
Bachelor thesis
Computer Science

Radboud University

Accessing PEP data

Author:
Sander Hendrix
s4231589

First supervisor/assessor:
Prof.dr. B.P.F. Jacobs

bart@cs.ru.nl

Second supervisor/assessor:
Dr. Sietse Ringers

sringers@cs.ru.nl

April, 2018

Abstract

The pep project lacks a way for study participants to access their data,
as current access methods are not applicable to participants. We looked
at alternative authentication methods, and provide a proof of concept of
browser based access and authentication using the IRMA project. For doing
so, we take a look at some of the inner workings of the pep technology.

Contents

1 Introduction 2
1.1 Aim . 2

2 Preliminaries 3
2.1 Polymorphic Encryption and Pseudonymisation 3
2.2 Internal communication . 3

3 Research 5
3.1 Authentication . 5

3.1.1 Popular methods . 5
3.1.2 IRMA . 6

3.2 Technical details . 8
3.2.1 OAuth . 8
3.2.2 Current systems . 9
3.2.3 Additions . 11
3.2.4 Overview . 13
3.2.5 Implementation notes 14

3.3 Scope . 14

4 Conclusions 15
4.1 Discussion and future work 15
4.2 Analysis . 15
4.3 Experience . 16

1

Chapter 1

Introduction

The Parkinson’s POM is a collaboration between the Radboudumc, Rad-
boud University, ParkinsonNet, and Verily. Research data includes highly
privacy sensitive data such as DNA, MRI scans, and information from wear-
ables. This data is stored and shared using the Digital Security Group’s
‘pep’ infrastructure. pep stand for “Polymorphic Encryption and Pseudonymi-
sation”. It aims to store and exchange data in a privacy friendly way. It uses
advanced encryption techniques, combined with distributed pseudonymisa-
tion and access management to accomplish this.

The current system implements infrastructure for medical researchers,
but does not have a way for study participants to access their own data.

1.1 Aim
Current authentication methods and access methods are non applicable to
participants. Our aim is to find both an alternative authentication method,
and an alternative access method.

2

Chapter 2

Preliminaries

Our aim boils down to data access. Before we can talk about data access,
we first have to introduce some details on how data is actually stored and
some design principles of pep.

2.1 Polymorphic Encryption and Pseudonymisa-
tion

Data is stored using ‘polymorphic encryption’ under a ‘polymorphic pseudonym’.
Without getting too technical, the main advantage of polymorphic encryp-
tion over ‘normal’ encryption is that the latter can only be decrypted using
one key, while polymorphic encryption can be decrypted using multiple keys.

The polymorphic qualities are achieved by generating local keys for some
client: it gets both a local private pseudonym key and data key. These keys
are derived from, respectively, the master pseudonym key and the master
data key. Because these local keys are derived from the master keys, they get
a special property: data encrypted with the master key can be ‘transformed’
so that it can be decrypted by these local keys.

In many cases some party needs a persistent identifier for the person (i.e.
study participant in our case) along with the data. To facilitate this, pep
uses ‘polymorphic pseudonyms’: like the encrypted data, these pseudonyms
can be transformed into other pseudonyms, local to some party.

For both a better layman’s introduction (with a padlock analogy accom-
panied by pictures) and the mathematical principles behind the technique
we refer the reader to the pep white paper [9].

2.2 Internal communication
Messages in pep’s are signed using certificates. For the different components
that are active within pep, these certificates can be generated beforehand.

3

This is not the case for other users and programs however. They first have
to get their certificate somehow, and consequently their requests cannot be
signed the same way as the other messages are.

The component within pep that governs these certificates is the key
server. It delegates this ‘initial step’ to the specialised authentication server.
There, one can get a token that can be used to get a certificate at the key
server. This token contains the user’s identifier and group, and is signed
using a secret shared between the authentication server and the key server.
Tokens are exchanged using the OAuth protocol [3]. The OAuth proto-
col only describes a protocol to ask and receive tokens. Thus, in turn, it
delegates the notion of authorization and thereby that of authentication.

For this, we need some way of identifying participants. This can either
be done via a pseudonym, or via their unique identifier. Research assessors
(organisational staff for the project) access a study participant’s ‘dossier’
(i.e. the data they have access to) by entering a so called ‘Salesforce ID’:
a fifteen digit long number, already in use in other Radboudumc systems
that identifies a participant. These numbers form the basis for pseudonym
generation used to store the study data. Since our aim is to let participants
view their own data, and only theirs, there is no need to use a pseudonym.
Hence, we too will use this ‘Salesforce ID’ to identify participants.

4

Chapter 3

Research

3.1 Authentication
The authentication server currently uses SURFconext1 and the researcher’s
Radboud log in as authentication method. For study participants to gain
access, they should be able to authenticate themselves in some alternative
way. Since they do not have a Radboudumc or University account, an
alternative authentication method needed to be found. We already have an
identifier, the participants ‘Salesforce ID’, and need to find an authentication
method.

3.1.1 Popular methods

Authentication methods come in many shapes and forms. From the simple
user name and password combination we are all too familiar with, to some-
thing once thought to be futuristic as an iris scanner. We needed something
simple and secure.

Simple in a sense that one should be able to authenticate oneself with-
out intricate methods or exotic hardware. Considerations were the state
participants are in: one should be reminded of the fact that these people
are suffering from Parkinson’s disease, and need not learn or do something
difficult in addition to everything they already have to go through.

Serious contenders were the more ‘tried and true’-methods such as a
user name and password, or some kind of token or card. The workings
of a user name and password are presumed known: often a email address
or nickname in combination with a password. Smart cards are physical,
often credit/debit card sized, cards with some storage. These cards need
to interact with a compatible reader in order to function. A contemporary
example of the use of a smart card would be the cards used by citizens of

1See: https://www.surf.nl/diensten-en-producten/surfconext/index.html
(Dutch)

5

https://www.surf.nl/diensten-en-producten/surfconext/index.html

Estonia: this state issued card is used for identification by most of their
government-citizen related interactions, such as tax declarations and their
electronic voting system. Another example would be banks issuing readers
that interact with their debit cards.

Advantages and disadvantages

User name and password combinations are often denoted as ‘something one
knows’. They have the advantage of being relatively simple to implement
and have almost zero cost associated with them. Their main disadvantage
is being ‘yet another’ set of user name and password to remember, and
therefore able to be forgotten. This adds to the risk of people writing their
combination or their passwords down, or choosing simple passwords.

A password’s strength lies in its length and the chosen character set: both
longer passwords, and bigger character sets (e.g. special characters) take
orders of magnitude longer to brute force than shorter or simpler passwords.
Users, when given the chance, often tend to forgo these measures [2] [7].
Forcing these attributes, by setting a minimum length and a required number
of non-alphabetical characters, often leads to passwords being significantly
harder to remember and more likely to be written down [10]. In addition,
users are often inclined to reveal their passwords [5].

Physical tokens, smart cards, or some other specialised device alleviate
this main disadvantage and differ by their nature of being ‘something one
has/possesses’. Moreover, some implementations use an additional step of-
ten in the form of a PIN, effectively combining ‘something one has’ and
‘something one knows’: resulting in two layers of security and mitigating
unauthorised usage. Disadvantages include user mobility—each devices re-
quires some kind of reader—, cost, and performance [1]. They also open up
other attack vectors such as power analysis attacks [6]. Finally, if a ‘some-
thing one knows’ step, such as a PIN, is not in place they can easily be used
by an unauthorised party.

Taking into account these advantages and disadvantages: we considered
a user name and password to be too insecure, but at the same time found the
use of a smart card to be too complex. An in between method of something
that would be as easy as showing a card, but not as cumbersome in practice
as physical smart cards was preferred.

3.1.2 IRMA

Our eyes fell to another project of the Digital Security group: the IRMA
project. IRMA stands for ‘I Reveal My Attributes’. It aims to be a privacy-
friendly way of authenticating, by only disclosing relevant properties that
one has or is. It does so with ‘attributes’ that one can acquire and subse-
quently use. These attributes can range from being relatively simple such

6

(a) Example of the IRMA app with
an email address and multiple age
limit attributes shown

(b) A page requesting some at-
tribute(s)

Figure 3.1: IRMA

as a ‘yes’ or ‘no’ to an age limit claim, to something more complex as an
address. IRMA uses a smart phone app to manage, acquire, and reveal these
attributes. See figure 3.1a for an example of how these attributes may look.
A request to see an attribute is done via QR-codes. See figure 3.1b for an
example of a typical request.

A use case, as an example, could be a store selling alcohol. Certainly,
the store and shopkeeper only need to know whether a potential buyer is old
enough, say: older than eighteen years old. Disclosing an ‘over 18’ attribute
issued by a trusted party (i.e. the state) would suffice in this case, instead of
having to show one’s whole passport or ID. This ensures that no unnecessary
data, such as a national identification number or full names, is ‘leaked’ in
the process.

IRMA takes the advantages of smart card based approaches, without
the added cost and complexity. It also requires a PIN on attribute usage,
thus combining ‘something you have’ and ‘something you know’. The PIN
requirement also mitigates the risk of attribute misuse in case of theft of
the device. A disadvantage of using IRMA is the need of a smart phone.
Though smart phones are quite ubiquitous, it is not guaranteed that all
participants own such a device. It also inherits the disadvantage of possible

7

loss that smart cards have, though it should be noted that re-issuing the
required attribute is the same as the initial process.

Implementation

We want participants to be able to authenticate themselves. We will do
so by proof of identity using an IRMA attribute. We established that we
will use the participants ‘Salesforce ID’ as identity in section 2.2. Ergo, the
IRMA attribute will contain the participants ‘Salesforce ID’.

This IRMA based approach has the added benefit of hiding the strenuous
details of the concept of ‘identity’ from the end user: there is no need to
remember the fifteen digit long ‘Salesforce ID’ number. Rather, it is more
or less made opaque for the participant in the form of the IRMA attribute:
our implementation can simply prompt the participant for their attribute,
to which the participant only has to accept to continue.

3.2 Technical details
We will now go into more detail surrounding the relevant systems in place,
and our additions to those systems.

3.2.1 OAuth

The OAuth protocol was briefly mentioned in section 2.2 as the protocol
that the authentication server uses to exchange tokens.

OAuth is an open standard for so called ‘access delegation’: a resource
owner (e.g. user) can grant a client access to said resource on another service.
In other words, it allows a user to grant some service A access to some
resource located at some other service B. ‘Granting access’, i.e. authorizing,
is done by the resource owner at the service that holds the relevant resource.
This is often accomplished by means of the resource owner authenticating
themselves. A often used use case, that is also used for pep, is using an
account from a third party to log in to a service without giving the latter
the password.

The OAuth specification defines four grant types, of which the pep
authentication server implements only one: the authorization code grant.
Moreover, it also only accepts clients who implement pkce [8]: a technique
to mitigate against an attack on this grant.

Because this grant plays an important role in our additions to the pep
project, we will discuss the protocol briefly. It consists of four steps:

1. Authorization Request: the client directs the user’s user-agent to the
authorization endpoint. The authorization server establishes whether
the resource owner grants or denies the client’s access request.

8

2. Authorization Response: if the user grants the client access, the au-
thorization server redirects the user-agent back to the client with an
authorization code.

3. Access Token Request: the client requests an access token from the
authorization server’s token endpoint by including the authorization
code received in the previous step.

4. Access Token Response: If valid, the authorization server responds by
giving an access token. (read: the OAuth token)

The first step is one of the more complicated steps. The ‘establishing
whether the resource owner grants or denies the client’s access request’ part
of the protocol is left to the authorization server and not part of the actual
OAuth protocol. What needs to happen here, is between the server and
the resource owner—i.e. the user. This is the actual authorization from the
resource owner: the user says ‘yes’ or ‘no’. This is often done by authen-
tication: the user confirms by authenticating, and denies by cancelling the
authentication.

Note that the ‘client’ is the program that the resource owner (the ‘user’
above) is using. The researchers use a native desktop application. Partici-
pants will use their browser to navigate to our public facing web server.

3.2.2 Current systems

Core library

The core library, internally often called ‘corelib’, exposes the main func-
tionality of the pep project. It does so by communicating with many of
the core components of the pep infrastructure. Besides very important as-
pects as logging, these core components are the key server, access manager,
transcryptor and storage facility.

The key server checks the validity of the OAuth token and hands out the
certificates that are used internally. It it also the only component that has
the master data and pseudonym keys.

The access manager serves to check whether a request may be performed
by someone. Requests are actions such as reading or writing data. Access
is determined by means of ‘groups’: the group that is defined in the initial
OAuth token made by the authentication server determines what actions
can be done.

The transcryptor’s main functionality lies in its role in transforming
encrypted pseudonyms and data, as explained in section 2.1.

Finally, the storage facility stores the encrypted data.

9

User Web server

Authserver

Wrapper

IRMA

Corelib Access manager

Key server

Transcryptor

Storage Facility

Figure 3.2: Interactions between the different components. Lines denote
communication between two components. Solid lines are new interactions in-
troduced, dotted lines are already present or given. See 3.2.4 for an overview
of the final communications

Background The polymorphic qualities of pep are achieved by a joint
effort of the key server, the access manager, and the transcryptor. Local keys
for some client are in fact blinded keys. They are derived from the master
pseudonym key and the master data key only known to the key server, and
scalars from both the access manager and the transcryptor. That is why
decryption is only possible if all three grant their approval. The corelib
handles the requests and receiving approval for us.

Authentication server

The authentication server speaks the OAuth protocol, as described in section
3.2.1. The tokens it issues are JSON web tokens [4] (often abbreviated as
JWT2). They contain both an identifier and a group.

2Besides the RFC [4], see: https://jwt.io/

10

https://jwt.io/

3.2.3 Additions

In this section we will talk about the additions we made to the existing pep
infrastructure. Independent additions, i.e. ones that did not exist prior, are
the web server and wrapper. Modifications were made to the authentication
server.

Authentication server

We will talk about the authentication server in terms of the OAuth protocol.
If we fill in the abstract terms used in section 3.2.1 we get:

1. Authorization Request: the web server directs the participant’s browser
to the authentication server. The authentication server establishes
whether the participants wants to log in (i.e. provide their IRMA
attribute).

• This is when the IRMA protocol starts: the authentication server
prompts the participant to scan a QR code.

• The participant scans the QR code and confirms they wants to
share their IRMA attribute.

2. Authorization Response: if the participant does indeed provide their
IRMA attribute, then the authentication server redirects the partici-
pant’s browser back to the web server with an authorization code.

3. Access Token Request: the web server requests an access token from
the authentication server using the authorization code.

4. Access Token Response: if the code is valid, then the authentication
server gives the web server a token.

We will now take a closer look how exactly we implemented these steps.

Authorization code Currently, the server immediately redirects anyone
accessing it to a SURFconext log in. There, a researcher or medical staff
member can log in with their usual account. This had to be changed so our
authentication method would be available. We chose to leave the current ad-
dresses in use in place, and instead opted for another link (say /auth/staff
and /auth/participant).

Once the SURFconext-method or our method has an ID and group, the
code for generating the authorization code is the same. Thus, the existing
code could be made generic and was subsequently moved to a ‘common
part’ of the server, and the SURFconext specific part was left at the current
address.

11

As per section 3.1.2, we chose IRMA for the ‘authorization by authen-
tication’-step outlined in section 3.2.1. Details on the inner workings of the
IRMA-protocol can be found on their website3.

The aforementioned ‘new address’ points to a simple page that imme-
diately loads the IRMA screen as seen in figure 3.1b. The participant is
greeted with the usual QR code, scans it with the app, and confirms within
the app. The authentication server verifies the information it gets from
the IRMA server and returns the participant back to the website with the
authorization code.

Much like the OAuth tokens that are generated, IRMA uses JWTs for
communication. We implemented the following steps:

1. We generate a signed JWT, asking for the attribute with the partici-
pants ‘Salesforce ID’.

2. Using irma_js4, we present a QR-code that the user can scan.

3. irma_js handles the communication between the IRMA API server
and the user’s token (i.e. the smart phone app).

4. If the user consents, we get a signed JWT back. We verify its signature
and extract the ‘Salesforce ID’ attribute out of the JWT. We send the
it to the common part.

5. The common part redirects the participant back with an authorization
code grant. (see step 2 in section 3.2.1)

Access token This part of the OAuth flow is the same regardless of au-
thentication method. The underlying logic thus largely remains unmodified.
Some SURFconext specific parts were made generic.

Web server and wrapper

The web server forms our main point of interaction with the participants,
through their browser. It is written in Flask: a micro framework written in
Python.

A wrapper was written in C++. It ‘wraps’ the core library. A ‘wrapper’
can be seen as a thin layer of code built around a library. It serves to
translate a library’s existing interface into a compatible interface. This can
be done for several reasons.

In our case, it is done for language interoperability: the corelib is written
in C++, the web server in Python. The wrapper is also written in C++, but

3See: https://credentials.github.io/protocols/irma-protocol/
4Provided by the IRMA team, see: https://github.com/privacybydesign/irma_js

12

https://credentials.github.io/protocols/irma-protocol/
https://github.com/privacybydesign/irma_js

provides Python bindings and an easy way to import it the same as Python-
native code. This means that for the web server, it is just another import
and no further steps have to be made to bridge the C++/Python gap.

It should also be noted that wrappers normally often wrap most if not
all functions and subroutines of a library. Our wrapper only does so for
functions that are relevant to us. Thus, it is not a complete wrapper of the
corelib.

Operation The web server imports the wrapper. The wrapper exposes a
‘retrieve’ function that, when given a token, does the following:

1. Initialises and enrolls itself

2. Uses the ‘Salesforce ID’ (that is stored in the token) to request a poly-
morphic pseudonym (needed, because that is what is used internally)

3. Enumerates the pseudonym’s data

4. Retrieves said data

It returns all the retrieved data. The web server takes the data, parses it,
prepares a HTML document with a table containing the data, and serves
this page to the participant’s browser.

Subtleties The core library and most existing code make use of the C++

implementation of the ReactiveX5 extensions. Among other things, this
makes it easy for the programmer to make certain parts of a program asyn-
chronous. This presents challenges for us, as their is no real system to
integrate this with our website. To overcome this hurdle, the wrapper’s re-
trieve function primitively synchronises the used pep functions by simply
waiting for them to be done.

3.2.4 Overview

The implemented flow, as can be seen in figure 3.2, is as follows—leaving
the details of the IRMA API server/participant interaction and the inner
core library workings mostly opaque:

1. User (participant) browses to the web server (a website);

2. Web server redirects the user to the authentication server ;

3. Authentication server starts the IRMA procedure;

4. Upon successful IRMA authentication, the authentication server redi-
rects the user back to the web server with an access code grant;

5See: http://reactivex.io/

13

http://reactivex.io/

5. Web server takes the access code and requests an access token from
the authentication server ;

6. If the access code is valid, the authentication server exchanges it for
an access token and gives that back to the web server ;

7. Web server takes the OAuth token and passes it on to the wrapper ;

8. Wrapper takes the OAuth token, retrieves the data and returns it to
the web server ;

9. Web server parses the data and returns it in a table to the user (the
participant’s browser)

3.2.5 Implementation notes

• pep uses both an ‘id’ and a ‘group’: we set the ‘id’ to the ‘id’ IRMA
attribute, what in turn is set to the ‘Salesforce ID’; we set ‘group’
hard coded to ‘participant’. Systems are in place for a ‘group’ IRMA
attribute, meaning this log in could be re-purposed for other groups
in the future.

• The existence (nb: not their contents) of IRMA attributes is managed
by an IRMA scheme manager. The attributes have to be added to an
IRMA scheme manager, and the key material has to be exchanged.
Because this is a proof of concept, attributes have yet to be added to
a public scheme manager. Our proof of concept can always be tested
by running a local instance of a scheme manager6.

3.3 Scope
The issuing of attributes is left out of scope for this project. The idea is
that interested participants can request and acquire an attribute at the Rad-
boudumc. Though issuing is a relatively simple process to set up, constraints
have to be made, and more importantly somehow enforced, as to whomever
may issue these attributes. I.e. a web page only accessible from within the
Radboudumc.

With that in place, the only steps required to issue an attribute would
be a medical staff member who would insert the ‘Salesforce ID’ number, and
the participant who would scan the issuance QR-code.

6See: https://github.com/privacybydesign/irma-demo-schememanager

14

https://github.com/privacybydesign/irma-demo-schememanager

Chapter 4

Conclusions

4.1 Discussion and future work
We note that the access manager does currently not incorporate a way to
limit access by ID, only by group. The wrapper only requests data from
the ID in the OAuth token, which is set to the ID contained in the IRMA
attribute. Effectively enforcing access management. Since the authentica-
tion server, web server, and wrapper are all pep operated, and there is no
user or user-agent interaction (and therefore no real attack vector) between
receiving the token and requesting the data, we see no real problem with
this method. Still, it would be more in line with the functionality of the
different pep components if the access manager would perform additional
checks.

We also acknowledge that our synchronisation process is quite crude,
and may be able to be optimised or handled in some better fashion.

Other future work includes attribute issuance, as noted in section 3.3.
This is mainly a question about logistics (how, where, by whom). An ex-
ample using unsigned JWTs is included when running the server in its ‘de-
bug’-mode.

Finally, we would like to expand and formalise the functions of the web
server in combination with the wrapper into an open API.

4.2 Analysis
We set out to establish a way for study participants to gain access to their
study data. The importance of this task is further emphasised with the
proximity of the European Union’s new ‘General Data Protection Regula-
tion’. Its article 15 contains a ‘right of access’, intended for those whose data
is being handled or processed. Looking back on our work, is there anything
we would have done differently?

We share the view that access to one’s own data is important. The

15

current (not including our additions) implementation does allow for a sim-
pler scheme where a participant may visit a research assessor: the assessor
could then load a participant’s info and allow them to look at the screen.
This might satisfy the ‘right to access’ clause already. We opted for browser
based access. Primarily because of its accessibility: browser based services
are accessible from both mobile and desktop. It also removes the hurdle of
physically having to go to a research assessor. Although one could also ar-
gue that accessibility is not that big of a concern. The question then would
revolve around the required ease of access.

We also introduced new possible attack vectors. Most of the pep infras-
tructure was only accessible from specific applications, and we introduced a
public facing web server that can be accessed by anyone.

While we stand for the security of our implementation, some of the
security aspects are not within our reach. Mainly, the end transport is only
as secure as one’s connection. Attacks include corporate style man-in-the-
middle ‘attacks’ whereby a company intercepts all their employees’ traffic
and re-signs it with their own pre-installed certificate, or a similar case
where the participant’s own device is compromised. We do note that these
practices are relatively easily avoidable by keeping devices up-to-date, using
self-owned devices, using Firefox (who does not use system certificates) and
practising safe browsing habits. Therefore, we do believe our implementation
to be fully secure within reason.

We also believe our authentication method using IRMA to be fully se-
cure. A scenario where someone gains access to both a participants phone
and their app requires circumvention of, or access to, both the phone’s lock
screen and the IRMA PIN.

4.3 Experience
Here we will discuss some or our experiences making our proof of concept.

Our experience with the pep technology and its implementation can be
described as somewhat ‘mixed’. The novelty of the technology is more than
exciting. However, the size of the project can daunting for a new comer.
This is further emphasised by the lack of documentation in a lot of places —
though it should be noted that work is being done to provide documentation.
This necessitated a dive into the code, to figure out interactions ourselves.
The project uses ReactiveX, whose observerable and subscriber pattern can
be quite difficult to grasp, further exacerbating the complexity. Luckily,
once we had familiarised ourselves with ReactiveX, the existing code was
very readable and proved to be useful as a guide in implementing our own
methods.

Another hurdle was the the project’s use of CMake for build manage-
ment. We found its use to be very complex due to the size of the project,

16

sub-components having separate CMake files, and a large chain of depen-
dencies with, again, their own build files. This would have been less of a
concern, if the components would have been dynamically linked. They were
not, they were set up to compile into statically linked libraries. Neverthe-
less, our bridge to Python requires dynamically linked libraries to function.
Changing the project from static to dynamic required a lot of time in the
form of online reading and digging into CMake files and CMake sub-files
that are pulled in at compile time.

The other new technology was IRMA. Including IRMA as authentication
method was a relative breeze compared to the time spend on the C++ parts
of pep. Building a new version of the Android app (with our new attributes
added) turned out to be easy. Running the API server (for testing purposes)
caused little trouble as well, as everything is at least somewhat documented.
Initial set up requires some effort, as new keys and signatures have to be
generated and exchanged. Fortunately, after everything is set up, starting
and stopping the server requires little effort and near zero maintenance.

17

Bibliography

[1] David Chadwick. Smart cards aren’t always the smart choice. Com-
puter, 32(12):142–143, 1999.

[2] Dinei Florencio and Cormac Herley. A large-scale study of web pass-
word habits. In Proceedings of the 16th international conference on
World Wide Web, pages 657–666. ACM, 2007.

[3] D. Hardt. The oauth 2.0 authorization framework. RFC 6749, RFC
Editor, October 2012. https://www.rfc-editor.org/rfc/rfc6749.
txt.

[4] M. Jones, J. Bradley, and N. Sakimura. Json web token (jwt). RFC
7519, RFC Editor, May 2015. https://www.rfc-editor.org/rfc/
rfc7519.txt.

[5] Daniel V Klein. Foiling the cracker: A survey of, and improvements
to, password security. In Proceedings of the 2nd USENIX Security
Workshop, pages 5–14, 1990.

[6] Thomas S Messerges, Ezzat A Dabbish, and Robert H Sloan. Exam-
ining smart-card security under the threat of power analysis attacks.
IEEE transactions on computers, 51(5):541–552, 2002.

[7] Robert Morris and Ken Thompson. Password security: A case history.
Communications of the ACM, 22(11):594–597, 1979.

[8] N. Sakimura, J. Bradley, and N. Agarwal. Proof key for code ex-
change by oauth public clients. RFC 7636, RFC Editor, September
2015. https://www.rfc-editor.org/rfc/rfc7636.txt.

[9] Eric Verheul, Bart Jacobs, Carlo Meijer, Mireille Hildebrandt, and Joeri
de Ruiter. Polymorphic encryption and pseudonymisation for person-
alised healthcare. Cryptology ePrint Archive, Report 2016/411, 2016.
https://eprint.iacr.org/2016/411.

[10] Moshe Zviran and William J Haga. Password security: an empirical
study. Journal of Management Information Systems, 15(4):161–185,
1999.

18

https://www.rfc-editor.org/rfc/rfc6749.txt
https://www.rfc-editor.org/rfc/rfc6749.txt
https://www.rfc-editor.org/rfc/rfc7519.txt
https://www.rfc-editor.org/rfc/rfc7519.txt
https://www.rfc-editor.org/rfc/rfc7636.txt
https://eprint.iacr.org/2016/411

	Introduction
	Aim

	Preliminaries
	Polymorphic Encryption and Pseudonymisation
	Internal communication

	Research
	Authentication
	Popular methods
	IRMA

	Technical details
	OAuth
	Current systems
	Additions
	Overview
	Implementation notes

	Scope

	Conclusions
	Discussion and future work
	Analysis
	Experience

