
Bachelor thesis
Computer Science

Radboud University

Xoodoo Trail Analysis

Author:
Constantin Blach
s4329872

First supervisor/assessor:
Joan Daemen

joan@cs.ru.nl

Second supervisor:
Bart Mennink

b.mennink@cs.ru.nl

August 20, 2019

Abstract

This thesis presents a trail analysis of the 48-byte cryptographic permutation
Xoodoo, which was developed by the Keccak team. Xoodoo is a very efficient
permutation, which can easily be used on low-end processors. When this
permutation was designed, no further analysis on its security has been done,
leading to some problems during the permutation for specific cases. These
mainly occur due to symmetric states of the Xoodoo permutation, which
might leak valuable information when exploited correctly. In this research
we created trails, out of the whole trail space, up to a given weight, in order
to find the source of the weaknesses. This analysis shows, that there exists
better Xoodoo configurations than the one, which is currently used. Based
on this, a new Xoodoo-like permutation could be build, which would be
more efficient.

Contents

1 Introduction 2
1.1 What is Xoodoo? . 2
1.2 Permutation rounds . 3
1.3 Making an even better Xoodoo-like permutation 6

2 Preliminaries 7
2.1 What is cryptanalysis? . 7

2.1.1 Differential Cryptanalysis 7
2.1.2 Linear Cryptanalysis 8
2.1.3 Weight of a Trail . 8

2.2 Xoodoo Trails . 9
2.3 Symmetry Properties . 12

3 Research 15
3.1 Adjustments on Xoodoo . 15
3.2 Trail Analysis Results . 15

4 Conclusions 18

A Appendix 21
A.1 Functions added . 21

1

Chapter 1

Introduction

1.1 What is Xoodoo?

Xoodoo is a 48-byte cryptographic permutation designed by the Keccak
team (Bertoni et al.) first presented in 2017 [1]. It was inspired by the pre-
viously developed Keccak-p algorithm [6] to be efficient on low-end proces-
sors, where the number of registers is limited, but also on high-end processors
and in specifically dedicated hardware. The limited number of registers on
low-end processors makes the usage of Keccak-p[1600] and Keccak-p[800] in-
efficient, due to a high amount of swaps in and out of the registers. Xoodoo
however is designed to fit in these types of processors because it needs less
registers than Keccak-p.

The permutation operates on a 384 bit 3-dimensional array, which has
a size of 4 x 3 x 32. This array is the Xoodoo state, which is build by
three equally sized planes stacked above each other, where each is of the
size 4 x 32 (i.e. 128 bits). These planes are labelled by the y-coordinate,
where y = 0 corresponds to the lowest plane and y = 2 to the top plane.
Additionally, the x-coordinate is used to index the lane and the z-coordinate
will describe the bit in each lane (Figure 1.1). Thus, each bit of a Xoodoo
state can be referenced by the coordinates (x, y, z) and a specific column
by (x, z). If we want to describe a lane, we can refer to it using the (x, y)
coordinates accordingly. One Xoodoo state can be seen as a collection of
128 3-bit columns, which are arranged in a 4 x 32 array. These columns
count as one entry of the array, consisting of three bits, each from one of
the three planes. So the value of one column is represented by a 3-bit linear
array, for which the x- and z-value are the same. A toy-sized state, similar
to a Xoodoo state, which uses only 96 bits in a 4 x 3 x 8 array, can be seen
in Figure 1.1. Additionally, different parts of the state a highlighted, such
that referring to them later on will be easier.

2

Figure 1.1: Toy-sized Xoodoo version (96 bits) with different highlights,
taken from [8]

Xoodoo is no cryptographic function on itself, but can be used to build
efficient cryptographic functions. For example, it can be used together with
the Farfalle construction [2] in order to create the deck function Xoofff [9].

Another, more recent example, of the usage of Xoodoo can be found in
Xoodyak, which is a cryptographic primitive used for hashing, encryption,
MAC computation and authenticated encryption (AE) [3].

The Xoodoo permutation is designed in a way, such that each bit in the
Xoodoo state is dependant on many others, leading to a high diffusion in
the state. Xoodoo uses a round function on the state to permute the input,
where the number of rounds is variable and will depend on the construction
in which Xoodoo is used. For Xoofff, Xoodoo has 6 permutation rounds
while for Xoodyak it will even has 12.

During each round, Xoodoo performs a series of rotations, bit-shifts and
bitwise additions on the state. These shift constants, which determine the
bit-shifts during the rounds, were chosen by the designers of Xoodoo on
construction, to hopefully bring the wanted security with them.

1.2 Permutation rounds

As already said, Xoodoo works in rounds which are indicated by Ri, where
i denotes the number of the round. Each round consists of 5 steps, where
we can differentiate between linear- and non-linear steps. Additionally, four
of the five steps of each round are operating on a symmetric basis, which
results in the same computation each round, no matter which bits of the
states are set. According to The Design of Xoodoo and Xoofff [8] the round
function consists of the following steps:

1. a mixing layer θ with the shift offsets (1, 5) and (1, 14)

2. a plane shifting step ρwest with the shift offsets (1.0) and (0, 11)

3. the addition of a round constant ι

4. a non-linear layer χ

5. a second plane shifting ρeast with the shift offset (2, 8)

3

For the steps θ, ρeast and ρwest a shift offset is also given, which defines
the bit shifts. The exact calculations, which are used during the rounds of
Xoodoo, can be seen in Algorithm 1, which was taken from [9].

Table 1.1: Notational conventions for Algorithm 1

A The state A

Ay Plane y of state A

Ay ≪ (t, v) Cyclic shift of Ay moving bit in (x, z) to position (x+ t, z + t)

Ay Bitwise complement of plane Ay

Ay +Ay′ Bitwise sum (XOR) of planes Ay any Ay′

Ay ∗Ay′ Bitwise product (AND) of planes Ay and Ay′

Algorithm 1 Definition of XOODOO[nr] with [nr] the number of rounds

Require: Number of rounds nr
for round index i from 1− nr do A = Ri(A)
A Round Ri is specified by the following sequence of steps:

θ :
P ← A0 +A1 +A2

E ← P ≪ (1, 5) + P ≪ (1, 14)
AY ← +Ay + E for y ∈ 0, 1, 2

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0 ← A0 + Ci

χ :
B0 ← A1 ∗A2

B1 ← A2 ∗A0

B2 ←
←−
A0 ∗A1

Ay ← Ay +By for y ∈ 0, 1, 2

ρeast :
A1 ← A1 ≪ 0, 1
A2 ← A2 ≪ (2, 8)

The effect of θ, χ, ρeast, and ρwest on the Xoodoo state, during one
permutation round, is illustrated in Figure 1.2, 1.3 and 1.4, which are also
taken from [8].

4

Figure 1.2: Effect of θ on a single-bit state

Figure 1.3: Illustration of ρeast (left) and ρwest (right)

Figure 1.4: Effect of χ on one plane

In the ι step, which is not illustrated above, we add a round constant Ci
to the lowest plane of the Xoodoo state, with the y-coordinate y = 0. These
Ci planes, which also have a size of 4 x 32, only have one single non-zero
lane at x = 0, the rest is set to zero. The round constant may be one of
eleven different values, based on the round i we are currently in.

The round function is defined by the sequence of steps ρeast◦χ◦ι◦ρwest◦θ.
For this study however we will re-phase the permutation round as it was done
in [8]. Instead of starting with θ, each round will start with ρeast and end in

5

χ. This makes it possible to group the all of the linear mappings together in
λ = ρwest ◦ θ ◦ ρeast, which lead to the re-phased round function of χ ◦ ι ◦ λ.

1.3 Making an even better Xoodoo-like permuta-
tion

After Xoodoo was published, it was found that the shift offsets, which are
the vectors used during the permutation rounds by θ, ρwest, and ρeast, could
have been chosen differently, leading to better propagation properties of the
permutation. With other words, these shift offsets produce some very bad
patterns when used on 4 rounds of the permutation, which makes it possible
for an adversary to gather information about the initially given data. These
low-weight trails (explained in 2.1.3) can probably be avoided when different
shift constants are used. A trail consists of a series of states, that show the
changes on the input for each step during a round, up until the last round.

To address this problem, a trail analysis has been done to identify weak
shift constants and replace them with better ones. This analysis is an ex-
haustive scan of the trail space of Xoodoo, in which almost all possible
combinations of shift constants have been examined. For each combination,
a 3-round trail was created, which then was rated by the worst trail found,
creating the lower trail bound for that setup, as it was done by Mella et al.
in [10].

This research presents new shift constants, which can be used to build a
new Xoodoo-like permutation with increased 3-round lower trail bounds. If
we use a permutation with better trails, we do not need as many rounds for
the same security, than it is currently done. Thus, one possible consequence
of these increased lower-trail weights might be a reduction of rounds, keeping
the security level but increasing the efficiency.

6

Chapter 2

Preliminaries

2.1 What is cryptanalysis?

In general, cryptanalysis is used to analyse a given cryptosystem carefully
in order to gather information (such as the key or the given input) about
the algorithm, which is supposed to be hidden to an adversary. For the
cryptanalysis of Xoodoo, we were using a differential- as well as a linear trail
analysis approach [10], in order to evaluate the resistance of Xoodoo against
attacks that exploit differential propagation and correlation respectively

2.1.1 Differential Cryptanalysis

For differential cryptanalysis (DC) the analyst has to have the possibility to
input a plain text Pi to the algorithm in order to receive the corresponding
cipher text Ci for that specific input. This is done for many different inputs,
where for each input, the resulting cipher text is recorded. Afterwards pairs
are created, which consists of two input plain texts Pi and Pj , such that each
pair has the same differential value, which is called ∆in, or input difference
[8]. This value is, for example, calculated by Pi ⊕ Pj .

Additionally, we create pairs of output differences, called ∆out using the
same method as for ∆in. This means, we create pairs of (Ci, Cj), which have
the same difference between each other.

Afterwards, we analyse the differential propagation probabilities (DP)
of the differentials (∆in,∆out). This is the chance, that an input difference
of ∆in will also result in a specific output difference ∆out. To calculate this
probability, we count all ∆in and divide them by the number of ∆out:

DP (∆in,∆out) = #∆in

#∆out
.

This probability indicates how often a differential sequence occur in the
state. A higher probability means, that there exists a high amount of pairs

7

(δin, δout) more often than others, which could be exploited to derive infor-
mation the permutation or the plain text. This would be an analysis of
differentials, analysing the dependencies between the in- and output.

For the presented Xoodoo Analysis however, we investigate the DP of
differential trails rather than only differentials. These n-round differential
trails are, as the name already suggests, not only pairs of the two in- and
output-values but a sequence of n round differentials (ai, ai+1), which are
fully specified by the sequence (a0, a1, . . . , an) [8]. Compared to ”only” dif-
ferentials, as mentioned above, we not only compare the differences between
the in- and output of the algorithm but also the differences between each
of the permutation rounds. To analyse the trails in more detail, we also
include the differences after each linear layer λ, where bi = λ(ai). With this
definition, we can represent each trail by (a0, b0, a1, b1, . . . , bn−1, an). For a
full trail Q, we then receive the following representation, as it was done for
Keccak in [5]:

Q = a0
λ−→ b0

χ−→ a1
λ−→ b1

χ−→ . . .
χ−→ an−1

λ−→ bn−1
χ−→ an.

Based on the differential propagation probability of a trail Q, we can
give this trail a weight, as described for the Keccap-p permutation in [4].
This will be explained in more detail in section 2.1.3.

2.1.2 Linear Cryptanalysis

In comparison to DC, linear cryptanalysis (LC) will compare the in- and
outputs bit directly, instead of comparing their differentials [8]. However,
we still try to find trails with high probability occurrences between the in-
and output, where we can derive dependencies between de states [7]. Using
these dependencies, we can again rate a trail by a weight, as explained in
section 2.1.3.

2.1.3 Weight of a Trail

In order to rate the trails found, we give each differential trail a weight
w, which were previously defined by the Keccak team [4]. This weight
corresponds directly to the differential propagation probability of the trail,
as DP = 2−w, meaning that the weight increases with decreasing DP [5].

The weight of the whole trail Q is the sum of the weights of all differen-
tials of the trail, which are called restriction weights wr. These restrictions
weights are based on the differentials (bi−1, ai), which are the Xoodoo states
before (bi−1) and after (ai) the permutations of χ [8]. Based on these weights,
we can estimate the differential propagation probability of that trail, giving
the chance of the differentials (∆in,∆out) resulting in this specific trail. If

8

the weight of a trail is too low, the trail will have a high DP, making it easy
to be exploited in attacks [5].

For this research are interested in 3-round trails Q, which are from the
form:

Q = a1
λ−→ b1

χ−→ a2
λ−→ b2

χ−→ a3, (2.1)

Again, λ is defined by λρwest ◦ θ ◦ ρeast, which are linear functions which
use a shifting offset. The weight of these 3-round trails, which is specified
by w(Q), can be calculated by:

w(Q) = w(a1) + w(b1) + w(a2) + w(b2) + w(a3) + w(b3). (2.2)

For our research purposes, we are searching for the low-weight trails for
each set of shifting offsets. These trails reveal the most information about
the underlying permutation and thus have to be avoided.

For the current 4 x 3 x 32 Xoodoo configuration the lower bound of the
trail weight founds was 36 for 3-round trails [8]. With other words, the worst
trail in the current Xoodoo implementation has weight 36.

2.2 Xoodoo Trails

For the Xoodoo trail analysis we used the Xoodoo software to generate
trails, which was developed by the Keccak team [8]. The given software
however was only able to generate n-round Xoodoo trails up to a given
weight and print them afterwards, thus it had to be modified for this analysis
(as described in 3.1).

For the generation of a 3-round trail, the program first generated a 2-
round trail Q, which was afterwards extended to 3 rounds. These 3-round
extended trails Q′ can either be created by forward- or backward-extension
[5]. For the forward extension, we first generate all trails compatible with
b2 = λ(a2). In the next step we use the resulting b2 in order to append
a3 = χ(b2). The resulting trail is a forward extended 3-round trail Q′,
which has the earlier received 2-round trail up to b2 as leading part.

In comparison to that, we can also extend a 2-round trail using back-
wards extension to a 3-round trail. For this, we first again create a 2-
round trail denoted by Q = (a2, b2, a3), using the notation shown in 2.1.
Afterwards we use χ−1 on a2 in order to find b1 = χ−1(a2). Then, we
can calculate λ−1(b1) = a1. With this, we can create the 3-round trail
Q′ = (a1, b1, a2, b2, a3), which has the previously taken Q as trailing part [5].

These different trails were created for many different Xoodoo configura-
tion, iterating through all interesting shift offsets, which are shown in Table
3.1. A Xoodoo configuration is one specific set of shift offsets, used by θ,
ρeast, and ρwest during the permutation round. These offsets specify, how

9

the bits in the Xoodoo are shifted during the rounds. A different set of shift-
ing offsets could thus lead to a totally different set of trails. The original
shifting offsets by the 4 x 3 x 32 Xoodoo, which are used in Algorithm 1,
are the vectors, specifying the bit shifts.

Additionally, for each set of offsets, the Xoodoo program created differential-
and linear trails, including their corresponding weights.

All in all, leading to 4 different best lower bounds on the weight of the
trails for each set of shifting variables, as it can be seen in Figure 3.2.

This produced an output file, with a listing of the lowest weight found
for each Xoodoo configuration, including the method, with which the trail
was found.

Between each step during the permutation rounds, the current output
was analysed and compared to the previous as well as the next step. De-
pending on these outputs, each round was rated with a weight, which was
determining how much these steps are depending on each other. In the
following Figure 2.1, we can see a three round trail of a 4 x 3 x 8 Xoodoo.

Figure 2.1: Screenshot of an example trail for a 4 x 3 x 8 (96 bits) Xoodoo

When looking at this picture, we see three different states per round,
where the first round is not shown. To bring this in perspective with Figure
1.1, we only see one plane from above here. However, the columns repre-
senting a 3-bit array, which can display the decimal numbers from 0 up to
7, such that 5 in the picture represents a column, where the lowest bit is
1, the bit in between is 0 and the top bis is also 1. So for the first part of
round 1, there are only four columns out of the 32 which are not zero.

In Figure 2.1, we can already see one of the main problems with the
current Xoodoo configuration. When the given inputs for the permutations
rounds are chosen carefully to make this happen, some of the steps during
the rounds does not have any impact at all.

The effect of θ depends on the active columns of the current state, as
seen in Figure 1.2. If the column is active or not depends on the parity of
that column. The column-parity is defined by the number of set bits in that
specific column, where a column at the coordinates (x, z) is defined by the
three bits (a0, a1, a2). A column is called active, it its parity is odd or 1.

10

This is the case, if there is exactly one active bit in the 3-bit array of that
column. On the other hand, if the parity of a column is even or 0, it is
inactive, which occurs when 0 or 2 bits of the 3-bit array are set.

In the example shown in Figure 2.1 we have four even columns in the
first state of round 1, as all 4 columns, which have an entry, are represented
by the 3-bit array (1, 0, 1). The worst case for the θ would occur, if all
columns have an even parity (0), in which θ would be simply the identity-
function, meaning it would not induce any new columns in the next step.
When this event occurs, we say that the state is in the column-parity kernel
[8]. In the optimal state each functions would induce as many bit columns
as possible, keeping the diffusion of the state high and thus decreasing the
DP of a specific trail.

For odd columns, starting from the column at (x, z), the θ-function will
induce this parity to two additional columns, namely (x + 1, x + 5) and
(x+ 1, z+ 14). If it so happens, that these columns are already active in the
current state, θ would also have less or even no impact, just by chance. In
addition to that, if we add another active column at coordinates (x, z + 9),
it will have two impacts on the state. Firstly, it will induce an affected
column at (x+ 1, z + 23), which is not too surprising. Secondly however, it
will, together with the first active column coming from (x, y) cancel out the
induced column at coordinates (x + 1, z + 14). This effect is called a run
[8]. If now, all columns in a state are odd, this run-effect will cancel out
the whole θ-effect, inducing no additional new column. We call that event
a loop [8]. This special cases cannot be avoided, as they are a consequence
of the linear design of the function.

If we look closely to the first round of this three round trail, we can
see that we basically have two times the same pattern. So this shows, that
this specific trail is not a 96 bit trail but only two 48 bit trails, next to
each other. An attacker could use knowledge for his advantage, to craft
a larger width (with a factor of 2n) Xoodoo version with the information
gained from smaller ones, which would be less hard to find as it requires
fewer calculations i.e. computing time. This is called the Matryoshka effect
[4], which is a consequence of the design of the functions θ, ρeast and ρwest.
All of these functions are shift-invariant, meaning that each bit-shift during
the permutation round will impact the same bits relatively speaking for the
size, no matter the width or length the current Xoodoo setup is based on,
as long as it is dividable by a factor of 2.

Figure 2.2 illustrates how the toy-sized 4 x 3 x 8 Xoodoo should look like
on the left. Optimally it is a 3-dimensional matrix spanned by a (0/8) and a
(4/0) vector. However, as the shifts constants are chosen in such a way, the
right state of Figure 2.2 occurs. Instead of having a large 4 x 3 x 8 Xoodoo,
we only have two 2 x 3 x 8 Xoodoo states next to each other, both spanned
by a (0/8) and a (2/0) vector. This halves the weight of this specific trail if
an adversary manages to identify this property. These symmetric properties

11

will be further explained in the next section.

Figure 2.2: Symmetry in comparison, Left: Normal 8 x 4 Xoodoo - Right:
Two symmetric 8 x 2 Xoodoo

2.3 Symmetry Properties

By design, the Xoodoo permutation offers a handful of symmetric schemes,
which can be exploited by an attacker to eventually find trails for Xoodoo.

All of these symmetric state are not avoidable as 3 of the 5 steps (namely
θ, ρwest and ρeast) during the round function operate in a symmetric way.
These symmetric operations lead to the following schemes for a 96 bit
Xoodoo, as seen in Figure 2.3, which are a consequence of the almost purely
symmetric round function.

12

Figure 2.3: All possible symmetric setups of a 96 bit Xoodoo state

The above mentioned steps θ, ρeast and ρwest are all mostly using bit
shifts for its permutations. One plane in Xoodoo can be seen as a infinite
state, which is periodic in the x- as well as in the z-direction, with period
4 and period 32 respectively [8]. This leads to a loop, if the bit shifts of
the permutation-steps reach the maximum width or length of the corre-
sponding Xoodoo plane. These steps are invariant for translations on the
2-dimensional plane, if the vectors, which are used for the permutations,
have the base vectors (4, 0) and (0, 32), which we call the Xoodoo lattice Ξ
[8]. This Ξ defines the period of the infinite Xoodoo state, mentioned above.
So the shifts along any vector in the Xoodoo lattice will map a Xoodoo state
onto itself.

This invariance of the mentioned linear steps in the 2-dimensional (x, z)
direction of Xoodoo results in a 2-dimensional Matryoshka property, which
was explained earlier. In Xoodoo, this means that for a given state A and a
lattice v ∈ V (with v = (xv, zv)), we can express each column (x, y, z) in A
with:

A[(x, y, z)] = A[(x, y, z) + v] = A[(x+ xv, y, z + vz)], (2.3)

13

which has two main consequences. This property holds for every column
in the Xoodoo state A. If the given V is the original Xoodoo lattice Ξ, we
are located in a normal Xoodoo state, with the same properties (width and
length) as the initially given A. However, if the given V is a super-lattice of
the Xoodoo lattice Ξ, the resulting state of 2.3 has additional symmetry in
comparison to its original version [8].

As the 4 x 3 x 32 Xoodoo state uses the base vectors (4, 0) and (0, 32),
which are both a factor of 2, there are a high number of super-lattices of
Ξ. These will each result in its own symmetrical smaller version of Xoodoo.
This could be already seen in Figure 2.3 above, where the tested Xoodoo
version of size 4 x 3 x 8 already spanned six additional symmetrical versions,
which even still have the same size of 96 bits. This is because each super-
lattice V defines an additional symmetry class SV , which is invariant to
any translation in this lattice V [8], leading to fewer bit diffusions by the
permutations steps. By the design of Xoodoo, we cannot find a second,
different V ′ with V ⊂ V ′ with corresponding symmetry class SV ′ , such that
a state invariant along V is also invariant along V ′ [8].

If we would define the symmetry classes by their lattices, we would end
up with a total of 35 smaller versions with less bits, which are all symmetrical
to the Xoodoo with 384 bits. An overview of all existing symmetry classes
can be seen in table 2.1.

Number of symmetry classes 1 3 7 7 7 7 3 1

Number of Bits 384 192 96 48 24 12 6 3

Table 2.1: Number of Xoodoo States for different sizes

These symmetry properties can be used for the cryptanalysis done on
the Xoodoo permutation. The main advantage of this is, that we do not
have to scan as many trails, while still finding the weaker ones. This is a
consequence of the fact, that all trails with a low weight, will have symmetric
states in one or more rounds.

If we perform a cryptanalysis on these smaller versions of Xoodoo, we will
not necessarily find the same trails as in the Xoodoo with 384. However, if we
find a problematic low-weight-trail in the smaller version, we can conclude
that a similar trail will also occur in the original 3 x 4 x 32 Xoodoo version.
This is consequence of the above explained Matroyshka effect.

14

Chapter 3

Research

3.1 Adjustments on Xoodoo

In order to fulfil the research question, I added another function to the
Xoodoo program (given in the Appendix A), which scans the given Xoodoo
configuration until it finds a trail. For each configuration, the scan started
with creating trails up to a weight of 16, which then was increased, until a
trail with the given lowest weight was found. This weight then was noted
in addition to the shift offsets, which were used to create this trail. The
starting weight was set to 16, as we needed the weight to be as high as
possible. If we would find a low weight trails, we would not use this setup
anyway. After a trail was found, the next offset was tested, starting again
with a weight of 16.

As we are looking for the best possible setup for our Xoodoo algorithm,
the current scan is immediately stopped, when a trail is found, which is then
saved to an output file. Using these, we can exclude configurations leading
to low weight trails, such that we only keep the good shift offsets.

For this trail analysis we will use the symmetry properties of Xoodoo
for our advantage. Using the super-lattices of the Xoodoo-lattice Ξ, we can
construct a smaller symmetric state, with the size 1 x 3 x 32, to limit the
scan space. For this smaller Xoodoo version, it is much simpler to generate
all possible trails and thus much faster to find a secure version with only
good trails. This version of Xoodoo, which has only 1 lane (as x is 1),
uses 1-dimensional shifting constant instead of the 2-dimensional shifting
constants used in the 4 x 3 x 32 Xoodoo.

3.2 Trail Analysis Results

In my tests, I iterated through around 33% of all possible interesting shifting
offsets, used in the functions θ, ρeast, and ρwest and analysed the trails
depending on their weight.

15

If a trail for the current configuration was found, the weight was noted
and the next shifting offsets were tested. With these method, I listed all
weights found for each configuration. For the different shifting offsets, I
tried the values, as seen in Figure 3.1.

VariableName UsedInFunction Values

e1 ρeast 2− 31

t1 θ 4, 12, 20, 28

t2 θ 3, 5, 7, . . . , 29

w0 ρwest 1− 31

w1 ρwest 1− 31

Figure 3.1: Different values for shifting offsets

This sums up to a total of around 1.6 million different possibilities. How-
ever, for each possible set of shifting offsets, the program created linear- as
well as differential trails. Additionally, each setup has been tested using
forward- and backward extension (see 2.2), giving each configuration a to-
tal of four different sets we have to test, increasing the number of total
possibilities even further.

For each set of rotation offsets, the following output was generated:

Figure 3.2: Example Output

For these specific shifting variables shown in the picture above, we have
four different worst trail weights, namely 32, 36, 28 and 30. This means,
that for this configuration, the worst trail has weight 28, even though the
backwards-extended differential crypto analysis led to a worst trail weight
of 36, which would be insanely good.

My tests were running for about three months and were stopped when e1
= 10 was about half done. This means, that I only analysed about a third
(34.4%) of the total space. For the tested space, I received the following
results:

16

WorstTrailWeight TimesFound

14 49.789

16 1.745

18 8.398

20 39.175

22 73.951

WorstTrailWeight TimesFound

24 133.480

26 35.190

28 23.962

30 6.760

32 238

Figure 3.3: Number of different trails found

In addition to the results above, we found 1.312 trails of weight 34 and
even 12 times a trail weight of 36. This were however for only one single
trails and not for the whole setup (as shown in Figure 3.1). So we have 238
setup that results in a worst trail weight of 32.

The best setup, which was found during my tests is the one shown below.

34 Di rec t DC e1=4, t1=12, t2=17, w0=25, w1=4
34 Reverse DC e1=4, t1=12, t2=17, w0=25, w1=4
32 Direc t LC e1=4, t1=12, t2=17, w0=25, w1=4
34 Reverse LC e1=4, t1=12, t2=17, w0=25, w1=4
Worst t r a i l found has weight : 32

Using this setup, I found for three of the four cryptanalysis methods a
lower trail bound of weight 34, only one of weight 32. This still results in a
general trail bound of weight 32 for this specific Xoodoo configuration.

Using the symmetry present in Xoodoo, we can also conclude, that such
a setup have to exist for the 3 x 4 x 32 Xoodoo state. If we would extend
this 1 x 3 x 32 Xoodoo with 96 bits back to a full Xoodoo operating on
384 bits, we would multiply the weight we found by 4. This results in a
weight of 128 for a 3 round Xoodoo permutation. Compared to the current
implementation of Xoodoo, where the worst trail for 3 rounds has weight
36, the new worst trail found is 350% more efficient.

However, the configuration found cannot be directly used for the 3 x 4
x 32 Xoodoo but rather shows, that there exists much more efficient setups
than the current one. These will have to use different shifting variables
than shown above, as 1-dimensional vectors cannot be used for the original
Xoodoo.

17

Chapter 4

Conclusions

In this research, a crypto trail analysis on the 48-byte Xoodoo algorithm
has been done in order to analyse its weaknesses and possible prove the
existence of an improved version. To do so, a smaller symmetric version of
Xoodoo with only 96 bits has been analysed, which is much faster while still
disclosing the weakest trails. Following the symmetry behind Xoodoo, we
can use the knowledge gained about the lower-trail-bounds in order to show,
that there exists a better 4 x 3 x 32 Xoodoo configuration, which results
in an increased lower bound for trails weights. This can be used to either
increase the security level of the Xoodoo permutation, without changing the
efficiency of the algorithm, when keeping the same amount of permutation
rounds for the different constructions Xoodoo is used in. Additionally, as
Xoodoo in its current state operates with six permutation rounds for e.g.
the Xoofff-deck-function, the number of rounds can be decreased in order to
make the whole function much more efficient. The analysis has shown the of
a much better Xoodoo versions, which could be achieved by using different
shifting offsets during the permutation rounds.

18

Bibliography

[1] Joan Daemen based on joint work with Bertoni et al. Innovations
in permutation-based crypto, 2017. Presentation 21st Workshop on
Elliptic Curve Cryptography Nijmegen https://ecc2017.cs.ru.nl,
https://ecc2017.cs.ru.nl/slides/ecc2017-daemen.pdf.

[2] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and
R. Van Keer. Farfalle: parallel permutation-based cryptography, 2017.
https://tosc.iacr.org/index.php/ToSC/article/view/855.

[3] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van Ass-
che, and R. Van Keer. Xoodyak, a lightweight cryptographic
scheme, 2019. https://csrc.nist.gov/CSRC/media/Projects/

Lightweight-Cryptography/documents/round-1/spec-doc/

Xoodyak-spec.pdf.

[4] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The keccak
reference, 2011. https://keccak.team/files/Keccak-reference-3.
0.pdf.

[5] J. Daemen and G. Van Assche. Differential propagation analysis
of keccak, 2012. https://link.springer.com/chapter/10.1007/

978-3-642-34047-5_24, In: Canteaut A. (eds) Fast Software Encryp-
tion. FSE 2012. Lecture Notes in Computer Science, vol 7549. Springer,
Berlin, Heidelberg.

[6] G. Bertoni et al. The making of keccak, 2014. https://keccak.team/
files/MakingOfKeccak.pdf.

[7] Howard M. Heys. A tutorial on linear and differential
cryptanalysis. https://pdfs.semanticscholar.org/8c58/

e6cee8b31b8cd040d745b04e7f2f317122fd.pdf.

[8] Seth Hoffert Joan Daemen. The design of xoodoo and xoofff, 2018.
Design of Xoodoo Permutation https://eprint.iacr.org/2018/767.

pdf.

19

[9] Seth Hoffert Joan Daemen. Xoodoo cookbook, 2019. Presentation of
Xoodoo, https://eprint.iacr.org/2018/767.pdf.

[10] Joan Daemen Silvia Mella. New techniques for trail bounds and appli-
cation to differential trails in keccak, 2017. Differential Cryptoanalysis,
TrailWeight Analysis https://eprint.iacr.org/2017/181.pdf.

20

Appendix A

Appendix

A.1 Functions added

i n t i n i t i a t eT r a i l S e a r c h (i n t e1 , i n t t1 , i n t t2 , i n t w1 , i n t w0 ,
i n t propagationType , bool backwardExtension , i n t
extendWeight3R , unsigned i n t& minimumOfFour)

{
const i n t d i rec tReverse Imba lance = 2 ;
const bool inKerne l = true ;
const bool outOfKernel = true ;
const bool bareOnly = f a l s e ;
const bool doExtension = true ;

s t r i n g tempName = ” tempFile ” ;

i n t weightedWeight2R = (backwardExtension == f a l s e) ?
extendWeight3R+directReverse Imba lance :
extendWeight3R−2−di rec tReverse Imba lance ;

XoodooParameters parameters (1 , e1 , t1 , t2 , w1 , w0) ;

unsigned i n t minWeight = 9999 ;
ColoredBitSymmetryClass xoodoo (1 , 32 , parameters) ;

cout << ”∗∗∗ ” << xoodoo << endl ;
XoodooPropagation DCorLC(xoodoo , (XoodooPropagation : :

DCorLC) propagationType) ;
ColoredBitSet b i tS e t (xoodoo , inKernel , outOfKernel ,

bareOnly) ;
CoreGenerationCache cache (DCorLC) ;
// Note : t h i s i s where the c o e f f i c i e n t s on the co s t are

s e t :
CoreGenerationCostFunction co s t (backwardExtension ? 1 :

2 , backwardExtension ? 2 : 1) ;
TwoDimensionalHistogram h i s t (200 , 200) ;
unsigned i n t count = 0 ;

21

Gener i cTree I t e ra to r<ColoredBit , ColoredBitSet ,
XoodooPropagation , CoreGenerationCache ,
TwoRoundTrailCoreFromColoredBits ,
CoreGenerationCostFunction , Gener icProgressDisp lay>

// Note : t h i s i s where the l im i t on the gene ra t i on o f |X
| i s s e t :

t r e e (b i tSet , DCorLC, cost , weightedWeight2R) ;
{

ofstream fout (tempName) ;

whi l e (! t r e e . isEnd ()) {
const TwoRoundTrailCoreFromColoredBits&

core = (∗ t r e e) ;
i f (doExtension)
ex t endTra i lA l l (fout , core ,

backwardExtension , extendWeight3R ,
minWeight) ;

h i s t . h i t (core . weights [0] , core . weights
[1]) ;

count++;
++t r e e ;

}
}

i f (minWeight < minimumOfFour) {
minimumOfFour = minWeight ;

}

re turn minWeight ;
}

void p r i n tS t a t s (i n t e1 , i n t t1 , i n t t2 , i n t w1 , i n t w0 , i n t
s t a t s [2] [2] , ostream& rout , unsigned i n t minimumOfFour)

{
f o r (i n t propagationType = 0 ; propagationType <= 1 ;

propagationType++)
{

f o r (i n t d i r e c t i o n = 0 ; d i r e c t i o n <= 1 ; d i r e c t i o n
++)

{
s t r i n g r e s u l t = std : : t o s t r i n g (s t a t s [

propagationType] [d i r e c t i o n])
+ ((d i r e c t i o n == 0) ? ”\ tD i r e c t \ t ” : ”\

tReverse \ t ”)
+ (propagationType ? ”LC\ t ” : ”DC\ t ”)
+ ”e1=” + std : : t o s t r i n g (e1)
+ ” , t1=” + std : : t o s t r i n g (t1)
+ ” , t2=” + std : : t o s t r i n g (t2)
+ ” , w0=” + std : : t o s t r i n g (w0)
+ ” , w1=” + std : : t o s t r i n g (w1) + ”\n ” ;

rout << r e s u l t ;

22

rout . f l u s h () ;
}

}
s t r i n g al lMin = ”Worst t r a i l found has weight : ” + std : :

t o s t r i n g (minimumOfFour) + ”\n\n ” ;
rout << al lMin ;
rout . f l u s h () ;

}

void analyzeParameters (const CommandAndParameters& cap)
{

s t r i n g f i leName = ”maxWeight . txt ” ;
std : : o f s tream rout (f i leName) ;
t ry
{

const i n t extendWeight3R = cap . params [0] ;
(void) cap ;

f o r (i n t e1 = 3 ; e1<=31; e1++) // e1 2−31
{
f o r (i n t t1 = 4 ; t1<=28; t1=t1+8) // t1 4 , 12 ,

18 , 20 , 28
{
f o r (i n t t2 = 3 ; t2 <= 29 ; t2 = t2 + 2) // t2

3 , 5 , 7 , . . , 2 9
{
f o r (i n t w1 = 1 ; w1 <=31; w1++) // w1 1 , . . , 3 1
{
f o r (i n t w0 = 1 ; w0<=31; w0++) // w0 1 , . . , 3 1
{
//Loop over propType and d i r e c t i o n s
unsigned i n t minimumOfFour = 9999 ;
i n t t r a i l S t a t s [2] [2] ;
f o r (i n t propagationType = 0 ; (propagationType <=

1) ; propagationType++)
{
f o r (i n t d i r e c t i o n = 0 ; (d i r e c t i o n <= 1) ;

d i r e c t i o n++)
{
i n t runningWeight = extendWeight3R ;
bool backwardExtension = (d i r e c t i o n == 1) ;
i n t r e s u l t = 9999 ;
whi l e (r e s u l t == 9999)
{
r e s u l t = i n i t i a t eT r a i l S e a r c h (e1 , t1 , t2 , w1 , w0 ,
propagationType , backwardExtension ,

runningWeight ,
minimumOfFour
) ;
t r a i l S t a t s [propagationType] [d i r e c t i o n] = r e s u l t ;
i f (r e s u l t == 9999)
{
runningWeight += 2 ;

23

cout << ”No t r a i l s found . Trying again with
weight ” + std : : t o s t r i n g (runningWeight) + ”\
n ” ;

}

}
}
}
// Pr int s t a t s f o r cur rent xoodoo con f i g u r a t i on

to output f i l e
p r i n tS t a t s (e1 , t1 , t2 , w1 , w0 , t r a i l S t a t s , rout ,

minimumOfFour) ;
}
}
}
}
}

}
catch (Exception e)
{

c e r r << e . reason << endl ;
}

}

24

