, which is at least 3 years, and has to cost roughly
as much as the current solution.

3.2.3 Security and privacy

At the moment encryption of the data is not yet required. The data does not
yet contain anything sensitive; just the intensity of the light at the sensor’s
location. However, in the future ReRa Solutions might want to use power
measurements from the Dutch Smart Meter, which offers detailed insight in
power usage and generation of a household2. The data from these smart meters
however is sensitive and from that point on, the transferred data should be
encrypted. The non-WiFi solution should have the possibility to switch to
encrypted transmission, or have encrypted transmissions from the start.

Other than encryption, two other security aspects are important for the
sensor; data integrity and device authentication. Data integrity means that the
sent data has not been modified between sender and recipient. If the data is
changed, it will be noticed. Device authenticity is assurance that the data is
sent from the device it claims to be from. This prevents false users/devices
sending fake data to the server.

3.3 Why LoRaWAN would be a better solution

If the sensor could use LoRaWAN instead of WiFi, most of the current problems
described above could be fixed, while also meeting all the requirements that
ReRa Solutions has set. Most of these points are further explored in Chapter 4.

3.3.1 Fulfillment of the functional requirements

Normally, one of the downsides of using LoRaWAN is that it does not allow
for large amounts of data to be transmitted at once (up to a maximum of 51
bytes per packet) and not very often (only one packet per two to ten minutes).
However, this should not pose a problem as the sensor only sends only 32 to 40
bytes per packet and only sends one packet every 10 minutes.

3.3.2 Operational fulfillment

It is easy to deploy the LoRaWAN-sensor on a large scale without the need
of extra equipment since all settings (including network keys) are coded into
the sensors and automatically change if network settings happen to change.
Because transmitting data through LoRaWAN consumes very little energy, the
sensor should be operable for at least 5 years without user intervention, but
probably even longer. Also, the Netherlands (the country where ReRa Solutions
is located) already has a national scale LoRaWAN network available. The sensor
could immediately be deployed anywhere in the country without having extra
costs in hardware.

2https://en.wikipedia.org/wiki/Smart_meter

https://en.wikipedia.org/wiki/Smart_meter

18 CHAPTER 3. SCENARIO OUTLINE

3.3.3 Security and privacy

Encryption of the data is done using AES and data integrity is achieved through
CMAC and is automatically enforced in LoRaWAN. AES is also used for authen-
tication as every device receives its own key which automatically authenticates
it whenever the device transmits data to the network. For more information on
the security aspect of LoRaWAN, see Section 4.3.

Chapter 4

Comparison between the
LoRaWAN- and the
WiFi-solution

4.1 Comparison LoRaWAN and WiFi in general

In this section the differences between LoRaWAN and WiFi in general are com-
pared.

4.1.1 Range and connectivity

LoRaWAN has a much longer range, but has for instance no connectivity in
Faraday cage-like buildings, like the Huygens building. It also does not have
good connectivity in buildings made out of reinforced concrete. This is the case
for most electromagnetic waves, but especially for low energy or large (long
range) waves, like the ones LoRaWAN uses [10].

Even though WiFi has a much shorter range, it does allow for a lot more
data transferred in a certain timespan. Where LoRaWAN has a maximum data-
transfer of 5 kbps (if used at maximum power) [5], WiFi allows for data transfers
of up to 866 Mbps [11]. (Which is more than 160 thousand times more data per
second!)

4.1.2 Energy consumption and material costs

Consumption and costs of the network

A WiFi-router and a LoRaWAN gateway consume about the same amount
of power. However, you get about five kilometer coverage with one gateway,
whereas a router gives only coverage in a 15 meter radius, so you would need
fewer gateways than routers to cover the same area, which would mean that in
the end LoRaWAN gateways would consume less energy [3].

The cost of a router however, is much smaller. Where a gateway costs about
e300 1, a router costs only about e60. That means that you could place several

1https://shop.TheThingsNetwork.com/index.php/product/the-things-gateway/

19

https://shop.The Things Network.com/index.php/product/the-things-gateway/

20 CHAPTER 4. COMPARISON BETWEEN LORAWAN AND WIFI

routers for the price of only one gateway. However, a gateway can be made by
hand and requires very few materials, and costs therefore only about e60. 2

It should be noted that with the LoRaWAN solution it is possible to use an
already existing network and you are not required to purchase or set up any
gateways. With WiFi it is sometimes possible to use an existent network, but
because of the limited range, this would limit the use and placement options of
the sensor, so it might be required to install extra routers.

Consumption and costs of the end-device

If you compare the prices of a microprocessor with a WiFi antenna and a mi-
croprocessor with a LoRa antenna, you find practically the same price for both,
about e40.

Finally, power-consumption by both of these microprocessors. Mahmoud
showed in a study published in 2016 [3] that a microprocessor that works with
WiFi requires a constant power supply and would not be able to work with an
AAA-battery, whereas a Class A or B LoRaWAN microprocessor would.

4.2 Settings and passwords

With a WiFi-router, every router has different settings and a different password
to connect to it. In the current solution, this password has to be set manually
for every sensor for every router it connects to. If settings or passwords change,
the sensor loses connection and has to manually be reconnected.

With a LoRaWAN solution you just have to select a network and the net-
work settings are automatically configured with Over the Air Activation. When
settings change, these are automatically updated on every device connected to
the network. This gives more ease of use and ease of deployment with the
LoRaWAN-solution.

4.3 Security Analysis

To assess the security of these networks, three subjects are taken into account:
Confidentiality, Integrity and Authenticity. Here confidentiality means that
the sent data can only be read by the sender and the intended recipient(s).
Integrity guarantees that the sent data has not been modified between sender
and recipient. If the data is altered, it will be noticed. Authenticity is assurance
that the data is sent from the source it claims to be from. This involves some
proof of identity.

4.3.1 Required security

Confidentiality

The current version of the sensor only transmits the intensity of the light hitting
it. Since this is not sensitive data, confidentiality is not yet an issue. However,

2A tutorial on how to build a gateway yourself. http://cpham.perso.univ-pau.fr/LORA/
RPIgateway.html

http://cpham.perso.univ-pau.fr/LORA/RPIgateway.html
http://cpham.perso.univ-pau.fr/LORA/RPIgateway.html

4.3. SECURITY ANALYSIS 21

in the future the sensor might be connected to a smart meter to help compare
the solar panel generated energy with the energy consumption of the household.
Once that happens confidentiality has to be incorporated in the solution and is
therefore a requirement.

Integrity

This is the most important factor when looking at security in this system. The
data collected by the solar sensor is useless if it is not completely intact when
it is received by ReRa Solutions’ server. Because it is this important, ReRa
Solutions already has an integrity test built into the data transmitted by the
sensor that allows the server to verify whether the received data has not been
altered by the transmission.

Authenticity

It is important that only the deployed sensors are able to transmit data to the
server and for the server to know which sensor sent what data. Third parties
should be unable to insert their own fake data into these transmissions.

4.3.2 Provided security

In this section the security provided by both the current solution as the Lo-
RaWAN solution are discussed and compared. A description of the current
solution can be found in Chapter 3.

Between sensor and the host server

Both solutions use the Advanced Encryption Standard (AES) specification [12]
for encryption purposes. The AES specification is a symmetric-key algorithm,
which means that the same key is used for both encryption and decryption. The
specification is used to ensure confidentiality in the transmission of the data.
Integrity is achieved for both solutions by using an AES based Cipher-based
Message Authentication Code (CMAC) [13].

In the current solution a session key is used whenever a connection is made to
the Particle Cloud. This key is safely transmitted from the server to the sensor
using RSA public/private keys [14] that are set in the factory. In the LoRaWAN
solution the symmetric key is either coded into the software (when using ABP)
or set through the OTAA protocol when connecting the sensor to the network.

Authenticity is achieved in the current solution through the same factory
set RSA keys that set up the AES communication. In the LoRaWAN solution
authenticity is achieved through a device ID which is hardcoded and uses when
communicating with the server. These keys or this device ID could only be
acquired by a third party through physical access to the sensor.

Between host server and application server

Current Solution The current solution uses OAuth [15] to authenticate data
access. When setting up a server for an application, it receives a secret key from
the Particle Cloud which will authenticate the server. This key will also be used
when authenticating users login in on the server and is also used to secure

22 CHAPTER 4. COMPARISON BETWEEN LORAWAN AND WIFI

the communication between the host and the application server. (In this case
between Particle Cloud and ReRa Solutions.) OAuth ensures all three security
requirements are met.

LoRaWAN solution In the LoRaWAN solution the data is immediately sent
from the host server (KPN-Things) to the application server through a (TLS
secured) POST-message. The problem is that while using the free developer
version, KPN still has access to the AES-keys. This means that KPN is ef-
fectively a Man-in-the-Middle at the Network Server, which breaks all three
security requirements.

However, in the paid enterprise version, the version the solution will be in
once it is taken into production, the keys remain under your own control, pro-
viding end-to-end security between end-device and application server.

Chapter 5

LoRaWAN Proof of
Concept

In this chapter an attempt at a Proof of Concept is described for ReRa Solu-
tions’ solar sensor to work with LoRaWAN instead of WiFi. However, since
the proof is not completed, it also describes where things went wrong and what
changes should be made in future attempts at a Proof of Concept of this solu-
tion.

At the end of this chapter (Section 5.2) the motivation to choose the Seee-
duino LoRaWAN for this study is described, along with its specification, the
motivation why this device was picked, what alternatives there are to this device
and why picking a different device is recommended for future attempts.

5.1 Toy Example

The full log of the taken steps can be found in Appendix B.
The goal here was to build a simple “Hello Word”-like program using LoRaWAN.
First by getting the microprocessor to work, then by having it send some data
to a server or another device.

5.1.1 Hello world locally

To be able to communicate with the Seeeduino board you are required to install
the Arduino IDE and install additional boards, namely the Seeeduino SAMD
board. Then you can connect the board over micro-USB to your computer
and use example code available in the IDE to have the board transmit “Hello
World!” over the cable. You can check in the Serial Monitor of the IDE whether
you can actually receive this.

Encountered problems

Not a member of the proper group To be able to communicate with the
Seeeduino via the USB-port, the user first has to either have enough rights, or
be added to the correct group. The groups used for the communication are

23

24 CHAPTER 5. LORAWAN PROOF OF CONCEPT

dialout and uucp. A user can be added to a group through
usermod -a -G examplegroup username

Service blocking communication When you are using Ubuntu to program
your Seeeduino, you will notice that after taking the required steps you are still
not able to communicate with the board. This is because Ubuntu has the service
ModemManager installed by default.

ModemManager is a service made to communicate with mobile broadband
cards (e.g. GSM through SIM-cards). This means that whenever a serial device
is connected, this service will attempt to connect to a mobile network as if it
were a SIM-card. This causes the Seeeduino to be continuously blocked by the
data transmitted to it by ModemManager, which effectively disables the board
for personal use. To prevent this service from interfering with the Seeeduino,
execute the following command:
systemctl disable --now ModemManager.service

5.1.2 Data over LoRaWAN

To send data over LoRaWAN, you first have to select a network that supports
your data. In this PoC we have used both the publicly available The Things
Network1 as well as the commercial KPN-Things network2. After registering
at one of these networks, you can create an application and request keys for it.
Then you have two options to connect to the network. Either through Authen-
tication By Personalisation (ABP) or through Over The Air Authentication
(OTAA).

When using ABP you manually enter the keys, the network identifier and
application identifier. The Seeeduino will then try to connect to the network
using these credentials.

On the other hand, if you use OTAA, you only need to enter the network
and application identifier and the network and the board will automatically ne-
gotiate a key. This is especially useful when you want to connect several devices
at once using the same code.

Encountered problems

Too little coverage by TTN When actually attempting to connect using
the Seeeduino, we were unable to get a connection running through TTN. After
we applied optimisations to the code (Appendix B.5) we could still not even find
the network. We have tested the board both in- and outside and after checking
the coverage of TTN, we concluded that there is simply not enough coverage in
the city we were working from (Nijmegen). This is why we decided to switch to
KPN-Things.

No coverage inside The second problem we encountered when attempting
to connect was that even the stronger KPN-Things network with its better
coverage could not connect to our Seeeduino while we were inside. If you want
to connect or transmit data, you need to be outside.

1https://www.TheThingsNetwork.org/
2https://www.kpn.com/zakelijk/grootzakelijk/internet-of-things/lora-netwerk.

htm

https://www.The Things Network.org/
https://www.kpn.com/zakelijk/grootzakelijk/internet-of-things/lora-netwerk.htm
https://www.kpn.com/zakelijk/grootzakelijk/internet-of-things/lora-netwerk.htm

5.2. DEVICE CHOICE 25

OTAA not working The final problem we encountered was that even with
the KPN network, while being outside, the Seeeduino was unable to connect
to the network over OTAA. You have to manually enter the keys and connect
through ABP. Instructions on how to do this can be found in Appendix B.4.

5.2 Device Choice

For this attempted Proof of Concept, we used the Seeeduino LoRaWAN. Below
is a description of the device specification and costs, a motivation for why this
device was chosen and what alternative devices could be used.

5.2.1 Specifications and costs

The Seeeduino LoRaWAN can be purchased from several webshops for about
e40. We purchased it online at Kiwi Electronics3.
These are the Seeeduino LoRaWAN’s specifications:

Arduino/Processor

Microcontroller ATSAMD21G18, 32-Bit ARM Cortex M0+
Operating Voltage 3.3V
Digital I/O Pins 20
PWM Pins All but pins 2 and 7
UART 2 (Native and Programming)
Analog Input Pins 6, 12-bit ADC channels
Analog Output Pins 1, 10-bit DAC
External Interrupts All pins except pin 4
DC Current per I/O Pin 7 mA
Flash Memory 256 KB
SRAM 32 KB
EEPROM None
Clock Speed 48 MHz
Lenght 68 mm
Width 53 mm
Weight 19.6g(without GPS), 19.9(with GPS)

Table 5.1: Specifications of the Ardruino and the Processor

LoRaWAN Module RHF76-052

• 1.45uA sleep current in WOR mode

• High link budget of 160dB. -140dBm sensitivity and 19dBm Output power.

• Dual band, 434/470MHz and 868/915MHz

• 19dBm@434MHz/470MHz

• 14dBm@868MHz/915MHz

3https://www.kiwi-electronics.nl/seeeduino-lorawan

https://www.kiwi-electronics.nl/seeeduino-lorawan

26 CHAPTER 5. LORAWAN PROOF OF CONCEPT

• Support LoRaWAN protocol, Class A/C

• Upgradeable firmware

• Small size: 23mm X 28mm with 33 pin SMT package

5.2.2 Motivation for this device

We chose the Seeeduino LoRaWAN because we required an Arduino that had
a LoRaWAN module built in, preferably with the option to become a Class C
device in case we would want to implement over-the-air software updates.

The advantage that the Seeeduino has over some other Arduinos is the op-
tion to use both the 434MHz as the 868MHz network. Because at the time of
purchase we did not yet know what network we were going to use, this seemed
to be the safest choice.

Seeeduino antenna too weak While conducting the research we noticed
that the Seeeduino has trouble transmitting data to a gateway and even more
trouble receiving data. Therefore we suggest that in future research a different
board is used.

5.2.3 Alternative device

As an alternative to the Seeeduino LoRaWAN, we suggest the Sodaq One, avail-
able at: https://shop.sodaq.com/sodaq-one-eu-rn2483-v3.html. Even though
it is more expensive than the Seeeduino (e95 instead of only e45), it has a LoRa
chip of a different manufacturer which might make a difference for its range.

Furthermore, this one has an equally strong processor and a built in ac-
celerometer, which is able to detect when it moves. This could be useful when
automatically mapping the sensor based on GPS information, for instance the
location could be automatically updated once it stops moving again.

There are not many other complete LoRaWAN devices, you have much more
choice when browsing solely for LoRa modules, which you would have to man-
ually plug onto your own (Arduino) chipset.

5.2.4 Alternative power usage

During our research we powered the board with the power coming from the
micro-USB cable. However, when actually deploying the board, an alternative
method to supply power is required. Below are some suggestions.

Connected to a constant power supply Without having to change any-
thing to the current design, the board could be powered with mains electricity.
This could be achieved by plugging the micro-USB into an adapter and plugging
this adapter into an outlet.

This method is however, not the preferred one as it requires an nearby outlet,
which is both unlikely and unpractical to have outside.

Battery Another relatively easy to implement option is hooking the board up
to a battery. Because of the low power consumption, the board should be able
to last for about ten years on one battery.

https://shop.sodaq.com/sodaq-one-eu-rn2483-v3.html

5.2. DEVICE CHOICE 27

Through solar panel(s) Since the sensor is made to detect the effectiveness
of solar panels, the sensor will always be in the close proximity of panels. There-
fore the sensor could theoretically be hooked up to the power generated by these
panels. Practically this was possible and has been tested, however because of
the high voltage power produced by the panels (up to 1000V), this option would
require certifying the device under applicable norms, which is expensive.

Through its own solar panel (with a chargeable battery) Hooking it
up to a full sized solar sensor was not possible, but as an alternative power
source, it could be hooked up to a panel specially designed to exactly provide
the board’s required power. Other than that the panel stores its excess power in
a chargeable battery which would allow it to remain powered during the night
or when it does not receive enough sunlight for an extended period.

The board suggested in Section 5.2.3 also has a built-in solar charge con-
troller that allows for just this when you plug a solar-cell into it.

Chapter 6

Future Work

This chapter lists further research ideas and possible continuations of this Proof
of Concept. Section 6.1 lists the steps that still need to be taken to complete the
Proof of Concept. Section 6.2 contains possibilities of continuing with the sensor
after the proof is completed. In Section 6.3 some other ideas are suggested for
LoRaWAN related research and Section 6.4 describes other Low Power Networks
that could be used instead of LoRaWAN.

6.1 Completing the Proof of Concept sensor

Because the Proof of Concept has not been completed, a future thesis could get
better hardware, then quickly move through the problems encountered during
this research and continue to connect the Arduino to ReRa Solutions’ server.
Once the server is able to process data sent by the Arduino, the Arduino can
be connected to the sensor so that it will be able to send actual data over
LoRaWAN .

6.2 Continuation of this project

Further continuations of the Proof of Concept are listed here.

6.2.1 Build a gateway

During the research a connection issue surfaced several times. The main reason
that this problem occurred was that the antenna on the Seeeduino is not sensi-
tive enough to connect to a network while it’s inside a building. This problem
could be solved by building your own gateway, placing it inside the building and
connecting it to a network. That way you would have more coverage nearby
which would help in the development process.

6.2.2 Self sustaining sensor

Currently the sensor is still battery-powered. This battery has to be replaced
every five to ten years. Ideally the sensor would be self-sustainable, meaning that
it would generate its own energy. This could be achieved by connecting a solar

28

6.3. OTHER IDEAS 29

panel and a solar power controller, along with a chargeable battery to the sensor.
In Section 5.2.3 a suggestion is given for an Arduino that has a solar power
controller built in. This controller automatically switches between charging and
depleting the battery, depending on the amount of energy generated from the
solar panel.

6.2.3 Energy consumption

One of the advantages of LoRaWAN is that is consumes very little power while
still being able to transmit data at very long ranges. But how much less energy
does the LoRaWAN-based sensor consume in comparison to the WiFi-based
sensor?

6.3 Other Ideas

During this research, several unanswered questions have been raised, each one of
them a good research subject. Below some alternative research subjects related
to these questions.

Downstream side of LoRaWAN and software updates In this setup,
LoRaWAN is mainly used to upload the collected data from the solar panels
to the server. If the downstream transmission side of LoRaWAN would also
be used, the sensors could possibly receive software updates while remaining
deployed.

LoRaWAN network coverage During the research we noticed that the ad-
vertised coverage, especially inside was not realised, even though several sources
claim that the range of LoRaWAN should be five to ten kilometers in urban ar-
eas. Research could be done on how long the range and how strong the coverage
of LoRaWAN gateways actually is.

6.4 Alternatives to LoRaWAN

There exist several long range, low power networks (LPWAN). LoRaWAN is
only one of these. The most used LPWANs other than LoRaWAN are NB-IoT
and Sigfox. Both implementations use a different chipset and different network
protocols. These networks could be compared to find the optimal LPWAN for
the solar sensor.

Chapter 7

Conclusions

7.1 Global conclusion

LoRaWAN is very well-suited as a replacement for WiFi for ReRa Solutions’
solar sensor. This is because the device sends only few small data packets per
hour, which is well within the capabilities of LoRaWAN, as explained in more
detail below.

A full description of ReRa Solutions requirements and how LoRaWAN fulfills
these can be found in Section 3.1 and Section 3.3.

7.2 Pros and cons of LoRaWAN

In this section both the pros and the cons of LoRaWAN are explained, both in
general as well as for ReRa Solutions in particular.

Pros:

• The data-rates allowed by LoRaWAN work great with the requirements
of the IoT, like the solar sensor developed by ReRa Solutions; most imple-
mentations do not require to send more than 51 bytes at once. (51 bytes
being the maximum amount of data per packet.)

• A LoRaWAN device consumes very little energy, which allows these de-
vices to be able to transmit data for several years on only one battery.

• LoRaWAN allows for automatic activation of devices over the air which
allows for easy bulk deployments.

Cons:

• LoRaWAN only allows for little data being sent, e.g. data from sensors
or GPS and only occasionally. Streaming data or browsing internet is not
an option.

• LoRaWAN does not work inside buildings because the low-energy signals
are too weak to penetrate reinforced concrete. This would either require
the device to be outside, or to have a separate gateway inside. This is

30

7.3. TECHNICAL CONCLUSIONS 31

not a problem for ReRa Solutions as their sensors will only be deployed
outside.

• The advertised network coverage of the free to use The Things Network
is not realised. The Things Network also does not have national coverage
which makes it unsuitable for commercial goals.

7.3 Technical conclusions about using LoRaWAN
for the ReRa Solutions solar sensor

In this section you can find the more technical conclusions that could be drawn
from making the Proof of Concept. These conclusions should also be taken into
account when doing future research on either LoRaWAN or ReRa Solutions’
solar sensor.

• The antenna and radiochip built into the Seeeduino are too weak for the
desired functionality. They do not receive any signal while being inside of
buildings and only receive a weak signal when being outside, even when
being in an area that has been tested to have a strong signal from the
gateway. A different chipset is required to achieve the desired connectivity.
A suggestion for a different chipset can be found in Section 5.2.3.

• The Things Network, the network used for the larger part of this thesis has
a too unreliable coverage to be used commercially. Since the network is set
up and maintained by its users, some areas will have proper coverage, but
larger areas will not have any coverage, or too little to properly operate
your LoRaWAN devices. This is explained in more detail in Section 5.1.2.

• For the current implementation of the sensor, which requires only uplink
traffic, Class A microprocessors seem to work best as these require the
least amount of power.
However, if in the future ReRa Solutions would want to implement peri-
odical software updates for the sensor, the sensor would require a micro-
processor with Class C functionality (as the chosen microprocessor allows)
so that for these updates it can temporarily switch to Class C because it
allows for the largest data-rates. This would cause the battery to drain
faster, so this would only be useful for the self sustaining sensors or sensors
on a constant power supply. More information about the different device
classes can be found in Section 2.4.

• Class B functionality is not required for this sensor since Class B is mainly
useful for devices that are not regularly transmitting data to the server.
Class B is used to allow the network server to communicate with these
devices when they are rarely transmitting (and would in Class A therefore
rarely be receiving). Since the sensor transmits data at a set interval,
there should be enough time frames for the server to transmit data to the
device, without the use of beacon frames.

32 CHAPTER 7. CONCLUSIONS

7.4 Practical problems with the PoC

The hardest part of getting the PoC to work was finding out what the problems
we encountered were and what caused them. This was much harder than usual
because LoRaWAN is a relatively new system and does not yet have much online
support. Whereas with problems with code in Python you can simply look up
what is wrong and fix it. With LoRaWAN you only get vague error messages
and it is hard to find out what is actually wrong. (In our case the Seeeduino
was simply unable to find any network.)

7.5 Changes for future research

Here are some changes that can be made for future research to speed up the
development process.

First off, make sure you have a connection to the network you wish to connect
to and optimise connectivity by going outside in an area that should be covered
and connect to the network via Authentication By Personalisation (ABP).

Secondly, use a commercial network like KPN-Things because it has the
most coverage and has the largest chance of working right away. The Things
Network (TTN) is simply too unreliable for development.

If however you really want to use TTN because of their practical console
or because you want more visibility of what is going over the network, make
sure you have your own gateway inside the building you are working from. This
would guarantee that you have a connection and it would allow you to see what
is actually transmitted through the gateway. This would speed up testing and
developing a lot.

Bibliography

[1] N. Sornin, “LoRaWAN 1.1 Specification.” LoRa Alliance Technical Com-
mittee, October 2017.

[2] C. U. Beser, Nurettin Burcak (Sunnyvale, “Operating cable modems
in a low power mode,” June 2008. [Online]. Available: http:
//www.freepatentsonline.com/7389528.html

[3] M. Mahmoud, “A Study of Efficient Power Consumption Wireless Commu-
nication Techniques / Modules for Internet of Things (IoT) Applications,”
Scientific Research Publishing, 2016.

[4] “LoRaWAN 1.1 Regional Parameters.” LoRa Alliance Technical Commit-
tee Regional Parameters Workgroup, January 2018.

[5] X. Vilajosana, “Understanding the Limits of LoRaWAN,” IEEE Commu-
nications Magazine, January 2017.

[6] E. van Es, “LoRaWAN vulnerability analysis: (In)validation of possible
vulnerabilities in the LoRaWAN protocol specification.” Master thesis,
Open University, 2018.

[7] G. Avoine, “Rescuing LoRaWAN 1.0,” International Financial Cryptogra-
phy Association, June 2017.

[8] S. Zulian, “Security threat analysis and countermeasures for LoRaWAN
join procedure,” Master thesis, University of Padova, 2016.

[9] X. Yang, “LoRaWAN: Vulnerability Analysis and Practical Exploitation,”
Master thesis, TU Delft, July 2017.

[10] J. Chapman, “Mathematics of the Faraday Cage,” Society for Industrial
and Applied Mathematics, 2015.

[11] “IEEE Standard for Information technology–Telecommunications and in-
formation exchange between systems - Local and metropolitan area
networks–Specific requirements - Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications Amendment 2:
Sub 1 GHz License Exempt Operation,” pp. 1–594, May 2017.

[12] NIST, “Advanced encryption standard (AES),” November 2001.

[13] T. Iwata, JH. Song, R. Poovendran, J. Lee, “The AES-CMAC Algorithm
Status,” 2006. [Online]. Available: https://tools.ietf.org/pdf/rfc4493.pdf

33

http://www.freepatentsonline.com/7389528.html
http://www.freepatentsonline.com/7389528.html
https://tools.ietf.org/pdf/rfc4493.pdf

34 BIBLIOGRAPHY

[14] Ronald L. Rivest, Adi Shamir, Leonard Adleman, “Crypto-
graphic Communications System and Method,” September 1983.
[Online]. Available: https://patentimages.storage.googleapis.com/49/43/
9c/b155bf231090f6/US4405829.pdf

[15] B. Leiba, “Oauth web authorization protocol,” IEEE Internet Computing,
vol. 16, no. 1, pp. 74–77, Jan 2012.

https://patentimages.storage.googleapis.com/49/43/9c/b155bf231090f6/US4405829.pdf
https://patentimages.storage.googleapis.com/49/43/9c/b155bf231090f6/US4405829.pdf

Appendices

35

Appendix A

Code used in the Proof of
Concept

Below you find the code used in the Proof of Concept. How the code became
the way it currently is and instructions on how to do it yourself, see Appendix
B. The keys in the code have been randomised and have to be set before the
code is usable.

#include <LoRaWan.h>

unsigned char data[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 0xA,};

char buffer[256];

void setup(void)

{

pinMode(LED_BUILTIN, OUTPUT);

SerialUSB.begin(115200);

digitalWrite(LED_BUILTIN, HIGH); // turn the LED on

//(HIGH is the voltage level)

while(!SerialUSB){

delay(1000); // wait for a second

}

digitalWrite(LED_BUILTIN, LOW); // turn the LED off

// by making the voltage LOW

SerialUSB.println("Hello world!");

lora.init();

lora.setDeviceReset();

memset(buffer, 0, 256);

lora.getVersion(buffer, 256, 1);

37

38 APPENDIX A. CODE USED IN THE PROOF OF CONCEPT

SerialUSB.println("Reported version:");

SerialUSB.println(buffer);

memset(buffer, 0, 256);

lora.getId(buffer, 256, 1);

SerialUSB.println("Reported ID:");

SerialUSB.println(buffer);

SerialUSB.println("Setting IDs, keys and device mode");

// void setId(char *DevAddr, char *DevEUI, char *AppEUI);

//KPN OTAA

/*

lora.setId(NULL, "0059AC000000001E", "0059AC0000000001");

lora.setKey(NULL, NULL, "D8F8A93C78461E26465E12341F9A9367");

lora.setDeciveMode(LWOTAA);

*/

//KPN ABP

lora.setId("1420000C", "0059AC000000007B", "0059AC0000000001");

lora.setKey("6454df7d1de3b632527bfde8060e0c71",

"ccadc20ba16660d4155f8a3bcac51c4a", NULL);

lora.setDeciveMode(LWABP);

// setKey(char *NwkSKey, char *AppSKey, char *AppKey);

SerialUSB.println("Setting data rate");

lora.setDataRate(DR5, EU868);

//SerialUSB.println("Setting adaptive data rate");

//lora.setAdaptiveDataRate(true);

//SerialUSB.println("Setting channels");

//lora.setChannel(0, 868.1);

//lora.setChannel(1, 868.3);

//lora.setChannel(2, 868.5);

//lora.setChannel(3, 867.1);

//lora.setChannel(4, 867.3);

//lora.setChannel(5, 867.5);

//lora.setChannel(6, 867.7);

//lora.setChannel(7, 867.9);

SerialUSB.println("Setting receive window");

lora.setReceiceWindowFirst(0, 868.1);

lora.setReceiceWindowSecond(869.525, DR0);

SerialUSB.println("Setting port");

lora.setPort(1);

SerialUSB.println("Setting duty cycle");

39

lora.setDutyCycle(true);

SerialUSB.println("Setting join duty cycle");

lora.setJoinDutyCycle(true);

SerialUSB.println("Setting power");

lora.setPower(14);

//SerialUSB.println("Setting PubNetwKey");

//lora.setPubNetwKey(1);

//lora.setPubNetwKey(1);

/*

SerialUSB.println("Setting OTAA join");

while(!lora.setOTAAJoin(JOIN,10)){

SerialUSB.println("Join not succeeded yet, looping.");

for(int i=0; i<=3; i++){

digitalWrite(LED_BUILTIN, HIGH); // turn the LED on

delay(100);

digitalWrite(LED_BUILTIN, LOW); // turn the LED off

delay(100);

}

digitalWrite(LED_BUILTIN, LOW); // turn the LED off

delay(1000);

SerialUSB.println("Setting OTAA join");

}

SerialUSB.println("Join succeeded.");

*/

}

void loop(void)

{

SerialUSB.println("Still alive");

digitalWrite(LED_BUILTIN, HIGH); // turn the LED on

//(HIGH is the voltage level)

delay(1000); // wait for a second

digitalWrite(LED_BUILTIN, LOW); // turn the LED off

// by making the voltage LOW

delay(1000); // wait for a second

bool result = false;

SerialUSB.println("Transfering packet");

//result = lora.transferPacket("Hello World!", 10);

result = lora.transferPacket(data, 10, 10);

SerialUSB.print("Packet sent: ");

SerialUSB.println(result);

delay(10000);

/*

40 APPENDIX A. CODE USED IN THE PROOF OF CONCEPT

if(result)

{

short length;

short rssi;

memset(buffer, 0, 256);

length = lora.receivePacket(buffer, 256, &rssi);

if(length)

{

SerialUSB.print("Length is: ");

SerialUSB.println(length);

SerialUSB.print("RSSI is: ");

SerialUSB.println(rssi);

SerialUSB.print("Data is: ");

for(unsigned char i = 0; i < length; i ++)

{

SerialUSB.print("0x");

SerialUSB.print(buffer[i], HEX);

SerialUSB.print(" ");

}

SerialUSB.println();

}

}

*/

}

Appendix B

Log of PoC procedure

This chapter describes the steps taken to get a Seeeduino working on either
the network of KPN or TTN. For the actual final code used in the PoC, see
Appendix A.

B.1 Getting the Seeeduino to work

These and later steps up until B.4 can also be found here.1

Below you find the steps you need to take to get the Arduino IDE (the IDE
you have to work in) working for the Seeeduino. These are the first steps we
have taken even before connecting the device to the computer:

1. Download the latest Arduino IDE: https://www.arduino.cc/en/main/
software

2. Go the preferences/settings and under Additional Board Manager URLs
add the following URL: https://raw.githubusercontent.com/Seeed-St
udio/Seeed_Platform/master/package_seeeduino_boards_index.json

If you already have one add the new one separated by a comma

3. Now head to Tools→ Board→ Boards Manager and install the Seeeduino
SAMD board.

4. On Windows youll have to install a Serial driver as well. On my Linux
this wasnt necessary

5. Now select in Tools → Board the Seeeduino LoRaWAN board

6. Under File → Examples → LoRaWAN select the OTAA sample

B.2 Hello world locally

In this section you find the code used to test whether you are able to receive
messages that are sent over the USB cable from the Arduino to your computer.
This is not as trivial as it sounds as you can read in the “Notes for Ubuntu

1 https://blog.squix.org/2017/07/seeeduino-lora-gps-getting-started-with-lorawan-and-ttn.

html

41

https://www.arduino.cc/en/main/software
https://www.arduino.cc/en/main/software
https://blog.squix.org/2017/07/seeeduino-lora-gps-getting-started-with-lorawan-and-ttn.html
https://blog.squix.org/2017/07/seeeduino-lora-gps-getting-started-with-lorawan-and-ttn.html

42 APPENDIX B. LOG OF POC PROCEDURE

users”.

To have the Seeeduino transmit a visible “Hello World” message, simply add
SerialUSB.println("Hello world!");

before lora.init();.
This can then be viewed using the Serial Monitor (Ctrl + Shift + M or Tools
→ Serial Monitor).

Note for Ubuntu users: To be able to communicate with the Seeeduino
through micro-usb, you first have to disable the Modem Manager service. This
can be done with the following command:
systemctl --now disable ModemManager.service (requires root privileges)
You will also need to give the user port access to be allowed to communicate
by adding the user to either the uucp or dialout group. This can be done by:
usermod -a -G dialout your_username

or
usermod -a -G uucp your_username

Afterwards a system reboot is required. (reboot)

B.3 Data over LoRaWAN

In this section the procedure is described that you need to follow to get network
keys from your desired network, modify your code to use them and how to see
whether data transmission is actually working.

B.3.1 Acquiring network keys

To connect to a network you need to acquire network keys. Below you find a
description of how to acquire your keys for The Things Network. This process
can be repeated for the KPN-Things network, just from a different website.

TTN

1. Go to https://www.TheThingsNetwork.org/ and register an account

2. Go to https://console.TheThingsNetwork.org/ and select Application

3. On the next screen click “+add application”

4. In the next screen pick a meaning full name for your application in low-
ercase letters for Application ID and write something in Description. Un-
der Handler Registration pick your region, for Europe I have picked ttn-
handler-eu

5. On the next screen click “register device”

6. For “Device ID” pick a meaningful name in lowercase letters

7. On the left side of the DevEUI field click on the arrow icons. The icon
changes into a pen and this will cause the ID to be generated. This is
necessary since the API doesnt offer a way to read out the devices MAC
address. See image below

https://www.The Things Network.org/
https://console.The Things Network.org/

B.3. DATA OVER LORAWAN 43

8. In App EUI pick the ID of the application we created earlier

KPN

Connecting to the KPNThings network works in a similar way as connecting to
TTN. However use KPN’s website instead of TTN’s: https://loradeveloper.
mendixcloud.com/login.html

B.3.2 Adapting the code

Now its time to adapt the OTAA code. Replace the line lora.setKey(..) with
the values below. I also copied here the signature of the two methods so you
know which value you have to put there. setId(NULL, DevEUI, AppEUI) and
setKey(NULL, NULL, AppKey):

// void setId(char *DevAddr, char *DevEUI, char *AppEUI);

lora.setId(NULL, "12409E2345695432", "70B3D57EF0006593");

https://loradeveloper.mendixcloud.com/login.html
https://loradeveloper.mendixcloud.com/login.html

44 APPENDIX B. LOG OF POC PROCEDURE

// setKey(char *NwkSKey, char *AppSKey, char *AppKey);

lora.setKey(NULL, NULL, "47BDA77B6D7B4DDA7DC182E54295FE4E");

Now make sure to select the Seeeduino under Tools ¿ Port and upload the
sketch. If you are not owning a LoRaWAN gateway yourself but you think
that one should be close then remove obstacles between you and that gateway.
LoRaWAN can penetrate walls but how deep into the house the signal is strong
enough depends on many factors. Upload the code and open the serial monitor.
If everything worked out well your output should look something like this:

+VER: 2.0.10

+ID: DevAddr, 26:01:3A:44

+ID: DevEui, 12:40:9E:23:45:69:54:32

+ID: AppEui, 70:B3:D5:7E:F0:00:65:93

+ID: DevEui, 12:40:9E:23:45:69:54:32

+ID: AppEui, 70:B3:D5:7E:+KEY: APPKEY 47 BD A7 7B 6D 7B 4D DA 7D C1 82 E5 42 95 FE 4E

+MODE: LWOTAA

+DR: EU868

+DR: DR0

+DR: EU868 DR0 SF12 BW125K

+CH: 0,868100000,DR0:DR5

+CH: 1,868300000,DR0:DR5

+CH: 2,868500000,DR0:DR5

+RXWIN1: OFF; 3; 0,868100000; 1,868300000; 2,868500000;

+RXWIN2: 869500000,DR3

+POWER: 20

+JOIN: Start

+JOIN: NORMAL

+JOIN: Network joined

+JOIN: NetID 000013 DevAddr 26:01:21:52

+JOIN: Done

+MSG: Start

+MSG: TX "Hello World!"

+MSG: Done

Now you can also go back to your TTN or KPN console (website) and see if the
packages have arrived there.

B.4. CODE CHANGES FOR ABP CONNECTION 45

B.4 Code changes for ABP connection

This section is meant to clarify what has to change to the code acquired in
B.1 in order to have the Arduino use ABP instead of OTAA to connect to the
network server.

To connect through ABP several small code changes have to be made.

• Change the OTAA-setting in the (TTN or KPN) console to ABP and
manually enter the Device EUI, Application EUI, Device Address, Net-
work Session Key and App Session Key in the designated spots in the
code, see the commented code here: B.3.2.

• Change lora.setDeciveMode(LWOTAA); to lora.setDeciveMode(LWABP);

B.5 Code optimisations

Since we were unable to connect to TTN, we applied some optimisations to the
code that were suggested on the TTN-forum.

• Removed both the lora.setReceiveWindow’s because these are set by
default and setting them manually allows for mistakes.

• Changed the initial datarate to DR3: lora.setDataRate(DR3,EU868);

• If you are still unable to find bandwidth, you can change the join-loop
to add some extra time during which the board will attempt to join the
network before giving up. while(!lora.setOTAAJoin(JOIN, 15)){

	Introduction
	Why LoRaWAN?
	Document outline

	Background on LoRaWAN
	High level description of LoRaWAN characteristics
	Version details
	Architecture
	End Devices
	Class A Device
	Class B Device
	Class C Device

	LoRaWAN Environments
	LoRaWAN Setup
	LoRaWAN Communication
	Security vulnerabilities of LoRaWAN
	Unauthorised activation of end-devices
	Random numbers
	Beaconing vulnerability
	Complete Denial of Service

	Scenario outline
	Limitations of the current setup
	Solution requirements
	Functional requirements
	Operational requirements
	Security and privacy

	Why LoRaWAN would be a better solution
	Fulfillment of the functional requirements
	Operational fulfillment
	Security and privacy

	Comparison between the LoRaWAN- and the WiFi-solution
	Comparison LoRaWAN and WiFi in general
	Range and connectivity
	Energy consumption and material costs

	Settings and passwords
	Security Analysis
	Required security
	Provided security

	LoRaWAN Proof of Concept
	Toy Example
	Hello world locally
	Data over LoRaWAN

	Device Choice
	Specifications and costs
	Motivation for this device
	Alternative device
	Alternative power usage

	Future Work
	Completing the Proof of Concept sensor
	Continuation of this project
	Build a gateway
	Self sustaining sensor
	Energy consumption

	Other Ideas
	Alternatives to LoRaWAN

	Conclusions
	Global conclusion
	Pros and cons of LoRaWAN
	Technical conclusions
	Practical problems with the PoC
	Changes for future research

	Bibliography
	Appendices
	Code used in the Proof of Concept
	Log of PoC procedure
	Getting the Seeeduino to work
	Hello world locally
	Data over LoRaWAN
	Acquiring network keys
	Adapting the code

	Code changes for ABP connection
	Code optimisations

