
Bachelor thesis
Computer Science

Radboud University

Parsing with derivatives in Haskell

Author:
Timo Maarse

First supervisor:
prof. dr. Ralf Hinze

ralf@cs.ru.nl

Second assessor:
dr. Peter Achten

p.achten@cs.ru.nl

January 14, 2018

Abstract

We show how to implement a parser combinator library in Haskell capable
of parsing arbitrary context-free grammars. The library is based on the
work of Might et al. on parsing with derivatives, [15] of which we derive the
required results from a single Galois connection. The library improves upon
the previous Haskell implementation [5] with regards to completeness, safety
and documentation; we can handle any grammar and use generalized tries
for memoization instead of unsafe IO. However, our implementation shows
severe performance issues. We describe these issues and possible solutions
where applicable.

Contents

1 Introduction 2

2 Parsing with derivatives 4
2.1 Introduction . 4
2.2 Recursive regular expressions 5
2.3 Calculation of derivatives . 6
2.4 Empty word in a language . 7
2.5 Example . 8

3 Haskell Implementation 9
3.1 Recognition . 9

3.1.1 Basics . 9
3.1.2 Tagging . 11
3.1.3 Empty word in a language 12

3.2 Parse forest . 14
3.2.1 Parser combinators . 14
3.2.2 Derivatives of parsers 15
3.2.3 Parsing the empty word 16

3.3 Various improvements . 18
3.3.1 Memoization of the derivative 18
3.3.2 Tagging nodes automatically 20
3.3.3 Compaction . 21

3.4 Performance . 22
3.4.1 Complexity . 22
3.4.2 Benchmark . 23
3.4.3 Analysis . 24

4 Related Work 26

5 Conclusions 27

A Preliminaries 30

B Code 31

1

Chapter 1

Introduction

Parsing is a thoroughly researched subject in computer science; develop-
ments in parsing methods have, for example, allowed us to construct high-
level programming languages. Many algorithms are known for parsing, all of
which have different properties regarding the class of languages or grammars
they can handle, and different complexities.

Partially orthogonal to the parsing algorithm used is the method of con-
structing the parser. Parsers are usually constructed either manually, using
parser generators, or using parser combinators. Parser generators are es-
pecially useful to construct parsers using very complex algorithms that are
hard to write by hand. The advantage of parser combinators compared to
generators is that parser combinators can leverage language features; we
can, for example, construct parsers programmatically or construct an ab-
stract syntax tree native to the host language while parsing. In essence,
they form an embedded domain specific language, in contrast to standalone
ones like those used by generators.

For the purpose of parsing in functional programming languages, parser
combinator libraries are popular and well-known. These libraries tradition-
ally implement recursive descent parsing. However, recursive descent parsers
cannot handle left-recursive grammars such as:

T → T “+” T | a

Nevertheless, left-recursive grammars often provide a natural way to
express a language. It is therefore of interest to have methods that allow
parsing such grammars, and preferably using simple algorithms. Parser
combinator libraries can be implemented to handle left-recursion, [8] but
these do not follow from a clear mathematical theory, and in turn their
correctness is harder to prove.

Parsing based on parsing with derivatives [15] can be used to implement
parser combinator libraries that can parse arbitrary context-free grammars.
We are specifically interested in a Haskell implementation as Haskell is a

2

relatively widely used language, and has different properties than Racket,
the main language used by the authors of [15]. The authors also provide a
Haskell implementation [5], but it has the following issues:

1. It cannot handle, for example, the following grammar:

A→ AA | a

However, the grammar is perfectly valid and describes the language
denoted by the regular expression aa∗. We will show how it fails due to
Haskell’s referential transparency and show a solution using tagging.

2. It uses unsafe features of Haskell for memoization; unsafe features of
Haskell should be avoided where possible. We show how to implement
memoization in a safe manner for arbitrary data structures using gen-
eralized tries.

3. It lacks documentation as to how it works; it is not a straight-forward
implementation of their paper.

3

Chapter 2

Parsing with derivatives

2.1 Introduction

This chapter will describe most of the required theory from the original
paper about parsing with derivatives. [15]

Let us start by reiterating the notion of recognition: we read a word and
want to determine whether it is contained in a certain language. Consider
checking whether the word abba is contained in the language A. Suppose
now that we have read a, so that we are left with bba. Does a language ∂a A
exist, such that bba ∈ ∂a A if and only if abba ∈ A? If we can calculate such
a language, we can recursively calculate a language L such that it contains
the empty word if and only if abba ∈ A. We can then check whether ε ∈ L
to determine whether abba ∈ A. By asking the question, we have practically
answered it already:

w ∈ ∂c A⇐⇒ cw ∈ A

defines the language ∂cA uniquely. To see why, we consider the following
well-known Galois connection [2]:

Definition 1. Let A and L be languages over an alphabet Σ, then we can
define L 7→ A \ L as follows:

L1 ⊆ A \ L2 ⇐⇒ A ◦ L1 ⊆ L2 for all L1, L2 ⊆ Σ∗

The expression A \ L is called a right factor of the language L.1

Then with L1 = {ε} and A = {c} for some letter c ∈ Σ, we have exactly
the desired result called Brzozowski’s derivative [4]:

w ∈ {c} \ L = ∂c L⇐⇒ cw ∈ L
1It is well-defined as each set of the form {L1 ⊆ Σ∗ | A ◦ L1 ⊆ L2} has a greatest

element (the union of all its elements is again an element).

4

To express whether a language contains the empty word, we use the
nullability map δ given by:

δ(L) =

ε if ε ∈ L

∅ if ε /∈ L

As an example, from these definitions we see that aa ∈ {a, aa, ba, ab}:

δ(∂a(∂a {a, aa, ba, ab})) = δ(∂a {ε, a}) = δ({ε}) = ε

However, it is not immediately clear how to calculate the derivative of
an arbitrary context-free language; manipulating grammars does not seem
particularly attractive. The following section will introduce a better alter-
native.

2.2 Recursive regular expressions

While context-free languages are traditionally defined using a context-free
grammar, we will define a context-free grammar as a system of recursive
regular expressions, for example:

A = aBa+ ε

B = bAb

We need to define how to interpret the languages defined by this system
of equations; we define them as the least fixed point of the equations seen
as a vector-valued function:

f

(
A

B

)
=

(
aBa+ ε

bAb

)
It is easily proven that each individual component preserves directed

suprema using induction, and therefore the existence of the fixed point fol-
lows from corollary 3 in appendix A. The languages defined by such least
fixed points are exactly the context-free languages. [2]

We will restrict the regular expressions allowed in the recursive equations
to regular expressions without the Kleene star operation, as the result of this
operation can always be expressed using a recursive equation; we can express
L = A∗ as follows:

L = AL | ε

5

2.3 Calculation of derivatives

Now that we have a more compact definition of context-free grammars, we
can work out how to calculate the derivative of an arbitrary context-free
language L. As our languages are defined using union and concatenation,
we only need to recursively calculate the derivative for a few basic structures.
We will first show that deriving to whole words can be done like we suggested
earlier; derive with respect to a word w by deriving with respect to its head,
and then recursively to its tail:

a ∈ ∂cw L⇔ (cw)a ∈ L
⇔ c(wa) ∈ L
⇔ wa ∈ ∂c L
⇔ a ∈ ∂w (∂c L)

So we have ∂cw L = ∂w (∂c L) like expected.
To calculate the derivative of L with respect to a single letter, we will

recursively calculate the derivative with respect to c based on the form of
L:

• Let L = ∅, and suppose w ∈ ∂c L, then cw ∈ L which is false, so
∂c L = ∅.

• Let L = ε, and suppose w ∈ ∂c L, then cw ∈ L which is again false,
so ∂c L = ∅.

• Let L = {c}, and w ∈ ∂c L, then cw ∈ L⇒ w = ε, so ∂c L = {ε}.

• Let L = {c′}, with c 6= c′, and w ∈ ∂c L. Then cw ∈ L which is false,
so ∂c L = ∅.

• Let L = L1 ∪ L2, then we have for all words w:

w ∈ ∂c (L1 ∪ L2)⇔ cw ∈ L1 ∪ L2

⇔ cw ∈ L1 or cw ∈ L2

⇔ w ∈ ∂c L1 or w ∈ ∂c L2

⇔ w ∈ ∂c L1 ∪ ∂c L2

Therefore ∂c (L1 ∪ L2) = ∂c L1 ∪ ∂c L2, in other words, the derivative
of the union is the union of the derivatives.

• Let L = L1 ◦ L2, then we have for all words w:

6

w ∈ ∂c (L1 ◦ L2)

⇔ cw ∈ L1 ◦ L2

⇔

cw1 ∈ L1 and w2 ∈ L2 for w1 and w2 such that w = w1w2, or

ε ∈ L1 and cw ∈ L2

⇔

w1 ∈ ∂c L1 and w2 ∈ L2 for w1 and w2 such that w = w1w2, or

ε ∈ L1 and w ∈ ∂c L2

⇔

w ∈ ∂c L1 ◦ L2, or

w ∈ δ(L1) ◦ ∂c L2

⇔ w ∈ (∂c L1 ◦ L2) ∪ (δ(L1) ◦ ∂c L2)

Therefore we have ∂c (L1 ◦ L2) = (∂c L1 ◦ L2) ∪ (δ(L1) ◦ ∂c L2).

Now that we can derive with respect to a letter (and therefore a word),
we should determine how to check whether a languages contains the empty
word.

2.4 Empty word in a language

The question of how to calculate δ(L) arises naturally. It is clear that the
following holds from the definition:

δ(∅) = ∅
δ(ε) = ε

δ(w) = ∅
δ(L1 ∪ L2) = δ(L1) ∪ δ(L2)

δ(L1 ◦ L2) = δ(L1) ∩ δ(L2)

However, consider L = L ∪ L, then δ(L) = δ(L) ∪ δ(L) = δ(L); so the
nullability of L depends on its own nullability. We define δ as the least fixed
point of the nullability equations: the equations that the nullability map
should satisfy,2 in this case only δ(L) = δ(L). This definition results in the
desired value. [3]

2Again, the existence of the least fixed point follows from corollary 3 in appendix A; we
can see the system of equations as a vector-valued function, and proving each individual
component preserves directed suprema is straight-forward using induction.

7

Figure 2.1: Visualization of recognizing yx

∪

◦

x

y

(a) X

∪

◦

x

ε

(b) ∂y X

∪

◦

x

ε

(c) ∂x(∂y X)

2.5 Example

We have now developed the theory required for recognizing a word. Consider
the language defined by the following equation:

X = Xx+ y

We will show that yx ∈ X by deriving to y, then to x, and finally
calculating the nullability:

∂x(∂y X) = ∂x(∂y(Xx+ y))

= ∂x(δ(X)ε+ (∂y X)x+ ε)

= ∂x((∂y X)x+ ε) where ∂y X = (∂y X)x+ ε

= ∂x(∂y X)x+ δ(∂y X)ε+ ∅ where ∂y X = (∂y X)x+ ε

= ∂x(∂y X)x+ ε

⇒ δ(∂x(∂y X)) = ε

⇒ yx ∈ X

A visualization is shown in figure 2.1.

8

Chapter 3

Haskell Implementation

3.1 Recognition

3.1.1 Basics

We start with recognizing whether a word is in a certain language. We will
first show an approach that is, in a sense, similar to those taken by the
authors of the original Haskell implementation; subsequently we will show
why it cannot work, and how to modify it such that it does.

Instead of only allowing a language to be nothing, the empty word, a
terminal, union or concatenation of languages, we will also allow δ(L). This
is useful to defer the computation of the nullability of L; if a δ(L) node is
derived, it is immediately clear that the result is ∅, without considering the
nullability of L. We will also restrict the value of a terminal language node
to a single letter from the alphabet, as it has the same expressive power as
allowing words.

We start off by defining a language:

-- The type ‘t‘’ is the type of token (mathematically an
-- alphabet), for instance, ‘Char‘, ‘String‘ or more
-- advanced types.

data Language t = Empty
| Epsilon
| Terminal t
| Nullable (Language w)
| Union (Language w) (Language w)
| Concatenation (Language w) (Language w)

9

Figure 3.1: Illustration of a problem of referential transparency

A

∪

◦ a

(a) Definition of A

A

∪

◦

∪

◦ a

a

(b) Definition of A with a self-reference
replaced with definition of A

We can then concisely define the derivative using the results from the
previous section:

derive :: (Eq t)⇒ t → Language t → Language t
derive t Empty = Empty
derive t Epsilon = Empty
derive t (Terminal a) = if t ≡ a then Epsilon else Empty
derive t (Nullable a) = Empty
derive t (Union a b) = Union (derive t a) (derive t b)
derive t (Concatenation a b) = Union

(Concatenation (derive t a) b)
(Concatenation (Nullable a) (derive t b))

However, we cannot check whether an instance of Language t contains the
empty word. Consider the grammar from the introduction:

A→ AA | a

Due to Haskell’s referential transparency1 it cannot distinguish between
the two languages in figure 3.1. This may not seem like a problem as the

1Referential transparency means replacing names with their values does not alter the
meaning of an expression.

10

two languages are identical. However, for Haskell to prove the A does not
contain the empty word, we need to detect self-references, otherwise we will
recurse indefinitely in an effort to prove A does not contain ε! We cannot
currently verify whether two recursive languages are equal, so we will need
to introduce a kind of tag for language nodes.

3.1.2 Tagging

We will introduce a tag for all possibly recursive language nodes, used to
uniquely tag them.2 For now, the library user will have to give a unique
tag to each node manually. The reason for tagging every node instead of a
subset has to do with an optimization called compaction detailled in section
3.3.3. However, the derivative creates new nodes that should get assigned
unique tags too. Preferably, and to allow memoization of the derivative
described in section 3.3.1, we prefer to not make the derivative computation
stateful: we only want the derivative to depend on the letter being derived
to and the language itself. We can accomplish this by allowing a tag to be
extended by a marker for derivatives. We can then tag nodes created by the
derivative based on the tag of the node being derived:

-- A tag is a string with values tagged on.
data Tag t = Base String | Extend (TagValue t) (Tag t)

deriving (Show ,Eq ,Ord)

-- We need four different ways to extend a tag because the
-- rule for concatenation creates four different recursive
-- nodes which should all be tagged uniquely based on the
-- tag of the node being derived.

data TagValue t = D1 t | D2 t | D3 t | D4 t
deriving (Show ,Eq ,Ord)

data Language t = Empty
| Epsilon
| Terminal t
| Nullable (Tag t) (Language w)
| Union (Tag t) (Language w) (Language w)
| Concatenation (Tag t) (Language w) (Language w)

derive :: (Eq t)⇒ t → Language t → Language t
derive t Empty = Empty
derive t Epsilon = Empty
derive t (Terminal a) = if t ≡ a then Epsilon

else Empty
derive t (Nullable a) = Empty

2Uniquely up to parser equality; if two parser nodes behave identical they are allowed
to have the same tag.

11

derive t (Union name a b) = Union (Extend (D1 t) name)
(derive t a) (derive t b)

derive t (Concatenation a b) = Union (Extend (D1 t) name)
(Concatenation (Extend (D2 t) name)

(derive t a)
b)

(Concatenation (Extend (D3 t) name)
(Nullable (Extend (D4 t) name) a)
(derive t b))

It is clear that every node in the derived tree will have a unique tag given
that it is the case for the original tree. Suppose two nodes have the same
tag; the tag of a node actually encodes uniquely how it was constructed,
and therefore they must be equal.

3.1.3 Empty word in a language

We now want to determine the least fixed point of the nullability equations
to determine whether a language contains the empty word, the last step
required for recognition! To this end, we will use corollary 3 from appendix
A; more concretely, we assume all nodes are not nullable, and recompute
the nullability of all nodes until no changes occur. This process terminates
because the number of nodes is finite, all functions are monotonic and the
partially ordered set {∅, {ε}} is finite. We will use the following monad to
keep track of the state during the recursive computation:

type Fix t = State (FixState t)

data FixState t = FixState
{changed :: Bool
, visited :: Set (Tag t)
, values :: StrictMap.Map (Tag t) Bool
}

Specifically, we store whether our current computation has caused any changes,
we store a set of tags of nodes we have already visited to prevent infinite
recursion, and we store the current estimates for the nullability function.
We can then determine the nullability as follows:

parserNullable :: Language t → Bool
parserNullable = fixState ◦ work

where
work :: Language t → Fix t Bool
work Empty = return False
work Epsilon = return True
work (Terminal) = return False

12

work (Union name a b) = do
visited ← fixVisited name
if visited then

Maybe.fromMaybe False < $ > fixValue name
else do

fixMarkVisited name
current ← fixeValue name
value ← (∨)< $ > work a < ∗ > work b
when (current 6≡ Just value)

fixMarkChanged
fixInsert name value
return value

-- Other clauses omitted.

The work function does most of the work. It is run repeatedly by the fixState
function until no changes occur. The fixState function clears the changed
and visited nodes each iteration. If the nullability is evaluated on an empty,
epsilon or terminal language node, the work function returns immediately.
If the node has already been visited, it returns the previously known result;
otherwise, the function marks the node as visited, and calculates its own
nullability. It subsequently marks a change if its nullability has changed,
inserts the new value and returns.

The attentive reader may notice we do not precisely follow corollary
3 from appendix A, as each invocation of work may use newly calculated
estimates instead of only using the old values. This still achieves the desired
result, but more efficiently as we may require fewer iterations. Consider the
following example:

δ(L1) = ε

δ(L2) = δ(L1)

δ(L3) = δ(L2)

Formally, we want to compute the least fixed point of the following
vector-valued function:

f

L1

L2

L3

 =

 {ε}δ(L1)

δ(L2)

It is clear that:

f3(⊥) = f2(f(⊥)) = f2

{ε}∅
∅

 = f

f
{ε}∅

∅

 = f

{ε}{ε}
∅

 =

{ε}{ε}
{ε}

13

and that it is a fixed point, so we would require three iterations when
applying the corollary directly to determine the nullability of L3. However,
if run our code on L3 it will immediately update the estimate of a single
component using the results of the other components, resulting in only a
single iteration! Formally, our implementation calculates the results of the
individual components of f sequentially in a certain order. This still leads
to the correct result because our estimates a satisfy fm(⊥) 6 a 6 fn(⊥)
for certain m 6 n, as all components of f are monotonic. Our estimate also
increases each iteration as long as it has not yet reached a fixed point, since
updating each component sequentially results in a value (not necessarily
strictly) greater than applying f as a whole. Now we have all that is required
to check whether a word is contained in a language:

contains :: Eq t ⇒ Language t → [t]→ Bool
contains node [] = parserNullable node
contains node (x : xs) = contains (derive node x) xs

3.2 Parse forest

In this section we investigate how we can not only verify whether a word is
contained in a language, but also construct a parse forest if it is. We will
first introduce parser and parser combinators in nearly the same way as the
authors of the original paper on parsing with derivatives [15] did.

3.2.1 Parser combinators

A partial parser takes input, and returns zero or more parse results, each of
which consists of the value parsed and the remaining input. More formally,
let T be the alphabet over which the parser is run, then we define the set of
all parsers parsing words over T resulting in values of type A as

P(T,A) = {p : T ∗ → P(T ∗ ×A) | p(x) = (y, b)⇒ y is a suffix of x}

For a parser p we write bpc for the full parser based on p, it only returns
parse results that consume the whole input: bpc(x) = {a | (ε, a) ∈ p(x)}.
We will define a parser for each type of language node, and an additional
reduce parser node used to construct more complicated parse trees. Parsers
and languages are often denoted the same, but to which type of value is
being referred to is always clear from context:

• The empty parser ∅ ∈ P(T,A) is defined by ∅(x) = ∅ ∈ P(T ∗ × A),
for any sets T and A.

14

• The epsilon parser consumes no input and returns fixed values, given
as parameter, as parse results: εR(x) = (x,R) = {(x, r) | r ∈ R}, for
any set T and R ⊆ A.

• The terminal parser parametrized by a given token either consumes
the token and returns it as the parse result, or returns no results:

t(x) =

(w, t) ∈ P(T, T) for x = tw

∅ ∈ P(T, T) otherwise

for any t ∈ T .

• For p ∈ P(T,A), the nullable parser δ(p) ∈ P(T,A) equals the set of
full parses for ε of p: δ(p)(x) = {(x, a) | a ∈ bpc(ε)}.

• For p ∈ P(T,A) and map f : A → B, we can run parser p and map
the result using f , this results in a new parser reducing the old parser:
(p ↪→ f)(x) = {(y, f(a)) | (y, a) ∈ p(x)}.

• For p1, p2 ∈ P(T,A), we can take the union p1 ∪ p2 ∈ P(T,A) of the
parsers: (p1 ∪ p2)(x) = p1(x) ∪ p2(x).

• For p1 ∈ P(T,A1) and p2 ∈ P(T,A2) we can concatenate the parsers
into a parser p1 ◦ p2:

(p1 ◦ p2)(x) = {(x′′, (a, b)) | (x′, a) = p(x) and (x′′, b) = p(x′)}
∈ P(T,A1 ×A2)

3.2.2 Derivatives of parsers

We will now need to define the derivative of parsers, and we will do so as
done by the authors of the original paper [15]. The derivative of a parser p
with respect to a letter t should behave as though it has already parsed t:

∂t p(x) = p(tx) \ (bpc(ε)× {tx})

Note that we need to remove the null parses (parses that did not consume
input), as we require the parser to have parsed t already. This definition is
similar to the definition of the derivative for languages. In particular, we
can now derive to all letters of the input, and apply it as full parser to ε
to get the result of applying the original parser to the input. We have the
following rules for the derivative of parsers:

• ∂t ∅ = ∅

• ∂t ε = ∅

15

• ∂t t′ =

ε{t} if t = t′

∅ otherwise

• ∂t δ(p) = ∅

• ∂t(p ↪→ f)(x) = ∂t p ↪→ f

• ∂t(p1 ∪ p2) = ∂t p1 ∪ ∂t p2

• ∂t(p1 ◦ p2) = (∂t p1 ◦ p2) ∪ (δ(p1) ◦ ∂t p2)

Again, the implementation tags all newly created parsers with names
derived from the tag of the parser on the left-hand side. Implementation-
wise, barely anything has changed except for the fact that parser nodes are
parametrized over the value they parse, and the rule for deriving a terminal
has changed a bit:

-- The epsilon node returns the terminal’s value.
derive c (Terminal a) = if a ≡ c then ε c else ∅

3.2.3 Parsing the empty word

We have now reduced the problem of parsing to parsing the empty word
(null parsing). Analogous to checking nullability by calculating a least fixed
point, we will calculate the null parses using a least fixed point. Again,
we start with assuming each parser produces no parse results on the empty
word, and then iteratively calculate the parse results for the empty word of
all nodes. Note that this only works for finite parse forests!3

As for the implementation, it is exactly analogous to the implementation
for the least fixed point calculation for the nullability except for the type
of values. The cached result for a parser Parser t a is of type Set a. In
fact, we parametrize the monad given earlier over the type of value to cache.
Unfortunately, the types of parse forests generated by each node may differ,
so we have to use a Dynamic value to store them in a dictionary. The fixed
point monad looks as follows:

data FixState t v = FixState
{changed :: Bool
, visited :: Set (Tag t)
, values :: StrictMap.Map (Tag t) v
}

3The existence of the least fixed point for finite parse forests follows from corollary 3 in
appendix A only if the iteration converges in a finite number of steps; we cannot calculate
the suprema over an infinite set using basic iteration.

16

type Fix t v = State (FixState t v)

And then we can calculate the null parses:

parseNull :: (Token t ,ParseTree a)⇒ Parser t a → Set a
parseNull = fixState ◦ work

where
work Empty = return Set .∅
work (Reduce name f a) = do

visited ← fixStateVisited name
if visited then

flip fromDyn ⊥
< $ >Maybe.fromMaybe (toDyn (Set .∅ :: Set a))
< $ > fixStateValue name

else do
fixStateMarkVisited name
current ← fmap (flip fromDyn ⊥)< $ > fixStateValue name
other ← work a
value ← Set .map f < $ > work a
when (current 6≡ Just value) fixStateMarkChanged
fixStateInsert name (toDyn value)
return value

-- Other clauses omitted.

Finally, we can parse:

parse :: (Token t ,ParseTree a)⇒ Parser t a → [t]→ Set a
parse parser [] = parseNull parser

parser (x : xs) = parse (derive parser x) xs

The Token and ParseTree classes simply shorten the constraints on the
token and parse tree types respectively, for the derivative and null parsing:

-- Different from ‘ParseTree‘ as another requirement will be
-- added needed for memoization of the derivative in the next
-- section.

class (Ord a,Typeable a)⇒ Token a
class (Ord a,Typeable a)⇒ ParseTree a

17

3.3 Various improvements

3.3.1 Memoization of the derivative

The original paper about parsing with derivatives requires memoization of
the derivative for termination. In essence, it requires a function:

-- Returns a memoized version of the argument.
memoize :: (a → b)→ (a → b)

However, from the perspective of Haskell, the input and output are identical;
as the result of a function depends only on its input, we cannot detect any
difference between the results of multiple evaluations of the function with
the same input, memoized or not. Therefore, memoization in our Haskell
implementation is only an optimization that may reduce the number of nodes
that need to be actually constructed in memory, but is not required in any
way.

Currently the signature of the derivative is similar to:

derive :: (Token t ,ParseTree a)⇒ t → Parser t a → Parser t a

Therefore we need to memoize on both the tokens and the parser. We
can achieve memoization on the parser by storing the derivative as field of
the parser data type, which will only calculated when it is required due to
Haskell’s laziness. Memoization on the token is less straight-forward; the
Haskell implementation by the authors uses unsafe IO for this purpose, but
we demand a safer method.

We implement memoization using generalized tries as described in [9]
and base our implementation partially4 on [7]. The fundamental idea is
that given a map of type a→ b, we create a data structure that maps each
value of type a to the value of type b given by the map. We can then, instead
of evaluating the map, retrieve the value from the data structure so that it
will only be calculated the first time we access it. We can construct such
a data structure for algebraic data types by using tries. Tries exploit the
structure of a to implement the data structure, for example:

data BoolTrie b = BoolTrie b b

trie :: (Bool → b)→ BoolTrie b
trie f = BoolTrie (f False) (f True)

untrie :: BoolTrie b → (Bool → b)
untrie (BoolTrie false) False = false
untrie (BoolTrie true) True = true

4In particular, we use their type class and a very similar implementation for bounded
enumeration types.

18

memoize :: (Bool → b)→ (Bool → b)
memoize = untrie ◦ trie

As seen above, memoization is simply converting to a trie and reading from
it! We use the following type class for any value that can be converted to
and from a trie:

class HasTrie a where
data Trie a :: ∗ → ∗
trie :: (a → b)→ Trie a b
untrie :: Trie a b → a → b

The tries contain values for all possible values of the domain. To implement
tries for any data structure, we can use the following isomorphisms:

1→ v ∼= v

a+ b→ v ∼= (a→ v)× (b→ v)

a× b→ v ∼= a→ (b→ v)

The isomorphism maps themselves are obvious. We can now implement
instances of HasTrie for the basic data types using the above isomorphisms:

instance HasTrie () where
newtype Trie () a = UnitTrie a
trie f = UnitTrie (f ())
untrie (UnitTrie value) () = value

instance (HasTrie a,HasTrie b)⇒ HasTrie (Either a b) where
data Trie (Either a b) c = EitherTrie (Trie a c) (Trie b c)
trie f = EitherTrie (trie $ f ◦ Left) (trie $ f ◦ Right)
untrie (EitherTrie a) (Left value) = untrie a value
untrie (EitherTrie b) (Right value) = untrie b value

instance (HasTrie a,HasTrie b)⇒ HasTrie (a, b) where
newtype Trie (a, b) c = TupleTrie (Trie a (Trie b c))
trie f = TupleTrie $ trie $ λx → trie (f ◦ (,) x)
untrie (TupleTrie trie) (a, b) = untrie (untrie trie a) b

We can now use these basic instances to implement instances for any alge-
braic data type using basic type isomorphisms; consider, for example, the
following type:

data Token = Empty | A Token | B Token Token
deriving Show

It can easily be seen that:

Token ∼= Empty + (Token + Token× Token)

19

And therefore we can effortlessly use our above instances to define HasTrie
for Token, by simply converting a value to and from its elementary form.

instance HasTrie Token where
newtype Trie Token b = TokenTrie (

Trie (Either () (
Either Token

(Token,Token))) b)
trie f = TokenTrie $ trie $ f ◦ from

where
from ((Left)) = Empty
from ((Right (Left t))) = A t
from ((Right (Right (t , t ′)))) = B t t ′

untrie (TokenTrie trie) = untrie trie ◦ to
where

to Empty = Left ()
to (A t) = Right $ Left t
to (B t t ′) = Right $ Right (t , t ′)

Similarly, we can define instances for primitives like lists, as a list can be
seen as a normal algebraic type with constructors [] and (:). The HasTrie
implementation for Char in our implementation is not a typical trie; it
exploits the properties of the key’s Bounded and Enum instances, but is
implemented using a binary search tree for reasons of efficiency. In fact, we
can automatically generate such a binary search tree for any object that is
an instance of Bounded and Enum.

As an additional note, testing that memoization does in fact work re-
quires unsafe Haskell code. We can, for example, do the following:

f = memoize (λx → trace "function evaluated" $ show x)

3.3.2 Tagging nodes automatically

Tagging all nodes is obviously not very ergonomic. We implement a tagAll
function that takes a parser where only a subset of nodes is tagged (but
enough to prevent cycles of untagged nodes), and tags all remaining nodes.
To allow construction of parsers without tag, we add a None variant. The
implementation of the tagging function uses the state monad to save the next
tag to assign and a map from tags to parsers so that we can “tie the knot”.
The type of tags assigned by tagAll is a new variant of Tag : BaseAuto Int .
With this addition we can write, for example, a parser for zero or more x’s
as follows:

-- Right recursive
xsR :: Parser Char String

20

xsR = "xsR"< # > ε []
< | > terminal ’x’ ◦ xsR ↪→ uncurry (:)

The parse function will then invoke tagAll before parsing. We have used
the following operators for briefness:

• <#> for tagging a taggable node with a string.

• <|> for the union of two parsers.

• ◦ for the concatenation of two parsers.

• ↪→ for reducing a parser with a function.

3.3.3 Compaction

Although parsing already works, it is extremely slow. Consider the following
grammar:

X → xX | ε
We can implement a parser in our library as in the previous section:

xsR :: Parser Char String
xsR = "xsR"< # > ε []

< | > terminal ’x’ ◦ xsR ↪→ uncurry (:)

However, parsing a sequence of fifteen x’s takes little over a minute! This is
caused by generating a lot of useless parser nodes. We fix this with a process
called compaction [15], which essentially simplifies parsers via a number of
identities. We have implemented the following simplifications:

δ(∅)⇒ ∅
δ(εR)⇒ εR

δ(t)⇒ ∅
∅ ↪→ f ⇒ ∅
εR ↪→ f ⇒ εR′ where R′ = {f(r) | r ∈ R}

(ε{a} ◦ p) ↪→ f ⇒ p ↪→ g where g(x) = f(a, x)

(p ◦ ε{a}) ↪→ f ⇒ p ↪→ g where g(x) = f(x, a)

(p ↪→ f) ↪→ g ⇒ p ↪→ (g ◦ f)

p ◦ ε{a} ⇒ p ↪→ f where f(x) = (x, a)

ε{a} ◦ p⇒ p ↪→ f where f(x) = (a, x)

p ◦∅⇒ ∅
∅ ◦ p⇒ ∅
p ∪∅⇒ p

∅ ∪ p⇒ p

21

We want to apply these simplifications recursively without infinite recur-
sion or repeatedly optimizing the same parser. We achieve this by storing
the compacted version of the parser alongside the parser itself, so that we
can simply access the lazily-computed compacted version of a parser for its
compacted version. This prevents infinite recursion by effectively memoiz-
ing the compaction function. Haskell’s pattern matching allows a succinct
implementation, see for example the first rule:

-- The additional parser fields are its derivative and
-- compacted version.

runCompact (Parser (Nullable (Parser Empty))) = ∅

Implementing compaction results in parsing the sequence of fifteen x’s in-
stantaneously, as should be the case. Notably, the simplifications for the
δ nodes not described in [15] are required: without them the δ nodes are
opaque to the compaction function and parsing stays extremely slow. De-
pending on the grammar, it might be preferential to repeatedly apply com-
paction; our library allows the user to declare the number of times com-
paction should be iterated, but by default does ten iterations like the original
Haskell implementation.

As the parser on the right-hand side behaves the same as the corre-
sponding parser on the left-hand side, we can reuse the left-hand parser’s
tag.

Tagging nodes in the compaction function is the reason why we need to
tag all nodes. In principle, we could also only tag enough nodes to make
sure every cycle in the grammar has at least one tagged node... However,
consider the following instances of the above simplifications:

(p ↪→ f) ↪→ g ⇒ p ↪→ g ◦ f
(p ↪→ f) ↪→ h⇒ p ↪→ h ◦ f

where the only tagged node is the node that reduces by f . In this case,
we cannot distinguish the expressions on the left side, so giving unique tags
to the right-hand side based on the left-hand side is impossible.

3.4 Performance

3.4.1 Complexity

The laziness of Haskell makes time complexity harder to analyze, but we
will summarize the analysis done in a follow-up paper [1] of the original
paper on parsing with derivatives. We also assume lookup and insertion
into dictionaries to be constant time. We do not consider compaction as it
is only an optimization, normally improves performance, and can easily be
disabled if that is not the case.

22

Let g denote the number of total parser nodes after taking all derivatives
without compaction, then the sum of the running time of all invocations of
derive is O(g): we only have to take into account calls that are not yet
memoized, and they create at least one new node per call.

The authors subsequently show that the total number of nodes g is
bounded by O(Gn3) where G is the size of the initial parser in number
of parser nodes. They achieve this by assigning a unique symbol to each
node and showing there are at most O(Gn3) such symbols after deriving.

Now the complexityO(f(g)) of null parsing in g remains to be calculated,
as then the total complexity is O(f(Gn3)). The authors of the follow-up pa-
per improve upon iteration using an improved algorithm which uses mutable
state to achieve a linear complexity in the number of nodes. It is not clear
how such an algorithm could be implemented efficiently in Haskell, so we
have used straight-forward iteration. We suspect only a single iteration to
be required for unambiguous grammars under basic conditions, resulting in
cubic complexity, but we can currently only prove this for regular languages.

Let us consider a variant of parsing with derivatives where we do not
allow recursive parsers and add a Kleene star parser p∗, so that we can still
parse any regular language. It is clear that only a single iteration is required
to find the fixed point of the nullability equation in this case, as the null
parsing function becomes a simple memoized function on the parser nodes.
The final parse result is a set with at most a single element, therefore only a
single element needs to be evaluated per node resulting in linear complexity
in the number of nodes.

3.4.2 Benchmark

We benchmarked our implementation against Parsec [12], a popular Haskell
parser combinator library, using the Criterion [16] benchmarking library.
We only parsed unambiguous grammars without left-recursive productions
as Parsec cannot handle any other grammars. It is important to note that
constructing the parsers using parsing with derivatives was more straight-
forward than using Parsec: it is not required to keep in mind e.g. the
evaluation order of <|> and other operators. We parsed the following ex-
pressions:

Name Expression

xs/3 replicate 3 ’x’

xs/100 replicate 100 ’x’

xs/1000 replicate 1000 ’x’

parenthesis/small "((()))"

parenthesis/large (replicate 100 ’(’) ++ (replicate 100 ’)’)

expression/basic "1010*10101+101+(101+1)+0*1+1*(1+1)"

23

Criterion calculated the following estimates using OLS regression for the
running times:

Name Lower bound Estimate Upper bound

xs/3/parser 3328 ns 3397 ns 3486 ns

xs/3/parsec 453,0 ns 474,2 ns 503,0 ns

xs/100/parser 55,96 µs 57,20 µs 58,84 µs

xs/100/parsec 7,701 µs 7,839 µs 8,072 µs

xs/1000/parser 1182 µs 1192 µs 1204 µs

xs/1000/parsec 83,12 µs 83,71 µs 84,58 µs

parenthesis/small/parser 10,51 µs 10,66 µs 10,83 µs

parenthesis/small/parsec 1,219 µs 1,236 µs 1,257 µs

parenthesis/large/parser 6202 µs 7844 µs 8920 µs

parenthesis/large/parsec 91,42 µs 91,76 µs 92,16 µs

expression/basic/parser 23350 µs 23840 µs 24550 µs

expression/basic/parsec 30,37 µs 30,53 µs 30,71 µs
Without additional diagrams, it is clear that our implementation per-

forms very slowly compared to Parsec; around a factor of 10 to 1000 times
slower for our test cases. In the next section we analyze the results. The
raw benchmark and profiling results can be found in appendix B.

3.4.3 Analysis

Our implementation has a lot of overhead compared to the much more
straight-forward recursive descent parsing done by Parsec. Unfortunately,
profiling shows that parsing the parenthesis was not slowed down signifi-
cantly by unexpected cost centres: more than 80% of time was spent in
the runCompact and parserFromNode functions, responsible for compaction
and creating new nodes respectively. We do not see how we can significantly
improve this; the optimized Racket implementation by the original authors
applies compaction once, locally, using smart constructors. However, this is
impossible in Haskell without giving the constructors additional arguments
as the tree of parsers would be evaluated completely to determine the shape
of the root, recursing infinitely.

However, profiling while parsing the very basic expression shows a wor-
risome result: around 25% of the running time was spent comparing Tag
values. The size of tags will only increase as the number of derivatives
and compactions done increases. A more complex implementation might
only use e.g. integers for tagging, and keep track of which integer to use
next throughout derivation. However, this would be more error-prone and
memoizing the derivative could not be done so easily. Derivation would be
stateful, and memoization would require manually mapping nodes to their

24

derivatives.
Another approach that would be much more efficient, and increase the

ergonomics of the library substantially, involves generating unique tags for
nodes using unsafe IO. Then we can use, for example, a global counter to
keep track of the next unused tag. We could then tag parsers automatically
when constructing them, so it would lift the requirement of tagging any
node.

The excessive number of allocations done by the compaction algorithm
could be greatly reduced using mutable state, and therefore improve per-
formance. This is presumably the reason why the Racket implementation
performs much better. [1]

25

Chapter 4

Related Work

In 2010, Might et al. published online the first version of their paper about
parsing with derivatives [14]. After feedback and refinements they published
their paper accompanied by a Racket, Haskell and Scala implementation.
The work applies Brzozowski’s work on derivatives for regular languages
[4] to context-free languages as a new method of parsing. Parsing with
derivatives can be used to construct parser combinator libraries that can
parse arbitrary context-free grammars, which is usually complicated (see for
example [8]).

Parsing arbitrary context-free grammars with reasonable efficiency has
long been possible; the CYK [10], GLR [11] and Earley parsing [6] are
the well-known algorithms for parsing arbitrary context-free grammars. All
three have cubic worst-case time complexity, but there are significant differ-
ences. CYK operates only on grammars given in Chomsky normal form, and
is usually slower than an Earley parser, but is reasonably simple [13]. An
Earley parser, though more efficient, is more complicated and its correctness
does not follow directly from a mathematical theory. Parsing with deriva-
tives is an additional parsing methods of which the correctness is easier to
prove, but its performance in practice may be worse.

The Haskell implementation by the authors does not work on all gram-
mars and uses unsafe memoization. The implementation terminates on most
common grammars by first deriving as usual, and then repeatedly compact-
ing; the compaction function is modified to propagate δ nodes downward in
hopes of reducing the parser to an empty or epsilon parser. Memoization is
done by unsafely creating a mutable data structure for storing results.

In a follow-up on parsing with derivatives, they proof a modified version
of the algorithm can achieve cubic complexity under basic assumptions.
[1] Our implementation is slower due to the data structures used and the
requirement of tagging, as well as a slower fixed point algorithm. The follow-
up paper uses a more advanced fixed point algorithm, but it is unclear how
to efficiently implement it without mutable state.

26

Chapter 5

Conclusions

We have shown how the equations for the derivative of languages follow
succinctly from the definition of a right factor of a language. Next we have
shown how to implement parsing by tagging nodes and straight-forward
iteration to calculate fixed points. We implemented memoization based on
generalized tries; [9] an elegant method that allows any user of the library
to quickly allow safe memoization for any token type. Tagging nodes to
prevent recursion is neither very ergonomic nor elegant, but the usability
is satisfactory for most cases. If acceptable, tagging can be implemented
unsafely for increased performance and usability.

The result is a working parser combinator library in Haskell of which
the correctness is clearer than many other algorithms for parsing arbitrary
context-free grammars. We show the time complexity is cubic for parsing
regular expressions under basic assumptions, and cubic for any context-free
language if the fixed point computation takes linear time; profiling showed
null parsing taking up only a fraction of the running time, so we suspect the
complexity to be cubic for all grammars.

The performance in practice is bad compared to Parsec. Many of the
performance issues originate from Haskell’s lack of mutable state to imple-
ment certain optimizations to reduce the number of allocations. Usage of
unsafe and imperative style Haskell could improve performance, but this
would increase the complexity of the implementation and make its correct-
ness harder to verify.

We would like to conclude by remarking that even though parsing with
derivatives resulted in a much slower implementation than Parsec, construct-
ing parsers feels more natural since their structure matches the grammar.
The algorithm is also online: it can start parsing with incomplete input.

27

Bibliography

[1] Michael D. Adams, Celeste Hollenbeck, and Matthew Might. On
the complexity and performance of parsing with derivatives. CoRR,
abs/1604.04695, 2016.

[2] Roland Backhouse. Galois connections and fixed point calculus. In Al-
gebraic and Coalgebraic Methods in the Mathematics of Program Con-
struction, pages 89–150. Springer, 2002.

[3] Roland Carl Backhouse. Fusion on languages. In Proceedings of the
10th European Symposium on Programming Languages and Systems,
ESOP ’01, pages 107–121, London, UK, UK, 2001. Springer-Verlag.

[4] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM,
11(4):481–494, October 1964.

[5] David Darais. The derp package. https://hackage.haskell.org/

package/derp-0.1.6, 2012.

[6] Jay Earley. An efficient context-free parsing algorithm. Communica-
tions of the ACM, 13(2):94–102, 1970.

[7] Conal Elliott. The memotrie package. https://hackage.haskell.

org/package/MemoTrie, 2008.

[8] Richard A. Frost and Rahmatullah Hafiz. A new top-down parsing
algorithm to accommodate ambiguity and left recursion in polynomial
time. SIGPLAN Not., 41(5):46–54, May 2006.

[9] Ralf Hinze. Generalizing generalized tries. J. Funct. Program.,
10(4):327–351, July 2000.

[10] Tadao Kasami. An efficient recognition and syntaxanalysis algorithm
for context-free languages. page 40, 07 1965.

[11] Bernard Lang. Deterministic techniques for efficient non-deterministic
parsers, 07 1974.

28

[12] Daan Leijen and Paolo Martini. The parsec package. https://

hackage.haskell.org/package/parsec, 2008.

[13] Te Li and Devi Alagappan. A comparison of cyk and earley parsing
algorithms.

[14] Matthew Might and David Darais. Yacc is dead. CoRR, abs/1010.5023,
2010.

[15] Matthew Might, David Darais, and Daniel Spiewak. Parsing with
derivatives: A functional pearl. SIGPLAN Not., 46(9):189–195,
September 2011.

[16] Bryan O’Sullivan. The criterion package. https://hackage.haskell.
org/package/criterion, 2009.

29

Appendix A

Preliminaries

This appendix details a few required and well-known results from mathe-
matics.

Theorem 2. Let L be a complete lattice, and let f : L → L be a map
preserving directed suprema. Then f has a least fixed point given by∨

n>0 f
n(⊥).

Proof. We first show that α =
∨

n>0 f
n(⊥) is a fixed point. Since f preserves

directed suprema we have:

f(α) = f

(∨
n>0

fn(⊥)

)
=
∨
n>0

f(fn(⊥))

=
∨
n>0

fn+1(⊥)

= α

Next we show that α is the least fixed point. Suppose β ∈ L is any other
fixed point. We have ⊥ 6 β, so by induction and monotonicity of f it follows
that fn(⊥) 6 β for any n > 0. Then it follows from the definition of the
supremum that α 6 β.

Corollary 3. Let A1, . . . , An be arbitrary sets, such that L = P(A1)×· · ·×
P(An), and let f : L → L be a monotonic function that preserves directed
suprema. Then f has a fixed point given by

∨
n>0 f

n(∅, . . . ,∅) over the
product lattice L.

Proof. Clearly L forms a complete product lattice with bottom element
∅ × · · · × ∅ and top element A1 × · · · × An, as P(Ai) is a complete lattice
for 1 6 i 6 n. Therefore the result follows from the previous theorem.

30

Appendix B

Code

Our Haskell implementation, including examples, benchmark, benchmark
results and profiling results, can be found at:

https://gitlab.science.ru.nl/tmaarse/parsing-with-derivatives

31

