
Bachelor thesis
Computer Science

Radboud University

On the replication of CycleGAN

Author:
Robin Elbers
r.j.elbers@student.ru.nl
s4225678

First supervisor/assessor:
MSc. Jacopo Acquarelli
j.acquarelli@cs.ru.nl

Second assessor:
Prof. Tom Heskes

t.heskes@science.ru.nl

August 10, 2018

Abstract

The cycle-consistent generative adversarial network (CycleGAN) is a
type of artificial neural network that is capable of performing image-to-image
translations. It is capable of doing this translation when paired data is not
available for training. In this thesis we will explain the cycle-consistent gen-
erative adversarial network in detail as well as replicate the results. We make
several modifications to the original version and evaluate how it impacts the
performance by means of the fully convolutional network score. We start by
getting a baseline score of the network in the original version. Then we will
replace the residual generator with a U-Net generator. Afterwards, we will
train the network using the last generated image, instead of using a history
of generated images. Finally, we will change the least squares adversarial
loss for the Wasserstein loss with Lipschitz penalty.

Contents

1 Introduction 3

2 Related Work 5
2.1 Generative models . 5

2.1.1 Restricted Boltzmann machine 5
2.1.2 Variational autoencoders 5

2.2 GANs for image-to-image translations 6
2.2.1 pix2pix . 6
2.2.2 Domain transfer network 6
2.2.3 DiscoGAN . 6
2.2.4 UNIT . 6
2.2.5 Cross-GAN . 7

3 Preliminaries 8
3.1 Artificial Neural Networks . 8
3.2 Convolutional Neural Networks 11
3.3 Generative models . 13

4 Methods 15
4.1 CycleGAN . 15

4.1.1 Objective function . 17
4.1.2 Discriminator . 18
4.1.3 Generator . 19

4.2 U-Net . 21
4.3 Wasserstein GAN . 23
4.4 Dataset . 24

5 Experiments 25
5.1 Training details . 25
5.2 Evaluation metric . 25

5.2.1 Experiment descriptions 26

1

6 Discussion 28
6.1 Baseline . 28
6.2 U-Net generator . 28
6.3 No image buffer . 28
6.4 Wasserstein loss . 29

7 Results 30

8 Conclusions 34

2

Chapter 1

Introduction

The way we communicate, pay and travel has evolved over the last several
years partly due to advancements in machine learning. In fact, credit card
companies use fraud detection algorithms to label transactions as fraudulent
or not, Facebook uses facial recognition to detect faces in photos and Tesla
uses computer vision to recognize traffic signs.

These tasks can be solved using by discriminative models that can sepa-
rate different samples into different classes. However, this approach requires
datasets to be annotated which in some cases can be expensive. Another
approach which does not necessarily require annotations uses a generator in
combination with a discriminator. The generator is trained to generate data
according to a data distribution. In the field of artificial neural networks
(ANN), there are several different models which are capable of such tasks,
e.g. restricted Boltzmann machines, variational autoencoders or generative
adversarial networks (GAN). This thesis will focus on the cycle-consistent
generative adversarial network (CycleGAN) which is a type of GAN.

CycleGAN is designed to perform unpaired image-to-image translations.
This means that the input and the output of the artificial neural network is
an image. In the world of image-to-image translation, there are two variants
of training data: the data can be paired or unpaired. In the former case,
every input sample is paired with exactly one output sample. In the latter
case, there is no such mapping. Colourizing black and white images is an
example of a paired image-to-image translation. However, paired data is not
always available. Style transfer or image stylification is a problem for which
there are, usually, no paired data available. For example, training a model
to translate pictures to look like Van Gogh paintings requires paired data
which are typically not available.

An important constraint to such translations is that the semantics of the
input must be preserved. For example, a photo of a bridge, when stylized
in the style of Van Gogh, should look like a painting of the same bridge.
CycleGAN is capable of preserving semantics on unpaired training data. In

3

this thesis, we will replicate the results of CycleGAN in its original version
and with some modifications like changing the generator and discriminator
architecture or changing the loss function.

4

Chapter 2

Related Work

2.1 Generative models

The subject of this thesis is CycleGAN, which is a kind of GAN. However,
there are other generative models besides GANs. In this section we will
briefly explain how restricted Boltzmann machines and variational autoen-
coders work.

2.1.1 Restricted Boltzmann machine

The Restricted Boltzmann machine[21] is an adaption to the Boltzmann ma-
chine such that it can be more easily trained. Instead of forming a complete
graph, the hidden and visible nodes in a RBM form a bipartite graph. RBMs
are trained by using Gibbs sampling instead of backpropagation, which con-
sists of updating the hidden units by sampling the visible units and updating
the visible units by sampling the hidden units. New samples can be gener-
ated by randomly initializing the hidden units, performing Gibbs sampling
and then sampling the visible units.

2.1.2 Variational autoencoders

Autoencoders[5] are a type of ANN consisting of an encoder, which embeds
the input into a lower dimensional latent space, and a decoder, which maps
the embedding in the latent space back to the input. The autoencoder has
a reconstruction loss which ensures that the reconstructed output is close
to the input. Variational autoencoders[11] (VAE) further require that the
embedding of samples in the latent space follows a normal distribution. New
samples can be generated by initializing the latent space from a random
normal distribution and using the decoder to reconstruct an image.

5

2.2 GANs for image-to-image translations

Since their appearance, many GANs besides CycleGAN have been proposed
for image-to-image translation. We will briefly discuss the ones most relevant
to CycleGAN.

2.2.1 pix2pix

With regards to CycleGAN, pix2pix[8] is the most relevant GAN. In fact, the
authors of CycleGAN state that CycleGAN builds on the pix2pix framework.
Pix2pix is designed for paired image-to-image translation. Let (x, y) be a
paired sample from the dataset. The generator of pix2pix attempts to map
x to y, but it does not observe y directly. The discriminator receives both
x and the generated y′ and predicts if y′ is real or fake given x. Pix2pix
uses U-Net as generator and PatchGAN as discriminator. Both PatchGAN
and U-Net will be explained later in this thesis. The pix2pix authors also
describe a metric for quantitatively evaluating the performance of pix2pix
called the FCN score. This metric is also used by the CycleGAN authors for
evaluating their network, and we will use it as well. The FCN score will be
explained later in this thesis.

2.2.2 Domain transfer network

The domain transfer network[22] (DTN) is a type of GAN which uses a
single autoencoder as the generator, which (during training) takes input
from both the source and target domain and maps it to the target domain.
The reconstruction loss is only applied if the input image is from the target
domain. If, on the other hand, the input is from the source domain there is a
loss that minimizes the distance between the encoded input and the encoded
output.

2.2.3 DiscoGAN

DiscoGAN[10] is similar to CycleGAN: both of them use a reconstruction
loss to enforce cycle-consistency at a pixel level. However, for the adver-
sarial loss DiscoGAN uses cross-entropy instead of the mean squared error
that CycleGAN uses. Furthermore, DiscoGAN does not use a PatchGAN
discriminator or residual generator.

2.2.4 UNIT

The UNIT framework[13] uses a combination of variational autoencoders
and generative adversarial networks, called VAE-GAN, to perform image-
to-image translation. UNIT uses a pair of VAE-GANs, one for each domain.
The weights of the last few layers of the encoders and the first few layers of

6

the decoders are shared between the domains. This shared lower dimensional
embedding can then be decoded to one of the two domains by their respective
decoders.

2.2.5 Cross-GAN

Cross-GAN[18] (XGAN) uses a similar method to UNIT with a network
that consists of 2 autoencoders with a shared embedding. However, they use
regular autoencoders instead their variational counterpart. And in contrast
to CycleGAN, which enforce cycle-consistency at a pixel level, they propose
to enforce cycle-consistency at a feature level. Such that the embedding of
the input is close to the embedding of the output when encoded again. They
argue that this allows for more flexible transformations.

7

Chapter 3

Preliminaries

This chapter will contain the background information needed to understand
the rest of the thesis.

3.1 Artificial Neural Networks

An ANN is a directed graph of nodes or neurons. The nodes are grouped
into layers. The output of a node is the weighted sum of its inputs applied to
an activation function φ. The output of a node is also called the activation
of a neuron. The bias node has a constant output of 1 and is connected to
every output node in a layer. A typical deep neural network has one input
layer, one output layer and several hidden layers. The input layer is fed
with samples from a dataset while the output layer provides predictions to
corresponding input samples.

An ANN can also be seen as a function from a tensor of inputs to a tensor
of outputs. For example, the ANN in figure 3.1 is a function N : R×R→ R
defined by the equation

N(x, y) = φ(0.6·φ(0.4·φ(1x)+0.2·φ(0.5y))+0.5·φ(0.3·φ(1x)+0.1·φ(0.5y))),

with
φ(x) = x.

Since the activation function φ is linear, N can be simplified. The sim-
plified equation shows that we can express N using a network with only 2
weights, meaning we don’t need the hidden layers. In fact, every ANN with
only a linear activation function has an equivalent ANN with only a single
layer.

N(x, y) = φ(0.6 · φ(0.4 · φ(1x) + 0.2 · φ(0.5y)) + 0.5 · φ(0.3 · φ(1x) + 0.1 · φ(0.5y)))
= 0.6 · (0.4 · x+ 0.2 · 0.5y) + 0.5 · (0.3 · x+ 0.1 · 0.5y)
= 0.39x+ 0.085y

8

1

2

0.5

2

0.65

0.9

0.865

0.5

1

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.1: Example of a neural network without bias nodes, with f(x) = x.

An ANN with at least one hidden layer and a non-linear activation func-
tion can approximate any continuous function[6]. To do this the weights of
the network needs to be adjusted to minimize the error between the target
values and the actual output of the network. The feedforward algorithm is
used to calculate the output, and the backpropagation algorithm is used to
learn the weights.

The following activation functions are used in the ANNs described in this
thesis:

tanh(x) =
ex − e−x

ex + e−x
,

ReLU(x) =

0, if n < 0

x, otherwise
,

LeakyReLU(x) =

αx, if n < 0

x, otherwise
.

Feed forward Input samples are given to the ANN and modified by the
hidden layers. The last layer of the network produces the predictions. The
output for every n-th layer is calculated as follows:

9

Xn =

X, if n = 0

An−1, otherwise

An = f(Zn)

Zn =WnXn,

where X are the input samples and Wn are the weights of the n-th layer.

Backpropagation Gradient descent is used to find the optimal weights
for the ANN. Gradient descent needs a function to optimize in order to
reduce the prediction error. This function is called the loss function and it
quantitatively describes the prediction error. Gradient descent is used to
change the weights in the direction of the minimum of the loss function,
which is essentially a distance measure between two tensors. The sum of
squares error and cross entropy are examples of loss functions used by ANNs
and their definitions are shown below, with Y as the output of the network,
T as the target and � as the Hadamard product.

E : Rn × Rn → R

Sum of squares:

E(Y, T) =
|T |∑
i=0

(Yi − Ti)2.

Cross entropy:

E(Y, T) = −(T � ln(Y) + (1− T)� ln(1− Y)).

To apply gradient descent we need the gradient of the error with respect
to the weights of the ANN. The backpropagation algorithm uses the chain
rule to calculate dE

dWn
for the weights of every layer Wn in the ANN. In this

way, we can change the weights of each layer in the negative direction of the
error.

Normalization One way to speed up the training process is to apply nor-
malization to the inputs of the layers. While training the ANN, the distribu-
tion of the input of each layer changes as the weights in the network changes.
This shift is called internal covariate shift and normalization reduces this to
speed up the training. However, a recent paper claims it is not effective
because it reduces internal covariate shift, but because it makes the error
function more smooth[19].

Batch normalization[7] works by normalizing the inputs of a layer such
that the mean and variance of the entire minibatch is 0 and 1 respectively.

10

The definition is shown below. Where x ∈ RT×C×W×H is a minibatch of T
images with channels C, width W and height H.

ytijk =
xtijk − µi√
σ2
i + ε

,

µi =
1

HWT

T∑
t=1

W∑
l=1

H∑
m=1

xtilm,

σ2
i =

1

HWT

T∑
t=1

W∑
l=1

H∑
m=1

(xtilm−mµi)
2.

Instance normalization[23] works similar to batch normalization, but in-
stead it normalizes each sample in the minibatch to a mean and variance of
0 and 1.

ytijk =
xtijk − µti√
σ2
ti + ε

,

µti =
1

HW

W∑
l=1

H∑
m=1

xtilm,

σ2
ti =

1

HW

W∑
l=1

H∑
m=1

(xtilm−mµti)
2.

3.2 Convolutional Neural Networks

Let’s consider the task of detecting if an image contains a car or not. It does
not matter if the car is in the top left or bottom right of the image, the ANN
should still detect the car. This property is called translational invariance.
Convolutional layers have a related property called equivalence, which means
that a translation in the input corresponds to an equivalent translation in
the output. Convolutional layers can be combined with pooling layers to
provide translational invariance. An ANN using such convolutional layers is
called a convolutional neural network (CNN).

A convolutional layer uses a smaller filter or kernel which is convolved
with the image. In each convolutional step, the dot product of the kernel
with the overlapping part of the image is computed. The resulting values
are captured in the feature map of the filter. The weights of the kernel are

11

parameters which are learned while training the CNN. Consider the input
matrix: 1 2 3

4 5 6

7 8 9

 ,

with the filter: 1 2

2 1

 .

The output of the convolution (the feature map) is:

1 2

4 5

 ·
1 2

2 1

 2 3

5 6

 ·
1 2

2 1

4 5

7 8

 ·
1 2

2 1

 5 6

8 9

 ·
1 2

2 1

=

18 30

36 42

 .

Padding Convolution makes the output to be smaller than the input. In
fact, every convolutional step corresponds to one value in the output. We
can pad the input matrix such that the output will have the same size as the
input. Typically we either pad with zeroes or pad in such a way that the
padding ’reflects’ the values at the border as shown below.

No padding: [
7 3 6 5 5

]
.

Zero padding: [
0 0 7 3 6 5 5 0 0

]
.

Reflect padding: [
6 3 7 3 6 5 5 5 6

]
.

Number of filters More than one filter can be used in order to increase
the dimensionality of the output. We applied a single filter in our example,
so the output of the convolutional layer was of size 2× 2. If the task of the
CNN is to generate an RGB image, we can apply 3 filters to get an output of
size 2× 2× 3. Where the 3 generated feature maps correspond to the three
colours.

12

Stride Instead of sliding the filter one pixel at a time, we can change the
number of pixels the filter is moved each convolutional step. The number
of pixels the filter is moved is called the stride. A stride higher then one
downscales images proportional to the stride. To upscale images transposed
convolutions (also known as fractionally strided convolution) can be used
instead of regular convolutions. A padded convolution over an image of size
32 × 32 with a stride of 2 will have a feature map of size 16 × 16. With a
stride of 4 this will be 8× 8.

Receptive field Input regions corresponding to the values in the output
are called the receptive fields. For example, the receptive field of 30 in the
feature map from the example above corresponds to the following submatrix
of the input: 2 3

5 6

 .

In this case, the dimensions of the receptive field are equal to the di-
mensions of the filter, but if multiple convolutional layers are stacked after
each other this receptive field can grow larger. The receptive field can be
calculated using the formula below, where ri is the receptive field, si is the
stride and ki is the kernel size of the (n − i)-th layer. The receptive field
is calculated starting from the output layer and working backwards to the
input:

ri = (ri−1 − 1) · si + ki.

3.3 Generative models

Traditionally ANNs have been used for feature extraction and discriminatory
tasks. Generative models instead, aim to approximate a data distribution
as closely as possible. In order to define a cost function for such generative
models, it is useful to look at datasets as probability distributions. As an
example, we will describe how to train a model that generates handwritten
digits like in the MNIST dataset[12]. The dataset contains 28x28 pixels and
a probability can be assigned to every combination of pixel values. The
combination of pixel values that represent an image in the dataset will have
a high probability and those that do not represent an image in the dataset
have a low probability. Equivalently, the images that a generative model can
generate can be seen as a probability distribution as well. Thus, if we have a
function that can measures the difference (or similarity) between probability
distributions, we can use it as a loss function and use it to train an ANN.

13

Generative Adversarial Networks AGenerative Adversarial Network[3]
(GAN) is a type of ANN introduced by Goodfellow et al. in 2014 and is such
a generative model. It consists of two smaller ANNs with two distinct roles.
One part of the GAN is responsible for generating data from a noise vector,
this part is also known as the generator. The other part of the GAN, called
the discriminator, is responsible for predicting whether an input image is
real or fake. The discriminator tries to minimize the cross-entropy loss of
those labels, while the generator tries to maximize that same loss. In other
words, the generator tries to fool the discriminator by mapping the input
z to an image that the discriminator will predict to be real. The optimal
parameters for the generator is defined as:

argmin
G

max
D

[
Ex∼pr

[
log(D(x))

]
+ Ez∼pz

[
log(1−D(G(z)))

]]
,

with pr the distribution of real data and pz the distribution of noise. From
this, we can derive a loss function for the discriminator and the generator.
The loss for the generator is expressed as −LD, however when taking the
derivative with respect to the generator’s parameters the term with D(x) is
a constant, so it can be removed. Goodfellow et al. states this loss function
represents the Jensen–Shannon divergence between the model’s distribution
and the target distribution. We will refer to this loss as the adversarial loss.

L(D) =− Ex∼pr
[
log(D(x))

]
− Ex∼pg

[
log(1−D(x))

]
,

L(G) =Ez∼pz
[
log(1−D(G(z)))

]
.

Mode collapse Generative models should be capable of capturing all
modes of the target data distribution. Mode collapse is when the GAN
fails to do this. In the context of image generation, we want the GAN to
generate a diverse set of images. However, if there is an image that minimizes
the loss for the generator, then the generator may learn to map every input
to only that point. A straightforward way of detecting mode collapse is to
look at the generated images: if the generator only creates similar looking
images there is mode collapse.

14

Chapter 4

Methods

In this section we will describe the methods. First we will give a high-level
description of CycleGAN. Then we will describe the loss function, discrimi-
nator and generator of the CycleGAN in more detail. Finally we will show
an alternative generator architecture in the U-Net and an alternative loss
function in the Wasserstein loss with Lipschitz penalty.

4.1 CycleGAN

The CycleGAN[24] is a GAN designed for unpaired image-to-image trans-
lation, where the task is to translate images from a source domain A to a
target domain B. It consists of two GANs, one for translating from domain
A to B and one from B to A. The two discriminators represent the functions:

DA : A → R
DB : B → R.

The two generators represent the functions:

GA : A → B
GB : B → A.

GA maps images from A to B. DB receives real images sampled from B
and fake images generated by GA and predicts whether an image is real or
fake.

The images generated by GA are mapped back to the original domain
by GB. The image generated by GB should accurately represent the original
image that was the input of GA. The cycle-consistency loss minimizes the
distance between the actual input and this reconstructed input.

GA maps images to B. If the input itself is sampled from B, the generator
should map the input to itself. The identity loss minimizes the distance

15

between the input and the image that is generated by mapping it to the
same domain.

The same explanation holds when the domains A and B are swapped.
Figure 4.1 is a graphical overview of what is explained above.

GA

fakeB

GBcycleA

DB

Prediction

LB

realB

GB

idA

Sample from A

realA

Lid

Lcycle

Figure 4.1: Overview of CycleGAN. realA is an image sampled from A,
realB is an image sampled from B, fakeB = GA(realA), Prediction =
DB(fakeB), cycleA = GB(fakeB), idA = GB(realA), Lid represents the
identity loss, Lcycle represents the cycle-consistency loss and LB represents
the adversarial loss.

16

4.1.1 Objective function

The objective function of CycleGAN has many differences compared to that
of a regular GAN. First of all, instead of using cross-entropy for the ad-
versarial loss, CycleGAN minimizes the mean squared error. A GAN using
this loss is described by Mao et. al.[15]. They claim that minimizing such
a loss corresponds to minimizing the Pearson χ2 divergence. Furthermore,
they claim the training is more stable and that it generates higher quality
images. They also remove the sigmoid activation that is usually present in
the final layer of the discriminator, so the codomain for the discriminators
is R instead of (0, 1). The gradient of the sigmoid function approaches zero
when the input increases in magnitude. This means that if the discriminator
is confident in its output, the generator will receive less feedback in the form
of a gradient. By removing the sigmoid activation that problem is no longer
present.

The objective for the CycleGAN has an additional term for the so-called
the cycle-consistency loss. This tries to enforce the requirement that GA
and GB are each others inverses. The cycle-consistency loss prevents mode
collapse by ensuring that not too much information is lost in the translation
between domains. Hence, the following should hold:

GA ◦GB = id,
GB ◦GA = id.

CycleGAN also uses loss term called the identity loss. Let’s assume the
task is to translate paintings to photos. The ANN may learn to map paint-
ings of daytime to photos of sunsets. The cycle-consistency and adversarial
loss does not prevent this mapping, while the identity loss does. An image
sampled from domain A, when mapped to the same domain, should give the
same image. This loss is optional and the CycleGAN authors suggest to use
it when the network seems to produce images that have a different tint or
colour than expected. It enforces the following property:

Ex∼B
[
GA(x)

]
=Ex∼B

[
id(x)

]
Ex∼A

[
GB(x)

]
=Ex∼A

[
id(x)

]
This gives us the loss shown below with all terms combined, where the

cycle-consistency and identity losses are weighted by λc and λi respectively.

17

LA(DA) =Ex∼A
[
(DA(x)− 1)2

]
+ Ex∼B

[
(DA(GB(x)))

2
]

LB(DB) =Ex∼B
[
(DB(x)− 1)2

]
+ Ex∼A

[
(DB(GA(x)))

2
]

Lcycle(GA, GB) =Ex∼A
[∥∥GB(GA(x))− x∥∥1

]
+ Ex∼B

[∥∥GA(GB(x))− x∥∥1

]
Lid(GA, GB) =Ex∼A

[∥∥GB(x)− x∥∥1

]
+ Ex∼B

[∥∥GA(x)− x∥∥1

]
L(DA, DB, GA, GB) =LA(DA) + LB(DB) + λcLcycle(GA, GB) + λiLid(GA, GB)

4.1.2 Discriminator

For the discriminator, CycleGAN uses the PatchGAN classifier as described
in the pix2pix paper[8]. Instead of classifying the entire image, PatchGAN
instead determines if N × N patches of the image are real or not. This is
done by stacking convolutional layers after each other, resulting in a U × V
matrix, such that every value of the output has a receptive field of N ×N .
The pix2pix authors determined that 70×70 patches produce the best result.
Because it classifies patches instead of the entire image, it is both faster and
it uses less memory. Figure 4.2 shows the discriminator in more detail.

RU×V

f=64
s=2

f=128
s=2

f=256
s=2

f=512
s=1

f=1
s=1

Figure 4.2: PatchGAN discriminator. A red layer is a convolutional layer
with a kernel of size 4 × 4, f filters and a stride of s. A blue layer is a
LeakyReLU activation layer with a slope of 0.2. A green layer is an instance
normalization node. The receptive field for every entry in the output is a
70× 70 patch of the input.

The discriminator is trained using a history of generated images, instead
of just the latest generated image. This technique is first described by Shri-
vastava et al. and they claim that this improves the stability of training[20].
Let DBuffer be a buffer of size m and n be the batch size. After each training
iteration, we add the n generated images to the buffer. If the buffer is full we
randomly replace n images in DBuffer with the newly generated ones. The

18

discriminator gets the training samples by sampling from DBuffer instead of
directly sampling the generator.

4.1.3 Generator

The architecture for the generators is adapted from Johnson et al.[9] and
uses residual blocks. In these blocks the input is added to the output, so the
block represents a function g(x) = f(x) + x. The intuition behind this is
that a block will not perform worse than an identity mapping since the input
is always available. Furthermore, it helps alleviate the gradient vanishing
problem for deep networks. Figure 4.3 shows a single residual block and
figure 4.4 shows the complete generator architecture.

RU×V×W + RU×V×W

Figure 4.3: A single residual block. The red layers are convolutional layers.
The green layer is an instance normalization layer. The blue layers are ReLU
activation layers. The yellow plus adds the inputs up.

19

· · ·

k=7
f=32
s=1

k=3
f=64
s=2

k=3
f=128
s=2

k=3
f=128
s=1

k=3
f=64
s=0.5

k=3
f=32
s=0.5

k=7
f=1
s=1

Figure 4.4: Generator with residual blocks. A red layer is a convolutional
layer. A green layer is an instance normalization node. A blue layer is a
ReLU activation layer. A yellow layer is a residual block. A cyan layer is
a tahn activation layer. Convolutional layers have a kernel of size k × k, f
filters and a stride of s. For images of size 256× 256 or higher, the number
of residual blocks is 9. For smaller images 6 residual blocks are used.

20

4.2 U-Net

The pix2pix network uses a different type of generator. The U-Net was
designed for medical imaging[17] and can be described as a convolutional
autoencoder with skip connections. The encoder downscales the image to a
1 × 1 × 512 latent space using convolutional layers, starting with 64 filters
and doubling the number of filters every layer up to a maximum of 512. The
decoder equivalently upscales the latent space back to the original dimen-
sions. Every transposed convolutional layer in the decoder has a so-called
skip connection to a layer of the encoder. Meaning that the output of the
i-th encoder layer is concatenated with the output of the (n− i)-th decoder
layer. Figure 4.5 shows the generator in more detail.

21

32 × 32 × 3

32 × 32 × 3

16 × 16 × 64

8 × 8 × 128

4 × 4 × 256

2 × 2 × 512

1 × 1 × 512

2 × 2 × 1024

4 × 4 × 512

8 × 8 × 256

16 × 16 × 128

32 × 32 × 64

32 × 32 × 3

32 × 32 × 67

Figure 4.5: U-Net generator for 32 × 32 images. The red layers are blocks
with first a convolutional layer, then an instance normalization layer and
finally a LeakyReLU activation with slope 0.2. The blue layers are blocks
with a transposed convolutional layer, then an instance normalization layer
and finally a ReLU activation. The output of the ReLU is concatenated with
the output of the convolutional block that is connected with a dashed line.
The stride for these is 2 and the kernel size is 4 × 4. The green layer is a
convolutional layer with 3 filters, a stride of 1 and with a tanh activation.
The dimensions of the output of a block of layers is shown next to it. The
number of filters for the convolutional layers starts from 64 and is doubled
every next layer up to a maximum of 512 filters.

22

4.3 Wasserstein GAN

The Wasserstein GAN[1] (WGAN) is a GAN with a loss function that min-
imizes the Wasserstein or Earth Mover distance. The Wasserstein distance
is defined as:

W (Pr, Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ
[
‖x− y‖

]
.

The authors of the WGAN paper state that the infinitum is intractable.
They propose to use the dual form of the Wasserstein distance using the
Kantorovich-Rubinstein duality:

W (Pr, Pg) = sup
Lip(f)≤1

Ex∼Pr

[
f(x)

]
− Ex∼Pg

[
f(x)

]
,

with Pr the distribution of real images, Pg the distribution of fake images
and the supremum taken over all 1 Lipschitz functions. Lipschitzness is
defined as follows. A function f is K Lipschitz iff

∀x,y : |f(x)− f(y)| ≤ K · |x− y|.

Intuitively it means that the absolute slope of f at any point is no bigger
than K. The function f will be our discriminator, which in the context
of WGANs is also called the critic. Hence, the loss function for a WGAN
becomes:

L(D) = Ex∼Pr

[
D(x)

]
− Ex∼Pg

[
D(x)

]
.

As the discriminator is trained, it will map real images to smaller values
and fake images to larger values. In fact, it is possible the WGAN will have
a negative loss. The authors state that ideally we want to train the critic
until optimality, such that the generator get a more reliable gradient. It is
not always practical in terms of time to train till optimality, so how many
times we update the critic per generator update is another hyperparameter
we need to choose.

In order to enforce the 1 Lipschitz property, the authors propose to clamp
the weights after each update. They admit that it is a terrible way to enforce
this. Gulrajani et al. instead propose to add a term which they call the
gradient penalty to the loss to enforce 1 Lipschitzness of the critic[4]. The
resulting network is called a WGAN-GP or improved WGAN. This term is
defined as:

GP (D) = λgpEx̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
.

where Px̂ is the uniform distribution along straight lines between pairs
of points sampled from Pr and Pg. In simpler terms: we sample Pr and
Pg and for every pair of points we uniformly at random choose a point

23

in between. The gradient penalty term adds a penalty when the gradient
of the discriminator for that point deviates from 1. Petzka et al. instead
propose to only penalize when the gradient is strictly greater than 1[16]. The
regularization term they propose, called the Lipschitz penalty, is defined as:

LP (D) = λlpEx̂∼Px̂

[
(max(0, ‖∇x̂D(x̂)‖2 − 1))2

]
.

They show that this Lipschitz penalty results in a WGAN which has more
stable learning, converges faster and which is less sensitive to the initializa-
tion of the λ weight for the regularization term. This Wasserstein GAN with
the Lipschitz penalty term is called WGAN-LP.

4.4 Dataset

We will train CycleGAN to perform semantic segmentation on the Cityscapes
dataset[2]. The dataset contains photos of urban street views. Every photo
is paired with the label map for that photo, which gives a label to each
pixel of the photo (e.g. car or vegetation). The dataset is already split in
a train, test and validation set. We will use the train set for training and
the validation set for evaluating our network. The images in the dataset
have a resolution of 2048 × 1024. Since we do not have the resources to
train the CycleGAN at that resolution, we instead train on images resized
to 128 × 128. The dataset is first converted to 256 × 256 and locally saved
as .jpg images.

24

Chapter 5

Experiments

In this chapter we will start by explaining how we trained CycleGAN. Then
we will explain the metric we will use to evaluate the performance of the
CycleGAN. Finally, we will describe the experiments we performed.

5.1 Training details

The network is trained for 200 epochs, where one epoch is one training pass
over the entire dataset. The Adam optimizer is used with the parameters
β1 = 0.5, β2 = 0.9 and η = 0.0002. The learning rate is constant for the first
100 epochs, for the final 100 epochs the learning rate is linearly decayed to 0.
λc is 10 and λi is 0. When training the discriminator, the loss is divided by 2.
The weights are initialized with a Gaussian distribution with a mean 0 and a
standard deviation of 0.02. As explained before, the discriminator is trained
using a history of generated images with a buffer size of 50. The batch_size
is 1. For training the train set of cityscapes is used. Every epoch the training
set is shuffled and partitioned into subsets the size of the minibatch. The
subsets are the minibatches used for training. Every image in the minibatch
is then resized to 158× 158 and randomly cropped to 128× 128 to increase
the variety of the training data.

5.2 Evaluation metric

For evaluating the networks we use the same method as described in the
CycleGAN paper called by the pix2pix authors as the FCN score. The
performance of the CycleGAN is not measured by how well it generates this
label map, instead the task is to generate a photo given a label map. Then
another network that is pretrained on the Cityscapes dataset will generate a
label map for that generated photo. This final generated label map is then
compared to the original label map to get the per-pixel accuracy, per-class
accuracy and class intersection over union[14]. The definitions of these scores

25

are:

pixel accuracy =

∑
i
nii∑

i
ti
,

class accuracy =
1

ncl

∑
i

nii
ti
,

intersection over union =
1

ncl

∑
i

nii
ti +

∑
j
nji − nii

,

with ncl as the number of classes in the ground truth label map, nij the
number of pixels of class i that belong to class j, and ti the total number of
pixels with class i in the ground truth label map. These values are calculated
for every image and averaged to get the final scores. For clarity, figure 5.1
shows the pseudo-code of the evaluation process. For evaluating the perfor-
mance the validation set of Cityscapes is used. We will use the evaluation
code1 and pretrained network2 provided in the pix2pix repository.

5.2.1 Experiment descriptions

Baseline We have trained the implementation of CycleGAN that Zhu et
al. provide in their repository3 using the same hyperparameters as described
before. We will compare the FCN scores from their implementation to ours.

U-Net generator The residual generator is replaced with the U-Net gen-
erator.

No image buffer The discriminators are trained with the last images that
were generated, instead of using a buffer containing a history of generated
images.

Wasserstein loss The adversarial loss is replaced with the Wasserstein
loss with Lipschitz penalty. The critic is updated 3 times for every generator
update. λLP is 5. The RMSprop optimizer is used for training with η =
0.0001.

1https://github.com/phillipi/pix2pix/tree/master/scripts/eval_cityscapes. Ac-
cessed at 2018-07-20

2http://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/
fcn-8s-cityscapes/fcn-8s-cityscapes.caffemodel. Accessed at 2018-07-10

3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix. Accessed at 2018-07-
20.

26

https://github.com/phillipi/pix2pix/tree/master/scripts/eval_cityscapes
http://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/fcn-8s-cityscapes/fcn-8s-cityscapes.caffemodel
http://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/fcn-8s-cityscapes/fcn-8s-cityscapes.caffemodel
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

Generate fake photos
fake_photos = []
for label_map in Cityscapes_labels:

fake_photos += gen_b(label_map)

Recreate labels given the fake photos
fake_labels = []
for fake_photo in fake_photos:

resized_photo = resize(fake_photo , (2048, 1024))
fake_labels += pretrained_network(resized_photo)

Calculate scores
pa, ca, iou = [], [], []
for (real , fake) in zip(Cityscapes_labels , fake_labels):

pa += calculate_pixel_accuracy(real , fake)
ca += calculate_class_accuracy(real , fake)
iou += calculate_class_intersection_over_union(real , fake)

pixel_accuracy = mean(pa)
class_accuracy = mean(ca)
class_intersection_over_union = mean(iou)

Figure 5.1: Evaluation pseudocode. Let Cityscapes_labels be the set of
label maps from the Cityscapes dataset. Let gen_b be GB trained to generate
photos from label maps of the Cityscapes dataset. Let pretrained_network
be a network pretrained on the Cityscapes dataset.

27

Chapter 6

Discussion

In this chapter we will discuss the results. The FCN scores are shown in
table 7. Figure 7.1 contains generated images of the different experiments at
several different epochs. Figure 7.2, 7.3, 7.4 and 7.5 show additional results
for the experiments with the Wasserstein loss.

6.1 Baseline

The FCN scores show that our implementation achieves a better score than
the official implementation.

6.2 U-Net generator

The FCN scores with the U-Net generator are lower than for the residual
generator. This is an interesting result since the U-Net generator, with the
number of filters that the pix2pix authors suggest, has significantly more
trainable parameters than the residual generator; around 40 million for the
U-Net generator vs. around 8 million for the residual generator. This re-
sult does support the CycleGAN authors in their decision of changing the
generator architecture.

6.3 No image buffer

Training the discriminators using just the last generated images results in
a slightly higher FCN score. We do not have sufficient evidence to address
the claim by the CycleGAN authors that using the image buffer results in a
more stable training.

28

6.4 Wasserstein loss

The output samples, as well as the FCN scores, show that CycleGAN with
Wasserstein loss fails to produce compelling images. As explained before,
the discriminator should give smaller values to real images and higher values
to fake ones. However, figure 7.2 shows that when we split the loss into
separate terms for real and fake samples, the loss of DA does the opposite
of this. The fake images are mapped to negative values and real images
to positive values. When we look at the samples in figure 7.4 we can see
that although the translation between domains itself was unsuccessful, the
reconstructed images look almost perfect. Our hypothesis is that the cycle-
consistency constraint is too strong when combined with the Wasserstein loss
with Lipschitz penalty. To test this, we have another experiment where we
lower the cycle-consistency weight to λc = 0.5 and change the mean absolute
error to mean squared error for the cycle-consistency loss, which penalizes
the ANN more as the reconstructed input deviates more from the actual
input. Due to time constraints, we choose to train with an increased batch
size of 32.

Figure 7.3 is a plot of the loss with this alternate cycle-consistency loss.
It shows that the loss now behaves as we expected. The fake images are
mapped to higher values and the real images to lower values as the network
is trained more. The samples in figure 7.1 show that the output is at least
visually more convincing than the output with the original Wasserstein loss.
However, it still looks less realistic than the baseline implementation. In
order to find out if CycleGAN can be combined with the Wasserstein loss
and still produce as realistic images as the original implementation, more
research is needed to find optimal hyperparameters, including finding out
how to best express the cycle-consistency loss.

29

Chapter 7

Results

Per-pixel accuracy Per-class accuracy Class IOU
Zhu et al. 0.559 0.187 0.132

Baseline (ours) 0.704 0.234 0.171
U-Net generator 0.688 0.222 0.169
No image buffer 0.720 0.237 0.179
Wasserstein loss 0.492 0.112 0.070

Table 7.1: FCN scores. Zhu et al. represents the FCN-scores from the
network provided by the CycleGAN authors trained on Cityscapes.

30

Figure 7.1: Generated images after n epochs. From left to right: input image,
40, 80, 120, 160, 200 epochs. From top to bottom: Zhu et al., Baseline (ours),
U-Net generator, no image buffer, Wasserstein loss.

0 1 2 3 4 5 6

·105

−1,000

0

1,000

iterations

lo
ss

Loss per iteration for DA with Wasserstein loss.

−Ex∼Pg

[
D(x)

]
Ex∼Pr

[
D(x)

]

Figure 7.2: CycleGAN with Wasserstein loss and Lipschitz penalty.

31

0 0.2 0.4 0.6 0.8 1

·104

−10

−5

0

5

10

iterations

lo
ss

Loss per iteration for DA with Wasserstein loss.

−Ex∼Pg

[
D(x)

]
Ex∼Pr

[
D(x)

]

Figure 7.3: CycleGAN with Wasserstein loss and Lipschitz penalty with
mean squared cycle-consistency loss and λc = 0.5.

Figure 7.4: Generated images with reconstructed input for CycleGAN with
Wasserstein loss. Top row: Ex∼A, GA(x), GB(GA(x)). Bottom row: Ey∼B,
GB(y), GA(GB(y)).

32

Figure 7.5: Generated images with reconstructed input for Wasserstein Cy-
cleGAN and Lipschitz penalty with mean squared cycle-consistency loss and
λc = 0.5. Top row: Ex∼A, GA(x), GB(GA(x)). Bottom row: Ey∼B, GB(y),
GA(GB(y)).

33

Chapter 8

Conclusions

In this thesis we have replicated the results of the CycleGAN in its original
version and we have evaluated several modifications. We have shown that
changing the generator to a U-Net architecture results in a lower FCN score.
As such, we conclude that a residual network is a better choice of generator
then a U-Net. Changing the training process such that the discriminators are
trained with the last generated image instead of a history of generated images
has resulted in a slightly better FCN score. Furthermore, we have shown
that changing the least squares loss to the Wasserstein loss with Lipschitz
penalty makes the FCN score much worse. Finally, we have shown that
the Wasserstein loss works better when the cycle-consistency constraint is
relaxed by lowering the weight and changing the absolute error for the sum
squared error for the cycle-consistency term.

34

Bibliography

[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. ArXiv
e-prints, January 2017.

[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele. The Cityscapes Dataset for
Semantic Urban Scene Understanding. ArXiv e-prints, April 2016.

[3] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative Adversarial Networks.
ArXiv e-prints, June 2014.

[4] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville.
Improved Training of Wasserstein GANs. ArXiv e-prints, March 2017.

[5] G.E. Hinton and R.R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. 313:504–7, 08 2006.

[6] Kurt Hornik. Approximation capabilities of multilayer feedforward net-
works. Neural Networks, 4(2):251 – 257, 1991.

[7] S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. ArXiv e-prints,
February 2015.

[8] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-Image Transla-
tion with Conditional Adversarial Networks. ArXiv e-prints, November
2016.

[9] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual Losses for Real-Time
Style Transfer and Super-Resolution. ArXiv e-prints, March 2016.

[10] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. Learning to Discover
Cross-Domain Relations with Generative Adversarial Networks. ArXiv
e-prints, March 2017.

[11] D. P Kingma and M. Welling. Auto-Encoding Variational Bayes. ArXiv
e-prints, December 2013.

35

[12] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
2010.

[13] M.-Y. Liu, T. Breuel, and J. Kautz. Unsupervised Image-to-Image
Translation Networks. ArXiv e-prints, March 2017.

[14] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks
for Semantic Segmentation. ArXiv e-prints, November 2014.

[15] Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, and Zhen
Wang. Multi-class generative adversarial networks with the L2 loss
function. CoRR, abs/1611.04076, 2016.

[16] H. Petzka, A. Fischer, and D. Lukovnicov. On the regularization of
Wasserstein GANs. ArXiv e-prints, September 2017.

[17] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. ArXiv e-prints, May 2015.

[18] A. Royer, K. Bousmalis, S. Gouws, F. Bertsch, I. Mosseri, F. Cole,
and K. Murphy. XGAN: Unsupervised Image-to-Image Translation for
Many-to-Many Mappings. ArXiv e-prints, November 2017.

[19] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How Does Batch Nor-
malization Help Optimization? (No, It Is Not About Internal Covariate
Shift). ArXiv e-prints, May 2018.

[20] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang, and
R. Webb. Learning from Simulated and Unsupervised Images through
Adversarial Training. ArXiv e-prints, December 2016.

[21] P Smolensky. Information processing in dynamical systems: Founda-
tions of harmony theory. 1:194–291, 1986.

[22] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised Cross-Domain Image
Generation. ArXiv e-prints, November 2016.

[23] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance Normalization:
The Missing Ingredient for Fast Stylization. ArXiv e-prints, July 2016.

[24] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networkss.
In Computer Vision (ICCV), 2017 IEEE International Conference on,
2017.

36

	Introduction
	Related Work
	Generative models
	Restricted Boltzmann machine
	Variational autoencoders

	GANs for image-to-image translations
	pix2pix
	Domain transfer network
	DiscoGAN
	UNIT
	Cross-GAN

	Preliminaries
	Artificial Neural Networks
	Convolutional Neural Networks
	Generative models

	Methods
	CycleGAN
	Objective function
	Discriminator
	Generator

	U-Net
	Wasserstein GAN
	Dataset

	Experiments
	Training details
	Evaluation metric
	Experiment descriptions

	Discussion
	Baseline
	U-Net generator
	No image buffer
	Wasserstein loss

	Results
	Conclusions

