
Bachelor thesis
Computer Science

Radboud University

Learning register automata using
Taint Analysis

Author:
Timo Schrijvers
s4596331

First supervisor/assessor:
prof. dr. F.W. Vaandrager
f.vaandrager@cs.ru.nl

Second assessor:
dr. N.H. Jansen

N.Jansen@cs.ru.nl

August 21, 2018

Abstract

This thesis shows how taint analysis can be integrated in model learning
and try to decrease the number of learning queries that are needed to learn
register automata. We describe a prototype of a tree oracle that uses tainting
to extract information from a SUL. This prototype is integrated in RALib, a
tool for learning Extended Finite State Machines. We compared the original
version of RALib with the one that uses our prototype. We show that
tainting could be promising for model learning, but the prototype still needs
some improvements and further research to actually out preform RALib.

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Model Learning . 4
2.2 Register automata . 5
2.3 SUT . 6

2.3.1 Uppaal . 6
2.3.2 SUT tool . 8

3 Taint analysis 9
3.1 Introduction . 9
3.2 Taint analysis tools . 9
3.3 Taintedstr . 10
3.4 Tainting input and output . 12
3.5 Tainting comparisons . 12

4 Learning Register Automata 15
4.1 RALib . 15
4.2 Tree Oracle . 16
4.3 Tree Oracle with tainting . 17

4.3.1 Algorithm . 17
4.3.2 Tainting . 18
4.3.3 Normalization . 18
4.3.4 Recursion . 19
4.3.5 Example . 20
4.3.6 Complexity . 21

5 Experiments 22
5.1 Setup . 22
5.2 Experiments . 23
5.3 Results . 23
5.4 Discussion . 24

6 Future Work 25

1

7 Conclusions 26

2

Chapter 1

Introduction

In our daily lives we make constant use of machines. We use a microwave
to heat our food, an alarm clock to wake up and washing machine to clean
our clothes. These machines have a particular thing in common. They all
depend on a input from outside the machine. Without this input these ma-
chines will stay in the same state, which in most cases comes down to doing
nothing. As humans we intuitively learn how these machines work, when
pressing some buttons and observing the output. To learn how these ma-
chines work is rather easy, but describing the exact behaviour of a machine
gets more difficult. To describe the exact behaviour we need a systematic
way to learn from the inputs and outputs of the machine. Model learning
(described in section 2.1) provides techniques to learn the behaviour of ma-
chines by only sending inputs and analyzing outputs. This way of analyzing
machines can be quite inefficient as the number of inputs needed to learn
the behaviour of a machine can grow to an enormous amount, when the
machines become more complex.
If we take this to software, many different kind of software components also
rely on input from an external source. Take for example a Java class. We
can see an object as a machine, the methods of the class as inputs and the
return statements from the methods as outputs. The difference between
software components and machines like the microwave is that the inputs of
the microwave are physical, while the inputs of the software components
are also software. We cannot change anything to the press of a button, but
we can alter software inputs. Instead of just sending inputs and analyzing
outputs from software it is possible to alter the inputs such that they can
extract information from inside the software component. With the extracted
information, learning software components should become more efficient. A
technique to extract information from software components trough infected
inputs is taint analysis. In this thesis we try to integrate taint analysis
into model learning and test if the extraction of information increases the
efficiency of model learning.

3

Chapter 2

Preliminaries

2.1 Model Learning

Model learning is a technique to learn the behaviour of machines. Most
machines have a predefined behaviour and react on input from outside the
machine. While machines based on artificial intelligence may have an un-
predictable behaviour, there is still a large set of machines that always show
the same behaviour. Take for example a coffee machine. If you press certain
buttons in a certain order, the machine will make a specific kind of coffee
that belongs to that input. The coffee machine can be seen as a black box.
You can only see what is happening on the outside. Whenever you press
buttons, the coffee machine comes with a response, but what happens in-
side the machine will not be visible to the user. With model learning we can
systematically construct models that represent the behaviour of machines.
The techniques for model learning can be black box or white box. Black
box techniques assume that everything what happens inside the machine is
not visible, while white box techniques can extract information from within
the machine. White box techniques are especially useful when modelling
software components where, for example, part of the code is known.
When learning models, we assume a teacher and a learner from the Mini-

Figure 2.1: MAT framework

4

mally Adequate Teacher (MAT) framework [1]. The teacher directly inter-
acts with the model and answers questions from the learner. The learner
asks questions to the teacher and tries to learn the model with the given
answers. There are two type of questions: membership queries and equiva-
lence queries. A membership query is a sequence of inputs that can be fed
to the model. The teacher responds on this sequence with a sequence of
corresponding outputs, generated by the model. The learner stores all input
output combinations in a table. When the learner has enough information
it constructs a hypothetical model. The learner proposes the hypothetical
model to the teacher. This is an equivalence query. The teacher com-
pares the hypothetical model with the actual model and responds with yes
or a counterexample. When the answer is yes the hypothetical model is
equivalent to the original model, so the learner is done. If the answer is
a counterexample, the hypothetical model is not correct yet, which means
that the learner needs to ask more membership queries to construct a new
hypothetical model.

2.2 Register automata

Model learning can be used to learn many different kinds of models, but we
are going to focus on a specific set of models, namely the register automata.
Register automata are an extension of finite automata. Finite automata,
also called finite state machines, are machines that follow a predefined pat-
tern based on a given input. They consist of a certain number of states and
transitions. At any time, a finite automaton is in exactly one state. Starting
in the initial state, the automaton can get into other states through tran-
sitions. Every state has zero or more transitions to other states, which are
taken based on input actions. Register automata extend finite automata
with registers in which data values can be stored. These values can be read
from the registers for later usage. For our register automata we use defini-
tion 2.1 from [8]

Definition 2.1 (Register automaton). A register automaton (RA) is a tuple
A = (L, l0,X ,Γ, λ), where

• L is a finite set of locations, with l0 ∈ L as the initial location,

• X maps each location l ∈ L to a finite set X (l) of registers, with
X(l0) = φ, and

• Γ is a finite set of transitions, each of form 〈l, α(p), g, π, l′〉, where

– l ∈ L is a source location,

– l′ ∈ L is a target location,

5

– α(p) is a parameterized symbol,

– g is a guard over p and X (l), and

– π (the assignment) is a mapping from X (l′) to X (l) ∪ {p}, and

• λ maps each l ∈ L to {+,−}.

In finite state machines without registers, states and locations are the
same, but in register automata, a state is a defined by a pair < l, i > where
l ∈ L and i is a valuation over X (l). For example, if X (l1) = {x1, x2} then a
state could be < l1, [x1, x2] 7→ [3, 5] >. The value of the registers can cause
the same action to trigger different transitions, from a particular location.
A parameterized symbol is an action with a data value from some infinite
domain of data values, like the natural numbers or the set of strings. Actions
can have an arbitrary number of parameters. We assume that Σ is a set of
actions with an arity that determines how many parameters each action has.
A guard is a condition that needs to hold for a transition to be taken. In a
guard a parameter is compared with a register, that contains a previously
stored data value. Guards can also consist of conjunctions, disjunctions or
negations of multiple conditions. For each l ∈ L, the disjucntion of the
guards from all transitions where l is the source location should be true. In
the assignment the new registers from l’ will be assigned a value from either
the registers from l or one of the parameters.
Function λ indicates whether each location is an accepting location(+) or
a rejecting location(-). Every register automaton accepts a particular data
language. A data language consists of a set of data words, which again are
a sequence of parameterized symbols drawn from Σ. A register automaton
can either accept or reject a data word. After following all actions in a
data word, the register automaton is situated in one of the locations. Only
when this is an accepting location the data word is an element of the data
language that is accepted by that register. We refer to [5] for more detailed
information about register automata.

2.3 SUT

2.3.1 Uppaal

Model learning cannot be done without a SUL (System under Learning).
Uppaal [2] is a tool that can model timed automata, extended with data-
types. The graphical interface of Uppaal can be used to give a concrete
representation of register automata.

Figure 2.2 shows a simple register automaton. This automaton receives
an input IIn(i), then stores the parameter i in a and outputs the value that
is stored in a with the output action OOut(a). The parameterized symbol
can either be an input or an output. In our models, if a parameterized

6

Figure 2.2: Register automaton example

symbol starts with an I, it is considered an input. If it starts with an O, it
is considered an output. Input transitions always require an input from an
environment, while output transitions always follow directly after an input,
as an acknowledgement.

Figure 2.3 shows a register automaton with one more extension. In this

Figure 2.3: Register automaton example with guards

figure, a guard is added to the model. In this automaton the received input
from IIn(i, j) is stored in registers a and b and the next input from ITest(i)
will be compared to registers a and b. When i is equal to a, b will be
the output parameter of OOut and when and i is equal to b, a will be the
output parameter of OOut. Most of the time, non accepting transitions
are not modelled. If i from ITest(i) is not equal to either a or b, then this
automaton ends up in a non-accepting state.

7

2.3.2 SUT tool

The SUT tool is program that converts models created with Uppaal to a
state machine in a programming language, which can actually handle input
and output. We use the SUT tool to convert Uppaal models to a python
script, but it can also convert models to java or other formats. The ob-
tained python script can be used as a library for other python scripts or as
a independent program that communicates via sockets. We use the python
script as library. This library has a state machine object, that expects input
symbols with a certain number of parameters one by one. If the symbol
corresponds to any of the symbols that can be taken from the current state
of the state machine and the number of arguments is correct, then the state
transition is taken and the output symbol is returned with it’s parameters.
In any other case the script outputs that the input is wrong and stays in
the same state.

8

Chapter 3

Taint analysis

3.1 Introduction

Taint analysis is a white-box technique to analyze software. Unlike black-
box techniques, taint analysis keeps track of run-time information during
the execution of a program. To illustrate how taint analysis works, it can be
compared with an ant nest that lies underground. Only the entrances, the
ants that enter and the ants that exit the nest are visible from the outside.
Lets say that we color every ant that enters the nest with a different paint
color. This paint spreads to anything that is touched by the colored ant.
Now, if ants exit the nest and they have some colors from other ants, we
know they have had contact with the colored ants. Also, when a purple ant
enters the nest in one entrance and a purple ant exits the nest from another
entrance, we know that those entrances are connected. If we compare this
to taint analysis, the ant nest is a program, with the entering ants as inputs
and the exiting ants as output. Input values can be given a mark. These
values are then considered tainted values. While a program with tainted
input values is running, values that are affected by those tainted values will
also be tainted with the same mark. When the program outputs a value,
the marks indicate which inputs affected this output.

3.2 Taint analysis tools

To apply taint analysis to our models, we need a suitable taint analysis tool.
There are many tools that use taint analysis to find vulnerabilities in soft-
ware. It is impossible to build a tool that can be used for every purpose.
Therefore, all tools focus on specific vulnerabilities, like buffer overflows [10]
or sql injections [7].
In most tools, taint analysis consists of three procedures: taint introduction,
taint propagation and vulnerability detection. Every tool has its own im-
plementation of these procedures, but most of them rely on the same basis.

9

During taint introduction it is decided which inputs are tainted and how
they are tainted. It is possible to give a whole input file one taint mark,
but you can also taint every input byte separately. Tainting smaller pieces
of data results in better analysis, but also in worse performance. It is also
important to choose the right size of a taint mark. Taint marks can consist
of one bit that indicates whether the data value is tainted or not. It is also
possible to give every piece of data an unique taint mark. More specific taint
marks give more insight about the data flows in a program, but require more
storage space and more difficult propagation.
After all inputs are properly tainted, the next step is taint propagation.
During taint propagation, all data that is affected by tainted data will also
be tainted. There are two ways in which tainted data can affect other data:
through direct assignment and through control dependencies. For example,
if x is tainted and the program executes the statement y=x+2, then y will
gain the same taint mark as x, because the value of y is directly dependent
on the value of x. Control dependencies are more difficult to propagate.
For example, when a tainted value affects the guard of an if-statement, the
assigned values within the body of that if-statement should also be tainted.
When the execution of a program finishes or a vulnerability appears, then
vulnerability detection starts. When the taint introduction and propagation
steps are done correctly it is possible to track which values are dependent on
which input. This way, the source of a value that triggered a vulnerability
can be found.
Dynamic taint analysis tools are usually implemented on a dynamic binary
analysis (DBA) tool like Valgrind [11]. DBA tools commonly use dynamic
binary instrumentation (DBI). This means that analysis code is injected in
the original code of a program during run-time.

3.3 Taintedstr

For our research, we do not want to directly discover vulnerabilities, but
learn the behaviour of register automata. We’ve looked at multiple tools like
[12] and [9] whether we could use the taint analysis part for our research.
Most tools were not suited for learning register automata. Instead, we use a
python library from the Pygmalion prototype [6]. Pygmalion is a software
tool that, ”given a program P without any input samples or models, learns
an input grammar that represents the syntactically valid inputs for P—a
grammar which can then be used for highly effective test generation for
P.”[6]. For this purpose Pygmalion makes use of taint analysis. The library
taintedstr, that is used for taint analysis within the Pygmalion prototype,
can also be used to taint state machines.
The taintedstr library mainly consists of the class tstr, which behaves like

10

a python string, but applies taint analysis when an instance of this class is
used in a program. The tstr class is built to get a string as parameter when
initialized. Every character of this input string is tainted with an integer
value. Instances of tstr can be split, concatenated and even mingled with
ordinary strings. If only string operations are applied on a given tstr object,
every character keeps its own taint value.

h e l l o s t r = t s t r (”He l lo World ! ” , [1 , 1 , 1 , 1 , 1 , 0 , 2 , 2 , 2 , 2 ,
2 , 2])

s p l i t s t r = h e l l o s t r . s p l i t (” ”)
merged str = s p l i t s t r [0] + ” World ! ”
print (merged str , merged str . t a i n t)

The code snippet above shows how tstr works. In the first line, a tstr object
is initialized with the string ”Hello World!”. The first five characters are
tainted with a value of 1, the following space with a value of 0 and the last
six characters with a value of 2. If the list of taint values is not provided,
the first character will get a taint value of 0, the second character a taint
value of 1 and so on. After applying the split operation on the tstr object,
split str has two elements. The first is a tstr object that contains the string
”Hello” where all characters are tainted with the value 1. The second is a
tstr object that contains the string ”World!” where all characters are tainted
with the value 2. The third line concatenates ” World!” to the first element
of split str. The fourth line will then print: ”Hello World! [1, 1, 1, 1, 1,
-1, -1, -1, -1, -1, -1, -1]”. Calling taint from a tstr object will return a list,
representing the taint values of that tstr object. The five 1 values are the
taint values of the original ”Hello” from hello str and the seven -1 values are
the taint values of the new ” World!” string. All characters that are con-
catenated to a tstr object are tainted with the value -1, which means that
they are not tainted. The tstr class also has an attribute named ’compar-
isons’. This attribute contains a list of all comparisons that are invoked on a
particular tstr object. Each element of the list contains the two values that
are compared, the corresponding taint values and the comparison method.
Some software components can be modelled by a SUL. Before this is possi-
ble, a component needs to satisfy some requirements. First, values can only
be directly compared with other value or copied from one register to an-
other. This means that values cannot be changed. Secondly, the component
must have a finite number of states. Because we apply taint analysis on
components that satisfy these requirements, every input value can consist
of exactly one tstr object with one taint value. For example, if you want
an input to be the string ”hello”, then every character can be tainted with
1, which causes the taint value to be [1, 1, 1, 1, 1]. We use colors as taint
values to make examples more readable and easier to understand. So for
example, when the string ”hello” has a taint value [1, 1, 1, 1, 1] we say that
the taint value is red.

11

3.4 Tainting input and output

With the taintedstr library, taint analysis can be applied to a SUL created
by the SUT tool described in section 2.3.2. The model in Figure 3.1 is a
queue that can contain a maximum of 2 elements. This model has two input
actions, namely IPut(p) and IGet(). IPut(p) tries to store parameter p into
the queue and IGet() tries to get the front element from the queue.

Figure 3.1: Queue

First we created three tstr objects with the strings ”in1”, ”in2” and ”in3”
with taint values red, yellow and green respectively. The three tstr objects
are called in1, in2 and in3. Then, the flow of inputs and outputs from Figure
3.2 were sent to and received from the state machine in Figure 3.1. The

Figure 3.2: Stream of tainted input and output

taint values of the outputs ’in1’ and ’in2’ were red and yellow respectively.
This means they belong to the input parameters in1 and in2. Although
the tainted values are assigned to other variables within the program, the
original taint values remain the same.

3.5 Tainting comparisons

Besides linking input and output values to each other, taint analysis can
also find out which comparisons are done within the SUL. This makes it

12

possible to find out ’how’ the output is received trough a series of inputs.
Figure 3.3 shows a model that contains a few transitions with comparisons,
which are only taken when the corresponding comparison yields true.

We initialized the six tstr objects in1, in2, in3, in4, in5, in6 with strings

Figure 3.3: Model with comparisons

”in1”, ”in2”, ”in3”, ”in4”, ”in5”, ”in6” and taint values yellow, red, green,
blue, purple, pink respectively. Figure 3.4 shows a flow of input, output and
comparisons.
We start with the input IIn(in1, in2). This does not lead to any comparisons

Figure 3.4: Stream for model with comparisons

or interesting output, but due to the absence of comparisons we know that
OOK() is the only output transition after the IIn input. After that, we
feed the input IIn(in3, in4) to the model. Due to taint analysis we find
that the comparison between ”in3”(tainted green) and ”in4” (tainted blue)
is done after IIn(in3, in4). When we feed IIn(in5, in6), our final input, to
the model, we receive the the comparison between ”in5” (tainted purple)
and ”in6” (tainted pink) with output OOut(”in2”) where ”in2” has a red
taint value. From this information the following rule can be derived: ”If

13

the parameters of the second IIn are not equal and the parameters from
the third IIn are not equal, then the output is the second parameter of the
first IIn(). With this rule and the rest of the information, we can construct
the model in Figure 3.5. With only one run of our analysis, containing six
input parameters a pretty large part of the model can be constructed. The
next section describes how entire models can be constructed when multiple
models like Figure 3.5 are combined systematically.
In our last example the taint value of the input is rather redundant, because

Figure 3.5: Learned model

the string value also describes which input is responsible for which output or
comparison. If we look again at the model from Figure 3.3, but we change
the string values of in1, in2, in3 and in4 all to ”in1” and leave in5 and in6
out, the importance of the taint values becomes visible. Figure 3.6 shows a
new flow of input, output and comparisons. Because every input parameter
has the same value, it is impossible to find out which input corresponds to
which comparison value or output. Due to the taint values we can still find
out which inputs are actually compared.

Figure 3.6: Stream for importance taint values

14

Chapter 4

Learning Register Automata

To learn register automata we use RALib [3](described in section 4.1) in
combination with taint analyses. Originally RALib uses a tree oracle, to
construct decision trees for register automata. With these decision trees
RALib can construct models of EFSM’s (Extended Finite State Machines)
using the SL* algorithm [4]. One downside is that the tree oracle of RALib
interacts with the SUL as if it is a black box machine. Black box learning
requires an enormous number of test queries, especially when models get
larger and more complex. A solution is to replace the tree oracle from
RALib with a new tree oracle, that can extract information from the SUL
using taint analysis.

4.1 RALib

RALib [3] is a tool for active learning of EFSMs (Extended Finite State Ma-
chines) including register automata. Active learning means that the learning
algorithm is able to interactively query the system under learning. To learn
EFSMs, RALib uses the SL* algorithm. SL* has an observation table that
stores SDTs for prefix-suffix combinations. With this observation table SL*
learns models in a three phases: Hypotheses construction, hypothesis vali-
dation and counterexample processing. In the hypothesis construction the
interaction with the tree oracle takes place. SL* sends prefixes and suffixes
to the tree oracle and stores the resulting SDT’s in the observation table.
When SL* has stored enough SDT’s in the observation table it constructs
an hypothesis model. During hypothesis validation, SL* sends the hypoth-
esis to an equivalence oracle that validates the correctness of the hypothe-
sis or provides a counterexample. When the equivalence oracle provides a
counterexample the counterexample analysis starts. During counterexample
analysis SL* determines from the counterexample which part of the model
is missing in the hypothesis. Then new prefixes and suffixes are added to
the observation table to generate new SDT’s for the missing parts of the

15

hypothesis. These phases repeat until no counterexample can be found.

4.2 Tree Oracle

A tree oracle is the bridge between the SL* algorithm from RALib and the
SUL. The SL* algorithm from RALib sends tree queries to a tree oracle and
receives SDTs (symbolic decision trees) from the tree oracle. SDT’s and
tree queries are a variant of the original membership queries that can be
interpreted by the SL* algorithm. An SDT is a tree that has nodes that are
either accepting or rejecting and transitions as edges. Every edge contains
a parameterized symbol and a guard. A guard can be true, false, a compar-
ison between two data values, a negation of a guard, a conjunction of two
guards or a disjunction of two guards. The tree queries consist of a concrete

Figure 4.1: Inputs and outputs of a tree oracle

prefix and a symbolic suffix, which are both data words. The prefix contains
the actions that are already taken from the initial state in the SUL, with
concrete parameters. The suffix contains the actions that still need to be
taken in the SUL, with parameters that do not have a value yet. For Figure
3.3 an example prefix and suffix would be IIn(2, 5) OOK() and IIn(x, y)
OOut(z) respectively. The tree oracle sends test queries to the SUL, based
on the prefix and suffix, and constructs an SDT from the responses. For the
example above, the tree oracle could construct the SDT shown in Figure 4.2.

First the actions in the prefix will be fed to the SUL and from the
resulting state the oracle will construct an SDT with the suffix. We say that
the first input parameter of the prefix is stored in register r1 and the second
in r2. As we can see only the branch with OOut(z), when z is equal to r1
and x is not equal to y, results in an accepting state. In the case that x is
equal to y the output is ONotEqual(), so it does not match the suffix output
OOut(z) and in the case that z is not equal to r1, the output parameter of
the suffix does not correspond to the output parameter of the SUL.

16

Figure 4.2: Example of SDT

4.3 Tree Oracle with tainting

4.3.1 Algorithm

With the SL* algorithm and a SUL in hands, only the tree oracle has to
be adapted to implement taint analysis in RALib. Algorithm 1 shows the
pseudo-code of the tree oracle with tainting. For the algorithm to work
correctly, the register automaton that is simulated by the SUL needs to
satisfy the following restrictions:

• The automaton does not contain any constants, so every register is
uninitialized in the initial state.

• All input and output actions have a maximum arity of one.

• Data values can only be compared on equality.

• Input actions always lead to an accepting state.

• Output locations have at least one outgoing transition.

The algorithm has one base case and a recursive part. It builds an SDT
from the leaves back to the root. Every step in the recursion constructs an

17

SDT with the SDT’s that are received from next step in the recursion. The
base case creates an SDT with one node that has no branches. Furthermore,
the base case contains two important steps, namely the taint run and nor-
malizing constraints.

Data: A concrete prefix u and a symbolic suffix v
Result: A symbolic decision tree sdt and a set of constraints c
if v = λ (empty) then

c = taint run(u)
normalize(c)
return new sdt, c

else
d = fresh value not in u
sdt, c = SDT(u.i(d), v’) where v = i(p).v’
φ = constraint for i(p) in c
tree = new sdt with branch (i(p), φ, sdt)
for constraint in φ do

d = second value in constraint
sdt, c = SDT(u.i(d), v’) where v = i(p).v’
add branch (i(p), constraint for i(d) in c, sdt) to tree

end
return tree, c

end
Algorithm 1: building an SDT

4.3.2 Tainting

The taint run is where the actual taint analysis takes place. When the base
case is triggered, the suffix is empty and the prefix is filled with actions
that have parameters with a concrete value. In the taint run all parame-
ters will be tainted with an increasing value. For example, with a prefix
IIn(2)OOut(7)IIn(4)OOut(1), the 2 will be tainted with value 1 and the 7
will be tainted with value 2 and so on. Then, the inputs will be fed to
the SUL one by one. For every input the corresponding output symbol of
the SUL will be compared with the next output symbol of the prefix. Be-
cause every input value is tainted, all comparisons within the SUL will be
recorded. When all inputs in the prefix are fed to the SUL, the resulting
comparisons will be added to a list of constraints and returned.

4.3.3 Normalization

After obtaining the list of constraints from the taint run, the constraints
need to be normalized for the recursion step. The parameters in the con-
straints are numbered with an increasing value, just like the taint values. A

18

possible constraint list of parameters x1 til x6 is [x1 == x3, x1 == x2, x3 ==
x2, x5! = x6, x4 == x4]. The normalization consists of the following steps:

1. for all constraints: the left and right side of the equation will be
swapped if the left side is smaller than the right side.

2. The constraints will be sorted on the left side of the constraint in
descending order.

3. for all constraints: if a constraint is of the form xi == xi, then remove
this constraint from the list.

4. for all pairs (c1, c2) in constraints: if c1 is equal to c2, remove c2 and if
the pair is of the form (xi == xj , xj == xk) or (xi == xj , xi == xk),
change this to (xi == xk, xj == xk) and if the pair is of the form
(xi == xj , xj ! = xk) or (xi == xj , xi! = xk), change this to (xi! =
xk, xj ! = xk).

If we take the constraint list example above, then after step 1 the constraint
list is [x3 == x1, x2 == x1, x3 == x2, x6! = x5, x4 == x4], after step
2 it is [x6! = x5, x4 == x4, x3 == x2, x3 == x1, x2 == x1] and after
step 3 and 4 it is [x6! = x5, x3 == x2, x2 == x1]. After normalizing the
constraints, the constraints are in order from large to small, do not contain
duplicates and for each j, constraints for xj are either of the form xj == xk
or xj ! = xk1, xj ! = xk2, .. .

4.3.4 Recursion

In the recursive case a fresh value d (a value that is not assigned to any of
the parameters in the prefix) is assigned to the next parameter of the suffix
and added to the prefix. Then the recursion yields an SDT and a list of
normalized constraints. Because d is freshly chosen, the constraint for i(d)
is either true or a conjunction of inequalities. If the constraint is true, a new
SDT with an edge, containing a true guard, to the SDT from the recursion is
returned. Otherwise the branch has the conjunction of inequalities as guard
and for every inequality in the conjunction a new branch will be created to
a new tree, where one of the inequalities is an equality. For example, if the
constraint is xi! = xj and xi! = xk, a transition with xi! = xj and xi! = xk
as guard is added to the yielded SDT. Then two new SDT’s are created,
where the value of d is equal to the value of xj in the first SDT and the
value of d is equal to the value of xk in the second SDT. The first SDT then
has a transition to it with xi == xj as guard and the second SDT has a
transition to it with xi == xk as guard.

19

4.3.5 Example

We illustrate how this algorithm works with an example. Figure 4.3 shows
how the SDT is step by step. When an edge has no guard in the Fig-
ure, the guard is true. Let’s assume a prefix IIn(1).OOK() and suffix
IIN(x2).OEqual(). In the first step of the recursion the suffix is not empty,
so we end up in the else branch. A fresh value, let’s say 12, is chosen for
d. Then the algorithm goes into the next step of the recursion with prefix
IIn(1).OOK().IIn(12) and suffix OEqual(). This time no fresh value is as-
signed to OEqual(), because OEqual() has no parameters. In the next step
of the recursion we have IIn(1).OOK().IIn(12).OEqual() as prefix and an
empty suffix, so we end up in the base case. The parameters 1 and 12 will
be tainted with the values 1 and 2 respectively. IIn(1) and IIn(12) are fed
to the SUL with OOK() and ONotEqual() as output. From the taints, the
comparison list [x1! = x2] is returned. In the normalization the constraint
list is changed to [x2! = x1].

Figure 4.3: SDT construction example

When returning from the recursion sdt is a single node and c is [x2! = x1].
Because OEqual() has no parameters, φ will be empty, so the for loop will
be skipped. The new tree is then returned to the first step of the recursion.
Now φ will be [x2! = x1] for action IIn(x2). A new edge with x2! = x1 as
guard is set to the received sdt. Then the for loop has one iteration in which
x2 gets the same value as x1, namely 1. The recursion is exactly the same as
the recursion outside the for loop except that the taint run outputs OOK()
and OEqual(), with [x1 == x2] as comparison. In the figure the very first
node is non-accepting, because ONotEqual() is the wrong output for this
prefix. Non-accepting nodes are not added in the pseudo code, because they
do not contribute to better understanding of the algorithm.

20

4.3.6 Complexity

There are two different ways to measure the complexity of this algorithm.
First, there is the usual complexity measure, namely the running time of the
algorithm. We can also measure the complexity in terms of input actions
that are fed to the SUL. The second way is most important for our research,
because the information that is extracted from the SUL with taint analysis
should lead to a lower number of input queries compared to a black box tree
oracle. The time complexity is mainly dependent on the number of leafs in
the decision tree. For every leaf the algorithm has to do a run on the SUL
and normalize the constraints. A run on the algorithm with a prefix of length

p and a suffix of length s constructs worst case an SDT with O(
(p+ s)!

p!
)

leafs. The root of the tree has maximally p+ 1 transitions. The new value
can be equal to any of the previously stored values or unequal to all of them.
For every case there can be a transition with the corresponding equalty as
guard. The children of the root have maximally p + 2 transitions, because
one more value is added to the registers. Every step further to the leafs can
have one more transition. The last step before the leafs has a maximum
of p + s possible transitions. We can conclude from this that length of the
suffix has a large influence on the complexity of the tree oracle, while the
influence of the prefix is rather small.

21

Chapter 5

Experiments

For our research we test the new version of RALib against the original
implementation of RALib. As the original version of RALib uses a black
box oracle for computing SDT’s and the new version uses an oracle that
can extract information from the SUL, we expect that the new version uses
less input queries to learn models. To test the different implementations of
RALib we use a couple of benchmarks.

5.1 Setup

All experiments have the same setup. We ran each experiment 5 times, with
a maximum time of 10 minutes. Both versions of RALib use SL* as learning
algorithm. For the tainted version we use a random walk, while the black
box version compares the hypothesis with the correct model to find coun-
terexamples. A random walk starts with an empty data word. Then random
concrete inputs and outputs are added to the data word step by step. Each
random walk has the property to stop after every step with a probability
of 10% and generates a maximum of 1000 data words. Each data word is
fed to the SUL. If the data word is accepted, the random walk generates a
new one and if the data word is rejected, it is a counterexample. The maxi-
mum number of steps is 15, because longer counterexamples could generate
suffixes that increase the processing time of the counterexample too much.
It could be that a counterexample of 15 steps still creates too long suffixes,
but with a lower steps, the chance of finding counterexamples decreases too
much. When a data value is needed for the the counterexample a fresh value
is is created with a probability of 80%. This setup is partly adopted from
[3].
To compare the results of the experiments we count the number of inputs
and resets that are needed to learn a model. The number of inputs are the
input queries that are sent to the SUL. The number of resets corresponds to
how many times the SUL is restarted from the initial state. When count-

22

ing queries, we differentiate between learn queries and test queries. Learn
queries are counted in the tree queries and test queries counted in the possi-
ble counterexamples generated by the random walk. We mostly focus on the
learn queries, because they indicate the efficiency of the tree oracles. Also,
all test queries that are used to find a counterexample against the ’correct’
model are not counted, because that counterexample does not exist. The
correctness of the generated models was checked manually.

5.2 Experiments

For our experiments we used a FIFO(First in First out) model. The FIFO
model acts the same as a queue, which means that you can put elements in
the FIFO one by one and get the first stored element from the FIFO, if the
FIFO is not empty. The FIFO models that are used for the experiments
have a fixed size. Figure 5.1 shows an example of a FIFO model with a size
of three elements. FIFO models with a different size look similar to this
one, but with another number of states. We ran both versions of RALib on
a FIFO with a size of two till seven. The results are stored in Table 5.1.

Figure 5.1: FIFO of size three

The tests from RALib black box, with a FIFO size of 6 or lower all
terminated within 10 minutes. All the tests with a size higher than 6 did not
terminate within 10 minutes. For the tests from RALib with tainting, FIFO5
had 2 and FIFO6 had 1 run that did not terminate within 10 minutes. The
rest of the tests all terminated within 10 minutes. To get a better overview
of the results we ran FIFO7 from RALib black box again within 20 minutes.
4 out of 5 runs terminated within 20 minutes. Those results are stored in
the table. All the values in the table are the average of the 5 or less tries.

5.3 Results

As we can see the number of learning inputs and resets used by the tainted
version of RALib is larger than those from black box RALib. For testing the

23

RaLib black box RALib with tainting

Learning Testing Learning Testing

model inputs resets inputs resets inputs resets inputs resets

FIFO2 260.8 95.6 128.4 24.8 512.8 183.2 115 23.2

FIFO3 744 193.2 273.6 43.2 1243.2 342 270.6 41.6

FIFO4 1209 255.6 458.8 67.2 2122.2 484 352.5 52.3

FIFO5 2178.6 386.8 1074.8 143.6 4403 832.6 713.3 95.6

FIFO6 3197 503.8 2333.4 300.4 6722.8 1112.2 1779.8 228.8

FIFO7 6976 912 5508 707.5 10355.6 1498.2 4055.6 524

Table 5.1: RALib comparison on FIFO models

results look slightly better for the tainted version of RALib. While running
the experiments the bottleneck for RALib with tainting was the processing
of long counterexamples and large SDT’s. Because of the random walk a
long counterexample could be found at any point of the learning process.
Long counterexamples lead to long suffixes, which increases the number of
tree queries drastically.

5.4 Discussion

The number of learning queries of the tainted version of RALib is larger
than those of the black box version of RALib, while in theory it should be
the other way around. The main reason for this is that the two versions
of RALib use a different method to find counterexamples against the hy-
pothesis. The black box version has the complete model and compares the
hypothesis with the complete model. From this it can generate short coun-
terexamples which lead to short suffixes and therefore less tree queries. The
tainted version of RALib does not learn from the model itself, but from a
SUL that simulates the model. Therefore the model cannot be used to find
short counterexamples. Although results indicate that the tainted version of
RALib requires more input queries for learning, the tainted tree oracle could
still use less tree queries than the black box oracle. An option would be to
measure the number of inputs used per tree query, but that would also give
unreliable results. The length of the prefix and suffix would then influence
the number of input queries per tree query. We could dig into RALib to
extract the black box tree oracle and compare the amount of input queries
for specified prefixes and suffixes, but that requires a deeper understanding
of RALib, which is beyond the scope of this thesis.

24

Chapter 6

Future Work

We’ve shown that it is possible to integrate taint analysis in model learning,
but there are many improvements that can be made in this area.
First of all, the current implementation of the tainted tree oracle supports
learning for only a small set of models. The tainted tree oracle does not
support any models that contain constants or actions with more than one
parameter. Optimizing the tree oracle will extend the range of models that
can be learned. Models that contain these features are generally more com-
plex and require much more learning queries with black box learning. The
extraction of information through tainting could then optimize the learning
process even more.
Second, the results of this thesis did not satisfy the expectations, because
black box RALib uses an equivalence checker, that contains the model, to
generate short counterexample, while the tainted version is dependent on a
random walk, which generally generate larger counterexamples. If we could
use the equivalence checker from black box RALib in the tainted version,
the results can be measured correctly.
Third, the tool that is used for tainting is now implemented in python.
Therefore the tainted tree oracle and the SUL are also written in pyhton.
Because RALib is implemented in java, the data that is sent to and received
from the tree oracle needs to be communicated between the two languages.
This is now done through json files, which causes two difficulties. First,
reading and writing from files is very time consuming compared to direct
communication, especially when this has to be done many times. Second,
the data structures need to be translated, which is more difficult than using
the data structures of RALib. A solution to these difficulties is to translate
the current tainting tool from python to java. This way the entire tainted
tree oracle can be implemented in java. As a result no more communication
through files is needed and the data structures from RALib can be directly
used to construct SDT’s.

25

Chapter 7

Conclusions

We analyzed the integration of taint analysis into model learning and com-
pared the efficiency of learning EFSMs against RALib. First, we managed
to extract information from a SUL using a taint analysis library from the
Pygmalion framework. Then, we implemented a tree oracle that uses taint-
ing to construct SDTs from a concrete prefix and a symbolic suffix. After
that, we integrated this tree oracle in RALib. Then we compared the origi-
nal RALib with the tainted version on a few FIFO models of different sizes.
From the results we could not conclude whether the tainted version of RALib
preforms better, because both versions of RALib use a different way of gen-
erating counterexamples for an hypothesis of the model, which lead to unre-
liable results. What we can conclude is that taint analysis can be integrated
in model learning to learn models with information that is extracted from
the SUL. We’ve discussed some improvements for the tainted tree oracle and
the integration in RALib in the future work section that could lead to more
promising results.

26

Bibliography

[1] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computing, page 87–106, 1987.

[2] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. Uppaal - a tool suite for automatic verification of real-
time systems. Hybrid Systems III, pages 232–243, 1996.

[3] Sofia Cassel, Falk Howar, and Bengt Jonsson. Ralib: A learnlib exten-
sion for inferring efsms. 2015.

[4] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Active
learning for extended finite state machines. Formal Aspects of Comput-
ing, page 233–263, 2016.

[5] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. Ex-
tending automata learning to extended finite state machines. Machine
Learning for Dynamic Software Analysis: Potentials and Limits, page
149–177, 2018.

[6] Rahul Gopinath, Björn Mathis, Matthias Höschelle, Alexander Kamp-
man, and Andreas Zeller. Sample-free learning of input grammars for
comprehensive software fuzzing. Communications of the ACM on Pro-
gramming Languages, Vol. 1, No. OOPSLA, Article 1, 2018.

[7] William G.J. Halfond, Alessandro Orso, and Panagiotis Manolios. Us-
ing positive tainting and syntax-aware evaluation to counter sql injec-
tion attacks. 2006.

[8] Falk Howar, Bengt Jonsson, and Frits Vaandrager. Combining black-
box and white-box techniques for learning register automata. Commu-
nications of the ACM, pages 86–95, 2017.

[9] Matthias Höschele and Andreas Zeller. Mining input grammars from
dynamic taints. Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, pages 720–725, 2016.

27

[10] CAI Jun, ZOU Peng, MA Jinxin, and HE Jun. Sworddta: A dynamic
taint analysis tool for software vulnerability detection. Wuhan Univer-
sity Journal of Natural Sciences, pages 010–020, 2016.

[11] Nicholas Nethercote and Julian Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 89–100, 2007.

[12] James Newsome. Dynamic taint analysis for automatic detection, anal-
ysis, and signature generation of exploits on commodity software. 2005.

28

