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Abstract

Machine learning requires access to all the data used for training. Recently,
Google Research proposed Federated Learning as an alternative, where the
training data is distributed over a federation of clients that each only ac-
cess their own training data; the partially trained model is updated in a
distributed fashion to maintain a situation where the data from all partici-
pating clients remains unknown.

In this research we construct different distributions of the DMOZ dataset
over the clients in the network and compare the resulting performance of
Federated Averaging when learning a classifier. We find that the difference in
spread of topics for each client has a strong correlation with the performance
of the Federated Averaging algorithm.
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Chapter 1

Introduction

Federated Learning is a new technique in machine learning where the train-
ing data stays on the device of the owner [7, 5, 4]. Where traditional machine
learning first aggregates data to train a model on a central server, federated
learning sends the model to the data and aggregates the local updates of
the model. This technique makes it more practical to train a model using
privacy sensitive data or data which is too big for being aggregated. This
however results in implications for on what data a model is being trained.
Since data will not be aggregated and the training only happens on the lo-
cal data created mostly by individuals, this data will inevitably hold certain
patterns resulting from their behaviour. The result is that data is not dis-
tributed independently and identically, we refer to this situation as non-IID
data.

This results in non independent and identically distributed data, or non-
IID data. This could be problematic when applying traditional machine
learning algorithms in the federated setting since those assume independent
and identically distributed data, or IID data.

Research suggests that using a naive way of repeatedly averaging locally
updated models works relatively well [7]. They compare the proposed algo-
rithm Federated Averaging (FedAvg) for the IID setting with an non-IID
setting. The paper constructs one distribution of non-IID data and find
equal performing models as with IID data after enough rounds. The prob-
lem with this outcome is it may and probably will not be possible to make
such an assumption, since it is not possible to know all behavioural factors of
individuals which influence the data. This often is the reason to use machine
learning in the first place.

There is currently not much research of how the implicit assumptions of
federated learning affect the performance of the learned model. In research
where federated learning techniques are proposed there is often just one
assumptions of how data is distributed over clients. In reality the exact
distribution is unknown while it is possible to make assumptions of how data
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could be distributed. In this research we give more insight in how strong
these assumptions must be to ensure well performing Federated Learning,
and in particular Federated Averaging.
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Chapter 2

Preliminaries

2.1 Federated Averaging

The FedAvg algorithm proposed in [7] is a naive, however claimed to be well
performing, federated learning algorithm. It describes the communication
between a central server and K clients and how the model updates done by
the clients are aggregated on the central server. The algorithm consists of
multiple rounds where for each round t the server randomly selects a fraction
C of the K clients, resulting in a subset St of m = dC ∗ Ke clients. The
server sends the current model wt to all clients in St, which then train the
model using their local data and send the updated model wk

t+1 back to the
server. The server then calculates a weighted average of all models according
to the number of samples on the clients nk.

The paper describes the aggregated update as wt+1 ←
∑K

k
nk
n w

k
t+1 which

is the weighted average over all local updated models wk
t+1 for all K clients,

however, the clients who are not in St have not been updating a model,
hence wk

t+1 is undefined for all k 6∈ St. There are three ways this ambiguity
can be interpreted.

1. The weighted average must only be taken over the selected clients St,
resulting in wt+1 ←

∑St
k

nk
nSt

wk
t+1 where nSt is the total number of

samples on all clients in St.

2. For clients k which are not in St: w
k
t+1 ← wk

t implicitly, and all clients
will be send the same initial model wk

0 .

3. Clients which are not in St will be sent the new model wt but they will
not do local updates (or update zero times) and therefore wk

t+1 ← wt

implicitly.

After experimenting with all three interpretations we find the first one to
give the best results, we will use this method in the rest of this research.
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The second interpretation can cause clients which are not selected for some
successive rounds to have negative effect on the model update. The third
interpretation converges really slowly, especially with a small fraction C of
clients, then most of the wk

t+1 will be equal to wt causing the average weight
to be closer to the old model. Having the difference between the old model
wt and the updated model wt+1 be heavily depended of C would be weird
since we already have a learning rate parameter η to control this.

2.2 Non IID Data

When each random variable in a collection of random variables has the same
probability distribution, then the collection is independent and identically
distributed, or IID. In all other cases the data is non independent and iden-
tically distributed, or non-IID. In the context of federated learning, data is
IID when each sample is equally likely to occur on every client. In reality this
can never be the case since data is produced by the client and therefore the
client will influence the probability of containing a certain sample. This is
inevitable with federated learning. Traditional machine learning techniques
assume the IID of data. Research suggests a paradigm shift in the machine
learning, from assuming IID data to assuming non-IID data [2].

2.3 DMOZ Dataset

DMOZ or the Open Directory Project is an open voluntary project of Mozilla
which attempts to categorise all the best web pages of the internet. The data
of the project was periodically made available through downloadable RDF-
dumps. DMOZ closed on March 17, 2017. It was also know as the Open
Directory Project (ODP). A successor version of the project is available
at curlie.org. At the time of this research Curlie.org did not yet host
their data in RDF dumps so we used the last dump form DMOZ, found on
curlz.org/dmoz_rdf/.

We only use two files from the last available dump (from 12-03-2017),
content.rdf.u8 and structure.rdf.u8. The content.rdf.u8 file con-
tains information about 4 million pages, the topic, title, description and
URL, some examples are shown in table 2.1. The structure.rdf.u8 file
contains information about topics, in particular the relations with other top-
ics. There are three kinds of relations. The narrow relations are mostly be-
tween different hierarchies, where symbolic and related relations are mostly
further away from each other. Further detail on what these different kind
of relations implies is not relevant for this research. Some of these relations
accruing in the dataset are shown in figure 2.1. Many topics occur only as
relations or only as pages.
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topic Top/Shopping/Consumer Electronics/H

title Hello World Communications

description New York based store offering audio, video, and communications
rentals. Phone call required for ordering.

about http://www.hwc.tv/

topic Top/Society/Religion and Spirituality/Christianity/Denominations/

Catholicism/Reference/Catholic Encyclopedia/T

title Tabbora

description A titular see in Africa Proconsularis, suffragan of Carthage.

about http://www.newadvent.org/cathen/14423d.htm

topic Top/Recreation/Humor/Wordplay/Puns/Daffynitions

title Improve Your Computer Vocabulary

description Daffynitions from the Goleta Publisher.

about http://www.troutcom.com/gdtpug/9605.html#vocabulary

topic Top/Science/Biology/Flora and Fauna/Animalia/Arthropoda/

Insecta/Coleoptera/Curculionidae

title European Elm Flea Weevil

description Photographs of Orchestes alni, description, life history and habits.

about http://wiki.bugwood.org/HPIPM:European Elm Flea Weevil

Table 2.1: Examples of pages in the dataset

Topics can be seen as hierarchical categories, some are more specific on
a subject then others. There are 15 top level topics, all other topics are
subtopics of one of those. The number of pages underneath subtopics, or in,
the top-levels topics is shown in Figure 2.2.

2.4 Spanning Tree

In Section 3.1.3 use a spanning tree of topic relations to select a number
of topics. A spanning tree is a sub graph for which hold that all nodes are
at least indirectly connected. For example if the direction of the edges is
ignored then Figure 2.1 is a spanning tree. This can be verified by checking
if all nodes can be reached by only following the edges.
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Figure 2.1: Example of relations between topics in the DMOZ dataset

2.5 Word Embedding

We use a word embedding for the transformation of words into a point
in vector space to feed into the model. A sequence of words will then be
represented as a sequence of vectors. We use the GloVe.6B pre-trained word
embedding [8], which maps 400.000 words to 50 dimensional vectors. A
property of this embedding is that the meaning of words is represented by
the point where the word is mapped to, such that the euclidean distance
between words having similar meaning is smaller than between words with
different meanings.
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Figure 2.2: Number of pages for each top-level topic.

2.6 Multinomial Logistic Regression

The original logistic regression model can solve binary classification prob-
lems. This can be generalised to multinomial logistic regression which can
predict probabilities of more than two outcomes [1]. The model is made up
of connections from all input dimensions to all output dimensions which cor-
respond the probability of every outcome. These connections have weights
and biases which are learned using gradient descent.

2.7 Adam optimizer

Adam is a Stochastic Gradient Descent extension which uses a separate
adaptive learning rate for every parameter in the model [3]. This causes
the model to converge much quicker and reduces the running time of the
experiments.
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Chapter 3

Research

3.1 Method

3.1.1 Text classification problem

To test the performance of federated learning we first define a machine learn-
ing problem. This will be the classification of top-level topic of pages in the
DMOZ dataset. There are 15 of such topics, as can be seen in Figure 2.2
the samples are highly unbalanced. 75% of the pages are part of “Top/Re-
gional” and “Top/World” and almost non are in “Top/News”. If we would
use ”Regional” and ”World” as labels in our classification problem the model
could learn to predict only those classes and still gain an accuracy score of
0.75. On the contrary, the model will gain almost nothing for predicting the
label ”News” right so it will probably not learn to do so. To simplify our
experiment by not needing to take these unbalances into account we drop all
pages in or underneath these three topics. We use the remaining 1 million
pages as samples and we label each using the remaining 12 top-level topics.
Figure 3.1 shows the number of samples for each label. Note that because
we used part of the topic information for the class labelling we must not
use this in the input to the model. The sample input data will consist of
the page title concatenated with the page description with a special token
in between.

3.1.2 Preprocessing

To speed up the training process we use the pre-trained Glove.6B embed-
ding [8]. The vocabulary consists of 400.000 words, which are embedded in
50 dimensions. All words are in lower-case and most do not contain spe-
cial characters, although special characters are in the vocabulary as single
character. Therefore we transform every word to lower-case and detach any
special characters from words. Then we map each word and special charac-
ter to their embedding. We add an embedding for unknown words to handle
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Figure 3.1: Number of samples for each label.

words which are not in the vocabulary and we add an embedding for the
special token which marks the concatenation of the title and the description.
This results in a sequence of vectors for each sample. These sequences have
varying size since the page title and description have varying size. This is
problematic since we need one input dimension for our model. To equal
all sample dimensions we take the maximum sequence length and pad all
samples which are shorter with zero vectors until the length is equal to the
maximum sequence length.

3.1.3 Distribution

To test the robustness of federated averaging we try to keep as much infor-
mation as possible in the way samples are distributed over clients, while at
the same time making it slightly easier for the model to train with each next
distribution di+1. We also distribute samples randomly over clients in diid
which we hypothesise produce the best training results.

Technique

Using the DMOZ dataset we distribute the samples over clients using the
topic information. Since there are many topics which all are hierarchical we
can choose the number of clients relatively freely. To distribute samples over
K clients we assign one unique topic to each client. We place all samples on
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the client for which the assigned topic is equal to the sample topic. If there
does not exists such a client than we reduce the sample topic by going up one
hierarchical level until there is a client assigned to the topic, and we place the
sample with that client. Using this technique we distributed all samples over
the K clients and thus ensuring a degree of preservation in topic information
with the distribution. This distribution d0 has the minimum entropy used
in our experiment, we captured as much information as possible in the way
we distributed the samples over K clients using the chosen topics.

To make other distributions having increasing entropy we look at the
relations according to client topics. We consider all differed kind of relations
and we ignore the direction of relations. We only use relations for which
both topics are assigned to clients. Then we place each sample with equal
probability on one of the clients which have a direct relation with the client
where the sample currently is placed on, and to lower the entropy increment
per distribution iteration we place the sample on the current client with
twice the probability. We can iterate this process multiple times while every
iteration increases the entropy of the resulting distribution. The goal is that
after enough iterations the entropy of the resulting distribution is close to
the entropy of a IID distribution.

Client topics

As noted in section 2.3 not all topics of samples have relations. If we would
assign such topics to clients and using the described distribution technique,
than the same samples will be placed on such clients with every distribution
iteration di. This will prevent the entropy to increase since the distribution
is not changing for all samples placed on such clients. Another cause of
this problem is when some client topics are having relations only with each
other, resulting in samples which placement is only possible on one of those
clients. We prevent these issues by building multiple spanning trees using
all relations. We then only use the topics occurring in the largest spanning
tree.

Another criterion for clients is that it needs to contain enough samples
in order to have a meaningful contribution in federated learning. We set this
threshold on a minimum of 200 samples per client. This is realised by first
looking at each of the lowest hierarchical level of used topics and counting
how many samples would be placed on a client having the topic. If this is
above 200, we pick this topic to be used as a client topic. Then we go up
one hierarchical level, we again count the samples which would be placed
on each of the topics in this level by taking the earlier picked topics into
account, and again only pick topics for which a client would have more than
200 samples. We repeat this until all levels are checked, then we check if all
picked topics still produce a spanning tree, if this is not the case we again
pick only the topics in the biggest spanning tree and repeat the process.
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This is repeated until we end with just one spanning tree. In our case we
end up with 1984 topics, hence the number of clients K = 1984.

Using this technique we ensured the possibility for every sample to be
placed on a every client after at least K distribution iterations. This in-
creases the possible entropy using the distribution technique.

3.1.4 Train/test split

To test the performance of the model we sample a test set from the data.
The test set will be 30% of the samples selected using a stratified selection on
the picked topics. This preserves equal percentages in amounts of samples
with each client topic. The other 70% will be our training set. We do not
use a cross validation technique since it is not the purpose of this research
to find a realistic prediction score but only to compare scores obtained from
different distributions of the data.

3.1.5 Distributing samples

Using the distribution technique described in Section 3.1.3 we construct the
initial distribution d0 using the training set and the 1984 clients. We do 100
distribution iterations to construct all distributions from d1 until d100. We
also make one random distribution diid by assigning a random client to each
sample. Figure 3.2 shows for some of these distributions how the labels of
samples are distributed over all clients. Samples occurring on clients which
have the same top-level client topic have the same colour. Notice how only
the distribution of labels across clients becomes more random, while the
total number of samples per client stays unbalanced. Figure 3.3 shows the
entropy increment for all distributions.

3.1.6 FedAvg parameters

In the paper which proposes FedAvg [7] many combinations of parameters
have been tested. After some experimentation with the parameters which
gave performance in that paper we choose just one set of parameters for our
experiment. These are: mini batch size B = 64, fraction of clients C = 0.1
and client epochs E = 5. The only variable in our experiment is the number
of distribution iterations di.

3.1.7 Model

The label predictions are done by a multinomial logistic regression classifier
[1]. The model consists of sequence length × embedding dimensions ×
classes parameters. We use as sequence length the maximum in our data
and pad all others with zero vectors to have equal size. In our case this is
165 which results in a total of 165×50×12 = 99000 parameters. We use the
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Adam optimizer with a learning rate of 0.001. This speeds up the training
process a lot compared to Stochastic Gradient Decent by using an adaptive
learning rate for every parameter [3].

3.2 Results

We run the setting for eight different distributions, d0, d5, d10, d25, d50, d75,
d100, diid and for the central setting (none distribution). For every run we
use the same random seed to make sure that the performance cannot be
influenced by the randomly picked clients nor by the initial model weights.
As shown in Figure 3.4 there is a strong correlation between the score of the
model and the used distribution. The IID distribution diid has the highest
score after enough rounds, although before round 40 d75 and d100 have a
slightly better score. When compared to no distribution, federated learning
scores better on the accuracy scale with distributions d50, d75, d100 and diid,
on the ROC AUC scale standard machine learning has the optimal score.

As shown in Figure 3.5 from round 150 until round 250 there is little to
no improvement in score for each of the distributions.
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Figure 3.2: Four distributions of training data over the clients. Samples
are coloured corresponding to the client they occur on. Clients which have
the same top-level topic will have the same colour. The separation between
colours is also shown with the x-ticks on both sides
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Chapter 4

Conclusions

As shown in the results, there is a clear correlation between our constructed
distributions and the score of the model trained in a federated setting by
using these distributions, and by using the same FedAvg parameters. We
also see that after enough distribution iterations (more then d75) there is
almost no difference in performance. Sometimes the distribution can have a
slight advantage over an IID distribution as we see with d75 and d100 until
round 40. This can be due to that selected clients have many more samples
than the mean samples per client, causing the model to being trained on
more data than the model with the IID distribution where all clients have
a number of samples around the mean. This same result has been found by
[7]

With distributions having high entropy FedAvg can score better on the
accuracy scale than standard machine learning, while standard machine
learning scores better on the ROC AUC score. This means that FadAvg
more often correctly classifies samples belonging to the majority classes
while standard machine learning is better to correctly classify samples from
minority classes.

When trained for 250 rounds a clear maximum for each distribution is
reached. It is improbable that the model will score better then this when
trained for many more rounds.

We conclude that by applying FedAvg the distribution of samples over
clients according to their classes have a direct impact on the performance
of the learned model when used the same FedAvg algorithm parameters for
each distribution. Although even with a hard separation of labels across
clients (d0) a better model can be learned than the base classifier which
always predicts the class with the highest number of samples.

All code to reproduce the experiment is available at
https://github.com/stanvanlier/FedAvg DMOZdistributions.
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4.1 Future work

4.1.1 Grid search

There is the possibility that by tuning the FedAvg parameters for each
distribution independently will produce higher scores. This is due to the
possibility for specific parameter combinations taking advantage of the char-
acteristics of certain distributions. This can be researched by performing a
grid search on some values for all FedAvg parameters.

4.1.2 Comparing distributions

This paper only shows the possibility of constructing assumptions, further
research can be done in how exactly these assumptions can be constructed
when a distribution producing a desired score has been found.

4.1.3 Document embedding

We use in this paper a sequence of word embeddings to represent pages.
Since all sequences need to be equal sized this results in many sequences to
have a long zero padding. To get a better representation of a page in the
available dimensions a Doc2Vec [6] embedding could be used.
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[4] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter
Richtarik. Federated optimization: Distributed machine learning for
on-device intelligence, 2016.
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