
Bachelor thesis
Computer Science

Radboud University

Writing with Dobot Magician

Author:
Dennis Kleverwal
s4598164

First supervisor/assessor:
dr. P.W.M. Koopman

pieter@cs.ru.nl

Second assessor:
dr P.M. Achten

P.Achten@cs.ru.nl

April 4, 2019

Abstract

In this thesis a solution is given to write on the curved surface of a cylin-
drical object in personal handwriting with the Dobot Magician. The Dobot
Magician is a robotic arm developed for practical education by the company
Dobot. The Dobot Magician can not turn its arm aside, so a non trivial
solution was needed. The points to control the Dobot Magician are created
by converting png images of characters to bmp files and trace those with
autotrace to get svg files. Those svg files are used to obtain coordinates,
which are send to the Dobot Magician by API calls provided by Dobot.
Writing in personal handwriting is tried, but this is not fully accomplished.
So, characters in computer generated font are used for the result. Writing on
a curved surface is solved by turning the object when a threshold is reached
with the suction cup of the Dobot Magician in a separate standard.

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Dobot Magician . 5

2.1.1 Specifications of Dobot Magician 5
2.1.2 Ways to control Dobot Magician 6

3 Programming language 8

4 Controlling the Dobot Magician with script 10

5 Representation of characters 13
5.1 Input file format . 13
5.2 File format for coordinates . 14
5.3 Converting png to svg . 14

5.3.1 Potrace . 15
5.3.2 Autotrace . 15
5.3.3 Centerline-trace extension for Inkscape 15
5.3.4 Tool choice . 16

5.4 From svg file to usable points 16

6 Writing words 18
6.1 Writing an character in a with computer generated font . . . 18
6.2 Writing a word . 19

6.2.1 Spacing between characters 19
6.2.2 Putting characters on one line 19
6.2.3 Iterating over the characters 20
6.2.4 Scaling when out of bound 20

6.3 Writing words in personal handwriting 20

7 Writing on a curved surface 22
7.1 Turn the curved object . 22

7.1.1 Implementation 1: write and turn at the same time . 23

1

7.1.2 Implementation 2: Turn last point before threshold to
starting point . 24

7.2 Writing a whole word on a curved surface 26

8 Future Work 28

9 Related Work 29

10 Conclusions 30

A Appendix 32
A.1 dobot.py . 32
A.2 DobotControl.py . 36

2

Chapter 1

Introduction

The Dobot Magician is a robotic arm of the company Dobot, developed for
practical training education purposes. Through the variety of extensions,
the small size and the relatively low cost, is the Dobot Magician also usable
for a lot of other projects. The Dobot Magician is relatively new, what
makes that there is not that much known about the performance of the
Dobot Magician beside the specifications Dobot wrote on his own website.

One of the things Dobot Magician can do is writing on flat objects. In
this thesis we research whether the Dobot Magician is able to write on a
curved surface of a cylinder shaped object and whether this can be done in
personal handwriting. So, the research question is:

How can the Dobot Magician write on a curved surface in someones
personal handwriting?

Writing on a curved object with the Dobot Magician is not trivial, be-
cause an 2D images has to be written in 3D on a cylindrical object and the
arm of the Dobot Magician can not turn aside to stay (almost) perpendic-
ular to the surface. Instead of turning the pen aside, the cylindrical object
will be turned. Doing it this way, the Dobot Magician can write always from
top and thus (almost) perpendicular.

Writing in a personal handwriting is also not trivial, because the ink of
the pen and the lines that are not smooth can cause multiply problems.

To get a answer on the research question, we need at least answers on
the following questions:

• Which programming language is most usable for programming the
Dobot Magican?

• How can the Dobot Magician write in someones handwriting?

• How can the Dobot Magician write on a curved surface?

3

Through the process of researching the setup as shown in figure 1.1 is
build in different steps.

The other part of this thesis looks like this: Chapter 2 tells something
more about the Dobot Magician. Chapter 3 gives the supported program-
ming languages and the program language choice for this thesis. The mode
to control the Dobot Magician in this programming language is chosen and
the most used functions in this mode are explained in Chapter 4. Chapter
5 explains which file formats are used to represent the characters and which
tool is used to convert. It also covers the parsing of the svg files to get usable
points of them. How to write a word in personal handwriting with those
points is described in Chapter 6. However writing in personal handwriting
is not accomplished, because lack of time, the stages before are. Chapter
7 is about the implementation of the algorithm to write on the curved sur-
face of a cylindrical object. Chapter 8 is the future work chapter where is
told what could be improved and what still needs to be finished. Chapter
9 shows where this thesis is comparable to. The last chapter is Chapter 10,
where the conclusion of this thesis is given.

(a) Setup from the side.

(b) Setup from above.

Figure 1.1: Setup of the Dobot Magician.

4

Chapter 2

Preliminaries

2.1 Dobot Magician

To understand this thesis better, it is important to know the specifications
and the ways of of controlling the Dobot Magician. This is stated out in
this subsection of the preliminaries.

The Dobot Magician (figure 2.1) is a small robotic arm developed for
practical training education, but can also be used for other kind of projects.
Dobot Magician can use its different end tools to do different tasks, such
as printing, laser engrave, writing and pick up something with the gripper
or suction cup. Those tools are delivered with the Dobot Magician, but
the Dobot Magician could also be extended with a micro controller or other
kinds of hardware.

Figure 2.1: The Dobot Magician with the pen end tool.

2.1.1 Specifications of Dobot Magician

To work with the Dobot Magician, it is important to know what the Dobot
Magician is able to do physically and what not.

5

The size of the Dobot Magician is 158mm x 158mm, but when the arm
stretches out the radius becomes 320mm.

To achieve this reach among other things, the Dobot Magician has in
total four joints driven by servo motors. The first three joints are shown
in figure 2.1. Those joints causes that the Dobot Magician can move in
three different directions: x-, y-, and z-direction. The angle of the joints are
limited and are as follow:

• J1: -90° to 90°

• J2: 0° to 85°

• J3: -10° to 95°

The fourth joint exists only if the gripper or suction cup is used. The
angle reach of those two end tools is -90° to 90°.

The servo motors for the joints have a maximum speed. The servo
motors in the Dobot Magician have a maximum speed of 320°/s and the
servo motor in the gripper and suction cup have a maximum speed of 480°/s
at a workload of 250 g. The maximum workload of the Dobot Magician is
500 g.

2.1.2 Ways to control Dobot Magician

Dobot provides also DobotStudio which could be downloaded from the web-
site of Dobot[5]. DobotStudio is a GUI were the user could use the Dobot
Magician in 8 different ways, which are listed and explained very short be-
low:

• Teaching and Playback - In this part of the GUI, the user could create
a program for the Dobot Magician by moving the arm to the right
places by hand. Every time the unlock button to free up the motors in
the inflection points is released, the program will save the current state
(Teaching). After this teaching part, the user can play the program
and the Dobot will go to every point saved before (Playback).

• Write and Draw - The user could draw and write with this part of
DobotStudio, as the name reveals already. This could be done by
dragging or inserting images or text into the semicircle. This semicircle
is the reach of the Dobot Magician. After clicking ”start”, the Dobot
Magician will draw all the things dragged on the screen.

• Blockly - The user could code their own program for the Dobot Magi-
cian here, with the language Blockly. This is a language with literally
blocks of code which could be dragged in or below each other.

6

• Script - A Python program could be written here to control the Dobot
Magician.

• LeapMotion - The Dobot Magician could be controlled by motion in
this part of Dobot Magician. Hold your hand above the motion censor
and move it after. This will cause that the head of the arm follows the
movements of the hand. By closing the hand, the gripper will close or
the suction cup will suc. Opening the hand does the reverse.

• Mouse - The user could use the mouse in this part of the GUI to control
the Dobot Magician. After typing ”v” the head of the arm will follow
the mouse.

• LaserEngraving - This part of the GUI is as the name tells to engrave
with the laser. It works the same as Write and Draw, but you could
not write words or sentences in it.

• 3DPrinter - Here the firmware of the 3D printing head will be loaded.
With help of this firmware the objects could be printed.

Beside DobotStudio, the Dobot could also be controlled by programs in
various programming languages via an API/communication protocol. Over
20 programming languages are supported, which is covered in chapter 3. The
Dobot Magician has also 13 extensible interfaces to connect the end tools
and hardware written about before. This makes that the Dobot Magician
together with the high amount of programming languages could be used
easily for a diversity of projects.

7

Chapter 3

Programming language

In this chapter we state out the different programming languages usable and
motivate the choice of the programming language used in this project.

Dobot Magician supports, as said before in section 2.1, over 20 pro-
gramming languages according to their website. However, only 15 names
of languages (and software stacks) can be derived of the demo projects on
their website[5]. Those are:

• Scratch

• Python

• Java

• C++

• LabVIEW

• Visual studio C++

• C#

• Visual Basic

• Qt5.6

• ROS

• STM32

• Arduino

• IOS

• Android

• Matlab

Demo projects are downloadable for most of those programming lan-
guages via the website of Dobot. The benefit of the demo projects is the
module they provide. The functions in the module are created to control
the Dobot in that specific programming language. All languages could use
JOG(does only a step in one direction per API call), CP(target point or
increment can be given in this mode), ARC(to move the arm from point
to point in an arc) and PTP(Point To Point) mode to communicate the
movements from the computer to the Dobot Magician, so this makes no
difference. It is obvious to choose one of those languages which has already
the code for the API calls, because it less work programming and there is
enough to choose from.

The best language to choose of the languages named before is the lan-
guage which the programmer likes the most, because all the programming
languages can use the API calls. In this case Java or Python are preferred.
Python is already used as script language in DobotStudio as said before in

8

section 2.1.2. For this reason this seems to be the best language of the two
to work with. Also there are slightly more general Python libraries avail-
able than general Java libraries, which could make the programming easier
in the way of less time consuming. The reason for programming outside
DobotStudio is because other IDEs are more preferred.

9

Chapter 4

Controlling the Dobot
Magician with script

In this chapter the mode choice is made and explained. After this, the
most important and the most used commands in this thesis of this mode are
explained to get an idea of how they work and how they are supposed to be
used.

The PTP mode will be used in this thesis. The PTP mode has different
movement types, namely MOVJ, MOVL and JUMP. Those three movement
types have also a subdivision, namely moving on the basis of a new point,
joint angles or increments of points. MOVJ goes from point A to point B
and does not care about the path in between. MOVL goes from point A to
point B in a straight line. JUMP goes also from point A to point B in a
straight line, but the end of the arm goes first up, does then the line and
after the line the arm goes down. The JUMP movement type is very handy,
because there will be lines that are not connected, for instance the character
i. To go from the dot to the line, the pen has to go up first before it moves.
Otherwise the Dobot Magician draws a line between them. The other modes
does not have this movement types.

CP mode is on a second place, because CP mode could also move between
two points, but there is no jump movement type and otherwise more API
calls are needed to achieve this. JOG and ARC are not an option. The
Dobot Magician has to make a lot of diagonal movements, which results
in a lot of API calls with JOG. ARC is not an option, because characters
consists not only out of circles and we do not want to use multiple modes.
Otherwise the program to write words will get more complicated.

The dobot files in the demo projects consists a variety of functions and
enumerations. The enumerations are mostly used for choosing a certain
state of the Dobot Magician. The functions in the module are in general
for connect and disconnect the Dobot Magician and change the state with
getters and setters. Not all those functions are needed for this thesis, because

10

we chose the PTP mode and there are also for instance functions for setting
up a WiFi connection and for the other modes.

Some functions will be used more than others. The ones that are most
important in this thesis are pointed out shortly[1]:

• ConnectDobot/DisconnectDobot - To use Dobot Magician, a connec-
tion is needed between the Dobot Magician and the computer. The
baud rate that needs to be set to connect is 115200 bps for USB. For
disconnection nothing is needed.

• SetQueuedCmdStartExec/SetQueuedCmdStopExec - Those functions
are needed to start and stop the queue with instructions for the Dobot
Magician. They are not needed if the choice is made to do not queue
them, but execute them immediately. The queue is needed for move-
ments and setting parameters to execute them after each other. Oth-
erwise the Dobot Magician will execute those command when the com-
mand before is not ready yet.

• GetPose - This function returns the coordinates of the different axis.
It is important to know where the arm is at the start of the program.
If only two of the three axis of the coordinate need to change, the
other one needs to kept the same. This is only possible if this axis is
known on forehand.

• SetPTPCmd - This function takes a mode and x, y and z coordinates,
a head parameter(which is an angle) and a queue parameter. To move
the Dobot Magician to a certain point with the pen, the x, y and z
coordinates of this point needs to be filled in as parameter. x, y and z
could also be angles dependend on which mode is used. The mode is
the movement type which are explained above. The head parameter
has only effect if the gripper or suction cup is connected, because those
tools can only turn their head. The pen has no motor to turn around,
so it can not. The queue parameter is to state if a command needs to
be executed immediately or after all commands are called and queue
it till then.

• SetEndEffectorSuctionCup - This function takes especially the param-
eters enableCtrl and suc, which are two booleans to put the air pump
on or off and to tell the pump that it has to suc or blow.

• dSleep - This function could be used to create more time between
different commands, like wait till the queue is empty before discon-
necting.

To give an example of using those PTP commands, example code is given
listing 4.1 which draws a square of 10mm x 10mm. Set up and break down
the connection is included. Setting all the starting params is let out.

11

1 #se t up the connect ion
2 api = dType . load ()
3 s t a t e = dType . ConnectDobot (api , ”” , 115200) [0]
4
5 i f s t a t e == dType . DobotConnect . DobotConnect NoError :
6 #get the cur rent p o s i t i o n
7 x , y , z , rHead = dType . GetPose (api)
8
9 #code to draw a square o f 10mm x 10mm

10 dType . SetPTPCmd(api , dType .PTPMode .PTPMOVLXYZMode, x +
10 , y , z , rHead , 1)

11 dType . SetPTPCmd(api , dType .PTPMode .PTPMOVLXYZMode, x +
10 , y + 10 , z , rHead , 1)

12 dType . SetPTPCmd(api , dType .PTPMode .PTPMOVLXYZMode, x , y
+ 10 , z , rHead , 1)

13 l a s t i nd ex = dType . SetPTPCmd(api , dType .PTPMode .
PTPMOVLXYZMode, x , y , z , rHead , 1)

14 dType . SetQueuedCmdStartExec (api , l a s t i nd ex)
15 whi l e l a s t Index [0] > dType . GetQueuedCmdCurrentIndex (api)

[0]
16 dType . dSleep (100)
17
18 #break down the connect ion
19 dType . setQueuedCmdStopExec (api)
20 dType . d i sconnectdobot (api)

Listing 4.1: Draw a square with PTP mode in python

12

Chapter 5

Representation of characters

In this chapter we will decide about the representation of the characters.
The algorithm that we are creating for writing needs some input to know
how it has to write the different characters. There exists a lot of different
file formats with different properties, but which one suits the best. Two
different file formats are chosen to make use of the different properties of
the two different file formats.

The Dobot Magician needs coordinates or angles to move, so we could
choose immediately a file format that is based on points (vectors). However,
one of the goals is writing words in handwritten font, so the characters have
to be photographed or scanned in. Pictures and scans are never vector
based, but they are bitmap based. A conversion is needed between the
bitmap based file format and the vector based file format to use them both.

5.1 Input file format

The input file format of the algorithm that will draw the characters is png.
Png is chosen as input for a few reasons. First of all, when the Dobot
Magician writes in personal handwriting, pictures of characters are used.
So, a file format based on pictures should be the input of the algorithm that
controls the Dobot Magician. Png is one of this file formats together with
jpg. Second, using a widely used format ensures that the program could be
extended easily for other purposes by other people.

Jpg was also an option, but after comparing both, png was a better
option[8]. Jpg pictures are of less quality, because they are lossy compressed.
Also a disadvantageous property is that the lossy compression could not be
reversed. This makes that the jpg files can not be converted to bmp, which
has no compression. Why a conversion to bmp is needed, is explained in
Section 5.3.

A disadvantage of png over jpg is the higher amount of memory they
use. Even though the memory size of png is bigger as jpg, the difference

13

is relatively small. The files are local on a computer, so the difference is
negligible.

5.2 File format for coordinates

On the other hand, a file format is needed that consists of points, because
the Dobot Magician could only move with coordinates or arm angles given.
DobotStudio has already the ability to draw images and characters with
the Dobot Magician. Those images or characters have to be of svg, plt or
dxf format, because those formats are based on vectors which are almost
points. Svg stands for scalable vector graphics and is the open standard
for vectors. Plt is a vector based plot file developed by Autodesk. Dxf is
a drawing exchange format for 3D and also developed by Autodesk. Dxf is
mostly used by CAD programs.

Bmp is not based on vectors, but is also supported. DobotStudio con-
verts the bmp images to svg format to use them. Png and jpg are also
allowed, but then DobotStudio converters the file also to svg format first.
In addition to the vector file formats mentioned before, there are a lot more
vector based file formats, such as fig, sk, ai, wmf, cgm, ps, eps, emf and sk1.
Most of those file formats are specific developed for certain programs.

However DobotStudio could convert images to vectors, it could not be
used for the conversion. The reason for this is that there is no way to convert
the images in the write and draw part and program around it, because pro-
gram is in another part of DobotStudio. DobotStudio has also no command
line instructions to use its conversion ability.

So, to use the input file format, a conversion is needed from png to one
of the vector based file formats mentioned before by another tool.

5.3 Converting png to svg

After some search on the web, for tools or python packages to convert images
from png to a vector based file format, it was clear to convert to svg. Most
of the file formats were especially for specific programs. Svg is the most
general file format, because it is the open standard. Also there were a lot
of suggestions for converting png to svg. Three tools are found that can
convert png files or bitmap files (which is the raw version of a png file) to
svg files. They are usable in python or in command line and thus also in
python. This was a requirement.

Only one of the three tools could take a png file directly as input. The
other two tools can only use bitmaps(bmp) files. This means that they need
a step in between. Converting to bmp before will obvious be this step. This
is not difficult, because png files are basically compressed bmp files. There
are already python packages that can convert png files to bmp files. The

14

one that is used for this thesis is Pillow[7]. After converting the png file to
bmp, the other two tools can also be used. An example of a png/bmp image
to compare with the outcome of the different tools is shown in 5.1a. This
image is shown for both formats, because they look exactly like each other.

5.3.1 Potrace

Potrace is a tracing tool for creating vectors out of bitmaps[9]. A disadvan-
tage of this tool is that it traces the outlines of an image. An image of a
single lined character will be converted to a double lined character. This is
not how it should be, because the images has to be the same as the original
character.

Even though it does not the right thing that is needed, it creates really
good vectors which looks almost exactly like the original character. An
example of a potrace result is in figure 5.1b. This image is bigger here,
because it is stretched out since it has no background. In the file it is the
same size as the png.

5.3.2 Autotrace

Autotrace[2] traces the images quite well and gives a reasonable output
svg. It is quite hard to find the right settings for the thresholds and other
parameters. When the right settings are found for a character, it could be
that they mess up another character.

There is no python import for autotrace, so there is a sub process needed
to use autotrace with bash commands in the background. An example of a
svg traced by autotrace is shown in figure 5.1c.

Autotrace creates also some noise in colors other than the black color of
the character, so the parameter -color-count is set to 2, which shows only
the two most used colors. Actually it should be set to 1, but this will filter
out the color that occurs second most, which is the black colored character.
The color that occurs the most is a random white line in the background.
This white path is also visible in figure 5.1c. The white path can be filtered
out very easily in python by checking the hexadecimal color value when
iterating over the paths, so it does not matter.

5.3.3 Centerline-trace extension for Inkscape

The centerline-trace[4] extension for Inkscape is also a tracing tool for cre-
ating vectors out of bitmaps. This program makes use of autotrace and
traces the center of the characters, but the outcomes of the centerline-trace
extension does not even look like the original character. An example of a
svg traced by the centerline extension of Inkscape is shown in figure 5.1d.
This image is bigger here, because it is stretched out since it has no back-
ground. In the file it is the same size as the png. The svg image looks like a

15

drawing of a child. This is strange, because the examples that were given in
the README file looks exactly like the input png images. It is also strange
that autotrace creates images which look like more on the original one in
comparison to the centerline-trace that makes use of autotrace.

5.3.4 Tool choice

In advance the centerline-trace extension for inkscape thought to be the
best, but the output was not as expected. Potrace returns really good svg
files, but the characters are double lined. This is not what is needed, so
potrace is not a option. In the end autotrace gives the best result that are
the most equal to the original characters. For this reason autotrace is used
as tool to convert the bmp file into a svg file.

(a) Character ’a’
in png/bmp for-
mat.

(b) Character
’a’ traced with
potrace.

(c) Character ’a’
traced with au-
totrace.

(d) Character
’a’ traced with
centerline-trace.

Figure 5.1: Character ’a’ traced by different tools.

5.4 From svg file to usable points

The svg file, which is written in XML contains paths with points, but the
points in between are also needed. The points in between lay not always
on a straight line between the two points, but can also lay on a circle or on
another shape. The kind of shape between the two points is indicated in the
svg file by a character. Figure 5.2 shows a svg file with its corresponding
image. If a line was drawn between the four points in the file in figure 5.2a,
then the image was never shaped like in figure 5.2b. They will have spikes
in that case.

To obtain enough points of the path to represent the image well, the
function svg2paths2 of the svgpathtools[10] package is used. This function
reads all the paths and creates sub paths from the svg file, which are called
segments. A segment is exactly one shape. The function saves them in a
2D array as a list of paths containing lists of segments.

16

To get the points of the segment, the function point() is used on the
segments with a decimal number as parameter. This number should be
greater or equal to 0 and smaller or equal to 1 to get the right points. The
segments have a polynomial representation, which is used together with the
parameter to get the point. So, for example filling in 0.5 returns the point
exactly at the middle of the segment.

The output of the point function is still not directly usable, because
they are returned as a complex number, namely (x+yj). This is an easy
way to store an x- and y-coordinate without using a tuple. After separating
the complex number into two parts, a real part which is the x-coordinate
and a imaginary part which is the y-coordinate, there are finally usable
coordinates.

(a) Svg file.
(b) Corresponding image
of svg file.

Figure 5.2: Svg with its corresponding image.

17

Chapter 6

Writing words

Now it is the task to write the words in personal handwriting in 2D. This
is build up in three steps to make it easier. The first step is writing a
single character in a with computer generated font. If a single character is
succeeded, a whole word is the next step. The last step is writing the word
in personal handwriting, but after a few weeks this seems to take too much
time. The font is chosen for the steps before writing in personal handwriting,
because the color of the characters is equally distributed and the characters
are well shaped. In this way, it becomes easier to accomplish the main
structure of the algorithm before focusing on the personal handwriting.

6.1 Writing an character in a with computer gen-
erated font

The goal now is writing a character with the points obtained from the svg
file, in the way explained in section 5.4.

However, those are relatively to the upper left corner of that file, which is
point (0,0). So, if the points are fed to the setPTPCmd function from Chapter
4 to move the arm of the Dobot Magician, then the Dobot Magician will
not start writing at the point where the pen is put down to write. The first
point of the first segment is somewhere else then the pen is.

To solve this, the points should be relative to the pen instead of relative
to point (0,0). This is done by subtracting the first point of the character
from all the points by subtract the x-coordinate from the x-coordinate and
the y-coordinate from the y-coordinate. Adding the start position of the
pen to the relative positions to the pen will give the right positions.

When using the coordinates of those position in the setPTPCmd function,
it turns out that the x-coordinates should be put on the spot of the y-
coordinate and the y-coordinate on the spot of the x-coordinate. This is
caused by the fact that y is the vertical axis and x the horizontal in the svg
file (figure 6.1a), while for the Dobot Magician it is the other way around

18

(figure 6.1b).

(a) X and Y direction of
svg file. (b) X and Y direction of Dobot Magician.

Figure 6.1: X and Y directions.

6.2 Writing a word

Writing words in 2D is in basic the same as writing a character in 2D. The
difference is adding space between the characters, get the character at the
same height, iterating over the characters and add some checks to scale the
word when it does not fit on the cylindrical object or is outside the reach of
the Dobot Magician. The changes follow in the subsections.

6.2.1 Spacing between characters

Adding space between characters is not as easy as moving the pen a constant
distance aside. The pen does not always end at the most right point of a
character and does also not begin always at the most left point of a character.
This will cause different distances between characters if only a constant is
used. To solve this, the y-coordinate of were the pen ended in the left
character is subtracted from the highest y-coordinate in this character. Then
the space between the characters is added. The last step is adding the result
of the lowest y-coordinate of character on the right minus the y-coordinate
of the begin point of the character on the right.

6.2.2 Putting characters on one line

The begin points of the characters are not on the same x-coordinate as the
x-coordinates of the the end point of the characters before. If only the y-
coordinate changes to write the next character, then the characters will not
be on one line.

19

To correct this, a correction value is calculated for every character and
added to its x-coordinates. This is done by taking the highest x-coordinate
for every character and subtract the highest x-coordinate of the first char-
acter. The highest x-coordinate is used to get the bottoms of the characters
on one line instead of the lowest, even though it is against intuition. The
reason is that the coordinate system of the Dobot Magician is based on its
own point of view and not the users point of view.

6.2.3 Iterating over the characters

For every character in the word there is a check for existence of the cor-
responding svg file to save resources. If it does not exists, then it will be
created with autotrace, which is the chosen tool in section 5.3. The sec-
ond step is getting the coordinates needed for the corrections, explained in
the previous two subsections. Third step is writing the actual character
as described in section 6.1. The last step adding the correction for the y
direction.

The code of writing a character is slightly changed too. Every first point
is done in JUMP mode instead of MOVL mode, because the pen is still on
the endpoint of the character before and has to go to the begin point of the
next character. Those point may not be connected, so the Dobot Magician
has to make a jump to the begin point of the next character.

6.2.4 Scaling when out of bound

The servo motor inside the suction cup end tool can only turn 180 degrees as
written before in 2.1.1. This means that a very long word can not be written
down on the cylindrical object, because the suction cup can not turn further.
To solve this, the characters need a scale down to fit. However, there was no
time left to implement this. The text can still be scaled by a multiplication
with a scaling factor, but only manually with a command line parameter.

The idea was to calculate the total width of the word in current state and
check if this fits on half of the object. If not, the points are multiplied with
a scaling factor, calculated through dividing the half of the circumference
by the total length of the word.

6.3 Writing words in personal handwriting

Writing words in personal handwriting instead of a with computer gener-
ated font starts with switching the images of the with computer generated
font with those of the handwritten ones. Very quick turned out that the
conversion of the image went not as it supposed to be. The lines of the pen
are not equally filled with ink, shown in figure 6.2a. This causes outliers(in
the blue line), shown in figure 6.2b. The grey colored lines created by the

20

color differences in the paper are not a problem and can simply be filtered
out by checking the color of the paths.

Solving those outliers to write in personal handwriting will take to much
time, so it is not accomplished. Even it seems to be a small step to go from a
word in a with computer generated font to a word in personal handwriting,
it costs a lot of time.

(a) Character ’a’ in png
file format.

(b) Character ’a’ in svg
file format.

Figure 6.2: Handwritten character.

21

Chapter 7

Writing on a curved surface

To write on a curved surface of an object, the pen need to go up and down
if the pen is above to the surface of the object. The Dobot Magician is able
to do this, but it can not see how far it has to go up or down.

Also a problem is the pen that can not be turned on its side to stay per-
pendicular to the surface. So, the Dobot Magician need to write in another
way as a person does (turn their wrist to keep the right angle between the
pen and the surface). A way to write on a curved surface is to turn the
object in the y-direction (horizontal) and let the arm of the Dobot Magician
only move in the x-direction (vertical). In this way, the pen is always on the
highest point of the curve and the height will not differ. This makes that
the arm does not have to move in the z-direction (up or down).

7.1 Turn the curved object

To turn the cylindrical object, the suction cup of the Dobot Magician is
used. The suction cup is supposed to be used at the end of the arm, but
is place in a self made standard in front of the Dobot Magician(figure 7.1).
The suction cup of the Dobot Magician has a very short cable, which is
handy if it is used at the end of the arm. But for the purpose of writing on
a curved surface the suction cup is not attached to the end of the arm. This
will make that a longer cable is needed.

The complete cable with connectors attached is not to buy, so we had to
make it our self. The output port on the Dobot Magician for the suction cup
is a male jst xh-2.54 connector and the cable attached to the suction cup has
a female connector. So, a cable from female to male is needed. The female
connectors could only be connected to cable, so two female connectors, one
female to male connector and some cable are needed to create the right
extending cable.

22

Figure 7.1: Standard for suction cup.

Figure 7.2: Suction cup attached to
servo motor.

7.1.1 Implementation 1: write and turn at the same time

The first implementation is moving the arm only in the x-direction and the
cylindrical object with the suction cup in the y-direction. Implementing was
not difficult, because the angels to turn the suction cup could be calculated
easily from the distance in y-direction. This is done by taking the inverse
sinus of the distance divided by the radius. The result is in radians, so it is
converted to degrees. Those degrees are added to the current angle to get
the new angle. An example of this calculation is in listing 7.1. The radius is
a default value of 30 millimeters, because we used a object with this radius,
but could be set to another value via a command line parameter.

1 moveRad = math . a s in ((YNew − YOld) / r)
2 moveDegree = math . degree s (moveRad)

Listing 7.1: Example of calculating the angle out of the y-coordinate

Although very soon after implementing this, some difficulties came up,
which were very hard to solve. If the arm writes on the object, it pushes
the object only down and does only draw scratchy lines, because it can not
give enough pressure on the object. The object is pushed down, because the
suction cup is made of rubber which is very flexible. A way to tackle this
problem is creating a standard for the object to give counter pressure.

After the standard was made and used(figure 7.3), the object was not
pushed down anymore. A side effect of the fact that the arm can give
pressure on the object, is that the object does not turn around while it is
writing. This is caused by the rubber suction cup that is not stuck on the

23

metal part that rotates, but is only put over it, visible in figure 7.2. This
gives the rubber suction cup the opportunity to turn apart of the metal.
The resistance of the object between the pen and the standard is higher as
the resistance of the suction cup on the part that turns around, so the object
does not turn. This problem is hard to tackle without using another tool to
turn the object or using another implementation.

Figure 7.3: Standard for object.

7.1.2 Implementation 2: Turn last point before threshold to
starting point

Another implementation is to set a threshold on the amount of millimeters
between the top of the cylindrical object and the place were the pen is at that
moment. This threshold is calculated according to the Pythagoras theorem,
despite the surface is curved, it is seen as a straight line. The calculations
for the turns does also not take the curve into account, because the Dobot
writes small parts of the lines, so the distance lost is negligible.

The threshold is calculated as follow: The square rood of the radius to
the power two minus the radius minus the maximal difference in height to
the power two. So, calculating the threshold in formula form is as follow:

threshold =
√
r2 − (r − d)2

were r is the radius and d the maximal
difference in height.

24

An example in python of this calculation is given in listing 7.2.

1 th re sho ld = math . s q r t (math . pow(r , 2) − math . pow(r − d , 2))

Listing 7.2: Example of calculating the threshold

We used 1mm for d in the project, because a lower number gives very
short lines. This gives more risk on lines that do not run into each other.
A higher number causes that the Dobot Magician can write further in the
y-direction in once. Since the object is curved and the pen stays on the
same height, the pen will go off the object at a certain point. The difference
of 1mm is easy to absorb for the spring in the pen end tool. If the difference
in height is higher, then the spring of the pen has to be pushed in further
to write till the threshold. This gives more pressure from the pen on the
higher points on the object. This can cause that the object does not turn,
which happens also in 7.1.1.

If the Dobot has to write on a part further away from the top than the
threshold, then the pen has to go up first. After that, the Dobot Magician
has to turn the cylindrical object back until the point where the pen ended
is on top. Now can the pen go back to the point where it wrote as last, but
still above it. When the pen is above the point, the pen can go down and
write further. In this way the Dobot puts its pen only on the object if it
does not turn around. The benefit of this approach is that the object has
no pressure on it when the object is turning around. In this way, the object
is free to move.

The angles for turning the suction cup are calculated in the same way
as in listing 7.1, but with different values for YNew. This is explained later
in this section.

This angle is only used if the next point is further away as the point
of the distance that is already turned plus or minus the threshold distance.
This shown in listing 7.3. MiddleAt is the distance that is already turned.
MaxMovementWidth is the threshold that is calculated. Dy is the coordi-
nate of the point in the y-direction relative to the starting point of the pen
instead of relatively to the upper left corner of the svg file.

1 (middleAt + maxMovementWidth < dy) or (middleAt −
maxMovementWidth > dy)

Listing 7.3: Check if point is passing threshold

The angle to turn is calculated different for different cases. One case
for when the next point is further than the threshold away of where the
pen is at that moment. Then the next point must be a new segment not
directly connected to the line where the Dobot Magician was working on,
because the characters are not that big and all segments are divided into 10
points. In this case the new point is set on top to draw the new segment
not connected to the segment before.

25

Another case is that the next point is closer than the threshold away of
where the pen is at that moment. In this case the old point is set on top
and the Dobot Magician can continue with the segment it was working on.

The counterpart of this implementation is that the character does not
consist out of longer lines, but some smaller lines. This can cause that the
lines do not exactly run into each other.

7.2 Writing a whole word on a curved surface

To write a word instead of only one character on the cylindrical object
the code for writing a word on a flat surface as told in section 6.2 is used
combined with the code to write a character on a cylindrical object from
section 7.1.2. This results in the code in listing 7.4. This code is also in
Appendix A.1. The line numbers in the following part are line numbers from
the listing.

First the coordinates of the pen are collected. Next, some variables are
initialized. Then the threshold is calculated in line 5 and the path to the
python file is saved in line 6. This happens outside the for loop, because
they do not change in between the characters.

After this kind of initialization, the iterations over the characters starts.
If the svg file of the character is not found, then it will be created in line
11. The next step is getting the extreme coordinates of the character in
line 12. Those are needed to calculate the correction in x-direction and
the angle to turn to write the character. Calculating the angle happens
in line 17-19 and the correction in x-direction in line 21. To calculate the
correction in x-direction for every character, the maximal x-coordinate of
the first character is needed and is saved in between in line 13-15. One of
the last steps is writing the character in line 22. The function to write the
character returns the y-coordinate of the last point it wrote and the angle
the object has turned. The last y-coordinate is needed to calculate the angle
to move between the characters before writing the next one. The angle that
the object is turned is needed by the next character to know how far the
object is turned already.

The last step is moving the pen above the starting point of the word and
starting the queue with commands. This may only happen when there is a
word inserted.

1 de f writeWord (api , word) :
2 x , y , z , rHead = dType . GetPose (api)
3 degreesTurned , lastYCoordinate , maxXCharFirst ,

maxYCharBefore = 0 , 0 , 0 , 0
4 f i r s tCha r = True
5 maxMovementWidth = math . s q r t (math . pow(r , 2) − math . pow(r −

dropOfPenci l , 2))

26

6 path = os . getcwd ()
7
8 f o r cha rac t e r in word :
9 s v g f i l e = path + ’ / ’ + charac t e r + ’ a s c i i . svg ’

10 i f not os . path . i s f i l e (s v g f i l e) :
11 convertToSVG(path , character , s v g f i l e)
12 maxXChar , maxYChar , minYChar = getExtremes (s v g f i l e)
13 i f f i r s tCha r :
14 maxXCharFirst = maxXChar
15 f i r s tCha r = False
16
17 moveDistanceBetweenChar = maxYCharBefore −

lastYCoordinate + spaceBetweenChars − minYChar
18 moveRadBetweenChar = math . a s in (moveDistanceBetweenChar /

r)
19 moveDegreeBetweenChar = math . degree s (moveRadBetweenChar)
20
21 cor rec t ionX = maxXCharFirst − maxXChar
22 lastYCoordinate , degreesTurned = writeChar (api , s v g f i l e ,

maxMovementWidth , degreesTurned , lastYCoordinate , x ,
y , z , rHead , cor rec t ionX)

23 degreesTurned += moveDegreeBetweenChar
24
25 maxYCharBefore = maxYChar
26 dType . dSleep (500)
27 i f word != ”” :
28 l a s t i nd ex = dType . SetPTPCmd(api , dType .PTPMode .

PTPJUMPXYZMode, x , y , z + 10 , rHead , 1)
29 DobotControl . s t a r t e x e c (api , l a s t i nd ex [0])

Listing 7.4: The code to write a word on a curved surface

27

Chapter 8

Future Work

Even the algorithm to write words on curved surfaces works, there are still
some improvements to make. There are also some implementations missing,
wherefore the reason is told before.

1. The tool to trace the bmp images into svg file format could be im-
proved. Now the characters are not that good that they look exactly
like the original characters in the png files. Maybe the parameters
could be changed or another tool could be tried out.

2. A thing that needs to be implemented is the scaling of the words when
the word is too big and goes out of reach of the suction cup. In section
6.2.4 is talked about this, but this is not implemented.

3. The outliers talked about in 6.3 could be solved to write words in
personal handwriting. There was no time left to solve this in this
thesis. Try to filter out little dots around the character might help or
make the density of the ink of the character everywhere equal.

4. The code could be optimized. Now the algorithm checks every charac-
ter before to retrieve the outer coordinates to calculate the correction
and then it calculates the points again to write them. It could be an
option to save the coordinates in an array or something the first time
and use them later to write.

28

Chapter 9

Related Work

It is not the first time a machine draws on a curved surface. There are some
other machines that are somehow equal, but still different.

The eggbot[6] is such a machine for instance. This machine draws on
eggs, which is also a curved surface. Something that is different is that it
can write and turn the egg at the same time. Notable is that Inkscape is
used for the images.

Another machine is the Tag on That[11]. This machine is also able
to put ink on curved surfaces, but does this with a stamp. The stamp is
flexible and makes that the machine could put words on curved surfaces.
However this machine can write on curved surfaces, it is totally different
as the approach with the Dobot Magician. The Dobot Magician has a pen
instead of a stamp.

There are also machines that can write in personal handwriting, like the
Axidraw[3]. This machine has two motors, which both move in one direction
separately. This is totally different as the Dobot Magician. The Axidraw can
write perfect in a persons handwriting, but it writes only on a flat surface.

29

Chapter 10

Conclusions

The language that is most usable to program the Dobot Magician is de-
pendent of the programmer, since all API commands are implemented for
a variety of programming languages. Most likely is to use python, because
this is the language used by DobotStudio to script.

The Dobot Magician seems to be able to write in personal handwriting.
A way of doing this is converting pictures of characters written in personal
handwriting in png format first to bmp file format and then to files in svg
format. Those svg files are usable to obtain points to control the Dobot
Magician.

However, this is not enough to get a character that looks exact like the
original written character. To accomplish this, additional actions are needed
on the png or svg file.

The Dobot Magician is also able to write on a curved surface. A way
to do this is, is writing the characters in pieces till a maximum threshold.
When the threshold is reached, the pen goes up and the point where the pen
wrote at last is turned to the top with help of the suction cup. After the
point is on top, the pen goes to the point on the object where it wrote as
last and continues writing. When the character is finished, then the angle
is calculated to turn the object to start with the next character. For every
character is also a correction in the x-direction calculated to the character
on one line.

Writing on a curved object could use still some improvements. One of
this is scaling large words. Otherwise some characters are out of range of
the suction cup, since the suction cup can only turn 180 degrees.

When writing the characters in personal handwriting is finished, then is
combining things we said before a way to write with the Dobot Magician on
a curved surface in a personal handwriting.

30

Bibliography

[1] Api calls. download.dobot.cc/development-protocol/

dobot-magician/pdf/en/Dobot-Magician-API-Description-V1.2.

2.pdf.

[2] Autotrace. http://autotrace.sourceforge.net/.

[3] Axidraw. https://interestingengineering.com/

personal-writing-machine-will-draw-whatever-you-want.

[4] Centerline-trace. https://github.com/fablabnbg/

inkscape-centerline-trace.

[5] Dobotstudio. https://www.dobot.cc/downloadcenter.html.

[6] Eggbot. https://egg-bot.com/.

[7] Pillow. https://pypi.org/project/Pillow/.

[8] png vs jpg. http://fixthephoto.com/tech-tips/

difference-between-jpeg-and-png.html.

[9] Pypotrace. https://pypi.org/project/pypotrace/.

[10] Svgpathtools. https://pypi.org/project/svgpathtools/.

[11] Tag on that. https://newatlas.com/tag-on-that-printer/27694/.

31

download.dobot.cc/development-protocol/dobot-magician/pdf/en/Dobot-Magician-API-Description-V1.2.2.pdf
download.dobot.cc/development-protocol/dobot-magician/pdf/en/Dobot-Magician-API-Description-V1.2.2.pdf
download.dobot.cc/development-protocol/dobot-magician/pdf/en/Dobot-Magician-API-Description-V1.2.2.pdf
http://autotrace.sourceforge.net/
https://interestingengineering.com/personal-writing-machine-will-draw-whatever-you-want
https://interestingengineering.com/personal-writing-machine-will-draw-whatever-you-want
https://github.com/fablabnbg/inkscape-centerline-trace
https://github.com/fablabnbg/inkscape-centerline-trace
https://www.dobot.cc/downloadcenter.html
https://egg-bot.com/
https://pypi.org/project/Pillow/
http://fixthephoto.com/tech-tips/difference-between-jpeg-and-png.html
http://fixthephoto.com/tech-tips/difference-between-jpeg-and-png.html
https://pypi.org/project/pypotrace/
https://pypi.org/project/svgpathtools/
https://newatlas.com/tag-on-that-printer/27694/

Appendix A

Appendix

A.1 dobot.py

1 import DobotControl
2 import DobotDllType as dType
3 from PIL import Image
4 import math
5 from svgpathtoo l s import svg2paths2
6 import subproces s
7 import sys
8 import os
9 import getopt

10
11 num points = 10 # number o f po int o f b e z i e r cu rv e
12 s c a l e = 1 .0 # s c a l i n g s f a c t o r o f cha rac t e r
13 r = 30 .0 # mi l imete r s
14 dropOfPenci l = 1 .0 # mi l imete r s
15 spaceBetweenChars = 6 .0 # mi l imete r s
16
17
18 de f getX (po int) :
19 re turn po int . r e a l
20
21
22 de f getY (po int) :
23 re turn po int . imag
24
25
26 de f putPenOnTop(api , dy , middleAt , r , degreesTurned , dyBefore , x

, y , z , rHead , dxBefore , maxMovementWidth , correct ionX , dx) :
27 i f (middleAt + maxMovementWidth < dy) or (middleAt −

maxMovementWidth > dy) :
28 middleAtBefore = middleAt
29 i f y + dyBefore + maxMovementWidth < y + dy or y +

dyBefore − maxMovementWidth > y + dy :
30 moveRad = math . a s in ((dy − middleAt) / r)
31 middleAt = dy
32 e l s e :

32

33 moveRad = math . a s in ((dyBefore − middleAt) / r)
34 middleAt = dyBefore
35
36 moveDegree = math . degree s (moveRad)
37
38 oldX = x + dxBefore + cor rec t ionX
39 newX = x + dx + correc t ionX
40 oldY = y + dyBefore − middleAtBefore
41 oldR = rHead + degreesTurned
42 newR = rHead + degreesTurned + moveDegree
43
44 dType . SetPTPCmd(api , dType .PTPMode .PTPMOVLXYZMode, oldX ,

oldY , z + 10 , oldR , 1)
45 dType . SetPTPCmd(api , dType .PTPMode .PTPMOVLXYZMode, oldX ,

oldY , z + 10 , newR, 1)
46 dType . SetPTPCmd(api , dType .PTPMode .PTPMOVLXYZMode, newX,

y , z + 10 , newR, 1)
47 dType . SetPTPCmd(api , dType .PTPMode .PTPMOVLXYZMode, newX,

y , z , newR , 1)
48
49 degreesTurned += moveDegree
50 return middleAt , degreesTurned
51
52
53 de f convertToSVG(path , character , s v g f i l e) :
54 i n f i l e = path + ’ / ’ + charac t e r + ’ a s c i i . png ’
55 o u t f i l e = path + ’ / ’ + charac t e r + ’ a s c i i .bmp ’
56 Image . open (i n f i l e) . save (o u t f i l e)
57 bashCommand = ” autot race ” + o u t f i l e + ” −c e n t e r l i n e −co lo r−

count 2 −corner−th r e sho ld 90 −corner−surround 1 −input−
format bmp −output− f i l e ” + s v g f i l e

58 proce s s = subproces s . Popen (bashCommand . s p l i t () , s tdout=
subproces s . PIPE)

59 proce s s . communicate ()
60
61
62 de f writeChar (api , s v g f i l e , maxMovementWidth , degreesTurned ,

dyBefore , x , y , z , rHead , cor rec t ionX) :
63 middleAt , ybegin , xbegin , dxBefore = 0 , 0 , 0 , 0
64 begin = True
65
66 paths , a t t r i bu t e s , s v g a t t r i b u t e s = svg2paths2 (s v g f i l e)
67 f o r index , path in enumerate (paths) :
68 i f ” s t r oke :#0” in a t t r i b u t e s [index] [’ s t y l e ’] or ” s t r oke

:#1” in a t t r i b u t e s [index] [’ s t y l e ’] or ” s t r oke :#2” in
a t t r i b u t e s [index] [’ s t y l e ’] :

69 i f begin :
70 xbegin = f l o a t (getY (path [0] . po int (0)))
71 ybegin = f l o a t (getX (path [0] . po int (0)))
72 begin = False
73 f o r indexseg , segment in enumerate (path) :
74 f o r i in range (num points + 1) :
75 dx = (getY (segment . po int (f l o a t (1) /

num points ∗ i)) − xbegin) ∗ s c a l e

33

76 dy = (getX (segment . po int (f l o a t (1) /
num points ∗ i)) − ybegin) ∗ s c a l e

77
78 middleAt , degreesTurned = putPenOnTop(api ,

dy , middleAt , r , degreesTurned , dyBefore ,
x , y , z , rHead , dxBefore ,

maxMovementWidth , correct ionX , dx)
79 i f indexseg == 0 and i == 0 :
80 mode = dType .PTPMode .PTPJUMPXYZMode
81 e l s e :
82 mode = dType .PTPMode .PTPMOVLXYZMode
83 dType . SetPTPCmd(api , mode , x + dx +

correct ionX , y + dy − middleAt , z , rHead
+ degreesTurned , 1)

84 dxBefore = dx
85 dyBefore = dy
86 dType . dSleep (500)
87 return dyBefore , degreesTurned
88
89
90 de f getExtremes (s v g f i l e) :
91 ybegin , xbegin , maxXChar , maxYChar = 0
92 minYChar = sys . f l o a t i n f o .max
93 begin = True
94
95 paths , a t t r i bu t e s , s v g a t t r i b u t e s = svg2paths2 (s v g f i l e)
96 f o r index , path in enumerate (paths) :
97 i f ” s t r oke :#0” in a t t r i b u t e s [index] [’ s t y l e ’] or ” s t r oke

:#1” in a t t r i b u t e s [index] [’ s t y l e ’] or ” s t r oke :#2” in
a t t r i b u t e s [index] [’ s t y l e ’] :

98 i f begin :
99 xbegin = getY (path [0] . po int (0))

100 ybegin = getX (path [0] . po int (0))
101 begin = False
102 f o r indexseg , segment in enumerate (path) :
103 f o r i in range (num points + 1) :
104 dx = (getY (segment . po int (f l o a t (1) /

num points ∗ i)) − xbegin) ∗ s c a l e
105 dy = (getX (segment . po int (f l o a t (1) /

num points ∗ i)) − ybegin) ∗ s c a l e
106 i f dx > maxXChar :
107 maxXChar = dx
108 i f dy > maxYChar :
109 maxYChar = dy
110 i f dy < minYChar :
111 minYChar = dy
112 return maxXChar , maxYChar , minYChar
113
114
115 de f terminalCommunication (argv) :
116 word = ’ ’
117 try :
118 opts , a rgs = getopt . getopt (argv , ”hw : r : s : ” , [” he lp ” , ”

word=” , ” rad iu s=” , ” s c a l e=”])

34

119 except getopt . GetoptError :
120 sys . e x i t (2)
121 f o r opt , arg in opts :
122 i f opt in (”−h” , ” he lp ”) :
123 p r i n t (’ dobot . py −w <word> −r <radius> ’)
124 sys . e x i t ()
125 e l i f opt in (”−w” , ”−−word”) :
126 word = arg
127 e l i f opt in (”−r ” , ”−−rad iu s ”) :
128 g l oba l r
129 r = f l o a t (arg)
130 e l i f opt in (”−s ” , ”−−s c a l e ”) :
131 g l oba l s c a l e
132 s c a l e = f l o a t (arg)
133 return word
134
135
136 de f writeWord (api , word) :
137 x , y , z , rHead = dType . GetPose (api)
138 degreesTurned , lastYCoordinate , maxXCharFirst ,

maxYCharBefore = 0 , 0 , 0 , 0
139 f i r s tCha r = True
140 maxMovementWidth = math . s q r t (math . pow(r , 2) − math . pow(r −

dropOfPenci l , 2))
141 path = os . getcwd ()
142
143 f o r cha rac t e r in word :
144 s v g f i l e = path + ’ / ’ + charac t e r + ’ a s c i i . svg ’
145 i f not os . path . i s f i l e (s v g f i l e) :
146 convertToSVG(path , character , s v g f i l e)
147 maxXChar , maxYChar , minYChar = getExtremes (s v g f i l e)
148 i f f i r s tCha r :
149 maxXCharFirst = maxXChar
150 f i r s tCha r = False
151
152 moveDistanceBetweenChar = maxYCharBefore −

lastYCoordinate + spaceBetweenChars − minYChar
153 moveRadBetweenChar = math . a s in (moveDistanceBetweenChar /

r)
154 moveDegreeBetweenChar = math . degree s (moveRadBetweenChar)
155
156 cor rec t ionX = maxXCharFirst − maxXChar
157 lastYCoordinate , degreesTurned = writeChar (api , s v g f i l e ,

maxMovementWidth , degreesTurned , lastYCoordinate , x ,
y , z , rHead , cor rec t ionX)

158 degreesTurned += moveDegreeBetweenChar
159
160 maxYCharBefore = maxYChar
161 dType . dSleep (500)
162 i f word != ”” :
163 l a s t i nd ex = dType . SetPTPCmd(api , dType .PTPMode .

PTPJUMPXYZMode, x , y , z + 10 , rHead , 1)
164 DobotControl . s t a r t e x e c (api , l a s t i nd ex [0])
165

35

166
167 de f main (argv) :
168 word = terminalCommunication (argv)
169
170 s tate , ap i = DobotControl . connectdobot ()
171 i f s t a t e == dType . DobotConnect . DobotConnect NoError :
172 DobotControl . i n i t i a l i z i n g (api)
173 command = ’ nothing ’
174
175 whi l e command != ’ stop ’ :
176 command = input (’Put the p en c i l at the r i g h t

p o s i t i o n a f t e r the b leeb and type ” s t a r t ” to
wr i t e . Type ” stop ” to d i s connec t . \n ’)

177 i f command == ’ s t a r t ’ :
178 writeWord (api , word)
179 e l i f command == ’ suc ’ :
180 dType . SetEndEffectorSuctionCup (api , 1 , 1 , 1)
181 DobotControl . s t a r t e x e c (api , 1)
182 e l i f command == ’ stopsuc ’ :
183 dType . SetEndEffectorSuctionCup (api , 0 , 1 , 1)
184 DobotControl . s t a r t e x e c (api , 1)
185
186 DobotControl . s topexec (api)
187 DobotControl . d i sconnectdobot (api)
188 e l s e :
189 DobotControl . d i sconnectdobot (api)
190
191
192 i f name == ” main ” :
193 main (sys . argv [1 :])

A.2 DobotControl.py

1 import DobotDllType as dType
2
3 CON STR = {
4 dType . DobotConnect . DobotConnect NoError : ”

DobotConnect NoError” ,
5 dType . DobotConnect . DobotConnect NotFound : ”

DobotConnect NotFound” ,
6 dType . DobotConnect . DobotConnect Occupied : ”

DobotConnect Occupied”}
7
8
9 de f connectdobot () :

10 #Load Dl l
11 api = dType . load ()
12
13 #Connect Dobot
14 s t a t e = dType . ConnectDobot (api , ”” , 115200) [0]
15 p r i n t (”Connect s t a tu s : ” ,CON STR[s t a t e])
16 re turn s tate , ap i
17

36

18
19 de f i n i t i a l i z i n g (api) :
20 #Clean Command Queued
21 dType . SetQueuedCmdClear (api)
22
23 #Async Motion Params Se t t i ng
24 dType . SetHOMEParams(api , 250 , 0 , 100 , −90, isQueued=1)
25 dType . SetPTPJointParams (api , 200 , 200 , 200 , 200 , 200 , 200 ,

200 , 200 , isQueued=1)
26 dType . SetPTPCommonParams(api , 100 , 100 , isQueued=1)
27 dType . SetPTPCoordinateParams (api , 200 ,200 ,200 ,200)
28 dType . SetPTPJumpParams(api , 10 , 200)
29
30 s e t t i n g s = dType . GetPTPCoordinateParams (api)
31 dType . SetPTPCoordinateParams (api , s e t t i n g s [0] , s e t t i n g s [2] ,

s e t t i n g s [0] , s e t t i n g s [2])
32
33 #Async Home
34 dType .SetHOMECmd(api , temp=0, isQueued=1)
35
36
37
38 de f s t a r t e x e c (api , l a s t Index) :
39 #Star t to Execute Command Queued
40 dType . SetQueuedCmdStartExec (api)
41
42 #Wait f o r Executing Last Command
43 whi l e l a s t Index > dType . GetQueuedCmdCurrentIndex (api) [0] :
44 dType . dSleep (100)
45
46
47 de f s topexec (api) :
48 #Stop to Execute Command Queued
49 dType . SetQueuedCmdStopExec (api)
50
51
52 de f d i sconnectdobot (api) :
53 #Disconnect Dobot
54 p r in t (” d i s connected ”)
55 dType . DisconnectDobot (api)

37

	Introduction
	Preliminaries
	Dobot Magician
	Specifications of Dobot Magician
	Ways to control Dobot Magician

	Programming language
	Controlling the Dobot Magician with script
	Representation of characters
	Input file format
	File format for coordinates
	Converting png to svg
	Potrace
	Autotrace
	Centerline-trace extension for Inkscape
	Tool choice

	From svg file to usable points

	Writing words
	Writing an character in a with computer generated font
	Writing a word
	Spacing between characters
	Putting characters on one line
	Iterating over the characters
	Scaling when out of bound

	Writing words in personal handwriting

	Writing on a curved surface
	Turn the curved object
	Implementation 1: write and turn at the same time
	Implementation 2: Turn last point before threshold to starting point

	Writing a whole word on a curved surface

	Future Work
	Related Work
	Conclusions
	Appendix
	dobot.py
	DobotControl.py

