
Bachelor thesis
Computer Science

Radboud University

Improving decision tree learning
by looking ahead

Author:
Mees Neijenhuis
S4353501

First supervisor/assessor:
ir. Jesse Krijthe

J.Krijthe@cs.ru.nl

Second assessor:
Prof. Tom Heskes

t.heskes@science.ru.nl

April 18, 2018



1

1 Abstract

Decision trees are used to make predictions about data. Many different
algorithms exist to make such trees, but none of them are perfect. An
algorithm that makes a decision tree has to somehow find the best split to
make at each point. In this thesis I will discuss an idea for an algorithm to
make better decision trees. This algorithm will not only take into account
the current split, but also possible splits after making a certain split and
take that into account when deciding on the best split to make. To test
this algorithm I compared it to other existing algorithms. In it’s current
form, the algorithm is not yet better than the other available algorithms,
but improvements can still be made to maybe change this.

2 Introduction

Decision trees are used to make predictions about certain data. These pre-
dictions can be about almost anything. They can range from recognizing
spam e-mails to classifying types of plants. For an e-mail, the input data
can things like: who sent it, when was it sent, does it contain a link to a
website, etc. The output will, in this case, be a simple yes or no answer to
indicate if the e-mail was spam or not.

When making a tree you already need to have some data to use as
examples. This data contains both the input and output values. The goal
of a decision tree algorithm is to try to make a tree that represents this
data as well as possible. This is done by choosing a feature of the input and
splitting the data into subsets. I will explain how this feature is chosen in
section 2.3. In which subset each example goes, depends on the value of
the feature. If for example the feature is ”the e-mail contains a link”, then
all the e-mails that do contain a link will be placed in one subset and all the
e-mails that do not contain a link will be placed in the other subset.

These splits are made until a certain stopping criterion is met. Each
subset that is now left if called a leaf. Each leaf belongs to a prediction
about the output. If for example a leaf contains 90% spam e-mails, this leaf
will have the prediction that the e-mail is spam linked to it.

Below in figure 1 an example of what a tree that classifies spam would
look like. Of course this is a simplified example and in real life, there would
be many more splits, but this should give a basic idea of what a tree looks
like.

Of course we would want these predictions to be accurate 100% of the
time and when training a tree on the given data, it’s often possible to make
a tree that predicts all this data correctly. An easy example of how to do
this would be to make a leaf for each of the examples, so they will always
be classified correctly. The problem, however, is that new data that has not



2

Figure 1: An example of a decision tree

been seen before, can be (and often will be) different from the data used
to train the tree, but making predictions about this new data is the actual
goal of the decision tree, so we want the predictions on the new data to be
as good as possible even if this means that the predictions on the training
data won’t be 100% accurate. Making your tree to specific to the training
data is called overfitting.

There are already many different approaches to try to make as good of
a decision tree as possible. In this thesis I will first discuss some of these
approaches and then I will make a suggestion for another possible way to
make decision trees by looking ahead multiple features when deciding which
split to make and evaluate its performance.

2.1 Basic steps to make a decision tree[6]

The steps needed to make a decision tree are as follows.

1. Decide which split to make. Here you just try every split and choose
which one seems best according to the splitting criteria used by the
algorithm.

2. Make this split and choose which class to give to both parts of the
split. The class chosen is the class that most of the observations in
this part belong to.

3. For each subset make a new split in the same way. Order in which to
split these subsets is irrelevant, as they will all have to be looked at.

4. Repeat this until some stopping criteria is met. This can be the depth
of the tree or the amount of observations left in a node for example.

5. Depending on the algorithm, pruning is used at the end. For pruning
you delete a part of the tree and see if this make the tree better. The
way to measure how good the tree is, differs per algorithm.



3

2.2 Existing algorithms

Now that the general idea of how decision trees work is clear, I will explain
the most popular algorithms to make decision trees in more detail and talk
about the choices made in those algorithms. The existing splitting criteria
and pruning methods for the algorithms will first be explained and then we
will look at the different algorithms.

2.3 Splitting criteria explained

Splitting criteria are used to measure how good a split is. The general idea
is that you look at the data before the split and after the split and compare
how good the prediction of your tree is. When making a split it is desirable
to get as many instances of one class together in one subset, because this
means a big percentage of the data belongs to one class there, so predicting
that all the data in that leaf belongs to that class will usually be the right
prediction.

2.3.1 Information gain

Information gain is the difference in entropy. So the information gain is
equal to the current entropy minus the entropy after making the split[6]:

IG(T, a) = H(T )−H(T |a)

Here IG(T, a) is the information gain on tree T if split a is made. H(T )
is the current entropy and H(T |a) is the entropy after split a. The entropy
is calculated by looking at the percentage of instances classified correctly if
you predict everything in the leaf as the majority class (the most common
class in this leaf). When calculating the entropy after a split, you also need
to take into account how big each subset is. If one subset is twice as big as
the other one, you need to count this one twice and then take the average.
This is called the wieghted entropy. The higher the information gain, the
better the split is.

In some cases, the information gain is a bit too simple and values certain
splits the same way even though one is actually better. Going into detail
about when this is the case, is not important for this research, but the fact
that it can happen still needs to be taken into account when choosing a
splitting criterion for my own algorithm.



4

2.3.2 Gini index

Consider the following formula:[6]

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k) (1)

In this formula p̂mk is the proportion of class k observations in node m,
Nm is the amount of observations in node m, xi ∈ Rm means every obser-
vation in region m and I(yi = k) checks if that observation belongs to class
k and returns a 1 if it does and a 0 otherwise.

Now the gini index can be described using the following formula:

∑
k 6=k′

p̂mkp̂mk′

The lower the gini index is, the better. So when using this to calculate
how good a split is, you look at the gini before the split and subtract from
that the weighted gini after the split. The higher this value is, the better
the split is.

2.3.3 Cross entropy

For cross entropy, we again need to use p̂mk(1), which is described above at
gini index. The formula for cross entropy is:[6]

−
K∑
k=1

p̂mklog(p̂mk)

Also how good a split is, is calculated by taking the cross entropy before
the split and subtracting from that the weighted cross entropy after the
split. Again a higher value for this is better.

2.4 Pruning methods explained

Pruning is done to counter overfitting. If the tree you make is too specific
on the training data, this will usually result in worse results on new data.
Pruning is done after a tree is made. For each leaf of the tree, the pruning
algorithm will check if it is better to keep this leaf or to remove it, based on
some kind of evaluation. It then removes leaves accordingly and also checks
new leaves that are created this way.



5

2.4.1 Error based pruning[4]

Starting at the leaves, each split that was made is removed, so the node
above it becomes the new leaf. This leaf will have the prediction of the most
popular class. If this change doesn’t affect the prediction accuracy (usually
measured with information gain), then the change is kept. Otherwise it is
reverted to how it was. This is done one by one for each leaf and each new
leaf created. Until everything has been tested. This method is simple, but
fast.

2.4.2 Cost-complexity pruning[4]

This method keeps removing part of the tree and checks if this improves the
tree. The part that is removed, is the part that gave the smallest amount of
gain. The formula used for this also takes the amount of nodes in the tree
into account, so a much smaller tree with a bit less accuracy will be con-
sidered better. The accuracy of the tree is measured using misclassification
error:

1− p̂mk(m)

p̂mk(1) is described at the gini index section. This formula is just 1
minus the proportion of correctly classified observations.

2.5 Handling missing values[6]

Sometimes values are missing and we need a way to deal with this. For
missing values that are categorical, we can make a new category we name
”missing”. This way we can classify them like every other observation and we
may even find out that most observations with a missing value are classified
as a certain class while other observations without that value missing are
usually classified as a different class.
Another method that can be used for both categorical and numerical values
is as follows: For each split we keep a list of the best splits in order of how
good they are. Then if a value for a certain split is missing, you make that
decision based on the second best split or if that is also missing, on the third
best split etc. This method works best if there is high correlation between
the featuress.
A last and less common method is to take the average of the features where
the value isn’t missing and to use that instead of the missing value.

2.6 The algorithms

There are many different algorithms out there, each with their own pros
and cons. First we have ID3, C4.5 and C5.0. ID3 is the first version of the



6

algorithm that has since been upgraded into C4.5 and then even into C5.0.
ID3 is really basic and nowadays not very useful any more, but since it

is the first version, I thought I’d list it here anyway.[13]
C4.5 is where is gets interesting. It splits based on information gain and

keeps splitting until everything is of the same class or until there is no more
information gain. This algorithm accepts both categorical and numerical
values as input and uses error based pruning. Unfortunately it is susceptible
to outliers.[3]

C5.0 is almost the same as C4.5, but it was optimized a lot. It is faster
and uses less memory.[3]

CART is another popular algorithm. It makes splits based on either the
gini index or cross entropy and uses cost-complexity pruning, which is done
using the misclassification rate. This algorithm can handle outliers.[6]

CHAID is quite different from the above algorithms. The most inter-
esting difference being that it can make a multi-way split. This means it
doesn’t just split the data in two like the other algorithms, but can split it
in any number of subsets. It also uses a completely different way of deciding
the best split, but for this research, that’s not important, since we won’t be
making splits in such a way.[1]

2.6.1 Algorithms used in popular programming languages

Python uses CART with some optimizations. Python doesn’t support prun-
ing yet and the algorithm doesn’t work with categorical values. [8]
Matlab also uses CART. [7]

2.6.2 Random Forest

For a random forest, you make a lot of decision trees and then combine their
results to classify an object. Because you have to make a lot of trees, each
individual tree will be simpler than a normal decision tree, but because you
can later combine the results of all trees, you still get a good classification.
Individual trees can often contain some noise, so making many trees and
taking the average, should counteract this. Usually to make these trees,
bootstrapping is used and each tree can only look at a part of all the features
at each split. This way you get many different trees that looked at different
parts of the training set and that looked at different features at different
splits. A good value for the amount of features looked at seems to be

√
p,

where p is the total amount of features, but this can be different for different
problems. If you don’t look at only a part of the features, then the trees will
mostly be the same and the random forest has almost no effect. Pruning is
usually not needed, since taking the majority vote from many trees already
works against overfitting.

For making a random forest, any of the algorithms above can be used.



7

The reason a random forest is interesting to look at, is because random
forests can be made with any number of trees, so it’s easy to make a forest
that has about the same running time as my new algorithm, so it’s fair to
compare them.

2.6.3 Basic steps to make a random forest[5]

These are the steps needed to make a random forest.

1. Use bootstrapping[2] to create a data set from the original data set.

2. At each split take a part of the features at random.

3. Make a decision tree as described in the section above, but only use
the newly created data set and look at only the features chosen in the
step before.

4. Repeat this to make many different trees that all looked at different
parts of the data and at different features.

5. To classify an object, you now classify it with all the different decision
trees and you use some way to combine these results. Usually this will
be a majority vote, but you can also have trees that seem better have
a bigger weight when making the votes for example.

2.7 The problem with the current algorithms

Usually when a decision tree is made, a splitting criterion is used to select
the best split to make at that moment in a greedy way, but this is only
a prediction, so further down the tree it may actually turn out that this
split wasn’t the best split to make at that moment. If you could ”look in
the future” and see if this is the case, then you could make the better split
instead.

3 Method

If a decision tree algorithm can look ahead when deciding which split to
make, it will have more information about which split is best to make at
that moment. The basic idea is to try all splits and then from each of these
splits look what the best next split would be. This way you look two steps
ahead instead of the usual one step.

To make an algorithm that looks ahead, I couldn’t use the standard
implementation of the algorithm, because looking ahead requires a change
in how the splits are made and you don’t have the option to make that change
in the existing algorithm. So I decided to program the whole decision tree
making algorithm from scratch, in Python. I chose Python, because it is
open source, free and easy to use.



8

3.1 Details about the algorithm

The standard implementation for decision trees in Python doesn’t accept
categorical values, but having this option can be really useful, so I decided
to include this in my implementation, so it works with both categorical and
continuous values.

For the splitting criterion using information gain should be avoided, so
that left me with two options: gini index or cross entropy. Any of those can
be used, so I chose to use the gini index.

If a split is made on a categorical value, a split is made for each category,
so if there are five different categories, the data will be split into five. This
seemed like the most simple way to make this split. By keeping it simple
the run time of the algorithm will be shorter, which is important. Why this
is important is discussed a bit later on. For continuous values this method
of splitting doesn’t work, because each different value would then result in
a different split, so here the data is split into three parts: higher than some
value, lower than some value and ”missing”. To choose the optimal value,
each value in the data set is looked at and the best is chosen. For categorical
splits, ”missing” is just another category and for continuous, it is specifically
made. This is how missing data is handled when making the splits.

I decided to keep the stopping criteria simple: Stop when a leaf has
just one class in it or when a leaf has 10 or fewer examples in it. This
last criterion is to stop overfitting to some extend. Because these stopping
criteria already take overfitting into account, no pruning is used.

Looking ahead can be computationally expensive, because for each split
you have to look at each next split etc. This is why it’s important to keep
the rest of the algorithm simple. For this reason there is also an option to
change how far you want to look ahead and also another option. This option
is to not look ahead for every feature, but just for a few of the best ones
found. For example you can see which ten features are the best to split on
right now, based on the gini index and then just look ahead for those ten
features, instead of all the features. To look ahead, every split is made and
from every split you then look what the best split would be based on the
gini index, and choose the best one found and make the first split to get
there. Then you repeat this until you have your tree.

3.2 How random forests are made

For this I decided to just do it the standard way as described above2.6.2,
with one adjustment. At the beginning of making a tree, a random subset
of the features is made and the algorithm only splits on these features when
making a tree. In the normal algorithm, these features are chosen again for
each split, but I decided to only choose them once at the start. This way
it is less computationally expensive to make the trees for the forest, so it



9

was easier to make more trees. The trees for the forest are made by my own
algorithm without looking ahead. This is done to keep the comparison fair.

3.3 Classification

To classify a new example, it is put in the decision tree and based on the
value of each feature, splits are made until a leaf is reached, in this leaf is a
prediction for the class. This will be the prediction.

3.4 Example when the algorithm works

Figure 2 below illustrates a data set where looking ahead can produce a
better result.

Figure 2: An exapmle data set

A normal algorithm that doesn’t look ahead will see that splitting on
X2 will result an error of 20% while splitting on X1 will result in an error of
25%. Having more data classified correctly after a split is better according
to splitting criteria like the gini index, so the algorithm will first split on
X2. After this, two more split are needed to get all data split in subsets
with just one class in each subset. The associated decision tree would look
something like figure 3 below.

If you have an algorithm that looks ahead two features, instead of the
usual one, it will see that splitting the data on X1 twice in a row, will result
in a tree splits the data completely. Figure 4 below illustrates how the tree
would look in that case.

In this example, both algorithms get a tree that completely splits the
data, but with looking ahead you actually get a smaller tree, which is pre-
ferred, since smaller trees are usually less likely to be overfitted.



10

Figure 3: What a normal tree would look like

Figure 4: What a tree would look like when looking ahead



11

4 Results

4.1 The experiment

Once I completed my algorithm, I tested different ways to make the tree on
different data sets.

4.1.1 The different algorithms tested

The following algorithms were tested:

1. The standard Python implementation (on the data sets without cate-
gorical values).[8]

2. My own algorithm to make a normal decision tree.

3. Looking ahead one feature.

4. Looking ahead two features.

5. Random forest using my decision tree algorithm with 5 trees.

6. Random forest using my decision tree algorithm with 10 trees.

7. Random forest using my decision tree algorithm with 20 trees.

4.1.2 The Datasets used

I didn’t want my results to be influenced by the kind of data set used, so I
decided to test my algorithm on four different data sets. These are the data
sets I used:

1. Iris data, a data set about different types of iris plant. This data set
has 150 instances, 4 features and only numerical values as input. The
input is about the length and width of the leaves of the plant and the
output is the type of plant.[9]

2. Car data, a data set about evaluating cars. This data set has 1728
instances, 6 features and has both categorical and numerical values as
input. The input is about the attributes of a car and the output is
how good this car is.[12]

3. Balance Scale data, a data set about whether a scale is balanced or
not. This data set has 625 instances, 4 features and only numerical
values as input. The input is about weights on both sides of the scale
and the distance to the centre of the scale and the output is about
which side goes down.[11]



12

4. Tic-Tac-Toe data, a data set about winning and losing positions in tic-
tac-toe. This data set has 958 instances, 9 features and only categorical
values as input. The input is an example of a game of tic-tac-toe and
the output is about how good this position is.[10]

The goal in choosing these data sets, was to find sets that are different from
each other in some way. As you can see some data sets are bigger than
others and they have more or fewer features than others. Also the kind of
input is different. The idea behind this, is that some algorithms can work
well on some data sets and not work well on others, so by choosing different
kinds of data sets, you can see if this is the case.

Because the standard Python implementation doesn’t accept categorical
values as input, I couldn’t test all the data sets with that algorithm. The
reason I still chose to include data sets with categorical values in the tests
is because it may produce different results, especially since the way my
algorithm splits categorical values is different from how it splits numerical
values.

4.1.3 How this all comes together

For each of the above algorithms, a data set was split into a training and
a test set. For this I used the ”train test split” algorithm from Python’s
scikit-learn[8] with the default values. This means 25% of the data will be
used as test set and the remaining 75% is used as training set to train the
tree. After training the tree with the training set, I checked the accuracy
of the tree on the test set and also on the training set for comparison. This
process is repeated 100 times for each algorithm and an average of these
accuracies is computed. The reason this is done 100 times instead of just
once, is because the randomness of making the train and test set can have
an impact on the accuracy and by repeating this many times and taking the
average, you get a better idea of what a common result is. This is of course
done with each data set.

4.2 Charts

In the charts below are the results I got. The number in brackets behind
”Tree”, is the number of features the algorithm looks ahead. Here 1 means
it’s just a normal algorithm to make a tree, because you always look at one
next feature. The number in brackets behind ”Forest” is the number of trees
used to make the forest. Since the standard Python implementation had a
run time of close to zero, I decided to not include this in the graphs.



13

Figure 5: Accuracy of the iris data set

Figure 6: Accuracy of the car data set



14

Figure 7: Accuracy of the scale data set

Figure 8: Accuracy of the tic tac toe data set



15

Figure 9: Run time of the iris data set

Figure 10: Run time of the car data set



16

Figure 11: Run time of the scale data set

Figure 12: Run time of the tic tac toe data set



17

5 Discussion

5.1 What we can see from the results

As you can see from the results, the forest algorithm behaves exactly like
you would expect: more trees results in better accuracy, but it takes longer,
because you have to make more trees. Also the Python algorithm seems
pretty straight forward. It always make a tree that perfectly fits with the
data used to train it. Because of this, the training accuracy is 100%, but
of course this means the tree is overfitted and this means it performs worse
on the test set. The looking ahead algorithm on the other hand, produced
some unexpected results. First of all, you would expect the accuracy on the
training set to increase if you look ahead further like in the iris data, but
this isn’t always the case in the other data sets. I think the problem here is
that when looking ahead, the algorithm doesn’t take the stopping criteria
into account. So it may find a split that will result in a good accuracy after
two more splits, but after making that split the stopping criteria may be
met and in that case another split may have been a better choice.

Also in the test set, the looking ahead algorithm doesn’t perform well.
Not looking ahead always seems to be better. This is probably because of
overfitting. Maybe if a pruning algorithm were to be added, then looking
ahead may actually be better, but as it is now, it’s worse. Also compared
to the random forest algorithm, it’s not better.

When you look at the example given in 3.4, you would think that the
algorithm can produce good results as well. The problem with the example
however, is that it is pretty specific and in real situations the data will usually
be a lot messier. That being said, there may still exist data sets where this
algorithm would give good results, but we want an algorithm that is good
most of the time and not one that is only good on certain specific data sets,
if these data sets even exist in real situations.

Run time wise, looking ahead increases rather quickly when increasing
the amount to look ahead. This is of course to be expected, since the work it
has to do increases by a lot. On most of the data sets, it has a much longer
run time than even making a forest of 20 trees. With the longer run time
and the lower accuracy, I can safely say that the algorithm in it’s current
state is not yet an improvement compared to random forests.

Probably the most important thing we can learn from this, is that over-
fitting is a real problem and you should always keep that in mind, whether
you’re making your own algorithm or using existing algorithms overfitting
can always be a problem.

5.2 Possible improvements

Like mentioned above, taking the stopping criteria into account and adding a
pruning algorithm may help improve the looking ahead algorithm. Another



18

important thing to improve, is the running time of the algorithm. Looking
ahead can be computationally expensive and unlike the standard Python
implementation, this algorithm doesn’t have any optimizations yet. I haven’t
researched these optimizations, since it was not in the scope of this thesis,
but there ways to program things differently to make the program faster.
Also some programming languages can produce faster programs. The fact
that python checks variables at runtime for example makes it slower than
a language that uses static variables. Another way to reduce running time,
could be to look ahead for only the two best features with each split, but
doing this will also mean the effect of the algorithm will be lower, because
it won’t be able to check as many features. To compare run times, looking
three features ahead sometimes took as long as 36 seconds, while the Python
algorithm is done almost instantly. If you have to use the algorithm on a
small data set just once, this isn’t a huge problem, but because of the large
amount of time my algorithm needed, I couldn’t test it on bigger data sets,
while those may actually be really interesting, since looking ahead may have
a bigger effect on a bigger data set. Also to test an algorithm it is best to
run it as many times as possible to take a good average. For my tests I
only ran each algorithm 100 times. While this may seem like a lot, it can
still be influenced by the randomness of making train and test sets quite a
bit, because the differences in accuracy between different algorithms can be
pretty small, so if there is one outlier in the accuracies, then this can have a
significant impact. Testing an algorithm 1000 times or more would probably
be desirable, because this would make these outliers less significant. This is
also a big reason to make the algorithm faster.

6 Conclusion

While the algorithm in it’s current state isn’t better than the existing al-
gorithms yet, I think there is still some potential for this to become better.
It can definitely become better than it currently is, because there are still
improvements that can be added as stated above.5.2 The only question is
whether or not it can also become better than the other algorithms out there
like the random forest. In theory I think the algorithm would work best on
bigger data sets with many features, since there isn’t a lot to look ahead
to otherwise. Also it would probably be best to have numerical values for
features, since this will result in fewer subsets when making splits, which
means it will need less time to compute the best split. The problem with
bigger data sets however, is that the algorithm will also be much slower.
With optimizations this problem may be avoided.

It could also be interesting to see how accurate a random forest would
be if the trees in the forest are made by the looking ahead algorithm. Since
random forests are a good way of countering overfitting, combining this



19

with the possibly overfitted trees from looking ahead, may give promising
results. This does require better running times for looking ahead though,
as you need multiple trees to make a forest and if making the trees takes a
long time, the forest will take a really long time.

Since there seem to be many obstacles in the way for this algorithm and
since there are already so many good algorithms available, I’m afraid that
this algorithm won’t be good enough any time soon, but I welcome anyone
to try and prove me wrong.

References

[1] Wikipedia contributors. Chi-square automatic interaction detection —
wikipedia, the free encyclopedia, 2017. [Online; accessed 26-March-
2018].

[2] Wikipedia contributors. Bootstrapping (statistics) — wikipedia, the
free encyclopedia, 2018. [Online; accessed 26-March-2018].

[3] Wikipedia contributors. C4.5 algorithm — wikipedia, the free encyclo-
pedia, 2018. [Online; accessed 26-March-2018].

[4] Wikipedia contributors. Pruning (decision trees) — wikipedia, the free
encyclopedia, 2018. [Online; accessed 26-March-2018].

[5] Wikipedia contributors. Random forest — wikipedia, the free encyclo-
pedia, 2018. [Online; accessed 27-March-2018].

[6] Tibshirani Hastie and Friedman. The Elements of Statistical Learning
(2nd edition). 2009.

[7] Mathworks. Classregtree, 2017.

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[9] UCI Machine Learning Repository. Iris data set, 1988.

[10] UCI Machine Learning Repository. Tic tac toe data set, 1991.

[11] UCI Machine Learning Repository. Scale data set, 1994.

[12] UCI Machine Learning Repository. Car data set, 1997.

[13] Wikipedia. Id3 algorithm — wikipedia, the free encyclopedia, 2017.
[Online; accessed 17-October-2017 ].


	Abstract
	Introduction
	Basic steps to make a decision treeTrees
	Existing algorithms
	Splitting criteria explained
	Information gain
	Gini index
	Cross entropy

	Pruning methods explained
	Error based pruningwiki:pruning
	Cost-complexity pruningwiki:pruning

	Handling missing valuesTrees
	The algorithms
	Algorithms used in popular programming languages
	Random Forest
	Basic steps to make a random forestwiki:forest

	The problem with the current algorithms

	Method
	Details about the algorithm
	How random forests are made
	Classification
	Example when the algorithm works

	Results
	The experiment
	The different algorithms tested
	The Datasets used
	How this all comes together

	Charts

	Discussion
	What we can see from the results
	Possible improvements

	Conclusion

