
Bachelor thesis
Computer Science

Radboud University

Properties of codings in Lambda
Calculus

Author:
Nathan van Beusekom
s4571592

First supervisor/assessor:
Prof. Dr. J.H. Geuvers

herman@cs.ru.nl

Second assessor:
Prof. Dr. Erik Barendsen
e.barendsen@cs.ru.nl

July 1, 2018

Abstract

We compare two codings in the λ-calculus: the coding of Barendregt and
the coding of Mogensen. We find that they are different in structure and
this leads to a class of functions that work for Barendregt’s coding but not
for Mogensen’s coding. On the other hand there exists a more complete
self-interpreter for Mogensen’s coding.

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Brief Introduction to λ-calculus 4

2.1.1 Basics . 4
2.1.2 Some basic λ-terms . 6
2.1.3 Church numerals . 7
2.1.4 Fixed-point combinator 8
2.1.5 Lists in λ-calculus . 10

2.2 Coding in λ-calculus . 12
2.2.1 Motivation for coding 12
2.2.2 Defining Codings . 13

3 Comparing codings in λ-calculus 15
3.1 Barendregt’s coding . 15

3.1.1 The Cantor pairing function 16
3.1.2 Self-interpreter . 17
3.1.3 α-conversion . 18
3.1.4 Recursion scheme . 18
3.1.5 Digression based on Barendregt’s paper from 1991 . . 20

3.2 Mogensen’s Coding . 24
3.2.1 Self-interpreter . 24
3.2.2 α-conversion . 26
3.2.3 Recursion scheme . 26

3.3 Creating the free variable function 27
3.3.1 Counting different free variables for Barendregt’s coding 27
3.3.2 D for Mogensen coding 29
3.3.3 Why is this the case 30

3.4 Creating the normal form function 30
3.4.1 Making the normal form function for Barendregt’s

coding . 31
3.4.2 Making the normal form function for Mogensen’s coding 33

3.5 A class of functions . 35

1

4 Related Work 37

5 Conclusions 38

A Appendix 41

2

Chapter 1

Introduction

In 1936 Church and Kleene introduced the λ-calculus, which is a system
that is used to research computable functions.
The λ-calculus is Turing-complete, meaning that it can simulate Turing-
machines. One can use a code of a Turing machine to derive some proper-
ties of that Turing machine. Just like that we also need codes for λ-terms,
so we can derive properties from them. There are some proposed ways of
codings. In this thesis we will look at two currently well-known codings.
One from Barendregt[3] and one from Mogensen[9]. We will analyze and
compare these conceptually different ways of coding and uncover the subtle
differences. This leads us the research question:

What possibilities do Mogensen’s and Barendregt’s coding offer?

When it becomes clear how the two differ and what different functions they
make possible, one can easily choose which one is preferred to use for re-
search or to implement in a λ-calculus-based system. If one does not know
enough about a coding, one might choose one that does not support the
functions that they intent to construct.
In this thesis we will analyze some of the properties of the codings. We
will prove their correctness and set up a scheme that one can use to define
functions on the codings. We then proceed to show that both codings have
their downsides in different situations. Eventually we show that the codings
behave differently regarding λ-terms that contain free variables. We find
that for Barendregt’s coding we cannot write a self-evaluator that works for
λ-terms with free variables. On the other hand we find that for Mogensen’s
coding we cannot write a λ-term that computes the number of different free
variables. Additionally we cannot write a λ-term that distinguishes different
variables for Mogensen’s coding.

3

Chapter 2

Preliminaries

2.1 Brief Introduction to λ-calculus

We will briefly recall the most important aspects of λ-calculus. For more
information see Barendregt’s book: The Lambda Calculus. Its Syntax and
Semantics[4].

2.1.1 Basics

The λ-calculus is based on the set of λ-terms, Λ. This set is defined by the
abstract syntax

Λ = V | ΛΛ | λV.Λ

Here V is the set of variables. We will use lowercase letters for variables and
uppercase letter for λ-terms. We only consider untyped λ-calculus, that
means that variables have no type.
We can apply substitution to change the value of variables.

Definition 2.1. A substitution [x := N] : Λ → Λ is a function such that
for every M,N ∈ Λ, M [x := N] replaces every variable x in M with N .

An applcition is of the form ΛΛ. For example when we have the λ-term
AB we say that A is applied to B. When a λ-term is an abstraction it
can receive a λ-term by application and substitute the variable bound to
the abstraction with the λ-term recieved by the application. For example
(λx.xy)M becomesM y, since the λ-term M is substituted for the variable x.
This process of calculating the result of an application is called β-reduction.
We define:

Definition 2.2 (Barendregt[4]). The binary relations →β, �β and =β on
Λ are defined inductively as follows.

i 1 (λx.M)N →β M [x := N];

2 M →β N ⇒ ZM →β ZN,MZ →β NZ and λx.M →β λx.N.

4

ii 1 M �β M ;

2 M →β N ⇒M �β N ;

3 M �β N,N �β L⇒M �β L.

iii 1 M = N ⇒M =β N ;

2 M =β N ⇒ N =β M ;

3 M =β N,N =β L⇒M =β L.

These relations are pronounced as follows.

M �β N : M β-reduces to N ;

M →β N : M β-reduces to N in one step;

M =β N : M is β-convertible to N.

β-reduction is left-associative. That means that ABC = (AB)C.

If a λ-term contains multiple redexes (reducible applications) that can be
contracted, one can choose which one to do first.The following theorem states
that the order of reduction doesn’t matter.

Definition 2.3 (Barendregt [4]). Church-Rosser Theorem.
If M �β N1, M �β N2, then for some N3 one has N1 �β N3 and N2 �β

N3.

The Church-Rosser theorem implies that a λ-term has at most one nor-
mal form.

All the variables that we have considered so far were bound by a λ. In
the λ-calculus there are bound variables and free variables. An abstraction
binds all occurrences of a free variable, making it a bound variable.

Example 2.4. If we look at the λ-term λx.xy, then x is a bound variable,
since it is bound by the abstraction λx, and y is a free variable, since it is
not bound by an abstraction.

Definition 2.5.

• A λ-term is closed when all its variables are bound variables (i.e. the
λ-term contains no free variables).

• A λ-term is open when not all its variables are bound variables (i.e.
the λ-term contains free variables).

5

The free variables are determined by the environment of the λ-term.

We can change the λ-terms with α-conversion. This is a renaming of the
bound variables. An example of an α-conversion is

λab.aab 7→ λxy.xxy

We can do this because we alter the name of the variable as well as the
binding λ. This means that the new λ-term will have the exact same effect
as the original one. We cannot rename free variables, since we cannot alter
the external environment where they are declared.

Definition 2.6 (Mogensen[9]).
We define identity and equality for our research in the same way Mogensen
did for his.

• Two λ-terms are considered identical if they only differ in names of
bound variables (i.e. they are α-convertible).

• Two λ-terms are considered equal if they can be β-reduced to to iden-
tical λ-terms.

2.1.2 Some basic λ-terms

In this section we will define some common functions that we use in our
research.

Definition 2.7.
I = λx.x

K = λxy.x

K∗ = λxy.y

We represent booleans in the following way.

TRUE = K

FALSE = K∗

Since booleans are defined as K and K∗ we can easily define a if-then-else
structure in the following way.

IF A THEN B ELSE C = ABC

We define the NOT function that inverts a boolean.

NOT = λx.xFALSE TRUE

We define the AND function that is true if and only if its two arguments
are both true.

λab.a (b TRUE FALSE) FALSE

6

2.1.3 Church numerals

In the λ-calculus we want to be able to define natural numbers.

Definition 2.8 (Barendregt[4]). The Church numerals c0, c1, c2, ... are de-
fined by

cn ≡ λf x.fn(x)

Example 2.9.

c3 ≡ λf x.f(f(f x))

c5 ≡ λf x.f(f(f(f(f x))))

For readability we define the function · : N→ Λ

Definition 2.10. We have the function · : N→ Λ such that

n ≡ cn

We define basic operations on Church numerals.

Definition 2.11 (Wikipedia [1]). There exist combinators SUCC, PRED,
ZERO, ADD, MIN and EQ such that

SUCCn = n+ 1

PREDn+ 1 = n

ZERO 0 = TRUE

ZEROn+ 1 = FALSE

ADDmn = m+ n

MINmn = m− n

EQmn =

TRUE, if m = n

FALSE, otherwise

we construct them as follows.

SUCC ≡ λn.λf.λx.f(n f x)

PRED ≡ λn.λf.λx.n(λg.λh.h(g f)) (λu.x) (λu.u)

ZERO ≡ λn.n(λx.FALSE) TRUE

ADD ≡ λm.λn.(n SUCC)m

MIN ≡ λm.λn.(nPRED)m

EQ ≡ λm.λn.AND (ZERO (MIN mn)) (ZERO (MIN nm))

7

2.1.4 Fixed-point combinator

In the λ-calculus we can define recursive functions using the fixed-point
combinator Y .

Definition 2.12.

Y = λf.(λx.f(xx))(λx.f(xx))

This might look very complicated, but it is really just a λ-term that
produces recursion when given a function.

Example 2.13. Say we have some function F that we want to be recursive.
Let F be the Fibonacci function such that

F 0 = 0

F 1 = 1

F n = F n− 1 + F n− 2

where n > 1.

We can define F using the fixed-point combinator Y as follows.

F ≡ Y (λf.λn.IF (ZERO n)

THEN n

ELSE IF (ZERO (PRED n))

THEN n

ELSE ADD (f(PRED n)) (f(PRED (PRED n))))

We show that this definition of F satisfies the equations. Let’s say

A ≡ λf.λn.IF (ZERO n)

THEN n

ELSE IF (ZERO (PRED n))

THEN n

ELSE ADD (f(PRED n)) (f(PRED (PRED n)))

8

Here we show that recursiveness is indeed achieved. For n with n > 1

F n = Y An

= λf.(λx.f(xx))(λx.f(xx))An

= (λx.A(xx))(λx.A(xx))n

= A((λx.A(xx)) (λx.A(xx)))n

= A(Y A)n

= AF n

= (λf.λn.IF (ZERO n)

THEN n

ELSE IF (ZERO (PRED n))

THEN n

ELSE ADD (f(PRED n)) (f(PRED (PRED n)))F n

= IF (ZERO n)

THEN n

ELSE IF (ZERO (PRED n))

THEN n

ELSE ADD (F (PRED n)) (F (PRED (PRED n)))

= ADD (F (PRED n)) (F (PRED (PRED n)))

= ADD (F n− 1) (F n− 2)

= F n− 1 + F n− 2

We show that F 0 and F 1 are correct as well.

F 0 = λf.(λx.f(xx))(λx.f(xx))A 0

...

= IF (ZERO 0)

THEN 0

ELSE IF (ZERO (PRED 0))

THEN 0

ELSE ADD (F (PRED 0)) (F (PRED (PRED 0)))

= 0

9

F 1 = λf.(λx.f(xx))(λx.f(xx))A 1

...

= IF (ZERO 1)

THEN 1

ELSE IF (ZERO (PRED 1))

THEN 1

ELSE ADD (F (PRED 1)) (F (PRED (PRED 1)))

= 1

We see that we can use the fixed-point combinator in this format to
perfectly define a recursive function. We will use this to define recursive
functions later on as well.

2.1.5 Lists in λ-calculus

Barendregt defines some data structures and functions that are based on
the functional language LISP. These mostly revolve around lists.

Definition 2.14 (Barendregt[3]).

cons ≡ λxyz.zxy;

nil ≡ λxyz.y;

null ≡ λx.x(λabcd.d);

a : b ≡ cons a b;

〈〉 ≡ nil;

〈x1, ..., xn〉 ≡ x1 : 〈x2, ..., xn〉.

Lemma 2.15 (Barendregt[3]).

(i) null nil = λxy.x ≡ TRUE;

(ii) null (cons a b) = λxy.y ≡ FALSE.

(iii) There exists terms car and cdr such that

car (cons a b) = a;

cdr (cons a b) = b.

Proof.

(i) null nil ≡ (λx.x(λabcd.d))λxyz.y = (λxyz.y)λabcd.d = λyz.y;

(ii) null (cons a b) ≡ (λx.x(λabcd.d))(λz.z a b) = (λz.z a b)λabcd.d = λcd.d

(iii) Take car ≡ λx.x(λab.a) and cdr ≡ λx.x(λab.b).

10

We define some helpful functions on lists.

Definition 2.16 (Barendregt [3]). We define the function rev that reverts
a list such that

rev〈x1, ..., xn〉 = 〈xn, ..., x1〉.
as follows:

rev = λL1.rev′L1〈〉,
with

rev′(a : b)L2 = rev′b(a : L2) (2.1)

rev′nilL2 = L2. (2.2)

So take rev′ ≡ Y (λrL1L2.IF (null L1)THEN (L2)ELSE (r(cdrL1)((carL1) :
L2)))

Additionally, we define the function IN that checks if some Church nu-
meral is in a list such that

IN list x =

TRUE, if x ∈ list

FALSE, otherwise

For example we can construct IN as follows:

IN ≡ Y (λi.λlx.IF EQ (car l)x

THEN TRUE

ELSE (IF null (cdr l)

THEN FALSE

ELSE (i(cdr l)x)))

And finally, we define the function CONCAT that concatenates two lists
such that

CONCAT 〈x1, ..., xk〉 〈xk+1, .., xn〉 = 〈x1, ..., xn〉
We can define CONCAT by having it satisfy the following equations.

CONCAT nil l = l

CONCAT (cons a k) l = cons a (CONCAT k l)

We construct the λ-term as follows.

CONCAT ≡ Y (λf.λk l.IF null k

THEN l

ELSE cons car k f (cdr k)l)

11

2.2 Coding in λ-calculus

Our research revolves around coding in the λ-calculus. In the section we
will explain what it is and define some properties of codings.

2.2.1 Motivation for coding

The λ-calculus is Turing complete. This means that all functions that can
be computed by a Turing Machine can be computed by a λ-term. However,
functions on properties of λ-terms cannot be defined in the λ-calculus. We
know this because Turing Machines cannot take Turing Machines as an
input, and therefore such functions are not computable. For example one
cannot write a function that distinguishes the structure of a λ-term (see
Appendix A1). This is a result of the β-reduction rule, which means that
the λ-term can be reduced before being evaluated by a function. An example
of such a function is a function that counts the number of abstractions.

Lemma 2.17. There is no λ-term F such that

FM = n

where n is the number of abstractions in M .

Proof. Say F exists. That would imply:

F (II) =β 2

II =β I

F (I) =β 1

Which implies:
1 =β 2

1 and 2 are both in normal form. The Church-Rosser theorem
implied that a λ-term can only have one normal. So this is a contradiction
and thus F cannot exist.

However, it is possible to create such a λ-term for codes on λ-terms.
More precisely a representation that cannot be reduced, and is in normal
form. We will refer to such a representation as a coding. A coding is a
way of representing λ-terms such that they are translated or encoded as
another λ-term that is in normal-form and can be translated back to its
original λ-term. This is similar to how a Turing Machine can take a code of
a Turing Machine as input and process it, even though it cannot take Turing
Machines as input. In λ-calculus this is not the case, but it still affects the
computability of such functions.

12

2.2.2 Defining Codings

A coding is a way of representing a λ-term. Mogensen[9] describes a coding
function as: “A representation schema for the lambda calculus is an injective
(up to identity) mapping p·q : Λ → NFΛ”[9]. This means that codes are
always in normal form. To illustrate that with an example, pIIq would be
the encoded version of II. Here pIIq is in normal form. A coding is such a
mapping function, but we will add a few more requirements to it.
First of all we want there to be a self-interpreter. This is a λ-term that can
undo the coding, or in other words, compute M from pMq. The second
requirement we state is that there exists a recursion scheme on which we
can define functions to apply on coded terms. This recursion scheme will
be in the same format as Geuvers presented [6]. In conclusion we define a
coding in the following way.

Definition 2.18. A coding is a mapping p·q : Λ→ NFΛ”[9] such that:

1. There exists a self-interpreter E ∈ Λ such that for all M ∈ Λ

EpMq ≡M

2. Given λ-terms A1, A2, A3 ∈ Λ there exists a H ∈ Λ such that

Hpcq = A1cH

HpMNq = A2pMqpNqH

Hpλx.Mq = A3pMqH

We can define some functions for codings in general. Barendregt defines
the following functions:

Definition 2.19 (Barendregt[3]). For a coding pq : Λ→ NFΛ

(i) An interpreter (or evaluator) is an (external) function E : Λ → Λ
such that

E(pMq) ≡M.

Definition 2.20 (Barendregt[3]). (i) A quote is an (external) function
Q : Λ→ Λ such that

Q(M) ≡ pMq.

(ii) A self-quote is a λ-term Q such that

QM =β pMq.

It is important to note that a self-quote does not exist for any coding.

13

Fact 2.21 (Barendregt[3]). A self-quote Q cannot exist, since it’s existence
implies

pIIq =β Q(II) =β Q(I) =β pIq.

Barendregt also defines a self-interpreter, however his definition is spe-
cific for his coding. Therefore we will define two kinds of coding and with
that two kinds of self-interpreters.

Definition 2.22. A weak coding is a coding for which there exists a
self-interpreter E ∈ Λ such that for all M ∈ Λ0 one has

EpMq =β M

A strong coding is a coding for which there exists a self-interpreter
E ∈ Λ such that for all M ∈ Λ one has

EpMq =β M

We see that for the weak coding we state that E only has to work for
all M ∈ Λ0. This means that the self-interpreter for a weak coding does not
have to work for λ-terms with free variables, but only for closed λ-terms.
For strong codings we require that the self-interpreter has to work for open
λ-terms as well, which is an extra requirement, but also means that it covers
more λ-terms that the self-interpreter works for. In this sense every strong
coding is automatically a weak coding as well. Since, if there is a self-
interpreter that works for all λ-terms, then there is also a self-interpreter
that works for closed λ-terms.

14

Chapter 3

Comparing codings in
λ-calculus

3.1 Barendregt’s coding

The first coding we will look at is the coding as defined by Barendregt[3].
Barendregt describes a way of coding where every unique λ-term is a unique
natural number.

Definition 3.1 (Barendregt[3]). The λ-coding described by Barendregt is
defined as follows:

#v(i) = 〈0, i〉,

#(MN) = 〈1, 〈#M,#N〉〉,

#(λx.M) = 〈2, 〈#x,#M〉〉.

Here for n,m ∈ N

〈n,m〉 :=
1

2
(n+m)(n+m+ 1) +m.

Then finally we define pMq ≡ #M where #M is a Church numeral.

To give an idea of what such a coding looks like we show some small
examples.

Example 3.2. Let #x = 1. The coding of I in the style of Barendregt then
is as follows.

pIq = pλx.xq

= 〈2, 〈#x,#x〉〉
= 〈2, 〈〈0, 1〉, 〈0, 1〉〉〉
= 117

15

Example 3.3. Let #x = 1,#y = 2. The coding of λx.xy in the style of
Barendregt is:

pλx.xyq = pλx.xyq

= 〈2, 〈#x,#xy〉〉
= 〈2, 〈〈0, 1〉, 〈1, 〈#x,#y〉〉〉〉
= 〈2, 〈〈0, 1〉, 〈1, 〈〈0, 1〉, 〈0, 2〉〉〉〉〉
= 19879482103

We know that every unique λ-term gets a unique pair. We see that
Barendregt converts every λ-term to a number using a pairing function.
This function is known as the Cantor pairing function.

3.1.1 The Cantor pairing function

The Cantor pairing function is one-to-one. This means that every pair will
result in a unique natural number. For the coding this means that every
λ-term gets a unique code. Since it is one-to-one, it also means that the
pairing function is invertible. The function and its properties are described
on Wikipedia[2], but for completeness we will include the projection function
and its proof.
The projection functions for the Cantor Pairing function are as follows:

Lemma 3.4. Let 〈n,m〉 = z and let

w =

⌊√
8z + 1− 1

2

⌋
Then:

m = z − w2 + w

2
n = w −m

with b·c being the floor function.

For the proof see Appendix A2
Since the λ-calculus is Turing-complete, we can construct any com-

putable function in the λ-calculus. From this follows that we can define
the projection functions as λ-terms.

Definition 3.5. We define P1, P2 ∈ Λ such that

P1〈n,m〉 = n

P2〈n,m〉 = m

for all n,m ∈ N

16

3.1.2 Self-interpreter

Barendregt presented a proof by his student, de Bruin, that there exists a
self-interpreter for this coding[3]. The proof is constructive, meaning that
it also presents a solution, or λ-term, for the self-interpreter.

Lemma 3.6. There exists a self-interpreter for Barendregt’s coding.

Proof. (de Bruin[3]). By the representability of computable functions there
is a term E0 such that

E0pxqF =β Fpxq,

E0pMNqF =β F (E0pMqF)(E0pNqF),

E0pλx.MqF =β λx.(E0pMqFpxq→x),

where Fpxq→x = F ′x, with

F ′xpxq =β x,

F ′xpyq =β pyq, if x 6≡ y

By induction on the structure of M ∈ Λ it can be shown that

E0pMqF =β M [x1 := Fpx1q, ..., xn := Fpxnq] (3.1)

(simultaneous subsstitution), where {x1, ..., xn} = FV (M). Now we can
take

E ≡ λm.E0mI.

Indeed, for closed M it follows by equation (3.1) that

EpMq =β E0pMqI =β M.

To explain the proof we clarify what E0 could be exactly, to satisfy the
proof.

Definition 3.7. We can satisfy the proof by defining E0 ∈ Λ as follows.

E0 ≡ Y (λe.λmf.IF (P1m == 0)

THEN (f m)

ELSE (

IF (P1m == 1)

THEN (f(e(P1(P2m))f)(e(P2(P2m))f))

ELSE (λx.e (P2(P2m)) (H (P1(P2m))x))

))

Here we define H is

17

H = λzxc.IF (EQ c z) THEN xELSE F c

This now satisfies:

H pxqx pxq = x

H pxqx pyq = pyq, if pxq 6= pyq

Now the proof holds for Fpxq→x = H pxqx

This extensive explanation completes the proof.

3.1.3 α-conversion

We stated that every unique λ-term gets a unique code. But how unique is a
λ-term? Barendregt codes every different variable with a different number.
This means that λ-terms that are α-equivalent can have a different code.
To give an example:

Example 3.8.

pλv1.v1q = 117

pλv2.v2q = 260

pλv1.v1q 6=β pλv
2.v2q.

We see that pIv1q 6= pIv2q, which means that Barendregt’s coding is not
stable under α-conversion.

3.1.4 Recursion scheme

We want to be able to define functions on Barendregt’s coding. For this
reason we define a recursion scheme on Barendregt’s coding. We will do this
in a similar way Geuvers did for the Böhm-Piperno-Guerini coding.

Lemma 3.9 (Geuvers [6]). For Barendregt’s coding, given A1, A2, A3 ∈ Λ
there is an H ∈ Λ such that

Hpxq = A1pxqH

HpMNq = A2pMqpNqH

Hpλx.Mq = A3pxqpMqH

The lemma is slightly different from the lemma that Geuvers presented.
We want to call A1 on pxq rather than on x. This is because Barendregt’s
coding easily allows this and pxq offers more functionality than x itself.

18

Proof. With the fixed point combinator Y we can define H as follows

H ≡ Y (λh.λm.IF (P1m == 0)

THEN (A1mh)

ELSE (

IF (P1m == 1)

THEN (A2(P1(P2m))(P2(P2m))h)

ELSE (A3(P1(P2m))(P2(P2m))h)

))

This proof very clearly does exactly what the recursion scheme lemma
requires.

We can use the scheme to define functions on Barendregt’s coding. We can,
for example try to define a function that counts the numer of λ-abstractions,
like we described in Section 2.

Lemma 3.10. There is a function F such that

FpMq = n

where n is the number of abstractions in M

Proof. The concept of this function can easily be represented as:

Fpxq = 0

FpMNq = FpMq+ FpNq

Fpλx.Mq = 1 + FpMq

This way the function will just recursively go through the lambda terms and
add 1 when it encounters an abstraction. We can translate to the recursion
scheme in the following way.

A1 = λxh.0

A2 = λmnh.hm+ hn

A3 = λxmh.1 + hm

Induction shows that we indeed count the number of abstraction with the
scheme

19

3.1.5 Digression based on Barendregt’s paper from 1991

In this part Barendregt solves a problem stated by Dr Wim Vree. He does
that by using his coding. This is quite interesting and thus we will go over
the entire section. After defining the way of coding, Barednregt defines some
data structures and function that are based on the functional language LISP.
We defined these in Section 2.

A problem was presented by Vree which Barendregt solves using his
coding. This shows an exceptional use of coding which can be useful for
other problems as well.

Problem 3.11 (Dr Wim Vree [3]). Does there exist a λ-term F such that
for all n ∈ N one has

Fn = λx1...xn.〈x1, ..., xn〉

Lemma 3.12. There is a λ-term F such that for all n ∈ N one has

Fn = λx1...xn.〈x1, ..., xn〉

Barendregt shows a solution for this using coding. He states that it is
possible to compute the code of the answer and like that it is also possible
to compute the actual answer, since we can evaluate the code. He gives the
following solution:

Proof. (Barendregt [3])
Write Mn ≡ λx1...xn.〈x1, ..., xn〉. Clearly, #Mn is computable from n, say
#Mn = g(n) with g recursive. Let g be λ-defined by G, say. Then

Gn = pg(n)q = pMnq

Then F = λn.E(Gn) satisfies the stated problem

Fn = E(Gn) = EpMnq = Mn.

The concept of “if the code of M is computable, M is computable” is
interesting, since it can more easily prove problem such as stated by Vree.
We now show Vree’s constructive solution

Solution 3.13. (Vree[3])
The function F where Fpnqx1...xn = 〈x1, ..., xn〉 is given by F = λn.V nnil

Here the λ-term V is defined by

V pn+ 1q = λLx.(V pnq(x : L)),

V p0q = rev.

20

In Appendix A3 we elaborate on this by constructing V and showing
that this indeed satisfies the equation from Lemma 3.12.

Barendregt left some exercises for the reader which we will answer for a
complete understanding of Barendregt’s paper.

Lemma 3.14. There is no λ-term G such that for all n ∈ N one has

Gx1...xn = 〈x1, ..., xn〉.

Proof. First we compute Gx1 according to the function definition.

Gx1 = 〈x1〉

Then we compute Gx1x2.

Gx1x2 = 〈x1, x2〉

If G exists, (Gx1)x2 = Gx1x2 should hold. Therefore 〈x1〉x2 = 〈x1, x2〉
should then hold as well. Let’s test this.

〈x1〉x2 = (consx1 nil)x2

= ((λxyz.zxy)x1 nil)x2

= (λz.z x1 nil)x2

= x2 x1 nil.

〈x1, x2〉 = consx1 (consx2 nil)

= consx1 ((λxyz.zxy)x2 nil)

= consx1 (λz.z x2 nil)

= (λxyz1.z1xy)x2 (λz.z x2 nil)

= λz1.x2 (λz.z x2 nil)

And clearly x2 x1 nil 6= λz1.x2 (λz.z x2 nil), which are both in normal form.
The Church-Rosser theorem states, when a term can be reduced to two
different terms, those two terms can be reduced to the same term. Here
this is not the case since they are both reduced from Gx1x2 but cannot be
reduced any further. This means that G cannot exist.

We can even elaborate on this proof by contradiction by showing that we
cannot add G to λ-calculus, since that would make λ-calculus inconsistent.

Lemma 3.15. Adding such a function G to λ-calculus makes λ-calculus
inconsistent.

21

Proof. If we add G, then for all x1, x2 ∈ Λ, 〈x1, x2〉 =β x2x1nil This would
imply:

〈I,K〉IIII =β (KInil)IIII

=β IIIII

=β I

〈I,K〉IIII =β (λz.zI(λz′.z′Knil))IIII

=β (λz′.z′Knil)III

=β KnilII

=β (λy.nil)II

=β (λy.λabc.b)II

=β (λbc.b)

=β K

So the addition of G to the λ-calculus implies I =β K and that would
make the λ-calculus inconsistent, therefore G cannot exist.

The problem with creating G is that, if you want G to work on a variable
number of λ-terms, applying G on the first argument should create a new
function (since you might want to apply it again later). Then applying that
new function on the second argument should create another new function.
And so forth continuing with an infinite amount of functions. This should
not be a problem if the desired result of G is in the form of such a function,
but the proof shows that lists are not such a function, and therefore G can
not exist.

One might wonder then how can F exist? Doesn’t that functions get applied
on a variable amount of arguments only to produce a list?
The trick here is that F is not being applied on x1, ..., xn, but Fpnq gets is
the real function. Fpnq is not a constant function declaration and doesn’t
have to work with unexpectedly being applied more, since it requires the
expected number of x arguments n at the beginning and adding one would
mean that it had to be n+ 1. So the function had to know this beforehand.
This means that the function declaration more strict in a sense that we have
to specify what we are going to do first, which basically means that we are
not giving a variable amount of arguments but a set amount of arguments.
The function Fpnq then to work for that set amount of arguments.

The second exercise that Barendregt presented was:

Lemma 3.16. There is a λ-term H such that for all n ∈ N one has

22

Hpnqx1...xn = λz.zx1...xn.

Proof. We can try to use F to solve this problem. So we assume F turns
the arguments into 〈x1, ..., xn〉. We want to make a function J such that for
all n ∈ N one has

J 〈x1, ..., xn〉 z = z x1...xn

We do this by adding every element of the list to the resulting function one
by one.

J (cons a l) z = J l (za)

J nil z = z

Now we can construct H in the same way as F , using V . We just alter
V p0q since that is the final transformation. We define the altered version
V ′ as follows.

V ′n+ 1 = λLx.(V ′ n (x : L)),

V ′0 = λx.J (revx)

with

V = Y (λvn.IF (ZERO n)

THEN (λx.J (revx))

ELSE (λLx.v(PRED n)(x : L)))

Then F ≡ λn.V nnil indeed satisfies the equation from Lemma 3.12.

F nx1 ... xn = V n nilx1 ... xn

= (λLx.V n− 1 (x : L)) nilx1 ... xn

= V n− 1 (x1 : nil)x2 ... xn

= (λLx.V n− 2 (x : L)) (x1 : nil)x2 ... xn

= V n− 2 (x2 : x1 : nil)x3 ... xn

...

= V 0 (xn : ... : x1 : nil)

= (λx.J (revx))〈xn, ..., x1〉
= J〈x1, ..., xn〉.
= λz.J 〈x2, ..., xn〉(z x1)

= λz.J 〈x3, ..., xn〉(z x1 x2)

...

= λz.nil (z x1 ... xn)

= λz.z x1 ... xn

23

3.2 Mogensen’s Coding

The second coding that we will consider is the coding of Mogensen. He
created a coding that goes with a small and elegant self-interpreter. We
will first look at the coding that Mogensen defined and then at the self-
interpreter and self-reducer that he constructed in his paper. He showed
both of those to be very efficient.[9]

Definition 3.17. (Mogensen) The λ-coding of Mogensen is defined as follows[9]:

pxq = V ar x

pMNq = App pMq pNq

pλx.Mq = Abs(λx.pMq)

He then uses a way to represent signatures to make these functions
V ar,App and Abs. This results in:

Definition 3.18 (Mogensen).

V ar x = λabc.ax

App pMq pNq = λabc.bpMqpNq

Abs(λx.pMq) = λabc.c(λx.pMq)

Example 3.19. The coding of λxy.yx now is as follows:

Abs(λx.Abs(λy.App((V ar y)(V ar x))))

The full λ-term for this is:

λabc.c(λx.(λabc.c(λy.(λabc.b(λabc.ay)(λabc.ax)))))

3.2.1 Self-interpreter

Mogensen requires his self-interpreter to do the following.

Lemma 3.20 (Mogensen[9]). There exists a λ-term E such that

E(V ar x) = x

E(AppM N) = E(M)E(N)

E(AbsM) = λv.E(Mv)

24

Proof. (Mogensen[9]) By pattern matching on the structure of the coding
we compute:

E ≡ Y (λe.λm.m(λx.x)

(λmn.(em)(e n))

(λm.λv.e(mv)))

We show that this indeed satisfies the lemma.
For V ar:

E(V ar x) = (λabc.ax)(λx.x)

(λmn.(Em)(E n))

(λm.λv.E(mv))

= (λx.x)x

= x

For App:

E(AppM N) = (λabc.bM N)(λx.x)

(λmn.(Em)(E n))

(λm.λv.E(mv))

= (λmn.(Em)(E n))M N

= (EM)(EN)

For Abs:

E(AbsM) = (λabc.bM N)(λx.x)

(λmn.(Em)(E n))

(λm.λv.E(mv))

= (λm.λv.E(mv))M

= λv.E(M v)

Mogensen states the following about his self-interpreter: ”It easy to prove
by induction that recursive of these equations and reduction of redexes of
form (Mv) from the third equation, will reduce E(pNq) to a λ-term that is
identical to N , for any λ-term N. Note that this includes λ-terms with free
variables. This is not the case for the representation that Barendregt used,
as explained in his article”.[9]
Here he states that his self-interpreter is correct and that it can also decode
free variables, unlike Barendregt’s code could do.

25

3.2.2 α-conversion

Since Mogensen doesn’t encode his variables as number but rather keeps
them intact as a λ-term, he can easily define a self-interpreter that can de-
code free variables as well. This makes Mogensen’s coding a strong coding.
Obviously the advantage of this property is that the self-interpreter is com-
plete for the entire λ-calculus. This way of variable encoding also has a
disadvantge, which we will go over in the next section.

This way of variable encoding ensures that the variables are the same λ-
term as they were. This results in Mogensen’s coding being stable under
α-conversion, because λ-terms are stable under α-conversion.

3.2.3 Recursion scheme

Again we want to define a recursion scheme so that we can define functions
on the coding.

Lemma 3.21 (Geuvers [6]). For Mogensen’s coding, given A1, A2, A3 ∈ Λ
there is an H ∈ Λ such that

Hpxq = A1pxqH

HpMNq = A2pMqpNqH

Hpλx.Mq = A3pMqH

Note that the lemma is slightly different for abstractions. This is a
result of Mogensen’s way of coding them. The λ-abstractions are still λ-
abstractions in the form of Abs λx.pMq. Since the λx is still an abstraction
and not a hard-coded variable, we cannot retrieve the x. We can show that
H exists by imitating the way that Mogensen defined his self-interpreter.

Proof. By pattern matching on the structure of the coding we compute:

H ≡ Y λh.λm.m(λx.A1 (λabc.ax)h)

(λmn.A2mnh)

(λm.λv.A3 (mv)h)

Now we can easily define the abstraction counting function just like we
did for Barendregt’s coding.

Lemma 3.22. There is a function F such that

F (pMq) = n

where n is the number of abstractions in M

26

Proof. The concept of this function can easily be represented as:

Fpxq = 0

FpMNq = FpMq+ FpNq

Fpλx.Mq = 1 + FpMq

This way the function will just recursively go through the lambda terms and
add 1 when it encounters an abstraction. We can translate to the recursion
scheme in the following way.

A1 = λxh.0

A2 = λmnh.hm+ hn

A3 = λxmh.1 + hm

Induction shows that we indeed count the number of abstraction with the
scheme

We see that the proof is exactly the same as for Barendregt’s coding.
This just shows how useful recursion schemes are to define functions over
codings. The representation is almost the same which means that functions
can easily be defined over multiple codings.

3.3 Creating the free variable function

Since the codings are still different in some aspects, we cannot define every
function on both codings. In this section we go over an example that will
work for only Barendregt’s coding and not Mogensen’s coding. We will try
to define a function that counts the number of different free variables of a
λ-term.

3.3.1 Counting different free variables for Barendregt’s cod-
ing

We can create this function by creating a helper function L, that gives
back the list of coded free variables of the λ-term. When we have that
list we can simply count the different variables in that list. For the helper
function we simply want to keep a list of bound variables. When we reach
a variable we want to check if that variable is in the list and add it to the
resulting (or returning) list if it is not in the bound variables list. If it is
in there we just return nil. When an application is encountered we simply
want to concatenate the lists that result from LpMq and LpNq. When we
encounter an abstraction we want to add the bound variable to the list of

27

bound variables and call the function on the code that comes with it. To
clarify this, we want the function to satisfy these equations:

Labslist pvq

nil, if pvq ∈ abslist

cons pvqnil, otherwise

Labslist pMNq = CONCATM N

Labslist pλx.Mq = F (consx abslist)M

Since Barendregt’s self-interpreter does not work for free variables, we
will return a list of the coded free variables. This way we can more easily
distinguish them.

Lemma 3.23. There exists a function D ∈ Λ for Barendregt’s coding such
that

DpMq = n

where n is exactly the the number of different free variables in M .

Due to Barendregt’s static way of coding we can easily obtain these
variables.

We can define the function using the recursion scheme and the definition,
similar to what we have done before. However, since we want to keep a list
throughout the function, we will pass that on as well. We want our recursion
scheme to look like this:

Lemma 3.24. For Barendregt’s coding, given A1, A2, A3 ∈ Λ there is an
H ∈ Λ such that

H l pxq = A1 l pxqH

H l pMNq = A2 l pMqpNqH

H l pλx.Mq = A3 l pMqH

We can prove this in a similar way that we did for the original recursion
scheme.

Proof. With the fixed point combinator Y we can define H as follows

H ≡ Y (λh.λlm.IF (P1m == 0)

THEN (A1lmh)

ELSE (

IF (P1m == 1)

THEN (A2l(P1(P2m))(P2(P2m))h)

ELSE (A3l(P1(P2m))(P2(P2m))h)

))

28

This proof very clearly does exactly what the recursion scheme lemma
requires.

Now we can define A1, A2 and A3.

A1 = λlxh.IF (IN l x)

THEN (nil)

ELSE (consx nil)

A2 = λlmnh.CONCAT (h lm)(h l n)

A3 = λlxmh.h(consx l)m.

3.3.2 D for Mogensen coding

Mogensen encodes variables in a different way. Due to his representation
V ar x we can still replace the x with other free variables. Therefore we
cannot make the function D for Mogensen’s coding.

Lemma 3.25. We cannot make the function D ∈ Λ for Mogensen’s coding
such that

DpMq = n

where n is exactly the the number of different free variables in M .

Proof. Assume that D exists for Mogensen. That would imply:

(λx.(D(pxyq)))y =β (λx.2)y

(λx.(D(pxyq)))y =β 2

On the other hand it implies:

(λx.(D(pxyq)))y =β (λx.(D(App(V ar x)(V ar y))))y

(λx.(D(pxyq)))y =β D(App(V ar y)(V ar y))

(λx.(D(pxyq)))y =β D(pyyq)

(λx.(D(pxyq)))y =β 1

Combine those, and the existance of D for Mogensen’s coding implies:

1 =β 2

And clearly this is not the case, and both 1 and 2 are in normal form.
The Church-Rosser theorem states, when a term can be reduced to two
different terms, those two terms can be reduced to the same term. Here this
is not the case since they are both reduced from (λx.(D(pxyq)))y but cannot
be reduced any further. This means that D does not exist for Mogensen’s
coding.

29

3.3.3 Why is this the case

Barendregt and Mogensen are very distinct in design choices for their cod-
ing. The differences lie in the way of encoding abstractions and the way
of encoding variables. Barendregt chooses a way of encoding that is very
much like hard-coding. He converts the variables to numbers. Mogensen,
on the other hand, preserves the variables in a data structure. This differ-
ence results that we cannot change Barendregt’s coding using β-reduction,
since it is a natural number and therefore always in normal form, however
we can change Mogensen’s coding using β-reduction. This emerges from
the variable being a real variables that can be resolved using β-reduction.
Note that in pxyq x is a free variable because it is declared in the external
environment. We then use that external environment to show that D is
impossible.

3.4 Creating the normal form function

In this section we will go over an example function that can be defined for
both codings. We define a λ-term N that will test if a coded λ-term is in
normal form. This λdoes not exist for regular λ-terms.

Lemma 3.26. There is no λ-term F such that

F M

TRUE, if M is in normal form

FALSE, otherwise

Proof. Say such a function F exists. That would imply:

F I = TRUE

F II = FALSE

I = II

TRUE = FALSE

This is a contradiction and thus F cannot exist.

We will define the λ-term N such that it satisfies the following equation
for both codings:

N pMq

TRUE, if M is in normal form

FALSE, otherwise

We know that a λ-term is in normal form if either of the following holds:

• It is a variable

30

• It is an application, the applied λ-term is not an abstraction and both
λ-terms are in normal form.

• It is an abstraction and the λ-term under the λis in normal form.

This results in the following equations that N should satisfy:

Npxq = TRUE

NpABq = NpAq&&NpBq&& notAbstraction pAq

Npλx.Aq = NpAq

3.4.1 Making the normal form function for Barendregt’s cod-
ing

We can easily statisfy these equations using the regular recursion scheme for
Barendregt. We get:

A1 = λxh.TRUE

A2 = λmnh.AND (AND hmhn) (NOT(EQ (P1m) 2))

A3 = λxmh.hm

Then for Barendregt’s coding we construct N :

N ≡ Y (λh.λm.IF (P1m == 0)

THEN (A1mh)

ELSE (

IF (P1m == 1)

THEN (A2(P1(P2m))(P2(P2m))h)

ELSE (A3(P1(P2m))(P2(P2m))h)

))

We can show that N indeed satisfies the equations. We will denote x for
the number that is assigned to the variable x.

Npxq = N 〈0, x〉
= A1pxqN

= (λxh.TRUE)pxqN

= TRUE.

31

NpABq = N 〈2, 〈#A,#B〉〉
= A2pAqpBqN

= (λmnh.AND (AND hmhn) (NOT(EQ (P1m) 2)))pAqpBqN

= AND (AND (NpAq) (NpBq)) (NOT(EQ (P1 pAq) 2))

Npλx.Mq = N 〈1, 〈#x,#M〉〉
= A3pxqpMqN

= (λxmh.hm)pxqpMqN

= NpMq.

We will include some examples to show how N works.

Example 3.27.

NpKq = Npλxy.xq

= N〈2, 〈pxq, pλy.xq〉〉
= A3pxqpλy.xqN

= (λxmh.hm)pxqpλy.xqN

= Npλy.xq

= N〈2, 〈pyq, pxq〉〉
= A3pyqpxqN

= (λxmh.hm)pyqpxqN

= Npxq

= N〈0, x〉
= A1pxqN

= (λxh.TRUE)pxqN

= TRUE.

Example 3.28. For the readability of the example of NpIIq, we first com-
pute Npλx.xq

Npλx.xq = A3pxqpxqN

= Npxq

= TRUE

32

NpIIq = Np(λx.x)λx.xq

= N〈1, 〈pλx.xq, pλx.xq〉〉
= A2pλx.xqpλx.xqN

= (λmnh.AND (AND hmhn) (NOT(EQ (P1m) 2)))pλx.xqpλx.xqN

= AND (AND Npλx.xqNpλx.xq) (NOT(EQ (P1 pλx.xq) 2)))

= AND (AND TRUE TRUE) (NOT(EQ (P1 〈2, 〈pxqpxq〉〉 2)))

= AND TRUE (NOT TRUE)

= AND TRUE FALSE

= FALSE.

3.4.2 Making the normal form function for Mogensen’s cod-
ing

We can easily statisfy these equations using the recursion scheme for Mo-
gensen’s coding. We get:

A1 = λxh.TRUE

A2 = λmnh.AND (AND hmhn) (m(λx.TRUE)(λmn.TRUE)(λm.FALSE))

A3 = λmh.hm

Note that m(λx.TRUE)(λmn.TRUE)(λm.FALSE) will be true if the coded
λ-term is is a variable or an application and it will be false if it is an ab-
straction. Then for Mogensen’s codings we construct N :

N ≡ Y λh.λm.m(λx.A1 (λabc.ax)h)

(λmn.A2mnh)

(λm.λv.A3 (mv)h)

We can show that N indeed satisfies the equations.

Npxq = N λabc.ax

= A1(λabc.ax)N

= (λxh.TRUE)(λabc.ax)N

= TRUE.

NpABq = N λabc.bpAqpBq

= A2pAqpBqN

= (λmnh.AND (AND hmhn) (m(λx.TRUE)(λmn.TRUE)(λm.FALSE)))pAqpBqN

= AND (AND NpAqNpBq) (pAq(λx.TRUE)(λmn.TRUE)(λm.FALSE))

33

Npλx.Mq = N λabc.c(λx.pMq)

= A3pMqN

= (λmh.hm)pMqN

= NpMq.

We will include some examples to show how N works.

Example 3.29.

NpKq = Npλxy.xq

= NAbs(λx.pλy.xq)

= A3pλy.xqN

= (λmh.hm)pλy.xqN

= Npλy.xq

= NAbs(λy.pxq)

= A3pxqN

= (λmh.hm)pxqN

= Npxq

= NV ar x

= A1pxqN

= (λxh.TRUE)pxqN

= TRUE.

Example 3.30. For the readability of the example of NpIIq, we first com-
pute Npλx.xq

Npλx.xq = A3pxqN

= Npxq

= TRUE

34

NpIIq = Np(λx.x)λx.xq

= NApppλx.xqpλx.xq

= A2pλx.xqpλx.xqN

= (λmnh.AND (AND hmhn) (m(λx.TRUE)

(λmn.TRUE)

(λm.FALSE))) pλx.xqpλx.xqN

= AND (AND Npλx.xqNpλx.xq) ((λabc.c(λx.pxq))(λx.TRUE)

(λmn.TRUE)

(λm.FALSE))

= AND (AND TRUE TRUE) ((λm.FALSE)(λx.pxq))

= AND TRUE FALSE

= FALSE.

3.5 A class of functions

The fact that D exists for Barendregt’s coding but not for Mogensen’s coding
implies that there is class of functions that can be constructed for Barendegts
coding but not for Mogensen’s coding. We know that at least D is in that
class. One important reason that this function is in this class, is that we can’t
test variable equality for Mogensen’s coding, but we can for Barendregt’s
coding.

Lemma 3.31. There exists a function F ∈ Λ such that for Barendregt’s
coding

F pxq pyq

TRUE, if x = y

FALSE, otherwise

Proof. Since Barendregt’s coding is a Church numeral and each variable gets
a unique number, simply take

F ≡ EQ

Lemma 3.32. There is no function F ∈ Λ such that for Mogensen’s coding

F pxq pyq

TRUE, if x = y

FALSE, otherwise

35

Proof. Say F exists and x 6= y. That would impy

(λx.F pxq pyq)y = (λx.F (V ar x) (V ar y))y

= (F (V ar y) (V ar y))

= TRUE

(λx.F pxq pyq)y = (λx.FALSE)y

= FALSE

This is a contradiction because according to the Church-Rosser Theorem a λ-
term has only one normal form and the existance of F implies otherwise.

So even if we were able to produce a list of free variables for Mogensen’s
coding, which is questionable already on it’s own, it would be impossible to
derive the variables that occur twice.
The inclusion of F implies that there are many more functions in this class
that need F . It’s likely that there are other functions in this class as well,
but which functions exactly, remains the question.

In general it seems like Mogensen’s coding can only derive the general struc-
ture of a λ-term. Since the original variables and abstractions are preserved,
it is hard to derive properties from them. Barendregt’s coding on the other
hand, supports these types of functions by completely encoding the variables
and abstractions to church numerals. This makes them suited for operations
such as comparison and modification.

36

Chapter 4

Related Work

A similar research has been conducted for the typed λ-calculus. Bruce,
Cardelli and Pierce have compared the strengths and weaknesses of 4 dif-
ferent object encodings in typed λ-calculus[5]. This comparison is more
oriented towards programming languages and uses the λ-calculus as a com-
mon basis.

The first one to map λ-terms to numerals was Kleene [7]. However, this
way of coding and decoding was very complex.

A binary way of coding λ-terms was presented by Tromp[11]. He proved
this coding useful for Algorithmic Information technology.

There has been research to efficiency of codings in the λ-calculus. Stump
and Fu investigate the efficiency of different ways of coding natural numbers.
They include the Church, Scott and Parigot way of coding and eventually
include their own [10]. They compare the way of defining functions on the
codings as well as the efficiency, which is measured in the size of the normal
form of an encoded numeral.

A λ-expression could also be encoded as a graph, as Lamping did in his
research. He uses this external representation for his optimal reduction
algorithm[8].

37

Chapter 5

Conclusions

We analyzed and compared the codings of Barendregt and Mogensen. The
major differences that we found are:

1. There exists no self-interpreter that works for free variables for Baren-
dregt’s coding, but there does exist one for Mogensen’s coding.

2. There is a class of functions that cannot be constructed for Mogensen’s
coding, but can be constructed for Barendregt’s coding.

These differences mean that we initially cannot prove properties on codings
in general, since this might differ per way of coding. We can only require a
coding to satisfy certain properties, and use those to prove other properties.

This also means that different codings might be suitable in different sit-
uations. We see that Mogensen’s coding is more suited when we need to
translate the coded λ-term back to the original λ-term, since Mogensen’s
self-interpreter can cover more λ-terms. Furthermore Barendregt’s coding
proves more useful when we need to extract properties about variables, that
go deeper than just structure, from a λ-term.

38

Bibliography

[1] Church encoding. https://en.wikipedia.org/wiki/Church_

encoding#Calculation_with_Church_numerals.

[2] Pairing function. https://en.wikipedia.org/wiki/Pairing_

function.

[3] Henk Barendregt. Self-interpretations in lambda calculus. J. Funct.
Program., 1(2):229–233, 1991.

[4] Henk Barendregt and Erik Barendsen. Intoduction to lambda calcu-
lus, October 1994. http://www.nyu.edu/projects/barker/Lambda/

barendregt.94.pdf.

[5] Kim B. Bruce, Luca Cardelli, and Benjamin C. Pierce. Comparing ob-
ject encodings. In Mart́ın Abadi and Takayasu Ito, editors, Theoretical
Aspects of Computer Software, pages 415–438, Berlin, Heidelberg, 1997.
Springer Berlin Heidelberg.

[6] Herman Geuvers. Self-interpretation in lambda calculus. 2015.
Huygens College, http://www.cs.ru.nl/~herman/onderwijs/

2015Reflection/lecture6.pdf.

[7] S. C. Kleene. λ -definability and recursiveness. Duke Math. J., 2(2):340–
353, 06 1936.

[8] John Lamping. An algorithm for optimal lambda calculus reduction.
In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’90, pages 16–30, New
York, NY, USA, 1990. ACM.

[9] Torben Æ. Mogensen. Efficient self-interpretations in lambda calculus.
J. Funct. Program., 2(3):345–363, 1992.

[10] Aaron Stump and Peng Fu. Efficiency of lambda-encodings in total
type theory. Journal of Functional Programming, 26:e3, 2016.

39

[11] John Tromp. Binary lambda calculus and combinatory logic. In Marcus
Hutter, Wolfgang Merkle, and Paul M.B. Vitanyi, editors, Kolmogorov
Complexity and Applications, number 06051 in Dagstuhl Seminar Pro-
ceedings, Dagstuhl, Germany, 2006. Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

40

Appendix A

Appendix

Proof. (A1) Say there exists a function F , that can distinguish the structure
of λ-term. Take

F M

1, if M is a variable

2, if M is an application

3, if M is an abstraction

Then the existence of F would imply:

F ((λx.x)a) =β 2

F ((λx.x)a) =β F a

=β 1

Which implies:
1 =β 2

This is a contradiction thus F cannot exist.

Proof. (A2, Wikipedia [2]) Let 〈x, y〉 = z.
We define some intermediate values in the calculation:

w = x+ y

t =
1

2
w(w + 1) =

w2 + w

2
z = t+ y

where t is the triangle number of w. If we solve the quadratic equation

w2 + w − 2t = 0

for w as a function of t, we get

w =

√
8t+ 1− 1

2

41

which is a strictly increasing and continuous function when t is non-negative
real. Since

t ≤ z = t+ y < t+ (w + 1) =
(w + 1)2 + (w + 1)

2

we get that

w ≤
√

8t+ 1− 1

2
< w + 1

and thus

w =
⌊√8z + 1− 1

2

⌋
.

where b c is the floor function. So to calculate x and y from z, we do:

w =
⌊√8z + 1− 1

2

⌋
t =

w2 + w

2

y = z − t

x = w − y.

Proof. (A3, Vree[3]) We construct V as follows.

V = Y (λvn.IF (ZERO n)

THEN rev

ELSE (λLx.v(PRED n)(x : L)))

Then F := λn.V nnil indeed satisfies the equation from Lemma 3.12.

F nx1 ... xn = V n nilx1 ... xn

= (λLx.V n− 1 (x : L)) nilx1 ... xn

= V n− 1 (x1 : nil)x2 ... xn

= (λLx.V n− 2 (x : L)) (x1 : nil)x2 ... xn

= V n− 2 (x2 : x1 : nil)x3 ... xn

...

= V 0 (xn : ... : x1 : nil)

= rev 〈xn, ..., x1〉
= 〈x1, ..., xn〉.

42

