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Abstract

Mobile malware can be detected in various ways, one of the ways is by
looking at an app’s power usage. Malware detection via power usage in
mobile apps has been used in the past. So-called clean apps can have a
significant difference compared to the same app repackaged with malware in
terms of power usage. In this thesis we will show that the infection phase of
certain malware can pay off in detecting malware by an app’s power usage.
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Chapter 1

Introduction

Mobile malware has been around ever since the introduction of Google’s
mobile operating system called Android. To prevent infections of malware,
it is essential to be able to detect its presence on a device. Malware detection
can be done in multiple ways, i.e. via static or dynamic detection. This
thesis will be about dynamic detection, which means that detection will be
done during the runtime of the malware. Dynamic behavior can be defined
in multiple ways, e.g. the connections a program is making with other
machines on the Internet or the API calls it invokes. These characteristics
of a program can indicate potential infections.

Apart from network traffic or API calls, a program’s behavior can also be
indicated by the power it consumes. The behavior of the program includes
the functions it executes, which in turn influence the power that is consumed
on the machine. Expected power traces can be used as indicators to classify
potential apps as clean or possibly malicious. Anomalies in the power trace
can indicate that the app that is being run includes extra functionality. This
is interesting with regards to malware. Android applications, later referred
to as apps, can be disassembled and afterwards packed with extra code that
can be executed when the app is repackaged again. Malware authors have
been adding malicious functionality to clean apps in order for regular users
to make it seem as if they are using the original app.

This thesis will be about the power traces of genuine apps and how they
compare to the same apps repackaged with malware. Further research has
been done on this subject [22][34][32][26][25], however, this thesis differs in
when the power trace is taken. The power traces in this thesis were taken
during the initialization phase of the malware. This entails the phase in
which the malware infects the device. Running an app can cause this, but
sometimes other events need to happen before the malware activates on a
device. During activation the malware often uses more energy, since it has
to set up itself on the system. It has come to light that certain repackaged
malware do result in significant changes in the power trace. In this thesis
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we will look at different families of malware, of which some show significant
differences compared to other malware that do not.

It should be made clear that further on in the thesis, we will refer to
so-called ”clean” apps as apps that have not been repackaged with mal-
ware. The malware that is described in this thesis is malware that has been
repackaged in a clean app.

The thesis is structured as follows: The first chapter discusses malware
in general and the malware that was used in this experiment. Then, the
research, i.e. the methodology and the experiment, is discussed. Afterwards,
the related work is discussed, and lastly we will conclude on the results of
our experiment.
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Chapter 2

Malware

This section will describe malware and the types of malware that were used.
In this thesis we will be using samples from different families of malware.

Malware is a portmanteau of mal icious and software, where malicious
indicates the main functionality of the software. As the word malicious
implies, malware is designed to provide malignant functionality. It can have
multiple purposes, i.e. it is not only used to cause damage to systems, but
can also be used to retrieve information from users who are using the system
on which the malware is installed. Although malicious software has gotten
a lot of attention recently due to Wannacry [15] and NotPetya [17], which
were two malware families that resulted in damages on a large, international
scale, it has been around since the 1970s. Malware is written with different
motives, which include generating money, sabotaging systems, espionage, or
hacktivism.

We have chosen to limit the scope of malware studied in this thesis to
Android-based malware samples, because of Android’s market share. Cur-
rently, it has the largest market share in mobile operating systems (77.3%)
compared to other mobile operating systems [21]. iOS has the second-largest
market share, with 19.4% of the market. Additionally, we opted for Android
because during the initial research we found more power analysis apps for
Android than for iOS.

Android has a central service that is used to distribute Android apps:
Google Play. Apps can be downloaded to an Android device through the
Play Store app, which is often pre-installed on Android devices. The Play
Store filters apps based on compatibility with user’s devices. The filter
is based on different requirements of an app, which can be stated in the
manifest file of an Android app. This file contains metadata about the APK
file, such as the required API version, whether a camera is required, etc.
This filter ensures that the apps that are donwloaded on a device can in fact
be used on said device. Another benefit from the centralised system is that
it allows Google to review apps released on Google Play. Although it does
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provide some form of mitigation for users downloading malicious apps, it is
not foolproof. There have been multiple cases where malware was discovered
on Google Play [18][19].

Besides the Play Store, there are also third-party app stores where users
are able to download apps. This comes with added risk. Users are more likely
to download malware. The Play Store provides a much larger audience for
apps, which means that there is a higher chance of other users encountering
the malware and alerting people of it. However, third-party app stores do
attract users, since they can offer apps with free functionality or apps that
are not available on Google Play. For instance, they could offer a premium
game that does not require any payment.

2.1 Detection methods

The detection of malware can be done statically or dynamically [33]. The
former does not execute the program and uses signatures to detect malware.
Dynamic detection looks at the behavior of the malware during run-time.

Signatures that are looked at during static analysis are, for example, the
calculated hash of the program or the strings it contains. Another static
property in Android applications is the permissions that the app requests to
be granted. The permissions of an app indicate what actions it may perform
on the Android device. Static analysis can provide a one-sided picture of an
executable and can be mitigated easily for an attacker. One may notice that
the strings in an application could be obfuscated, or other malicious parts
of the code can be decrypted during run-time and are therefore overlooked
during static analysis. To spot these kind of obfuscated signatures of a
program, dynamic analysis is needed.

Looking at the behavior of a program reveals more information about
the program’s intentions. Moreover, as has been stated in the introduction,
this thesis is about a form of dynamic analysis of malware, namely the
power consumption of an app during run-time. Different instructions lead
to different power consumptions. For example, a calculator that calculates
numbers would only need the CPU to execute instructions, while an app
that communicates via the web would need to download and upload data.
Downloading and uploading would require the app to use Wi-Fi or 4G -
something that consumes extra energy.

2.2 Propagation

Malware can propagate itself via multiple ways. Mobile malware propa-
gation can be described in three main methods. This thesis will look at
malware that uses repackaging as propagation method.
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As has been shortly stated in the introduction: a repackaged app is an
application where the original app has been injected with extra functionality.
With regards to malware, this additional functionality is malicious. The
app often keeps its original appearance, in order to make it appear as the
original app. This makes it more likely for an unsuspecting user to install
this repackaged app and associated malicious functionality.

Furthermore malware can use so-called update attacks. This is another
way to make it harder to be detected via static analysis. The app will include
an extra update function [36]. Upon first inspection of the app, no malicious
behavior will be detected, only after the user is prompted to “update” the
app, the malicious functionality is added to the device.

The last method of propagation is a drive-by attack. This is a method
where the user is visiting a website which hosts malicious code that down-
loads a .apk file unbeknownst to the user. This happened on a forum which
served malicious ads. The ads would download malware when someone vis-
ited a page that hosted the ad [16].

2.3 Malware families

This subsection will describe the malware families of which we created power
traces. Malware family names differ across AV vendors, however, we’ve
adopted the names that were used in the research papers that described the
malware data sets [36][31].

2.3.1 ADRD

The book Android malware and analysis [30] describes a lot of malware,
among which ADRD. Its main purpose seemed to be increasing site rankings
of Chinese websites on Baidu, a Chinese search engine. Baidu provides a
service [28] where you can put a Baidu search box on a website and receive
a share of the revenue generated from clicks on advertisements that would
be received because of the embedded search bar. Increases in site ranking
would increase the number of visits of a website, and the Baidu lookups
would increase the share the Baidu affiliate would receive. It is important
to note that the service that is started will only initiate contact with the
command-and-control (C2) server after 6 hours have passed since the last
contact.

2.3.2 BaseBridge

BaseBridge is malware which uses an update attack. When a user starts the
application, it shows a prompt, asking the user to update the application
[30]. After the ”update”, which installs a trojan, a reboot of the device is
required. After the reboot, the trojan started different services, and tries to
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exploit a privilege escalation vulnerability. After privilege escalation, it will
install the final payload, which would contain functionality, among which
sending and deleting SMS messages, and performing phone calls [35].

2.3.3 Beanbot

This family is an SMS trojan, which communicates with a command-and-
control server to retrieve premium numbers. After receiving the phone num-
bers, it will try to send text messages to these premium numbers in order
to generate money [12].

2.3.4 DroidKungFu

This malware family has multiple variations. Upon initial execution it will
try to execute two exploits to gain root privileges [11]. After gaining root,
it decrypts an APK file and tries to install it. The installed .apk file turns
the Android device into a bot by waiting for instructions from command-
and-control servers.

2.3.5 Fakeupdates

Fakeupdates is a trojan, which upon execution of the app starts a service
in the background which is able to retrieve .apk files from remote servers
by informing command-and-control servers. Downloaded payloads will be
presented to the user by the help of a fake update message. [10].

2.3.6 Gorpo

Gorpo is a malware family that is able to elevate user privileges. After this
has been achieved, it will install an app in the /system/app folder, which
is the Fadeb malware. Fadeb is able to download and run apps. The two
malware families have said to be collaborating with each other [14]. We
expect to see an increase in power consumption during the installation of
the Fadeb malware. Gorpo, also called RealShell, uses a high amount of
obfuscation, and builds an APK file from files located in the assets folder of
the repackaged APK file.

2.3.7 Kemoge

Kemoge is a type of adware. During initialisation, it decrypts a file called
bg.mp4. The file is a DES encrypted, password protected ZIP file, which
will be decrypted and unzipped [13]. The malware contains a couple of root
exploits, and will only communicate with command-and-control servers upon
first launch or after 24 hours of no communication.
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2.3.8 Pjapps

Pjapps is a trojan, which adds the infected device to a botnet [30]. A
botnet is a network of bots, which are infected nodes that can act on behalf
of someone who controls the bot. This is often done via a command-and-
control server, which communicates with the infected machines. Pjapps is
able to install other applications, send and block text messages, and visit
websites.
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Chapter 3

Research

3.1 Methodology

In this chapter the methodology of the experiment will be discussed. This
entails both the preparation and the experiment itself. Lastly, we will discuss
and compare the power traces that were the result from the experiment.

3.1.1 Preparation

In this section the methodology of the preparations that have to be taken
will be described. The first part describes the way data sets can be gathered,
while the second part discusses the power profiling app that will be used to
measure power consumption.

Data set

To perform our analysis we first have to find samples of Android malware.
These samples are .apk files, which are installed as applications on an An-
droid device. In case of repackaged Android malware, the sample is the file
in which the malware is repackaged. There are several ways to receive these
samples. Websites can collect malware samples, e.g. the site VirusTotal [7],
a website where people can upload hashes or files. VirusTotal then shows the
amount of antivirus vendors that flag the file or hash as malicious or not. It
is possible to retrieve malicious Android apps from such websites. Another
way of retrieving malicious .apk files is by using data sets of researchers who
have been doing research on a certain data set. The latter has been used in
this thesis, as will be discussed further on.

In this thesis the focus is on the detection of malware via power traces,
however, this means we are comparing power traces. By grabbing malicious
.apk files from the web or from a data set, we retrieve one half of the com-
parison, the second half will be the corresponding clean .apk files. These
will be downloaded from websites such as https://www.apkmirror.com/,
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https://www.apkmonk.com/, and https://www.apkshub.com/. These are
often websites that host a lot of different Android apps. It should be noted
that the downloaded apps could contain malware, therefore before assuming
it was the original version of the app, the downloaded apps were uploaded to
VirusTotal and were only used if most or all of the detection engines flagged
it as not malicious.

Different malware families will have different purposes, e.g. Kemoge
has a different purpose compared to Pjapps. Malware variants are about
different versions of malware from the same family. This is the case with
the DroidKungFu family, which has multiple variants. The data set that
will be used contains malware from different families, this is done in order
to see if certain behavior can be generalized among families. However, it can
also be possible that certain characteristics only apply for one family and
not for others. By using multiple families in our data set the differences and
similarities between them can be shown. Of each family multiple samples
are tested, however, only if multiple clean original apps could have been
found for that family.

Trepn Power Profiler

To measure the power consumption of an app we use the Android app called
Trepn Power Profiler. Trepn Profiler is a project by Qualcomm Technologies
[6]. Trepn Profiler monitors the power usage of an Android device. Although
it measures power usage, the site does state that unsupported devices could
cause inaccurate reportings of power usage. There is a list of supported
mobile devices [8] which shows Android devices that are supported. In the
experiment, the LG Nexus 5 will be used, a device which is on the list of
supported devices.

The reason we chose for Trepn profiler is based on its accuracy and
the format in which the power trace is saved. In a paper that compares
power monitor software [24], Trepn Power Profiler was stated to have an
accuracy of 99%. In other papers researchers have used PowerTutor [5].
However the reported accuracy was said to be lower, namely 97.5%, which
is partly due to PowerTutor not considering the GPU’s power consumption.
It must be stated, though, PowerTutor is able to trace power consumption
per application running on the device, while Trepn Power Profiler is not.

3.1.2 Experiment

The goal of the experiments is to find whether there is a significant differ-
ence in the power analysis of clean apps versus that of their corresponding
repackaged malicious app. To achieve this, there should be a correlation
between the power analysis of an app and the activity of it. During the
experiment multiple apps will be run on an Android device, the Nexus 5,
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and during the execution of the app its power consumption will be noted.
To test if there is a difference in an app’s power usage, first, we have

to decide whether it is better to use an input file, or to let the app run for
a certain amount of time without user interaction. We have chosen to not
give input to the apps during the monitoring of the device. This is done,
because the malware does not trigger based on user input, but on events
that happen on the phone, e.g. when there is a change in connectivity of
the network. We try to trigger each malware by looking at what initiates
the malware, and replicating this during the power analysis.

To perform a more reliable power analysis, a backup of the full phone
state has to be made. This will result in both the clean and the repackaged
app running from the same state. This is done by rooting the phone and
then using custom recovery to create images of the phone state.

When the base phone state is saved, the experiment can start. For each
app executed, we first revert the phone state to the base state. Then we will
start the app and measure its power trace.

3.2 Preparation

In this section the actual preparations that have been made will be discussed.
The first part elaborates on the data set that has been used. Then we will
talk about how the phone state is saved. The last part will describe how we
triggered the malware.

3.2.1 Data set

As has been stated in the methodology; the malware samples in this thesis
were collected by using data sets from previous researchers that were doing
research on malware.

The samples that have been used in this experiment are listed below.
First there is the table of clean samples, then comes the table that contains
information about the malicious samples.
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3.2.2 Clean .apk samples
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3.2.3 Malicious .apk samples
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Some families only have one sample to test, this is due to us not able to
find the corresponding clean apps. To search for the clean samples, we used
the following Google search queries:

• “PACKAGE NAME” apk download

• “PACKAGE NAME”

In the list above, PACKAGE NAME is the name of the package retrieved
from the malware sample. The package name was put in between quotes,
to ensure Google only returned entries which contained the whole package
name in its results.

Since we are comparing power traces, it is important that the apps that
are being compared are almost the same. In the most ideal situation, the
apps are exactly the same, except for the malicious code that has been
added. In this situation the only significant power differences are likely to
be caused by malicious code. We therefore tried to find original apps that
had a version closest to the repackaged app. Unfortunately, most of the
times this was not possible. The version numbers have been mentioned in
the two tables.

3.2.4 Phone state

Saving the phone state of an Android smartphone can be done with the use
of the built in backup service, which is provided by Android. However, this
method only saves user created data, which resides in the data partition [27].
Another way to create a backup, is by creating a NANDroid backup. This
is a logical copy of the whole internal memory [23]. To do this, the device
has to be rooted. This could be done trivially with the use of a software
toolkit. The Nexus smartphone series have a toolkit called the Nexus Root
Toolkit. This is a tool which can automatically root a Nexus smartphone.
It can also be used to install a custom recovery tool, named TWRP. Custom
recovery is third-party software which replaces the stock recovery software
on the Android device. With TWRP we can create the NANDroid backup.

It should be noted that TWRP does not restore the internal storage.
Since apps can add extra data in the internal storage, we created a list of
the folders that were present after the Trepn Profiler was installed and the
backup was created. After each run the folders that were added to internal
storage were removed.

3.2.5 Triggering malware

Malware is often triggered with a certain action the user or device makes.
This differs between families. It is essential for this thesis that each mal-
ware triggers successfully in order to give a significant conclusion about the
differences found in the comparison between the power traces.

15



To do this, we looked at what triggered the malware and create that same
environment during the execution of the sample. When we looked at our
malware samples, there were three ways the malware could be triggered.
The user can be prompted to update their app, which will download or
install the malware after the user complies. Secondly, the malicious APK file
declares a receiver together with a service in the Android manifest file, where
the receiver waits for a certain event and will then activate the malicious
service. Thirdly, the malware has hooked a function that is called within
the app. When this function is called, the malware will activate.

The manifest file of an APK file is a mandatory file that entails informa-
tion about the app. This includes information such as the package name, the
different components of the app, the permissions it needs, and other infor-
mation, e.g. whether the app requires a camera. The different components
of an app can be activities, services, receivers, or providers.

Services are pieces of code that run in the background, regardless of
whether the app is running. This is ideal for malware writers, since this
allows for persistence. This is because they can start a service with the help
of a receiver, without requiring the app to be running.

The receiver is a component that is able to catch certain events that
occur on the system, even when the app itself has not been started. In the
manifest file it can be declared on what events the receiver will be woken
up. The system events are wrapped in an Intent object and include, for
example, ACTION BOOT COMPLETED. This is an intent that will be broadcasted
whenever the device has booted up. Like the intent about the system that
booted up, intents are also sent when a user has received an SMS or when
the phone state changes.

In the samples used in this thesis, the malware often used receivers and
services. When the receiver would catch a certain event, it would start a
malicious service, which was often the only use of the receiver.

To look at the different things that trigger the malware, we used tools to
retrieve the source code of the samples. We used three tools for the analysis;

• Androl4b [1];

• JD-GUI [4];

• dex2jar [2].

The initial analysis was done with the use of Androl4b, which is a virtual
machine which has pre-installed tools that can be used to analyse APK files.
Androl4b has a local web server running the Mobile Security Framework.
This framework is capable of static and dynamic analysis of uploaded APK
files. However, MobSF is not always able to decompile the Dalvik bytecode.

Dalvik bytecode is the format which is used by APK files to store the
program instructions. This bytecode is saved in .dex files and stands for
Dalvik EXecutable.
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Dalvik bytecode can be decompiled to Java files in two ways. The first
method decompiles the Dalvik bytecode to Java in one go. The second
method takes one intermediate step. It first decompiles the .dex file to a
Java archive, containing multiple files in Java bytecode. This step is done
by the dex2jar tool. The second step is decompiling this .jar file back to a
representational form of source code. It is called bytecode, since a processor
cannot execute the instructions as it is. There needs to be a translation from
bytecode to native code. The translation of bytecode to native machine code,
that can be executed by the processor, is done by Android Runtime (ART).

If MobSF failed to decompile the Dalvik bytecode, we used dex2jar in
combination with JD-gui to extract the source code of malware samples.
Sometimes it was not possible to view the source code correctly. This can
be caused by bytecode instructions that are not representable in Java source
code. To tackle this, we viewed Smali code. Dalvik bytecode can be disas-
sembled to Smali code, which shows the instructions the program executes.
The only downside is that it is harder to read, however, it provides a more
detailed representation of the app.

Sample information

After looking at the different malware, we wrote down which intents were
able to trigger the malware. These intents would then be sent during run-
time. The table below does not contain information for each sample, since
the difference was minimal between different samples of the same family.

Some malware had certain checks it performed, such as DroidKungFu.
This malware sets a timestamp when the service starts for the first time.
Then, each time it starts, it checks if an hour (or half an hour) has passed.
To mitigate this, we sent an intent which triggered the malware, then, we
set the time a significant amount of time in the future, at last, we would
trigger the malware again. Since in all cases of DroidKungFu the time will be
set a significant amount in the future, we can regard the families’ triggers
as the same in the table below. The date of the device can be set with
the following command date mmddhhmmyyyy, where the first two letters
represent the month. To set the date, root is required.
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Sample information

Malware family Trigger Time of trigger

Pjapps android.intent.action.SIG STR 8-10 seconds

Gorpo Launching the app

FakeUpdates Launching the app

Kemoge android.intent.action.USER PRESENT 8-10 seconds

ADRD com.lz.myservicestart 8-10 seconds

BeanBot android.intent.action.PHONE STATE 8-10 seconds

BaseBridge Update prompt Upon launch

DroidKungFu(2-4) android.intent.action.BATTERY CHANGED ACTION 15-20 seconds

In some cases the malware triggered automatically after running the
application, this was the case for Gorpo. Gorpo adds a function to the
launcher activity that will thus be started upon launching the app. Then,
the activity that is created will launch the dropper, which will retrieve two
other .apk files.

Another family that automatically starts upon launching the app is Fake-
Updates. This malware uses the same technique as Gorpo in triggering the
malware.

For most malware that needed to be triggered we triggered them af-
ter 10 seconds, however, for DroidKungFu more steps were needed, there-
fore it triggered slightly later. One of the triggers of DroidKungFu was
android.intent.action.BATTERY CHANGED ACTION, this intent is broad-
casted relatively often, which meant that as soon as the date had been
changed, the malware triggered.

After determining the triggers, we tested the samples on the phone with
the use of Frida [3]. With this software it is possible to view a predetermined
set of system calls that a program invokes. This allowed us to determine
if the malware was triggered. Besides Frida, we also used Wireshark [9] to
check if the sample communicated with a C2 server.

Because some of the triggers can also cause increased power consumption
when a clean app is running, we have added the triggers for some of the clean
apps as well. Namely, for Pjapps, Beanbot, DroidKungFu, ADRD, and
Kemoge. The other apps prompted the user for action, or would activate
automatically.

The next section will elaborate on the power traces that were obtained
during the experiment.

3.3 Power traces

The Trepn Profiler stores the power traces in .csv format, which makes it
easy to process. After making the power traces we first processed the data
to extract the power data. The resulting traces are listed in Appendix A
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A.1.

3.3.1 Comparing power traces

This subsection will discuss the differences found in the power traces. How-
ever, before we discuss the results, we will preface this by stating some facts
about the power traces. Due to certain circumstances, such as differences in
sample versions or slight differences in machine states, differences in power
traces arise. To counter these environmental factors we set a time on which
a certain malware would be triggered. Still, for the malware samples that
triggered by themselves, this could not be accomplished. Because of the dif-
ferences in versions, we cannot detect smaller differences in the power traces
caused by activity from the malware.

The sections below will show some of the power traces, however, not all
of the traces will be shown. All power traces retrieved during the experiment
are listed in the appendix A.1 which is located at the end of this document.

ADRD

ADRD upon infection sends a small amount of data to a C2 server, how-
ever, it does not do other things during initialisation, e.g. deobfuscation
or installing files. When we compare the clean with the malicious power
trace, we see no great differences. Both the clean and the malicious power
trace show a spike around the 10 second mark, with the clean power trace
showing a larger power consumption. When we compare the average power
consumption from 8 seconds up to and including 10 seconds, we see that
the clean and malicious power traces’ averages are close to each other. The
average of the clean power trace is 609768 microwatt, compared to 590353
microwatt for the malicious power trace. The clean power trace’s average is
3.3% higher.
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(a) Clean trace (b) Malicious trace

Figure 3.1: com.noisysounds

BaseBridge

BaseBridge is one of the families that shows a significant change in power
consumption. As can be seen in the below graphs, around the 10 second
mark there is an increase in power usage.

(a) Clean trace (b) Malicious trace

Figure 3.2: net.lucky.star.mrtm

It should be noted that the fourth app that was tested did not activate,
it did not provide a prompt to ask to install the extra app that BaseBridge
normally installs. This can also be seen in the power trace, since in the power
traces below, in figure 3.3 we can see that both the clean and malicious power
trace have a power consumption that is very much alike. It can also be seen
that different versions do not always have to result in different power traces.
In this case the clean app had a version of 3.35, while the malicious app a
version of 1.991.
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(a) Clean trace (b) Malicious trace

Figure 3.3: com.edwardkim.android.screenshotitfull

Beanbot

Beanbot is another malware that did not show a great increase in power
usage. This can be explained because of the initialisation process of the
malware, which does not entail any obfuscation or downloading of .apk files.
This can be seen in the graphs seen below.

(a) Clean trace (b) Malicious trace

Figure 3.4: com.iPhand.FirstAid

Although we can see an increase in power around the time of the trigger,
the same holds for the clean power trace. The clean power trace shows a
larger spike than the malicious power trace.

DroidKungFu

This malware shows a clear difference in power usage across the different
power traces. Among the different variations of the DroidKungFu malware,
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all of the clean and malicious trace pairs that have been taken show a clear
difference in power consumption. All of the malicious power traces of the
DroidKungFu family show a significant increase after the malware has been
activated. Below we show one pair of power traces, however, in the appendix
A.1.9 the other power traces are listed.

(a) Clean trace (b) Malicious trace

Figure 3.5: com.bottleworks.dailymoney

As shown above, we see a significant increase in the power usage. When
we look at the shape of the graph, we see that the DroidKungFu variant has
a different shape, namely that there is a large increase of power consumption
for about 30 seconds. When we compare the average power usage from 25
seconds up to and including 55 seconds, we see a significant difference. The
clean trace has an average consumption of 49411 microwatt, while the mali-
cious power traces has an average of 2051842 microwatt. Another average of
power consumption in the power traces, from 90 seconds up to and including
120 seconds, shows a smaller difference. The clean power trace’s average is
then 51016 microwatt, compared to 70000 microwatt for the malicious trace.
The percentage difference for the averages from the first interval is 4053%,
compared to 37% for the second interval.

Fakeupdates

For FakeUpdates there was one sample. However, there is a clear difference
in the power traces. If we look at the clear power trace of figure 3.6, we
see a relatively consistent power trace. The power usage does not exceed
500.000 microwatt. When we compare this with the malicious power trace
of figure 3.6, we see that around the 10 second mark, there is an increase in
power usage.
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(a) Clean trace (b) Malicious trace

Figure 3.6: com.forthblues.pool

Although the versions do not match, the average usage from 10 seconds
up to and including 30 seconds for the clean trace is 291386 microwatt,
while this is 2456644 microwatt for the malicious power trace. To compare
this difference with other averages in the power trace: the average power
usage from 90 seconds up to and including 120 seconds is 236140 microwatt,
compared to 175383 microwatt for the malicious power trace. This is a
difference of an increase of 743% versus a decrease of 26%, respectively.

Gorpo

Gorpo is malware that triggers when the app is started. The differences in
power consumption can be seen in the figure below. It should be noted that
besides the peaks in the power trace, the power usages do not match.

(a) Clean trace (b) Malicious trace

Figure 3.7: com.nemo.vidmate

In figure 3.7a we can see firstly the app is using a relatively high amount
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of energy, which stops around 95 seconds. This same behavior can be seen
in figure 3.7b, however, the constant energy usage that is seen in the clean
power trace is almost twice as high, compared to the malicious power trace.
This difference shows what different app versions can cause. What can be
done, however, is look at the shape of power traces. The malicious power
traces of Gorpo show a pattern of higher power usage at the beginning of
the launch of the app, with another increase in power usage between the 60
and 150 seconds.

Kemoge

Kemoge will unpack and decrypt a .apk file when it is triggered. This
means we would expect to see an increase in power consumption around the
10 second mark. However, when we look at the power trace pair below, we
see in both traces a peak. The decryption process in the first sample takes
one second. Broadcasting the intent when the clean app is running shows
the same amount of energy consumption. Below in figure 3.8 we can see one
small difference between the two peaks. The malicious power trace contains
a peak within a peak.

(a) Clean trace (b) Malicious trace

Figure 3.8: cc.taosha.beautify.easylocker

The second malicious sample took longer to decrypt the .apk file. This
is also seen in figure 3.9 below. The malicious power trace shows a wider
power peak, compared to the clean power trace.
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(a) Clean trace (b) Malicious trace

Figure 3.9: com.leo.appmaster

Pjapps

Pjapps is a malware family that is not packed with another .apk file, it also
does not use heavy obfuscation. This may explain why the power traces of
Pjapps do not show any significant increase in energy consumption. Below
are the two pairs of power traces.

(a) Clean trace (b) Malicious trace

Figure 3.10: com.tobyyaa.superbattery
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(a) Clean trace (b) Malicious trace

Figure 3.11: uk.co.neilandtheresa.Vignette

In the first pair there seems to be an increase in energy consumption.
However, when we look at the second pair of power traces, the increase is less
significant. There are also no other increases that seem consistent among
the two malicious power traces. Due to the difference in versions of the app,
we cannot say with confidence that Pjapps shows clear differences in the
power traces.
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Chapter 4

Related Work

This chapter will discuss some of the work that is related to detecting mal-
ware via energy consumption traces. A research paper from 2016 did a
literature study on the different research on anomalies in power consump-
tion for malware detection [22].

The paper described different conclusions about anomaly detection based
on power consumption. For instance, it talked about the differences in power
needs for different kinds of apps. For instance, a news app would require
different energy needs compared to a game or media app. Since we are only
using repackaged apps in our research, it is possible to create a so called
clean power trace, which would match the normal power consumption needs
of the app. The then obtained future traces could be matched with the
original power trace. The paper also describes the various factors that can
influence the detection by power consumption. The state of the battery,
such as age, health and temperature influence the accuracy of the power
traces. In addition, the start state of the device, on which the power trace
is taken, should be replicated as close as possible each time a power trace is
taken.

It further concluded three benefits that power consumption-based mal-
ware detection could offer. Firstly, it mitigates the metamorphism of mal-
ware. Metamorphism changes the signature of the malware, ¡which is meant
to defeat signature-based malware detection. Secondly, the energy-based de-
tection uses a whitelist instead of a blacklist. Instead of having a blacklist
with signatures of programs that are not allowed to be installed on the
system, there is a whitelist with signatures that are allowed. The author
argues that this is highly desired for resource constrained devices, since the
whitelist is much smaller than the blacklist. Lastly, the author states that
using a whitelist allows the detection mechanism to detect unknown mal-
wares, that differ significantly from the whitelist, something that is relevant
for repackaged malware.

A research paper about power consumption-based malware detection
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[34] created six different power profiles related to apps. These profiles were
Games, Internet, Idle, Malware, Music, and Multimedia. It should be noted
that the malware profile in this paper was standalone malware. This meant
that the profiles of the malware all had something in common, namely that
they were sitting idle and would activate by certain events. The difference
with repackaged malware, compared to standalone malware, is that there
is no common power profile, because that depends on the app the malware
is packaged in. However, the malware that is dropped upon execution of
repackaged apps could share a general power profile.

Hoffmann, Neumann, and Holz researched malware detection with their
own variant of a malware [32].The dummy malware was able to send and
receive SMS, communicate via web sockets, and access contacts and other
data on the phone that is often accessed by malware. They concluded that
software-based approaches for measuring power consumption on Android
devices is not satisfactory in most cases. They state that a system that uses
power consumption based data retrieved from software power monitors is
infeasible. They write that such a system would generate a relatively high
amount of false-positives and that creating a precise power profile for an
app is very complex. The authors suggest that a malware that will cause
a power consumption increase of below 2% will often go undetected, due to
error rates of software power monitors.

There has also been research done on crypto-ransomware on IoT de-
vices [26]. The researchers used power consumption information to detect
ransomware. The researchers used PowerTutor and devices from which the
power traces were taken had Android 4.4 installed on it. Another paper
did research on power consumption in covert channels [25]. The researchers
created a framework that used neural networks and classification trees to
determine whether two applications were communicating covertly, e.g. via
different intents or file sizes.

In summary, different conclusions have been drawn on the use of the
power consumption for malware detection. However, there has been a lot of
research on power traces to detect malware. It also seems to be rather com-
plex to create power signatures that will provide a way to successfully detect
malware. In this thesis we will provide one extra characteristic of malware
that could be used to detect malware more easily, namely the initialisation
phase. So far, we have not read any literature that specifically writes about
the initialisation phase as being an interesting phase to take a power trace
of.
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Chapter 5

Conclusions

5.1 Discussion

We have observed that in some cases, there were significant differences in
the malware’s power trace compared to the clean power trace. This is partly
because of how the malware works, but it can also be because of the app’s
power behavior. Malware that is repackaged with apps that require a rela-
tively low amount of energy are more easy to spot. The contrary holds for
energy needy applications.

Some of the apps used in this thesis are relatively old, which could mis-
represent the power traces for more modern apps. However, the current
trend of malware [20] still uses exploits, or tries to install malicious .apk
files, which was also the case with the malware used in this data set.

In this thesis software power monitoring has been used, together with
apps that mostly did not match versions. Because of this, it is harder
to conclude on the average increase the malware could have on the app’s
power consumption. This is due to different versions of apps having different
power consumptions, and because software power monitoring is less reliable
compared to hardware power monitoring [29].

Although the malware that was activated in the experiment required
prior knowledge of the malware, it does show that upon activation there
are significant changes in power consumption, compared to the clean power
trace. In this case, the power trace could help in confirming that something is
wrong with a .apk file. This is for the scenario in which an antivirus solution
has a hunch about a certain malware. In that case it can try to activate it
and compare the power trace with the clean app. This would require that
the actions to activate the malicious .apk file should be replicated for the
clean app. It should be noted that for this situation it is assumed that there
is a cloud solution, where users upload .apk files to the cloud, or provide a
URL from which the server can download the .apk file.

Additionally, there was malware, such as Gorpo and FakeUpdates, that
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required only running the app once in order to activate. Other likewise
malware could also show up in the power trace, if the change is significant
enough.

5.2 Conclusion

In this thesis we have shown that the phase in which the malware infects a de-
vice can be used in malware detection by energy consumption. The moment
malware infects a device, there is often communication with a command-
and-control server, it tries to launch certain exploits, or retrieves .apk files.
These actions all have an effect on an app’s power consumption. We have
observed that in some cases these initialisation phases show significant in-
creases in the power trace, compared to the same app without the repackaged
malware. However, some malware did not show significant differences in the
power traces that were retrieved during the experiment. The results of this
thesis can help in creating a more extended power profile for an app. Besides
looking at the average increase of an app’s power usage, we can also look at
the power usage when the app is first launched, or when a certain intent is
sent to the app.
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Appendix A

Appendix

A.1 Power samples

A.1.1 Pjapps

(a) Clean trace (b) Malicious trace

Figure A.1: com.tobyyaa.superbattery
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(a) Clean trace (b) Malicious trace

Figure A.2: uk.co.neilandtheresa.Vignette

A.1.2 Gorpo

(a) Clean trace (b) Malicious trace

Figure A.3: com.nemo.vidmate
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(a) Clean trace (b) Malicious trace

Figure A.4: com.mobile.indiapp

(a) Clean trace (b) Malicious trace

Figure A.5: com.youba.translation
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A.1.3 FakeUpdates

(a) Clean trace (b) Malicious trace

Figure A.6: com.forthblues.pool

A.1.4 Kemoge

(a) Clean trace (b) Malicious trace

Figure A.7: cc.toasha.beautify.easylocker
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(a) Clean trace (b) Malicious trace

Figure A.8: com.leo.appmaster

A.1.5 ADRD

(a) Clean trace (b) Malicious trace

Figure A.9: com.noisysounds
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A.1.6 BeanBot

(a) Clean trace (b) Malicious trace

Figure A.10: com.iPhand.FirstAid

A.1.7 BaseBridge

(a) Clean trace (b) Malicious trace

Figure A.11: net.lucky.star.mrtm
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(a) Clean trace (b) Malicious trace

Figure A.12: com.mechanics.engine

(a) Clean trace (b) Malicious trace

Figure A.13: com.kayac.bm11.recoroid

(a) Clean trace (b) Malicious trace

Figure A.14: com.edwardkim.android.screenshotitfull
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A.1.8 DroidKungFu2

(a) Clean trace (b) Malicious trace

Figure A.15: com.bottleworks.dailymoney

A.1.9 DroidKungFu3

(a) Clean trace (b) Malicious trace

Figure A.16: com.replica.replicaisland
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(a) Clean trace (b) Malicious trace

Figure A.17: org.openintents.filemanager

A.1.10 DroidKungFu4

(a) Clean trace (b) Malicious trace

Figure A.18: com.glu.android.dinercn
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