
Bachelor thesis
Computer Science

Radboud University

Power Analysis of the Ledger
NanoS

Author:
Wouter de Boer
s4626265

First supervisor/assessor:
Prof. L. Batina

lejla.batina@ru.nl

Second supervisor/assessor:
drs. L. Papachristodoulou

l.papachristodoulou@science.ru.nl

June 27, 2018

vires in numeris

1

Abstract

With the rising popularity of cryptocurrencies there is a concurrent increase
in the need for safely storing them. The security of these assets stands or
falls with the safekeeping of the private keys. In this thesis the focus lays
on deriving the private key by only observing the Ledger Nano S hardware
wallet. Recovering the private key is almost the same as access to the assets
stored on the wallet. In this case, cryptocurrencies and the Fiat money they
represent.
To begin with, the thesis will provide information about several fundamen-
tal pillars on which cryptocurrencies are based. To find a suitable attack
strategy a considerable amount of common and effective analysis methods
will be discussed with regards to hardware wallets. At the end the practical
analysis and results are presented. A full attack could not be performed
but some interesting observations were made that could help others in their
research on hardware wallets, or in specific the Ledger Nano S.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Elliptic curves . 5
2.2 Cryptocurrencies . 7
2.3 Wallets . 8

3 Side-channel Attacks 10
3.1 Introduction . 10
3.2 Simple Power Analysis . 12

3.2.1 Visual Inspections of Traces 13
3.3 Template Attacks . 13

3.3.1 Template Building Phase 14
3.3.2 Template Matching Phase 14

3.4 Differential Analysis . 15

4 Practical Analysis 16
4.1 Technical Analysis . 16
4.2 Application . 18
4.3 Setup . 21
4.4 Data collection . 23
4.5 Data processing . 25
4.6 Results and Observations . 28

5 Related Work 32

6 Conclusions 34
6.1 Future Work . 34

A Appendix 39
A.1 Installation and Loading without screen 39
A.2 Final Setup Specifications . 40
A.3 Shellscripts . 41

A.3.1 make env.sh . 41

1

A.3.2 install.sh . 41
A.3.3 SetEnvironment.sh . 41
A.3.4 reset.sh . 41

A.4 Main.C . 42
A.5 Capture.py . 42
A.6 MakeFile . 43

2

Chapter 1

Introduction

The Ledger Nano S is a dedicated device specialized in the cryptographic
operations used by cryptocurrencies. A device that is designed specifically
for this purpose is called a hardware wallet. Everybody who owns money
obviously values its security highly and the hardware wallets, on which it
is stored, should increase this security. However the main concern remains,
are my funds really safe?

In this thesis a specific hardware wallet, earlier introduced as Nano S, will be
tested for possible security vulnerabilities. Although several attack strate-
gies could be researched, this thesis will focus on observing the hardware
wallet for possible useful leakage. With the use of side-channel attacks this
leakage could be retrieved. Side-channel attacks are used when the crypto-
graphic algorithm itself is secure but a secure implementation isn’t necessar-
ily guaranteed. The hardware wallets make use of cryptographic algorithms
for it’s core functionalities. These algorithms can be monitored and pre-
viously hidden information could be derived through power consumption
or electromagnetic emanations. The two subparagraphs below will explain
more about the cryptographic algorithms and the core functionalities in
short. More about these will follow in the preliminaries.

The cryptographic algorithms used in the Nano S are based on Elliptic
Curves. These special type of equations are used to create a trapdoor one-
way function, which is easy to compute in one direction but hard to revert
without special information. The public key is used in the easy way, the
private key is used to revert and can be seen as the special information.
However the private key will only revert in combination with the public key,
hence the term keypair.

The core functionalities of the hardware wallet are safekeeping the private
keys, generating public keys (addresses on which you can receive coins) and

3

signing transactions. The signature that is made for a particular transaction
proves, mathematically, that you are the rightful owner and therefore can
send the cryptocurrency with this transaction. The algorithm that the Nano
S uses to create these signatures is called Elliptic Curve Digital Signature
Algorithm. It requires the hexadecimal value of a transaction and the pri-
vate/public keypair as an input. This means that compromising the private
key can result in falsifying signatures. All the assets on the corresponding
address are now at risk since the attackers can now prove, mathematically,
that the cryptocurrency is theirs to spend.

To prevent this from happening it is important that research is conducted in
this field. The paper published by Gkaniatsou et al. [3] is one of the few pa-
pers looking into the implementation details of hardware wallets. However
the low level attacks are more often researched and as shown in a publishing
by Hoenicke [13] could successfully be performed. Each paper looks at the
hardware wallet with a specific attack strategy in mind. For example the
attack by Hoenicke requires the hardware wallet to be stolen and will then
be tested for it’s security. While a more intrusive attack by Rashid [23]
requires not only access to the Nano S after the funds have been stored, but
also during the installation process. This thesis will opt for a less intrusive
attack strategy.

An attack scenario would require just the measurements of an ordinary
transaction performed by the owner. To match the measurements several
templates have to be derived in advance. The successful matching of the
templates to the measurements can result in the discovery of the private
key. This attack would require to passively measure the hardware wallet
only once which is far less invasive.

4

Chapter 2

Preliminaries

The rising popularity of cryptocurrency hasn’t gone unnoticed, it even reached
the US Senate, “Virtual currencies, perhaps most notably Bitcoin, have cap-
tured the imagination of some, struck fear among others, and confused the
heck out of the rest of us.”, as Thomas Carper said. In the preliminaries
chapter an attempt is made to take away the confusion it is causing and let
you decide whether it has captured your imagination or it has struck fear.

2.1 Elliptic curves

Before we can try to understand cryptocurrencies and the mechanisms it is
build on, the fundamental math behind it should be made clear. One of
the mechanisms used is cryptography, it is the study of secure communica-
tion and the implementations that come with it. The safe communication
requires a shared secret with which the encryption/decryption takes place.
When the sender and the receiver have a shared secret it is called symmetric
cryptography. Another field of cryptography is asymmetric cryptography.
In this type the secret is not shared but only kept by the receiver, the
private key. The sender knows a public key of the receiver which can be
used to encrypt a message. The fundamentals on which asymmetric cryp-
tography relies is called the trapdoor function, as seen in the introduction.
Several implementations of the trapdoor function were presented such as
prime factoring[25] or the discrete logarithm problem[12].

Early journals about the use of Elliptic curves in cryptography date back
from the eighties in which Neil Koblitz [16] and Victor Miller [19] describe
it’s improvements to the standard cryptography back then. The compu-
tational hardness of the reverse function in previous implementations are
subexponential, the implementations with elliptic curves are exponential.
This means that the reverse function is harder to compute without the pri-
vate key, and a possible attack takes longer. This can be viewed like an

5

increase in security. As an additional argument they present that a com-
putational improvement could be achieved when encrypting compared to
e.g. prime factoring. Besides that the length of the keys are also smaller
than with it’s predecessors. Hence the recommended key length by NIST
is 256-383, compared to the 3072-bit keys for RSA[5]. This in combination
with the efficient computations is why cryptocurrencies use Elliptic Curves
as their standard of cryptography.

An elliptic curve is an algebraic curve defined by an equation of the form,
y2 = x3 + ax+ b. The Elliptic curve domain parameters are specified in the
form of a six tuple. T = (p, a, b,G, n, h).

• p, an integer specifying the finite field

• a and b, used to specify the equation

• point G, the base point

• n, the order of G

• h, the cofactor.

Signatures

The particular algorithm that uses this elliptic curve is called Elliptic Curve
Digital Signature Algorithm (ECDSA). It is used to craft a signature over
a specific message. This signature can be verified by using the public key
and can only be crafted with the private key. This means that the message
is indeed unchanged and written by the owner of the private key. In short
the public key is a point on the curve. This point was calculated by adding
the base point to itself a number of times. This addition is called a scalar
multiplication. The number of multiplications performed represent the pri-
vate key. The most common way to implement this is with the double and
add algorithm. When calculating this point the binary representation of the
private key is used. After every iteration, a point doubling is performed.
For each bit a point addition is only done if this bit is 1. If it is a 0 it will be
skipped. The calculation of the public key is easy but knowing how many
times the base point was multiplied is hard. The signature consists of three
parts (m, R, s):

• m, the message which is usually a hash of the actual message.

• R, a point on the curve denoted by (x,y). Calculated by multiplying
base point G with a random integer k.

• s, calculated by the following equation s ≡ k−1(m + ax) where the
private key equals a.

6

EC in cryptocurrency

Secp256k1 refers to the parameters of the Elliptic curve used in Bitcoin
and Ethereum, and is defined in the Standards for Efficient Cryptography
(SEC)[11]. The parameters are defined as follows:

• p = FFFFFFFF ... FFFFFFFE FFFFFC2F = 2256 - 232 - 29 - 28 -
27 - 26 - 24 - 1

• y2 = x3 + 7 because a = 0 and b = 7

• G = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9
59F2815B 16F81798

• n = FFFFFFFF ... FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C
D0364141

• h = 01

The secp256k1 was especially constructed to prevent randomness in order
to increase efficiency in the computation. In addition to that the constants
are picked in a predictable way, this reduces the possibility of a backdoor
into the curve. [1]

2.2 Cryptocurrencies

It all started out as a Peer-to-Peer Electronic Cash System, introduced by
Satoshi Nakamoto. The concept is pretty simple, you have a large ledger,
a collection of financial accounts, on which you keep track of payments.
The analogy between this concept and digital cash is hence easy to explain.
However the age old problem with a ledger is so-called double-spending.
Double-spending is pretty much what it implies, an account spends the same
cash twice. To prevent double-spending the electronic cash system has to
determine which transactions are valid and which are not. Previously this
was always done by a centralized entity e.g. a bank. The ingenious idea
arose to let a decentralized network keep consensus about the ledger and
Satoshi actually proved that this was possible. The consensus is achieved
using several techniques. The peers of the network all keep a copy of the
ledger, the peers can be so-called miners but are not obligated to be. Miners
verify if a transaction is valid according to their copy of the ledger. A lot
of transactions together will be put into a block. This block will be added
to the blockchain ,an immutable data structure, once the miner has proven
he did the required work. This proof consists of finding the SHA256 hash
of this block and nonce. Changing this nonce obviously yields different re-
sults. The nonce is used to create a change in the difficulty. Computing

7

one SHA256 hash doesn’t require a lot of computational power but the hash
has to have a particular amount of leading zero’s. The miners now need to
choose the right nonce that leads to the amount of leading zero’s required.
Since the work the miner put into ”mining” that block costs a lot of com-
putational power it can be seen as a legit block. The legitimacy of a block
can however be verified easily by the other peers once the nonce has been
published. This nifty mechanism works because of the high computational
power required and the high amount of peers. So why are peers mining?
The miner with the correct hash gets access to the so-called coinbase trans-
action. This transaction yields new coins as an incentive for the miner. This
is the only way to create new valid coins and this amongst others makes it
a viable currency.

2.3 Wallets

Virtual currencies can indeed capture your imagination or struck fear but no
matter your point of view we can’t ignore that it is a growing phenomenon.
As with every growing technology new market segments are opening. Com-
panies like Ledger are actively trying to capture their share of the hardware
wallet market. The Ledger Company has sold over a million hardware wal-
lets since it’s establishment in 2014. It was founded by a team of eight
experts with various backgrounds in e.g. embedded security. They are fa-
mous for their Ledger NanoS and their Ledger Blue. In addition to these
two hardware wallets they also provide several blockchain applications. In
their aim to secure cryptocurrencies they do not rely on security through
obscurity but rather openness. Organizing several capture the flag events
through their Bounty Program helps them to increase their security even
more. This is viewed as good way to approach security and more companies
are starting to operate like it.

In order to understand what hardware wallets actually are we need to take a
look at what wallets are in general. The necessity of wallets originates from
the way valid transactions are made. A transaction is valid once the owner
of the sending address can prove that the assets on that address are actu-
ally his. This can be proven by signing the transaction with his credentials.
The credentials exist of a private key and a public key generated to fit the
requirements the elliptic curve upholds. The wallet stores all the keypairs a
user might have, generates new pairs and checks the addresses to determine
your balance.
As seen before the private key is your access to your assets. The main pri-
ority of a wallet is to safely generate and store the private keys. There are
several implementations depending on the platform on which the wallet op-
erates. The host is one of the most important aspects when taking security

8

into account. From least secure to most secure, there are three generic types
of wallets:

• Web wallets
Implemented on the internet, a trusted third party handles all the
functionality of a wallet. They are often easy to setup and use. The
user has no control over the main priorities of the wallet and can
thus be seen as a less secure implementation. The necessity of a TTP
is in conflict with the self-governing and decentralized character of
cryptocurrencies.

• Software wallets
These can be installed on your device and if implemented correctly are
the best combination of convenience and safety. A correct implemen-
tation is hard to achieve in the ever changing crypto space. Internet
access can be a liability in some software wallets. That’s a reason why
they come in two types.

– Cold Storage Wallet
A computer without internet access is used to sign the transac-
tions offline. They are then transfered to a computer with inter-
net access to publish onto the network for the miners to verify.

– Hot Wallet
Whereas the cold storage wallet can’t monitor for outputs and
broadcast transactions, the hot wallet has all the features of a
full service wallet.

• Hardware wallets By using a dedicated embedded device an addi-
tional layer of security is created. This makes hardware attacks nearly
impossible. The offline, ”secure” environment provides the generation
and storage of the keypairs. This, in combination with the signing
of transactions, is all done on a microprocessor. The hardware wallet
has to be connected to a computer in order to publish transactions.
The specifically designed microprocessor has a significant increase in
security compared to an everyday processor found in a computer.

Figure 2.1: Tasks of a Wallet

9

Chapter 3

Side-channel Attacks

This chapter delves into all theoretical details that could be used in the
search for an exploit.

3.1 Introduction

When thinking about attacks on cryptography the specific algorithm used
is often the first thing under question. The field of research that looks into
the mathematical analysis of these cryptographic algorithms is often called
mathematical cryptanalysis.
The cryptographic primitives are being researched with access to a black-
box. This entails that only the input and output are known i.e. the plaintext
and ciphertext.

When doing a theoretical analysis you are either trying to break the al-
gorithm, or try to find an algorithm to break the primitives. It is thus used
to verify a certain level of security claimed by the inventor. The security
claim can be seen as broken when an attack can be constructed that requires
less resources and/or beats the probability that has been claimed.
A security claim consists of a series of parameters and a limit on expected
security of a cryptographic algorithm. These claims are defined differently
for symmetric cryptography and asymmetric cryptography.
In symmetric cryptography the claim consists of the probability an attacker
has in successfully breaking the scheme defined with the following parame-
ters:

• N, amount of computation

• M, amount of input/output computed with the secret key

• ε the upper bound, represents a function of M and N.

10

In asymmetric cryptography the claim is represented by the computational
hardness assumption of the trapdoor function and the length of the keys.
The legitimacy of an algorithm is therefore often proven mathematically and
by the amount of analytic effort invested in it. The longer the algorithm has
lasted without it’s security claim broken, the more secure and thrust worthy
it will become.

The difference between theoretical analysis and practical analysis emerges
from the real world implementation of these cryptographic schemes in chips
and/or software. The blackbox no longer upholds in these implementations
because of all types of leaked information. Practical analysis exploits the
implementation details to manipulate and alter the output to reveal pre-
viously hidden information. The two general ways to abuse the leakage
are fault-injection attacks[4] and side-channel[2] attacks. When intention-
ally inducing faults onto the implementation an attacker might invoke error
messages or incorrect outputs. The results may leak information about e.g.
the keys. Details about the implementation can thus be derived and security
measures could be bypassed. In the case of a hardware wallet, the security
measures in the secure microprocessor preventing the extraction of private
keys could hypothetically be bypassed.
The faults can be initiated by different attacking mechanisms. The more
common used attacks make use of out-of-range circumstances e.g. increasing
the power usage or clock frequency and can be classified as Injection with
contact [14].
With a low budget these can often be very successful. However if your bud-
get is big enough highly expensive ion-beam attacks can be performed to
break even the most sophisticated implementations. Although the heavy-ion
radiation or electromagnetic fields are hard to control precisely. These types
of attacks can be classified as Injection without contact.

The fault injection attacks require a lot of time and careful adjustments
of the hardware in the target device. With hardware wallets in mind this
would not be a likely attack vector for this thesis. The signing and pub-
lishing of transactions can only be done by the owner, which would require
physical access to the device. An alternation will then soon be noticed.

With the initial assumptions being, “only observing the hardware wallet”,
side-channel attacks are a promising attack strategy. Unknowingly a lot of
implementations leak information about the key or secret data.
Measurements of e.g. execution time or electromagnetic emanations in com-
bination with knowledge of the underlying system can be used to derive
certain aspects of the device. The knowledge required makes the attacks
highly specialized.
Execution time relates to timing attacks which abuse the fact that different

11

operations have a different computation time for each input.The execution
time can therefore be linked to a specific input, leaking valuable information.
Electromagnetic attacks abuse the fact that every device emits electromag-
netic radiation. The wires and logic gates all carry current which in turn
creates a magnetic field when performing computations. These electromag-
netic waves can be captured and analyzed to reveal previously hidden infor-
mation about the device. Several other side channels could be abused e.g.
cache memory or acoustics but in general every measurement is a different
attack vector which can be looked into.

The underlying system in this case is the secure micro-controller which seems
like a vulnerable target for power analysis and in particular Simple Power
Analysis or Simple Electromagnetic Analysis.

3.2 Simple Power Analysis

The framework in which the attack takes place as stated in the introduction
lends itself for the capturing of measurements when using the hardware wal-
let for a transaction. The microprocessor performs operations such as key
generation and ECDSA in which private keys are used. These conditions
meet the characteristics as described by Kocher et al.[17] “Simple Power
Analysis (SPA) is a technique that involves directly interpreting power con-
sumption measurements collected during cryptographic operations.”
At the start it will be necessary to capture multiple traces* of the same
operation over time to get a clear view of how and where the operations
take place. This is called a multiple-shot SPA attack. Once the underlying
architecture is clear the attack will transfer in a single-shot SPA attack and
would require a minimal amount of traces of the victims wallet.
The algorithm that is performed during the signing of transactions is ECDSA.
As seen in the preliminaries the private key is used when calculating the pub-
lic key and s. Calculated by the equation, s ≡ k−1(m+ax) where the private
key equals a. This scalar multiplication is an operation worth looking into
since it can reveal a lot of information about ECDSA and in turn the private
keys.

∗ A trace is a set of samples of a specific operation.

12

3.2.1 Visual Inspections of Traces

The specific assembly instructions performed during a scalar multiplica-
tion such as add, xor or move have a particular power consumption. Their
uniqueness comes from, among others, the differences in bytes or compo-
nents used. When capturing and processing the traces a clear distinction
could for example be seen between the microprocessor being idle or under
load. Another distinction could be visible between the instructions stated
earlier. However the signal has to be quite strong and reliable. When at-
tempting to look for information with visual inspection the spikes or drops in
power usage are of importance. For example in figure 3.1, the signal clearly
spikes in the red area. These parts of the trace can then be inspected fur-
ther in the search for hidden information. In addition to the spikes and
drops, repetitive pattern are also interesting. They can indicate a repeating
pattern in the implementation of an operation.

Figure 3.1: Spike in voltage

3.3 Template Attacks

Since it is not always possible to notice the disparity in traces, templates are
used to characterize inputs according to a multivariate distribution[18]. This
distribution consists of a mean vector and a covariance matrix. The mean
vector has a mean for every variable in the measurements. The covariance
matrix represents how the variables co relate to each other and how far
the variable deviates from the average value, the mean. The covariance
matrix grows quadratically because for every new variable the covariance
between it and every other value has to be determined. To reduce the size
it is important to look only at the points of interest. The parts of the
trace noticed with visual inspection can thus be used to reduce the size.
The generation of the distribution and application are often performed on
different data sets. Hence template attacks are split into two phases.

13

3.3.1 Template Building Phase

In the building phase the mean vector and covariance matrix are initialized.
As stated earlier the amount of traces is of great importance. The more
traces captured and used, the better the templates will be. When trying to
create a template for every possible key with an advised keysize between 256-
383 it can take several thousand traces. In the case of ECDSA and especially
scalar multiplications it is more interesting to look at the differences in the
double and add algorithm. This reduces the amount of traces needed and
thus the complexity of the covariance matrix. In theory the template would
look like a combination of the multivariate distribution and the scalar. The
building of the template for this particular example would include:

• Find every trace in which the operation is performed and store the
points of interest.

• For every point of interest compute the average power consumption.
This will result in the mean vector.

• Compute the variance of the points.

• Compute the covariance of every pair of points.

• Combine the last two and place the variance on the diagonal starting
at the top left and the covariance between points i,j on position i,j of
the matrix.

After following these steps the result will yield two matrices, the mean vec-
tor and covariance matrix. Since we have two particular operations de-
fined(addition with 0 and 1) we need to repeat this process once more.
After all the calculations two templates are formed and ready for matching.

3.3.2 Template Matching Phase

The previously created templates can now be matched with a random trace.
The trace received should be of a transaction performed by the owner. When
the scalar multiplication is performed in the signature algorithm we can try
to classify it as an addition with either a 0 or a 1. However a single trace is
not enough to perform a reliable template attack.
The traces have to be processed first:

• Find all the points of interest in the traces and put them in a vector.

• Calculate the PDF using the covariance matrix for both the templates.
The Probability density function can be interpreted as:
“Looking at trace i, how likely is it that 0 is the correct one?”

14

• When comparing both probabilities, the template with the highest
correlation might indicate the correct one.

After combining all these comparisons a guess for the scalar used in the
multiplication can be made and thus a guess for the private key.

3.4 Differential Analysis

When the differences between traces are still not very clear after processing,
differential analysis could be used to compare a lot of traces. While SPA of-
ten looks at differences in power consumed by a single operation, differential
analysis looks at the tiny differences in power caused by different data over
time. These tiny differences are often not noticeable with visual inspection
because of noise or outliers. Therefore a lot of traces are needed to do a
statistical analysis on specific parts of an algorithm. Kocher et al.[17] talked
about the applications of differential analysis in their paper from 1999. They
state that when analyzing the traces one could reverse-engineer particular
operation details or even break whole cryptographic implementations. If all
other side-channel attacks fail on the hardware wallet this might be a useful
option.

15

Chapter 4

Practical Analysis

In the previous sections the foundation for the practical analysis has been
laid. In general the remaining research conducted can be split into four
parts.

• Analyzing the details of the Ledger NanoS and craft a custom ex-
ploitable program.

• Creating the setup and learn to work with the Picoscope software to
take measurements.

• Getting familiar with the Inspector software and process the collected
data.

• Performing an attack on the Ledger NanoS using the newly gathered
information.

The following part of the thesis has been structured to show the results of
the above four parts.

4.1 Technical Analysis

This small section at the start will contain the analysis of the hardware
and software. Some of these will be applicable to every device and are an
important part of the design choices while others will be more specific to
the Nano S. But first some general information about the NanoS is presented.

The specific hardware wallet that has been observed and researched is the
Nano S manufactured by Ledger. The Nano S is a Bitcoin, Ethereum and
Altcoin hardware wallet. It is based on robust safety features for storing
cryptographic assets and securing digital payments. Using USB it can con-
nect to any computer and use a Google Chrome application to update the

16

firmware, load new programs or remove them. The OLED display in com-
bination with the two side buttons are used to navigate through the menu
and to double-check and confirm each transaction with a single tap on it’s
side buttons. [10]

The underlying hardware and software is important because it not only
tells something about potential vulnerabilities but also about how to de-
velop programs. Since we are trying to make a program for the Nano S that
can be exploited it is important to know the architecture.
In figure 4.1 can be seen that the Nano S has two microcontrollers, the
STM32F042K[21] and the ST31H320 [20]. The STM32 handles all the in-
put and output, it is connected to the screen, buttons and USB. It notifies
the ST31 when new input is received. The communication with the ”Se-
cure Element” (ST31) is handled by the protocol called SEPROXYHAL.
Through Events, sent by the STM32, the ST31 is called to perform crypto-
graphic operations. It can respond with commands and status updates.

The Nano S uses a custom operating system called the Blockchain Open
Ledger Operating System, or BOLOS in short. The firmware version used
in this thesis is 1.3.1, although it has been updated to 1.4.2 at the time of
writing. The applications are loaded on the ST31 using the BOLOS loader
after which they can call the BOLOS kernel using syscalls. These syscalls
can be used to perform the cryptographic operations.
It is important to denote that only the ST31 stores and uses the crypto-
graphic secrets used by applications. Through their clear distinction be-
tween the two microcontrollers Ledger created an interesting proxy between
these secrets and the user (and attackers). [9]

Figure 4.1: Inside the Nano S

17

4.2 Application

The Ledger NanoS, as stated earlier, uses the BOLOS platform which is
build on top of a secure element. The applications ran on the BOLOS
platform are compiled and linked before loaded onto the device. Hence
to build custom applications for the NanoS a couple of things have to be
setup correctly. Since we are working with two microcontrollers we are going
to need a toolchain. This toolchain includes compilers and a linker. The
MakeFile as provided by Ledger requires you to specify the path to the
compilers. The compilers used are:

• GNU Arm Embedded Toolchain 5

• LLVM Clang 4.0.0

These pre-built compilers have to be put in the correct directories according
to the names specified in the MakeFile, see A.6. After everything has been
downloaded and configured this all has to be setup inside a virtual envi-
ronment. To make sure the BOLOS platform can find the compilers, the
environmental variable BOLOS ENV has to be set to the /bolos-devenv/
directory in which the compilers are located. The other necessary part is the
software development kit (SDK) which provides the development libraries
for ST31 applications. Again an environmental variable has to be set. The
BOLOS SDK has to be linked to the /nanos-secure-sdk/ folder. The build-
ing, loading and communication is performed in the virtual environment
initiated by the following command:

$ v i r tua l env v i r t u a l e n v l e d g e r

After the initialization the right files will be copied into the environment.
(See Appendix A.3.1 for details) To activate the virtual environment the

$ source v i r t u a l e n v l e d g e r /bin / a c t i v a t e

command is invoked. When all the files are in place the installation phase
can be started. In this phase the required python library’s are being installed
using pip. The ledgerblue library didn’t install properly for this particular
combination of NanoS, firmware and SDK. This has been bypassed by copy-
ing and installing a different version. The last phase is to start the compiling
with the command:

$ make load

The makefile will remove the old application before installing a fresh version.
The python library to connect to the NanoS is used like this:

python −m ledge rb lu e . loadApp $ (APP LOAD PARAMS)

This whole process was automated with a couple of shell scripts to improve
the speed and reliability in which changes could be processed and tested. In

18

addition to the speeding up of the installation process I also made a cleanup
script (See A.3.4) which returns everything to the old state. It is pretty
much what the filename says, but it is important to denote that the neces-
sary files have to be copied back to the main folder. After which the virtual
environment can be deleted and a new test can be run.

As a reference the official Sample Applications of Ledger were used and
modified. In particular the SampleSign app. It asks for an input, verifica-
tion and signs the input. The function in which the signing happens is:

i o s ep roxyha l t ouch approve (const bag l e l ement t ∗e)

The touch approve part in the function name indicates the final button press
on the device before the signature will be calculated. If the code is injected
before the actual algorithm and it’s return statement, the secure element can
be triggered in running the code. The signing algorithm used, as claimed
earlier, is ECDSA called by:

tx = cx e cd s a s i gn ((void ∗) &N privateKey ,
CX RND RFC6979 | CX LAST,
CX SHA256 , r e su l t , s i z e o f (r e s u l t) ,
G io apdu buf f e r , 0) ;

This gave the opportunity to run scalar multiplications before the actual
signatures. As seen in A.4 a chosen scalar can be used in combination with
the following function:

c x e c f p s c a l a r mu l t (CX CURVE SECP256K1, point , s ca l a r , 32) ;

It is now possible to have the device perform scalar multiplications on com-
mand.

In order to get the best measurements some kind of sleep or trigger function
would be necessary to implement around the scalar multiplications. The
sleep function would show idle-like behaviour before and after the injected
code which would clearly indicate in which part of the power trace the points
of interest are located. A trigger would give the best results as it can trigger
the data collector to start and stop. This would immediately give a trace
with points of interest.

Not all possible implementations of this functionality were attempted and
the ones tried failed, besides the fact that some were too intrusive to at-
tempt and did not represent the initial assumptions.
The use of NOP instructions looked like a promising implementation, since
this uses the standard C library’s. They are included in the SDK and are
ready to be used without changing too much. The code below was put
around the scalar multiplications. The hope was to see long pauses in
between the different scalar multiplications ran. Unfortunately the NOP
instructions were not noticeable on the traces.

19

for (i = 0 ; i < COUNTER; i++){
asm volat i le (”nop” : :) ;

}

Other possible implementations that could be tried are:

• The sleep() function from the unistd.h library, which would require
a way to include the library into the SDK. It is used to make a pro-
gram wait for the short interval specified in seconds. The function
nanosleep() could also be used which offers, as the name suggests, an
interval in nanoseconds.

• A software trigger that signals the capturing device to start before
the scalar multiplication and stop after. Signaling a device from the
NanoS could be challenging since it has a limited and protected com-
munication functionality.

• A hardware or external trigger that would only capture data once
the power is below or above a certain threshold. However this would
require soldering of a cable on one of the capacitors. This might results
in burning the capacitor if not done precisely or without specialized
equipment.

20

4.3 Setup

With the application build and loaded onto the device the microprocessor is
triggered to perform the scalar multiplications. The next step is to capture
measurements. Several devices and programs were used in the full setup in
figure 4.2:

• Picoscope PC Oscilloscope version 3207B with a memory of 512 MS,
bandwidth of 250MHz and a resolution of 8 bits at 1GS/s.

• A Near Field Probe from Langer EMV-Technik, the RF U 5-2.

• Picoscope 6 Software for the 3000 series.

• Several python programs. (More on these in section 4.4)

The initial attempt was to capture traces without removing any casing, to
get useful results the top lid was taken off eventually.(See figure 4.3) How-
ever the signal still wasn’t very strong and clear and the setup could use
some improvements.

Figure 4.2: Full Setup

After testing with several probes, the RF U 5-2 didn’t prove to yield the
best results, instead they were captured with the RF B 3-2. In addition to
changing the probe, the PA 303 amplifier was added to boost the signal.
With the earlier setup a difference in power could be seen. This was likely
caused by pressing the buttons. Unintentionally the probe might have moved
a little bit although it was pretty sturdy. After some trial and error to find
the location on the chip with the strongest signal, the circuit board was fixed
in place in a Stanley fixture. The choice to remove the circuit board from
the casing was made to really eliminate possible measuring errors. The new
setup should yield no difference in power unless it was measured correctly
and it indicates some implementation details. The improved setup can be
seen in figure 4.4.

21

Figure 4.3: First setup Figure 4.4: The improved setup

Figure 4.5: The two probes Figure 4.6: Amplifier and Picoscope

With the removal of the casing, the screen has also been disconnected to
remove any static noise in an attempt to get an even clearer signal. The
navigation through the menu and installation process could easily be writ-
ten down. Since the Ledger has only two buttons the commands ”Left”,
”Right” and ”Both”(Left and Right at the same time) are used. An exam-
ple of the unlock combination of the PIN 5556 would be BBBRBB, where
the last ”Both” is to confirm the PIN. Once the ledger is unlocked you can
navigate through the applications and open them with ”Both”. In the case
of the custom application it was even easier since it sent status information
back to the terminal. See Appendix A.1 for more details.

Edit After firmware version 1.4.2 the start numbers on the PIN-code have
been randomized. It will now be impossible to write the button combination
down and unlock it without the screen attached. This also increases the level
of security since the PIN-code can’t be retrieved anymore by using acoustics
or simply remembering the order in which the keys are pressed. However
capturing traces can still be done while the owner is using the device, e.g.
when signing a transaction.

22

4.4 Data collection

At the start of the experiments the data collection wasn’t very optimal. The
picoscope which was used to capture the data didn’t have the functionality
required, thought wrongly. With the code below the first measurements
were taken since presumably the only form of output was to the console.

f o r ($ i =1; $ i − l e 750 ; $ i++){ p icoscope . com /a Measurements .CSV?
>> C:\ path\ to \ d i r e c t o r y \measurements fu l l . csv }

The resulting CSV file was then processed and visualized using the python
library Numpy and Excel. This makeshift solution was to check whether
the actual changes to the application could be noticed. In figure 4.7 the
difference between the application and the idle state could clearly be no-
ticed, even under the bad circumstances in which the measurements were
taken. This lead to believe that when improving both the setup and the way
of collecting measurements some interesting previously hidden information
might be revealed.

Figure 4.7: Piped output to .csv

As stated in section 3.6 the setup needed some improvements. The same
could be said for the data collection. Although the earlier collection showed
results it was soon proven that this was, as expected, not very precise.
In order to process the data correctly it has to be split into traces. Each
trace has to have enough samples with the aim of getting the most accurate
results. When capturing these samples it would be wise to already store
them in the required traces. This would help in the data processing part
later on.
A library that could help with this called pico-python came to the attention.
This library was written by O’Flynn and Harfouche [6]. It has support for
the PS3000A Series which includes the 3207B that is used in the setup. It
provides a PS3000 class and the dll files which can be used for the commu-
nications with the instrument. This is significantly more precise than the
console ouput used earlier. The python program that uses this library was
developed earlier by a researcher of the Radboud University. After receiving
the permission to use it for this thesis, it was modified for the specific pur-
pose. In general the program captures a traceset with a specified number of
traces. On average the amount of traces captured were around a thousand.

23

The traceset is written to a file with the .trs extension, following its partic-
ular format. In the processing phase the file can conveniently be opened by
the Inspector software.
The program first creates all the necessary headers to fit the format a .trs file
upholds. It then writes the header to the file and starts the data collection.
For every trace it will capture the necessary samples, collect them into a
trace and writes the trace to the file. There are three main variables in the
program which can be changed(See A.5 for all settings):

• The sampling rate, which has a maximum of 1GS/s limited by the
Picoscope. One GS equals 109 samples. To get the highest precision
the maximum sampling rate is used. In the code this parameter has
been set to 1e-9 since it requires 1/sampling rate.

• The trace duration, which is set to 199000e-6. This was the maximum
before a memory error occurred. It estimates to roughly 199 million
samples a trace.

• The voltage range, which is set to 500e-3 which equals 500 milivolts.
The maximum voltage measured shouldn’t exceed this threshold.

Changing these variables yield differences in the traces, after some testing
the specified numbers worked for this particular purpose. However the set-
tings are not claimed to be optimal.
After configuring, the python program can be executed from the command
line and the data collection will start. In the meantime the NanoS should
be executing the SampleSign application for a large number of scalar mul-
tiplications. It is important to note that in the current setup the capture
program and the NanoS application are ran separately and controlled by
different computers. To prevent capturing traces of an idle application a
sufficient amount of multiplications have to be performed. A rough esti-
mate for a thousand traces is around two hundred thousand multiplications.
After measuring the time it took I came to an estimate of fifteen multipli-
cations a second, in total this will result in around three or four hours of
capturing time.* This should be enough time for the capture program to
finish.

*Make sure the two computers don’t go in sleep mode after a while

24

4.5 Data processing

After capturing a significant amount of traces the data processing can be
done with the Inspector software. Inspector is a service provided by Riscure[24].
It is commonly used for Side Channel Analysis and can also be used for the
capture of traces. With the current setup the latter was unfortunately not
possible but could however improve the quality of the traces.
The general impact that was sought after with processing is the reduction of
noise or outliers. After which the expected results are a clear pattern that
indicates where the scalar multiplications are performed. In order to achieve
this several filters can be put on the traces. After testing with a couple of
them and some advice from the people over at Riscure a chain of filters was
setup. The chain consists of two, the absolute and the windowed resample
filter. In figure 4.8 the settings for the chain can be seen. The ”First:” and
”Number:” indicate at what sample or trace the chain should start and how
many it should process onwards.

Figure 4.8: Settings of the chain

In this case every sample and trace could be of value and that’s why the full
trace set was put through the chain of filters to hopefully achieve the de-
sired results. In figure 4.9 the raw trace can be seen but there is no distinct
pattern (yet).

Figure 4.9: Unprocessed trace

25

The two filters are explained shortly below, for more information see the
Inspector Documentation [24].

1. The ”abs” filter took the absolute value of the samples relative to the
offset. It is mainly used to rectify an AC signal, which basically means
that you get rid of the negative voltages. The offset can be calculated
automatically by Inspector but in this case the offset was set to 0.
The mathematical notation for this operation is:
For trace set S: Absoffset(S) = {Absoffset(s)|sεS}.
For trace s: Absoffset(si) = |si − offset|
After applying the filter the result looked like figure 4.10.

2. With a thousand full-size traces the computation time for statistical
analysis can increase quickly. The ”windowed resample” filter can be
used for compression and reduce the 300GB trace set to a workable for-
mat. Compression will therefore result in an increase in performance
later on. The filter requires two inputs:

(a) The window size, an integer that indicates how many of the sam-
ples have to be compressed into one.

(b) The overlap ratio, indicates what percentage of the samples should
overlap.

In addition to compression the windowed resample also provides a
better Signal-to-noise-ratio. The noise around the points of interest is
reduced by averaging several samples that carry the same signal.

After applying all the filters a repeating pattern can be seen in figure 4.11,
which wasn’t visible in figure 4.9 before.

Figure 4.10: Abs filter applied

26

Figure 4.11: Chain of filters applied

27

4.6 Results and Observations

After the data processing a pattern emerged as seen in figure 4.11. This spike
is interesting because an idle state should consume less power than an ac-
tual operation. This lead to the believe that this might have been the scalar
multiplication. When zooming in on the spike as in figure 4.12, we can see
several drops and spikes in this pattern. This could not be processed with
just visual inspection. After performing an Inspector feature called Pattern

Figure 4.12: Assumed Zoomed Scalar Multiplication

Matching, as seen in figure 4.13 a correlation between the peaks of around
90 percent was shown. When comparing this spike in a trace of a 0x00 scalar
and a 0xFF scalar there was still a clear correlation. After consulting with

Figure 4.13: Pattern Matching

the people from Riscure it was concluded that this was too short to be the
scalar multiplication, in addition to the lack of differences between the two
scalars. As seen in figure 4.14 the only real difference between the blue and
orange trace is the signal strength. The other possibility was that the power
actually drops when performing the scalar multiplication and as a counter-
measure the idle state consumes more power. This would mean that the
long pattern in between the spikes in figure 4.13 is the scalar multiplication.

28

Figure 4.14: Comparison of 0xFF and 0x00

When overlapping the traces of the idle state(blue) with traces of the scalar
multiplications(orange) in figure 4.15 a drop in power could indeed be seen.
With this strong assumption some sort of confirmation was sought after.

Figure 4.15: Drop in Power

This confirmation came from the amount of scalar multiplication performed
in one second, measured earlier in section 4.4. In figures 4.16 and 4.17 can
be seen that the time measured between two spikes is nearly constant at a
time around 70ms (selected:14143(70.72ms)).
In combination with the measured time of 15 multiplications a second this
would imply that this is the actual multiplication. The total time is 1 second
or 1000 miliseconds, 1000ms/15 equals around 67 ms.
It can also indicate that the implementation is a constant time scalar mul-
tiplication function. The most common way to implement the scalar mul-
tiplications function is the double and add method. As explained earlier
the add will only be executed in the case of a 1. These implementations
of scalar multiplication thus have side channel leakage since the scalar with
0’s should have a shorter execution time than the one with 1’s. Ways to
prevent this are e.g. to always double and add. In the case of a 1, nothing
changes. In the case of a 0, just compute the addition but don’t store it.
These types of scalar multiplications therefore have a constant execution
time. This observation can tell something about the implementation details
of the scalar multiplication function used in the Nano S.

29

Figure 4.16: Time of a presumed scalar multiplication 0x00

Figure 4.17: Time of a presumed scalar multiplication 0xFF

Another observation that could be made is that there still is a difference
in power between the two scalars, as seen in figure 4.18. Either the im-
provements to the setup didn’t help or this could be interesting to research
further. In addition to that it also shows a repeating pattern of 12 to 13
drops in between the idle spikes.

30

Figure 4.18: 0x00 and 0xFF aligned

31

Chapter 5

Related Work

As touched on earlier in the introduction there is quite a lot of active re-
search in this particular field. The fundamentals that appear in every paper
are often the more general approaches such as power analysis [17] or elec-
tromagnetic analysis[2]. These methods have proven time and time again
that they can be useful, especially when attacking public key cryptographic
systems[22][26].

Through the bugbounty program of Ledger several possible attacks have
been reported. In the newest updates to the Ledger Nano S these flaws,
such as a Man-in-the-middle-attack[8][7], have been adjusted. This attack
exploited the address display on the host machine. It could change the
Chrome Application to always return the attackers address instead of the
one provided by the hardware wallet. However this attack should not be
very likely considering the hardware wallet also displays the address. When
seeing this mismatch the user should be alarmed. It can become a valid
attack when it is combined with the fact that in early versions the addresses
were not fully displayed on the wallets screen. The attacker can now gen-
erate an address which looks like the one provided by the hardware wallet
and the user will not be alarmed that easily. Fortunately after a firmware
update the addresses are now displayed fully.
Other interesting attack strategies involve the PIN protection since recover-
ing the PIN basically gives full access to the hardware wallet. On the Nano
S the right combination of button presses would indicate a unique PIN. The
entry of a number from the PIN would always start with a 5. Press Right
to go up and Press Left to go down, confirm with both buttons pressed. On
firmware version 1.4.2 they randomized the start of an entry.
A presentation at DEF CON 25 revealed another attack on the PIN protec-
tion. Datko et al. [15] demonstrated that the microprocessor STM32F205
could be glitched. They made use of a combination of Vcc and clock glitch-
ing attacks which lead to bypassing the pin.

32

These high-level attacks focus on the communication between the hard-
ware wallet and the user or host machine. Low-level attacks such as the
one performed by Salim [23] focus more on the implementation details of
the hardware wallet itself. It mainly looks at the architecture built around
the ST31 ”Secure Element”. He states that while the secure element might
be safe from tampering the other microprocessor often is not. Another in-
teresting publication briefly mentioned already is the one by Hoenicke [13].
He performed a successful SPA attack on one of Ledger’s competitors, the
Trezor hardware wallet. The specific part of the implementation that is used
to generate the public keys was visible on the power traces. As we know
the public key is computed by performing the scalar multiplication function
on the private key and the base point. The traces eventually revealed the
private key.

33

Chapter 6

Conclusions

At the start of the practical analysis several goals were set and the majority
of them were met.
To recap, all the work prior to the actual attack on the Ledger Nano S were
successful to some extent. The analysis at the start was pretty straight
forward and showed some interesting points of entry. The application that
has been built for the Nano S works and could be used for the attack in mind.
To capture the traces needed for the attack the final setup has been built
which seems far more reliable than earlier versions. After completing the
measurement phase the Inspector software could be effectively used in the
processing of these traces. After the chain of filters some interesting patterns
emerged. However the final attack wasn’t accomplished unfortunately. It
would require more time and effort in combination with additional analysis.

6.1 Future Work

In future research the implementation of the application can be improved to
add some kind of software trigger or sleep functionality. This gives a clearer
indication of where the actual scalar multiplications are done, when they
start and when they stop. The measurements can then be performed more
precisely since the trigger can start the measuring and if we know when it
stops it is also possible to stop the measuring. This can be automated with
the Inspector Software and ran multiple times until the wanted results are
achieved. There are two options to proceed now:

• Try to use differential analysis on the new traces. The traces should
include the part where the scalar multiplications are happening, as
observed earlier in section 4.6.

• The template building phase could be initiated with the traces and a
template for the 0’s and 1’s could be derived. The template match-
ing phase has to be performed on the measurements of the Bitcoin

34

application, which also uses ECDSA with the secp256k1 parameters.

If these are successful a private key can be derived. This private key gives
access to the funds corresponding to that transaction. In order to get all the
funds the master key has to be derived. Which is a challenge on it’s own.

35

Bibliography

[1] Bitcoin wiki. URL: https://en.bitcoin.it/wiki/Secp256k1.

[2] Dakshi Agrawal, Bruce Archambeault, Josyula R. Rao, and Pankaj
Rohatgi. The em side—channel(s). In Burton S. Kaliski and Christof
Koç, çetin K.and Paar, editors, Cryptographic Hardware and Embedded
Systems - CHES 2002, pages 29–45, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

[3] Myrto Arapinis Andriana Gkaniatsou and Aggelos Kiayias. Low-Level
Attacks in Bitcoin Wallets. Springer International Publishing, 2017.

[4] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache. Fault injec-
tion attacks on cryptographic devices: Theory, practice, and coun-
termeasures. Proceedings of the IEEE, 100(11):3056–3076, Nov 2012.
doi:10.1109/JPROC.2012.2188769.

[5] Elaine B. Barker, William C. Barker, William E. Burr, W. Timothy
Polk, and Miles E. Smid. Sp 800-57. recommendation for key manage-
ment, part 1: General (revised). Technical report, Gaithersburg, MD,
United States, 2007.

[6] Mark Harfouche Colin O’Flynn. Pico python, 2013. URL: https:

//github.com/colinoflynn/pico-python.

[7] Ledger Company. Ledger Receive Address Attack. URL: https://www.
docdroid.net/Jug5LX3/ledger-receive-address-attack.pdf.

[8] Ledger Company. Man in the Middle Attack – Am I at risk? URL:
https://www.ledger.fr/2018/02/05/man-middle-attack-risk/.

[9] Ledger Company. Ledger Documentation Hub. 2016 - 2017. URL:
https://ledger.readthedocs.io/en/latest/bolos/hardware_

architecture.html.

[10] Ledger Company. Product Information. 2018. URL: https://www.
ledgerwallet.com/products/ledger-nano-s.

36

https://en.bitcoin.it/wiki/Secp256k1
http://dx.doi.org/10.1109/JPROC.2012.2188769
https://github.com/colinoflynn/pico-python
https://github.com/colinoflynn/pico-python
https://www.docdroid.net/Jug5LX3/ledger-receive-address-attack.pdf
https://www.docdroid.net/Jug5LX3/ledger-receive-address-attack.pdf
https://www.ledger.fr/2018/02/05/man-middle-attack-risk/
https://ledger.readthedocs.io/en/latest/bolos/hardware_architecture.html
https://ledger.readthedocs.io/en/latest/bolos/hardware_architecture.html
https://www.ledgerwallet.com/products/ledger-nano-s
https://www.ledgerwallet.com/products/ledger-nano-s

[11] Certicom Corp. SEC 2: Recommended Elliptic Curve Domain Param-
eters. 2010. URL: http://www.secg.org/sec2-v2.pdf.

[12] Taher El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. In Proceedings of CRYPTO 84 on Ad-
vances in Cryptology, pages 10–18, New York, NY, USA, 1985. Springer-
Verlag New York, Inc. URL: http://dl.acm.org/citation.cfm?id=
19478.19480.

[13] Jochen Hoenicke. Extracting the Private Key from a TREZOR. 2015.
URL: https://jochen-hoenicke.de/trezor-power-analysis/.

[14] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques
and tools. Computer, 30(4):75–82, Apr 1997. doi:10.1109/2.585157.

[15] Kirill Belyayev Josh Datko, Chris Quartier. Glitches
cause stitches! URL: https://media.defcon.org/

DEF%20CON%2025/DEF%20CON%2025%20presentations/

DEFCON-25-Datko-and-Quartier-Breaking-Bitcoin-Hardware-Wallets.

pdf.

[16] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Compu-
tation, 48(177):203–209, 1987. URL: http://www.jstor.org/stable/
2007884.

[17] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Advances in Cryptology - CRYPTO ’99, 19th An-
nual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 15-19, 1999, Proceedings, pages 388–397, 1999.
URL: https://doi.org/10.1007/3-540-48405-1_25, doi:10.1007/
3-540-48405-1_25.

[18] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks: Revealing the Secrets of Smart Cards (Advances in Informa-
tion Security) Chapter 5. Springer-Verlag, Berlin, Heidelberg, 2007.

[19] Victor Miller. Use of elliptic curves in cryptography., 01 1985.

[20] STMicroelectronics NV. St31h320. URL: http://www.st.com/

content/ccc/resource/technical/document/data_brief/ac/ed/

36/cb/1c/04/43/a8/DM00240763.pdf/files/DM00240763.pdf/jcr:

content/translations/en.DM00240763.pdf.

[21] STMicroelectronics NV. Stm32f042. URL: http://www.st.com/

content/ccc/resource/technical/document/datasheet/52/ad/

d0/80/e6/be/40/ad/DM00105814.pdf/files/DM00105814.pdf/jcr:

content/translations/en.DM00105814.pdf.

37

http://www.secg.org/sec2-v2.pdf
http://dl.acm.org/citation.cfm?id=19478.19480
http://dl.acm.org/citation.cfm?id=19478.19480
https://jochen-hoenicke.de/trezor-power-analysis/
http://dx.doi.org/10.1109/2.585157
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEFCON-25-Datko-and-Quartier-Breaking-Bitcoin-Hardware-Wallets.pdf
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEFCON-25-Datko-and-Quartier-Breaking-Bitcoin-Hardware-Wallets.pdf
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEFCON-25-Datko-and-Quartier-Breaking-Bitcoin-Hardware-Wallets.pdf
https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEFCON-25-Datko-and-Quartier-Breaking-Bitcoin-Hardware-Wallets.pdf
http://www.jstor.org/stable/2007884
http://www.jstor.org/stable/2007884
https://doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://www.st.com/content/ccc/resource/technical/document/data_brief/ac/ed/36/cb/1c/04/43/a8/DM00240763.pdf/files/DM00240763.pdf/jcr:content/translations/en.DM00240763.pdf
http://www.st.com/content/ccc/resource/technical/document/data_brief/ac/ed/36/cb/1c/04/43/a8/DM00240763.pdf/files/DM00240763.pdf/jcr:content/translations/en.DM00240763.pdf
http://www.st.com/content/ccc/resource/technical/document/data_brief/ac/ed/36/cb/1c/04/43/a8/DM00240763.pdf/files/DM00240763.pdf/jcr:content/translations/en.DM00240763.pdf
http://www.st.com/content/ccc/resource/technical/document/data_brief/ac/ed/36/cb/1c/04/43/a8/DM00240763.pdf/files/DM00240763.pdf/jcr:content/translations/en.DM00240763.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/52/ad/d0/80/e6/be/40/ad/DM00105814.pdf/files/DM00105814.pdf/jcr:content/translations/en.DM00105814.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/52/ad/d0/80/e6/be/40/ad/DM00105814.pdf/files/DM00105814.pdf/jcr:content/translations/en.DM00105814.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/52/ad/d0/80/e6/be/40/ad/DM00105814.pdf/files/DM00105814.pdf/jcr:content/translations/en.DM00105814.pdf
http://www.st.com/content/ccc/resource/technical/document/datasheet/52/ad/d0/80/e6/be/40/ad/DM00105814.pdf/files/DM00105814.pdf/jcr:content/translations/en.DM00105814.pdf

[22] Elisabeth Oswald. Enhancing simple power-analysis attacks on elliptic
curve cryptosystems. In Burton S. Kaliski and Christof Koç, çetin
K.and Paar, editors, Cryptographic Hardware and Embedded Systems
- CHES 2002, pages 82–97, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg.

[23] Saleem Rashid. Breaking the Ledger Security Model.
2018. URL: https://saleemrashid.com/2018/03/20/

breaking-ledger-security-model/.

[24] Riscure. Inspector software. URL: https://www.riscure.com/

security-tools/inspector-sca/.

[25] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, February 1978. URL: http://doi.acm.org/10.1145/
359340.359342, doi:10.1145/359340.359342.

[26] Elena Trichina and Antonio Bellezza. Implementation of elliptic curve
cryptography with built-in counter measures against side channel at-
tacks. In Burton S. Kaliski, çetin K. Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2002, pages
98–113, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

38

https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/
https://saleemrashid.com/2018/03/20/breaking-ledger-security-model/
https://www.riscure.com/security-tools/inspector-sca/
https://www.riscure.com/security-tools/inspector-sca/
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342

Appendix A

Appendix

A.1 Installation and Loading without screen

To install and run the application without the screen connected the following
buttons have to be pressed in combination with the right commands on the
computer connected:

• ”BBBRBB” → Unlock NanoS

• source make env.sh

• ”R” → Remove Application

• wait 5-10 seconds

• ”R” → Install application

• wait for ”application full hash ...” message

• ”R” → Confirm

• ”BBBRBB” → Loading from User Key

• ”RRB” → Navigate and open SampleSign application

• ”R” → Confirm non-genuine application

• python demo.py

• Type input to sign and press enter twice

• ”R” → Verify Message

• ”R” → Start Signing

39

After starting the signing, the scalar multiplications in front will also
start. This is the time to start capturing traces. Some error messages
found:

• If the console outputs ”Dongle not Found”, the device is not unlocked
properly.

• If the installation doesn’t succeed after ”Application Full Hash”, retry
installation.

• If the wrong application is selected the console will output ”Exception:
Invalid status 6e00(Unknown Reason)”.

A.2 Final Setup Specifications

• Picoscope PC Oscilloscope version 3207B with a memory of 512 MS,
bandwidth of 250MHz and a resolution of 8 bits at 1GS/s.

• A Near Field Probe from Langer EMV-Technik, the RF B 3-2.

• Picoscope 6 Software for the 3000 series.

• PA 303 amplifier

• capture.py (https://github.com/wouter-db/Ledger NanoS)

• SampleSign application (https://github.com/wouter-db/Ledger NanoS)

• Samsung Series 5 535U3C running Ubuntu 17.10 (https://www.notebookcheck.net/Review-
Samsung-Series-5-535U3C-Notebook.83159.0.html)

• Ledger NanoS firmware version 1.3.1 (newest firmware 1.4.2)

• Inspector 4.12

• Transcend StoreJet 35T3 HDD extern 8TB 3.5 inch USB 3.0

40

A.3 Shellscripts

A.3.1 make env.sh

#!/ bin / bash
c l e a r
v i r tua l env v i r t u a l e n v l e d g e r
mv . / nanos−secure−sdk . / v i r t u a l e n v l e d g e r
mv . / bo lo s env . / v i r t u a l e n v l e d g e r
mv . / SetEnvironment . sh . / v i r t u a l e n v l e d g e r
mv . / s r c . / v i r t u a l e n v l e d g e r
mv . / demo . py . / v i r t u a l e n v l e d g e r
mv . / Make f i l e . / v i r t u a l e n v l e d g e r
mv . / i n s t a l l . sh . / v i r t u a l e n v l e d g e r
source v i r t u a l e n v l e d g e r /bin / a c t i v a t e
cd v i r t u a l e n v l e d g e r
source i n s t a l l . sh
source i n s t a l l . sh

A.3.2 install.sh

#!/ bin / bash
pip i n s t a l l l e dg e rb l u e
pip i n s t a l l secp256k1
pip i n s t a l l −I ECPy==0.8.1
pip i n s t a l l python−u2 f l i b−host
source SetEnvironment . sh
cd . .
cp −R ./ l edg e rb lu e . / v i r t u a l e n v l e d g e r / l i b /python2 .7/ s i t e−

packages /
cd v i r t u a l e n v l e d g e r
pip i n s t a l l l e dg e rb l u e
make load

A.3.3 SetEnvironment.sh

#!/ bin / bash
c l e a r
export Ledger NanoS path=$ (pwd)
export BOLOS SDK=”$Ledger NanoS path/nanos−secure−sdk”
export BOLOS ENV=”$Ledger NanoS path/ bo lo s env ”
env | grep ”BOLOS”

A.3.4 reset.sh

#!/ bin / bash
mv ./ v i r t u a l e n v l e d g e r /nanos−secure−sdk .
mv . / v i r t u a l e n v l e d g e r / bo lo s env .
mv . / v i r t u a l e n v l e d g e r /SetEnvironment . sh .
mv . / v i r t u a l e n v l e d g e r / s r c .
mv . / v i r t u a l e n v l e d g e r /demo . py .
mv . / v i r t u a l e n v l e d g e r /Make f i l e .
mv . / v i r t u a l e n v l e d g e r / i n s t a l l . sh .
rm −r v i r t u a l e n v l e d g e r

41

A.4 Main.C

unsigned char point [s izeof (C SECP256K1 G)] ;
unsigned char s c a l a r [3 2] ;
for (int i = 0 ; i < 15 ; i++) {

memcpy(point , C SECP256K1 G , s izeof (C SECP256K1 G)) ;
for (int j = 0 ; j < 32 ; j++)

s c a l a r [j] = 0x00 ;
s c a l a r [3 1] = 2 ;

ty = cx e c f p s c a l a r mu l t (CX CURVE SECP256K1, point , s ca l a r ,
32) ;

}

A.5 Capture.py

trac in g con t ex t
tc = {}
tc [” c o l l e c t i o n t i t l e ”] = ”LedgerNanoS capture 0x00 ”
tc [” c o l l e c t i o n d e s c r i p t i o n ”] = ”LedgerNanoS capture 0x00 ,

capture date 2018−05−22”
tc [” c o l l e c t i o n i n pu t r a n g e ”] = range (0 , 16)
tc [” t r a c e s p e r t r a c e s e t ”] = 100
tc [” s amp l e i n t e r va l ”] = 1e−9 # 1 / sampling ra t e : 1GS/s −> 1e−9
tc [” t r a c e du ra t i on ”] = 199000e−6 # Works out to 60000 samples /

t race .
tc [” capture channe l ”] = ”A”
tc [” vo l t age range ”] = 500e−3
tc [” coup l ing ”] = ”DC”
tc [” t r i g g e r v o l t a g e ”] = 0 .0
How many t r a c e s do you need per rap id b l o c k c a l l ?
Keep memory c on s t r a i n t s o f the dev i c e in mind .
tc [” t r a c e s p e r r a p i d b l o c k c a l l ”] = 1
tc [” s c o p e s e r i a l ”] = ”CO130/005”

Do we want to t runca t e the end o f the t race ?
Since the t r i g g e r happens at the end ,
about 35000 samples are supe r f l u ou s .
Truncation makes t race s i z e more manageable .
tc [” t runcate ”] = 0

42

A.6 MakeFile

i f e q ($ (BOLOS SDK) ,)
$ (e r r o r BOLOS SDK i s not s e t)
end i f
i n c lude $ (BOLOS SDK)/Make f i l e . d e f i n e s

Main app con f i g u r a t i on
APPNAME = ”Sample Sign ”
APPVERSION = 1 . 0 . 0
APP LOAD PARAMS = −−appFlags 0x00 $ (COMMONLOADPARAMS)

Build c on f i gu r a t i on
APP SOURCE PATH += sr c
SDK SOURCE PATH += l i b s t u s b l i b s t u s b imp l

DEFINES += APPVERSION=\”$ (APPVERSION) \”

DEFINES += OS IO SEPROXYHAL IO SEPROXYHAL BUFFER SIZE B=128
DEFINES += HAVEBAGL HAVE SPRINTF
DEFINES += PRINTF \ (. . . \)=

DEFINES += HAVE IO USB HAVE L4 USBLIB IO USB MAX ENDPOINTS=7
IO HID EP LENGTH=64 HAVE USB APDU

Compiler , assembler , and l i n k e r
CLANGPATH := $ (BOLOS ENV)/ clang−arm−f r o p i / bin /
GCCPATH := $ (BOLOS ENV)/gcc−arm−none−eabi−5 3−2016q1/bin /

CC := $ (CLANGPATH) c lang
CFLAGS += −O3 −Os

AS := $ (GCCPATH)arm−none−eabi−gcc
AFLAGS +=

LD := $ (GCCPATH)arm−none−eabi−gcc
LDFLAGS += −O3 −Os
LDLIBS += −lm − l g c c − l c

Main r u l e s
a l l : d e f au l t
load : a l l

python −m ledge rb lu e . loadApp $ (APP LOAD PARAMS)
de l e t e :

python −m ledge rb lu e . deleteApp $ (COMMONDELETEPARAMS)
Import g en e r i c r u l e s from the SDK
inc lude $ (BOLOS SDK)/Make f i l e . r u l e

43

	Introduction
	Preliminaries
	Elliptic curves
	Cryptocurrencies
	Wallets

	Side-channel Attacks
	Introduction
	Simple Power Analysis
	Visual Inspections of Traces

	Template Attacks
	Template Building Phase
	Template Matching Phase

	Differential Analysis

	Practical Analysis
	Technical Analysis
	Application
	Setup
	Data collection
	Data processing
	Results and Observations

	Related Work
	Conclusions
	Future Work

	Appendix
	Installation and Loading without screen
	Final Setup Specifications
	Shellscripts
	make_env.sh
	install.sh
	SetEnvironment.sh
	reset.sh

	Main.C
	Capture.py
	MakeFile

