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Abstract

Using WASP, a system for archiving, revisiting and searching through pre-
viously visited websites, users can have a better overview of their browsing
behavior and find pages they remember visiting more easily. In this the-
sis, we introduce an extension to WASP that not only allows for searching
through your browsing history, but also through pages related to your inter-
ests. It does so by crawling possibly relevant pages in the background, and
indexing them if they are deemed relevant enough.
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Chapter 1

Introduction

With the rise of popular search engines like Google, search has become better
and better. We are almost at a point where Google knows what you want to
search before you do. However, as this technology developed, the need for
data protection arose with it. With large companies in control of, among
many other data, your browsing behavior, the matter of privacy is addressed
more and more.

In 2018, WASP (Web Archiving and Search Personalized) was developed,
mainly to provide more insight into your browsing behavior. It allows the
user to archive visited websites in a local database, and search and revisit
these pages later on. As it stands now, it mainly fulfills a purpose lacking
in mainstream browsers: full-text search in your browsing history. Google
Chrome, Mozilla Firefox and Microsoft Edge - the most popular modern
web browsers - only store some metadata of the page, like the title, URL,
and the date on which the web page was visited. The functionality was even
removed intentionally from Chrome in 2013, due to performance issues.1

Since WASP only searches through local, offline archives of visited web
pages, its functionality can be compared to that of desktop search, albeit
with a limited purpose. Where regular desktop search is concerned with
all kinds of data sources on the user’s computer, like files, applications and
emails, WASP limits itself to the user’s browsing behavior in a more com-
prehensive and insightful manner.

In this thesis, we introduce an extension to WASP which allows the user to
search through other documents on the Internet relevant to their interests. It
does so by using the user’s archived browsing history to crawl and index new,

1https://bugs.chromium.org/p/chromium/issues/detail?id=247415
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Figure 1.1: A screenshot of WASP with the added functionality. The first
result was crawled in the background, and the second result is a web page
the user visited themselves. Note that the crawled result mentions it was
found by crawling from the other document.

potentially relevant documents. In doing this, the modified version of WASP
allows users to not only re-find documents they have visited previously, but
to find other relevant documents entirely.

An example of the extended functionality can be found in figure 1.1. It
shows two results of a search query, one of which was visited by the user
and one that was crawled in the background. Since it might be useful to the
user to know from which page a new document was crawled, we also display
the origin of such a crawled document whenever it is returned as a search
result.

By introducing this extension, we enable WASP to use online functionality as
well, by retrieving and indexing other pages on the Internet. As a result, the
modified version of WASP is no longer purely an offline system like desktop
search. Rather, it has become a hybrid of both offline and online search, as
some of the documents it serves are archived locally and other documents
are retrieved online. Most importantly, all the data on the user’s browsing
history is still saved locally, and used to determine which documents could
prove useful to the user’s interests. This way, users can enjoy predictive
search from a localized search engine, without having to depend on a third
party to gather and analyze your browsing history.
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Chapter 2

Preliminaries

2.1 WASP

The most important part of this research is built on top of the existing infras-
tructure of WASP (Web Archiving and Search Personalized) [4]. Currently,
WASP enables three core functionalities: archiving visited pages, searching
through archived pages and revisiting these pages. Figure 2.1 shows the
infrastructure of WASP and how it enables said functionalities.

Initially, WASP is used as a proxy service, silently reading all HTTP re-
quests and responses. These responses are archived in WARC format and
indexed in an Elasticsearch1 index. Then, when the user wants to search
their archive, they can head to WASP’s simple search interface, through
which they can query the Elasticsearch index for contents and archive date.
Finally, for each of the query results, the user can choose to open their
archived version, which is served by a pywb2 service.

2.2 Crawlers

Crawling is the process of starting with a set of seed URLs, downloading the
corresponding web pages, extracting all URLs out of these crawled pages and
then following these links recursively. Much research has been done in the
field of crawling, ranging from efficiency to scalability and even politeness.

1https://www.elastic.co
2https://pypi.org/project/pywb/
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(a) Archiving a visited page

(b) Searching through archived pages

(c) Revisiting an archived page

Figure 2.1: The infrastructure of WASP. (a) depicts the proxy functionality,
where any website that is visited is also archived and indexed. (b) shows
the search functionality, where a user can search their browsing history in
the index of archived pages. (c) depicts how users can use pywb to revisit
archived pages.
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For the extension of WASP proposed in this thesis, the most important
concept to keep in mind is the crawl ordering policy. The crawl ordering
is the ordering in which the crawler follows the retrieved URLs. There are
many ways to define such an ordering. The most simple and naive way
is to use a basic breadth-first search to crawl pages in the order they are
discovered. However, there are other, more effective crawl orderings that
ultimately lead to a corpus better suited for a certain use case.

For instance, crawlers that are most interested in highly reliable pages can
order the pages to crawl based on the highest PageRank [8], or the page
with the most incoming links, both of which perform better than the simple
breadth-first strategy [1]. In the case of topical crawlers that should only
crawl pages on a certain topic, links promising to be relevant to this topic
can be crawled first. In [9], several methods are explored to determine
effectiveness of different crawl ordering policies for topical crawlers. Most
of these depend on the context of a certain link, i.e. the words surrounding
it, and feed this context into a classifier trained on the topic at hand. This
way, they can predict the relative usefulness of a given link, before actually
retrieving the corresponding document.

2.3 Document similarity

There are many ways to compute the similarity between documents. These
methods can be separated into two main categories: lexical analysis and
semantical analysis.

2.3.1 Lexical analysis

In lexical analysis, documents are defined by the actual words in it. In the
well-known bag-of-words model, a document is represented as a ‘bag’ of all
words in it, combined with the amount of times each word occurs in the
document. The order of these words is disregarded. When comparing the
similarity between two documents, one only has to compare the similarity
between their bags of words. This can be done naively by, for instance,
computing the Jaccard similarity between the two bags (the fraction of words
that the two documents have in common).

A better approach is to extract certain features out of the bag of words,
for instance by selecting the words that tell most about the document at
hand. This can be done by computing the tf-idf value of each term, which
is the combination of a word’s term frequency (tf ) and its inverse document
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frequency (idf ). The term frequency describes how often the given word oc-
curs in the current document, favoring the more frequent terms. The inverse
document frequency measures the inverse of the amount of times the given
word occurs in all available documents. Thus, it scores highest for terms
occurring rarely, and lowest for terms occurring in each document (most
notably, stop words like ‘the’, ‘and’). By combining the two, you can find
the most important or defining words of a document, as a high tf-idf means
a word occurs very frequently in the current document, but is not common
in other documents.
Using tf-idf weighting, you can extract the N most important terms out of
each document (i.e. the terms with the highest tf-idf value) and represent
them as an N -dimensional vector. By computing the cosine similarity be-
tween two of these term vectors (the angle between both vectors), we can
measure how similar the term vectors of two documents are. Consequently,
we can give an estimate on how similar the documents are.

Lexical analysis can be extended by taking all bigrams or, generally speak-
ing, n-grams in a document. An n-gram is a sequence of n consecutive words
in a document. Therefore, n-grams allow for more context with each word,
making it easier to distinguish small semantic differences between different
usages of the same word. The total set of n-grams of a document is also
called a w-shingling.

Finally, another key concept of lexical analysis is the process of ‘stemming’.
With stemming, each word is reduced to its ‘stem’. For instance, ‘working’
should be reduced to ‘work’, ‘books’ to ‘book’, and ‘are’, ‘am’ and ‘is’ should
all be reduced to ‘be’. This way, the fact that a word occurs in a different
form (singular or plural, etc.), does not impact the comparison between
different bags of words or term vectors.

2.3.2 Semantical analysis

The main drawback of lexical analysis is the inability to distinguish meaning
between phrases. For example, look at the phrases ‘I read a book’ and ‘I
book a flight’. Lexical analysis would not be able to differentiate between
the noun ‘book’ in the first sentence and the verb ‘book’ in the second. In
order to distinguish meaning between different usages of the same word, we
have to take a look at the semantics of words in a given context. That is
where semantic analysis comes in.

Semantic analysis focuses on finding the meaning of a word, phrase or docu-
ment. This can be done in several different ways. One of the first things that
comes to mind when determining the meaning of a term is the role it plays in
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the phrase. For instance, in the example phrases above, does ‘book’ occur as
a verb, a noun, or something else? Assigning such a word class to each term
in a phrase or document is called part-of-speech tagging. Several good im-
plementations of part-of-speech taggers exist, like the implementation using
Hidden Markov Models as described in [5].

Another common concept is to somehow represent the meaning of a word or
phrase as a vector of numbers. An example of this is the representation as
word embeddings and their implementation in Word2vec [7], where a neural
network is trained to predict one or more words given a certain context.
Later on, any new word can be fed into this neural network, along with
its context, and the network’s output features make up the word’s vector
representation.
This analysis has been extended to full phrases, as well, where the meaning
of a sentence is determined by looking at the sentences surrounding it. And,
by taking paragraphs into account, even entire documents can be reduced
to a single vector encapsulating the document’s meaning [6].

9



Chapter 3

Research

The final result of this research is an extension to WASP, which will crawl
and index documents relevant to the user’s interests in the background. In
order to achieve this, we slightly amended the infrastructure of WASP and
the way it handles any newly indexed pages. The new infrastructure can be
found in figure 3.1.

The extension we developed consists of two main parts. The first part is the
crawl selection, which decides what URLs will be crawled and in what order.
This process will be explained in more detail in section 3.1. The second
part is the relevance measurement, i.e. the part that actually retrieves the
documents and determines whether a retrieved document is relevant to our
user’s interests. The relevance measurement will be handled in section 3.2.

3.1 Selecting pages

As mentioned, the first part of our extension to WASP is determining which
pages to crawl and compare to our index. In the same way that a normal
web crawler (in the case of a general search engine, for instance) has one
or several starting points from which to crawl, our own application should
somehow know which pages to process in order to find relevant documents.

To do this, we assumed the internet has a certain degree of data locality.
In other words, we used the documents we had already indexed as starting
points for our crawling operation, under the assumption that web pages ref-
erenced in a certain document are in some way related to said document.
Logically speaking, this makes sense, as we see many examples of references
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(a) WASP now also extracts URLs out of each document and stores them

(b) Crawling possibly relevant pages in the background and indexing them

Figure 3.1: The new infrastructure of WASP. (a) depicts the extra step
when indexing new documents, where any URLs and their contexts are
extracted and stored for later use. (b) depicts the new background crawling
functionality, where the previously stored URLs are crawled, checked for
relevance and possibly indexed into Elasticsearch.

to relevant pages in different areas of the internet: answers to a question
posed on any forum might contain links to background information or ref-
erences to other relevant questions or answers, wiki articles reference other
articles in the same category under the header “See Also”, and blog posts
sometimes mention other blog posts about the same topic. As a result, we
added an extra operation to the indexing step, which extracts all hyperlinks
from the document’s anchor tags and stores them for further usage, along
with a reference to the document from which they were extracted. This
extra operation is visualized in Figure 3.1a.

However, the number of resulting links grows increasingly fast when we
add more documents to our index. Consequently, it is near impossible to
retrieve all these pages, compare them to our current data and determine
whether they are similar enough to keep in the index. Moreover, WASP was
designed to run locally on a single computer with basic hardware, meaning
we have limited memory, processing power and bandwidth available. Taking
this into account, we experimented with different heuristics for selecting the
most promising link. In order to find this most promising link, we used
the context in which the link was found in one of our indexed documents.
This context consisted of the words inside and surrounding the anchor tag
of said link. Using the Jericho HTML parser we could easily extract this
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surrounding text and store it alongside the other information mentioned
above.

In every iteration, our background crawler reads from this list of possibly
relevant links and matches the corresponding context to the existing index.
The entry that scores the highest in this query is the entry that will be used
for further retrieval and evaluation. By entrusting the actual scoring to
Elasticsearch, we make sure the context words are preprocessed in the same
way as the indexed documents, allowing for a better search performance.
After experimenting with different context lengths, we found that we can
predict which documents are likely to be relevant the best when we use a
context of 60 words. More on these experiments can be found in section 5.2

3.2 Determining relevance

Now that we have a way to find the most promising link, we have yet to
decide whether the corresponding page is relevant or similar enough to our
existing index, before we decide to keep it. We start by actually retrieving
the document and making sure it is an actual HTML document instead of
another web resource like an image or a PDF document. After all, WASP
is meant to store visited and relevant web pages, meaning we only want to
parse and store HTML documents.

The next step is the removal of any script or style tags from the docu-
ment, as they do not provide any information on the document’s contents.
They merely indicate how it handles user interaction and how the page is
formatted, respectively. We remove all content from the document that is
invisible to the user, such as hyperlinks, images, page structuring and all
other HTML tags, in order to give us the raw content visible to the user.

Finally, we match this raw content to the current index by using Elastic-
search’s more like this (MLT) query1. The purpose of the MLT query
is, simply put, to find one or more documents in the index like the query
document. It does so by computing the terms of the query document with
the highest tf-idf value and using these as a query on the index. The main
advantage we obtain by using an out-of-the-box Elasticsearch functionality
is that Elasticsearch takes care of the tokenization of the document into
words, stemming, removal of stop words, and any other basic preprocessing
we might want to do before querying against our index.

1https://www.elastic.co/guide/en/elasticsearch/reference/current/

query-dsl-mlt-query.html
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However, even though this is a step in the right direction, finding documents
comparable to our query document does not necessarily mean the query
document is relevant to our interests. Take, for instance, the situation in
which our index consists of a large amount of Wikipedia articles, and our
query document is a Wikipedia article as well. In this case, the MLT query
will see the other articles as (remotely) similar and return them, but their
contents might be far from relevant to our query document.

The score value returned by the MLT query is unfortunately not normalized,
meaning it does not allow us to draw a conclusion about our query docu-
ment’s degree of relevance. Instead, if we want to set a certain threshold for
‘similarity’, i.e. a particular minimum score for the most similar documents,
we have to compute a custom, normalized score ourselves. We do so by
selecting the most relevant results returned by the MLT query, and com-
puting the cosine similarity between each of these documents and the query
document. The actual threshold and amount of MLT results to use were
determined after experimenting with different values, which is explained in
detail in section 5.1. The cosine similarity is defined using the following
formula:

sim(A,B) =
A ·B
||A|| ||B||

=

n∑
i=1

Ai ·Bi√
n∑
i=1

A2
i

√
n∑
i=1

B2
i

In our case, A and B correspond to the term vectors of the query document
and the document it is compared against. These term vectors consist of the
ten terms in the document with the highest tf-idf value, where the tf-idf
value is defined as follows:

tf(t, d) =
√
freq(t ∈ d)

idf(t) = 1 + log

(
|D|

|{d ∈ D | t ∈ d}|+ 1

)
tf -idf(t, d) = tf(t, d) · idf(t)2

The tf-idf weighting scheme used here is taken from the Lucene Practi-
cal Scoring Function2. By choosing this weighting scheme, we make sure
our custom scoring functions are in line with the scoring functions used by
Elasticsearch.

2https://lucene.apache.org/core/7_2_1/core/org/apache/lucene/search/

similarities/TFIDFSimilarity.html
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As we did with the context lengths, we also experimented with the amount
of MLT results to use when performing our custom similarity measurement.
On top of that, we also investigated whether to compare the average cosine
similarity for the set of MLT results to a certain threshold, or whether we
wanted all of the similarities to be above this threshold. More on this can
be found in section 4.2.

Finally, after computing the similarity degrees of each of the Elasticsearch
MLT results and making sure they are all above the preset threshold, we
index the crawled document so it can be found by the user. However, it
might still occur that this document is not exactly in line with the user’s
interests due to a false positive slipping through our similarity detection.
Therefore, we do not extract any URLs out of the crawled document for
further crawling. For the same reason, we do not include the crawled docu-
ments when comparing a new candidate to the index, so the results are not
biased towards a topic only found in crawled documents.

Only when the user actually visits the corresponding web page will the
document be fully indexed and archived, as a page visit indicates the user’s
actual interest. This is also the moment that the document is first available
through pywb.
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Chapter 4

Experimental Setup

As we discussed before, there are two main parts to this extension to WASP:
the crawler and the relevance measure. Both of these have been tested
extensively to verify their effectiveness. In this chapter, we will discuss the
data sets on which we tested both components and the metrics we used to
evaluate their performance. In the next chapter, we present our findings
and draw the corresponding conclusions.

4.1 Data sets

4.1.1 Custom data set

In order to mimic actual user behavior as closely as possible, we created a
small sample set supposed to represent actual user interests and pages on
these topics. As a simple proof-of-work, we took a data set of ten topics,
ranging from ‘Soccer’ to ‘Ducks’ and found ten documents on each of these
topics, ranging from Wikipedia pages to news articles and Q&A forums.
This data set was mainly used to show that our proposed solutions actually
worked, but it was clearly too small to derive any actual statistics from.
As we thought it was infeasible to expand this data set to the point it was
actually large enough, we decided to look into some other, already existing
data sets as well.
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4.1.2 ODP data set

The Open Directory Project data set1 contains a large amount of URLs, all
annotated with the corresponding category. For instance, there is a category
Top/Sports/Soccer, which contains all pages talking about soccer. Note
that this notion of category differs slightly from the subject of a document,
which we discussed earlier. However, we argued that the principle of simi-
larity checking is the same in both instances. In other words, a document in
a specific category is likely to be similar to another document in that same
category, just like documents with specific subjects are likely to be similar
to other documents on that subject. Therefore, we used this data set and
assumed the results of this experiment would be comparable if we executed
it with subject annotations instead of categories.

Some of the categories in the ODP data set only contain a very small set of
documents, for instance when the category is very specific. An example is the
category Top/Sports/Soccer/UEFA/England/Non-League/Local Leagues/.
Evidently, this category is unlikely to contain many documents, as it is con-
cerned with a very specific group of websites. However, in the context of
document subjects, we would rather have a broader subject such that we can
actually compare different documents on the same subject. Therefore, we
made sure any categories we select during our experiment are broad enough.
This was done by merging any categories with too few documents and a com-
mon parent category into this common category. This way, the category on
English local soccer leagues mentioned above would be merged with, for in-
stance, Top/Sports/Soccer/UEFA/England/Clubs into a common category
Top/Sports/Soccer/UEFA/England/. And if this new, combined category
is still too specific, we can merge it even further up the category hierarchy,
ultimately resulting in the final category Top/Sports/Soccer/UEFA.

Eventually, we ended up with a list of all categories containing at least a
thousand documents, as we figured this number would allow us to perform
a good statistical analysis. Finally, we also had the problem that some cat-
egories were too broad. Take, for example, the category Top/Sports. Many
different documents would fall in this category, even though, for instance, a
soccer fan might not necessarily like hockey. In this case, though, both sub-
jects would be labeled relevant. Therefore, we decided to drop the categories
that were too large, setting the limit at 10.000 documents per category.

In the end, we did not use the full ODP data set for our experiments.
Instead, for each experiment we extracted a random subset of 50 categories

1Formerly hosted at http://www.dmoz.org. However, as of March 2017, the project is
no longer maintained. The data set we used was collected through an archived version of
the website.
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of the ODP data set and a random set of 100 documents per topic. The main
reason for doing this is to keep computation time down, as all documents
had to be crawled first (the ODP data set only contains URLs, not the
actual documents) and all experiments were executed on a single machine.
Besides, the first set of experiments was only used as a proof-of-concept that
the similarity measure worked. After confirming this, we could still scale up
the experiments to prove the effectiveness further.

4.1.3 TREC Web Track data set

The final data set we used was the TREC (Text REtrieval Conference) 2014
Web Track data set2. The TREC data set contains several queries like
‘identifying spider bites’, along with the URL of web pages on which the
answer can be found. Since different pages that answer the same question
discuss the same subject, this data set is a lot more comparable to the actual
usage data we are trying to recreate than the ODP data set. Thus, it should
be a lot more suitable to use in our experiments. Moreover, we know for
a fact that the pages we use contain some content on the subject at least,
since they discuss an answer related to said subject.

The 2014 Web Track data set contained roughly fifty topics, with a total of
more than 1.500 URLs over all topics. As this was a manageable number,
we were able to use all topics and documents in this data set. And, since
it only contained URLs and not the actual documents, we had to crawl all
web pages before running our experiments, just like we did with the ODP
data set.

4.2 Measurement

In order to measure how well our relevance measurement and crawl ordering
performed, we mocked the corresponding functionalities of our crawler on
a sample test set of URLs and corresponding topics and contexts. Half
of the topics in our data set were then marked as relevant to the user’s
interests, meaning we had a sample of URLs corresponding to pages the
user is supposedly interested in, and another sample of URLs corresponding
to irrelevant pages. Each topic was also split into a training set and a data
set, containing three quarters and a quarter of the URLs, respectively. The
training documents for all relevant topics were indexed in an Elasticsearch
index, just as WASP itself would do.

2https://trec.nist.gov/data/web2014.html
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With this index of ‘visited’ pages, we could compute the relevance metric
(i.e. the combined cosine similarities of term vectors) for each URL in the
testing sets of each of the topics in our data set. Then, we quantified the
effectiveness of the relevance metric, by sorting the test documents in de-
scending order of relevance and the computing the Normalized Discounted
Cumulative Gain (nDCG) [3]. The nDCG is a value that measures the rank-
ing quality of this sorted list of documents. For each of the documents di,
we assign reli = 1 if the document was marked ‘relevant’, and reli = 0 oth-
erwise. Using these relevance values, we can define the standard Discounted
Cumulative Gain (DCG) for the first p documents in our sequence as:

DCGp =

p∑
i=1

reli
log2(i+ 1)

As can be seen from the given formula and the binary relevance values we
assigned, the DCG counts the relevant documents, divided by their posi-
tion in the sequence of all documents. Therefore, the DCG will be higher
if relevant documents are assigned a higher relevance score and irrelevant
documents a lower one. Likewise, if relevant documents receive a low score
and irrelevant documents are scored higher, the DCG will turn out lower.
Consequently, we can use the DCG to measure how well our relevance score
represents the actual relevance of a document.

However, if we want to compare DCGs between different experiments or
relevance metrics, we will have to normalize the result, as the amount of
documents in our training set now influences the DCG. This is done by
dividing the DCG by the maximum possible DCG, also known as the Ideal
Discounted Cumulative Gain (IDCG). The IDCG is the DCG for a set of
optimally ordered documents. In other words, we can take a sequence of
our ‘relevant’ documents first, followed by all irrelevant documents, and
then taking the DCG of this sequence. If we define Nr as the amount of
relevant documents, we can define the IDCG and the nDCG formally as:

IDCGp =

p∑
i=1

reli
log2(i+ 1)

=

min(Nr,p)∑
i=1

1

log2(i+ 1)

nDCGp =
DCGp
IDCGp

To gain even more insight into the effectiveness of our relevance measure, we
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decided to compute the F -measure [10] for each experiment, as well. The
F -measure is defined as such:

precision =
|Drelevant ∩Dretrieved|

|Dretrieved|

recall =
|Drelevant ∩Dretrieved|

|Drelevant|

Fβ =
(1 + β2) · precision · recall

(β2 · precision) + recall

In these formulas, precision measures how many of the retrieved documents
are actually relevant, and recall measures the fraction of relevant documents
that are actually retrieved. The F -measure combines these values, where the
value β decides which of the two is more important. With β < 1, precision is
weighed more, while recall is deemed more important with β > 1. A special
case is when β = 1, where the value is the harmonic mean of the two values.

F1 =
2 · precision · recall
precision+ recall

In the scope of WASP, we mainly want to eliminate false positives, whereas
the occasional false negative is not that important. Therefore, we used
values of β less than 1, to stress the importance of precision in our setup.

In the end, the F -value is computed the same as the nDCG for a set of
documents; by sorting the documents given a certain score, and computing
the F -value for different sample sizes for this ordering.

Finally, using the nDCG and F -value for each experiment, we could compare
the effectiveness of our relevance detection measurement across different data
sets and different amounts of documents, and we could compare differences
between several parameter choices in order to find the optimal setup for our
final system.
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Chapter 5

Results

5.1 Relevance estimation

5.1.1 Comparison between data sets

With each of the data sets described in section 4.1, we performed the fol-
lowing experiment:

• Take a random set containing half of the topics, for each of which we
mark all documents as relevant.

• Split each topic into a training set and a testing set, at a ratio of 3 to
1.

• Index each document in the training set of a relevant topic.

• For each document in a testing set (both relevant and irrelevant),
compute the different relevance measures (section 3.2).

• Sort all test documents in descending order of relevance and compute
the nDCG and F-measure (section 4.2).

In order to find the ideal setup, we computed the relevance measure in many
different ways and tried to determine the best way to compute it. We did this
by varying in the amount of More Like This results we asked Elasticsearch
to give us (1, 2, 5 or 10) and the way we combined the results of the cosine
similarity between the target documents and each of the documents returned
by Elasticsearch (should all cosine similarities be above a certain threshold,
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Figure 5.1: Average nDCG for several cosine similarity thresholds. For each
threshold, we computed the nDCGp for each combination method, with p
being the number of entries that score above the given threshold. For each
point, we used the combination method resulting in the highest average
nDCG.
Ideally, we would have a line at y = 1 as indicated by the optimal line, since
that would mean our relevance measure ranks the documents perfectly. The
random line is based on a sample of randomly ordered documents.

or only the average value). In the end, we took the combination that resulted
in the highest nDCG value. For extra redundancy, this experiment was
repeated multiple times for each data set. The results can be found in
figure 5.1, where the nDCGp is plotted against different cosine similarity
thresholds.

As can be seen from this figure, the nDCG line of our custom-built data
set is almost equal to the optimal line at y = 1. Clearly, even though this
set contains too few documents to prove anything statistically, our relevance
measure performs very well for this set of hand-picked topics and documents.

For the ODP data set, our measure performed slightly better than a random
ordering, but not as much as we had hoped. Certainly not well enough to
give any meaningful relevance estimate, proving its applicability in practice.
However, with the knowledge that our custom data set performed as well as
it did, we concluded that the ODP data set is not quite comparable to the
data we would expect from regular user behavior after all. As a result, we
did not use it for any further experiments, as it proved to be an unsuitable
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data set. We assume this has to do with the fact that the ODP data set
mainly refers to landing pages of each website, which are not necessarily
content heavy. For instance, a news article on a soccer match will be more
content intensive than the landing page of a random English soccer club.

In the case of the TREC data set, our similarity measure performs a lot bet-
ter, especially if we consider the higher cosine similarity thresholds. Con-
sequently, we know now that we have a setup that performs significantly
better at determining the most relevant documents in a sample set than
a random ordering. Moreover, we know the TREC data set is somewhat
representative of the usage we are trying to mock, meaning we can safely
use it in our experiments. Therefore, all experiments from here on out were
done using the TREC data set.

5.1.2 Finding the optimal parameters

In figure 5.1, we plotted the nDCGp against the cosine similarity threshold,
to see how well our system could perform. However, in each point, we used
the maximum value available from all combination methods (amount of
Elasticsearch results to use, and how to combine them), meaning we cannot
say anything useful yet on the best combination method or which threshold
to use in the final system. The plot presented there can only be used to
compare different data sets against the optimal ordering, random ordering
and each other.

Since we also want to find out the best way to combine our Elasticsearch
results, we need to compute each of the values separately and compare them
against each other. Therefore, we present the nDCGp for each combination
method and a couple of thresholds in table 5.1. From these results, we can
at the very least conclude that all of the combination methods outperform
a random ordering. On top of this, we can easily see that combinations
that use more of the Elasticsearch results perform better at separating the
relevant documents from the irrelevant documents, as they have a higher
nDCGp score. We can conclude that using the minimum cosine similarity
value of ten results performs the best, meaning this is the one we should
use in our final system. Note that requiring the minimum value to be above
a certain threshold is equivalent to requiring that all values are above that
threshold. So, in other words, we will use ten Elasticsearch results and
require that the document we are currently processing is similar enough (i.e.
above a certain cosine similarity threshold) to each of these ten documents.

Finally, now we know how to compute the final cosine similarity, we still
have to know when to accept it as ‘relevant’. In other words, we have to
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Threshold 0.6 0.7 0.8 0.9

Random 0.50 0.50 0.50 0.50

Min. of 1 result 0.65 0.66 0.69 0.70

Avg. of 1 result 0.65 0.66 0.69 0.70

Min. of 2 results 0.67 0.71 0.71 0.71

Avg. of 2 results 0.66 0.70 0.72 0.71

Min. of 5 results 0.79 0.82 0.81 0.86

Avg. of 5 results 0.76 0.79 0.81 0.83

Min. of 10 results 0.83 0.92 0.95 0.97

Avg. of 10 results 0.83 0.85 0.83 0.88

Table 5.1: nDCGs for each combination of Elasticsearch More Like This
results, computed for several cosine similarity thresholds.
Each row lists the nDCGp values if we sort our result list according to
the combination method mentioned in the first column. This combination
method varies in the amount of Elasticsearch MLT results we use (1, 2, 5 or
10) and the way we combine their cosine similarities (whether we take the
minimum value or the average of all the cosine similarities). For p, we took
the amount of results that score above the given threshold.

find a certain threshold above which we can label the document relevant.
To find this threshold, we plotted the nDCGp, F0.1 and F0.5 values in figure
5.2. As mentioned in section 4.2, an Fβ measure will value precision more
and more as β goes to 0. That is also the reason we plotted both F0.1

and F0.5. In both cases, precision is more important than recall, as it is
more important in the situation of WASP to limit false positives than false
negatives. That is where the F0.1 measure is useful; it still values recall
somewhat, but it mostly cares about precision. However, in some cases, a
user might be more tolerant of false positives, and they might be interested
in limiting the false negatives a little more. In this case, they might use the
F0.5 measure instead, as it provides more insight in the recall and thus in
the amount of false negatives.

By looking at both the nDCG curve and one of both Fβ curves, we can
determine what threshold is useful for a specific use case. For instance,
both the nDCG and the F0.1 value are very high around the threshold of
0.9, meaning that would be a good threshold if the aim is to limit false
positives to an absolute minimum. The lower you choose the threshold, the
more relevant results we will actually accept, as indicated by the rising F0.5

curve. However, at the same time, the decreasing nDCG and F0.1 values
indicate that a lower threshold will also allow for more false positives to
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Figure 5.2: nDCG, F0.1 and F0.5 for different cosine similarity thresholds,
computed from the TREC data set.

pass through the relevance filter. Since the initial purpose of this research
is to limit the false positives as much as reasonably possible, we set the
threshold to 0.9. This value is user customizable, though, meaning it can be
tailored to different users with varying use cases.

5.2 Crawl ordering

As mentioned in section 3.1, we wanted to sort the URLs to crawl on their
predicted relevance, as it might be infeasible to crawl all of the URLs in
a reasonable amount of time. We decided to adopt the approach from [9],
where we use the context (i.e. surrounding words) of an anchor tag to
determine how likely a document is to be relevant. However, as they did in
their research, we still had to determine how many surrounding words we
had to use in order to reach optimal efficiency.

In order to test this, we first had to find a set of documents, labeled with top-
ics, and corresponding context for anchor tags referencing these documents.
For the set of documents and corresponding topics, we used the TREC data
set again, as it proved useful and suitable in the other experiments. Then,
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we used the Moz Link Explorer1 to find backlinks to the documents in our
test set. In other words, using this Link Explorer we were able to find the
URLs of web pages that contained an anchor tag mentioning a document
in our data set. Using these backlinks, we were able to crawl these pages
and extract the context for the corresponding anchor tag. Unfortunately,
the crawl from which the backlink statistics came was slightly out of date,
meaning some pages no longer contained the hyperlink we were looking for
and other pages were taken offline entirely. However, in the end we had
access to a set of over 500 context samples for different documents in the
TREC data set.

Using this newly obtained data, we performed roughly the same experiment
as we did with the relevance measurement:

• Take a random set containing half of the topics, for each of which we
mark all documents as relevant.

• Split each topic into a training set and a testing set.
Since we could only use documents for which we found a backlink
and context in the test set, we decided to use all documents without
context as training set, and all documents with context as the test
set. For the purposes of this experiment, we assumed this would not
lead to any bias as there is no real underlying reason we could not
find the backlinks and contexts. The ratio between these sets was
approximately 3 to 1, as it was in our previous experiments.

• Index each document in the training set of a relevant topic.

• For each document in a testing set (both relevant and irrelevant), query
the context against the Elasticsearch index and determine the score.

• Sort all test documents in descending order of determined score and
compute the nDCG.

Since we wanted to figure out which context length was most suitable for our
crawl ordering, we varied with different context lengths. We used the values
that were used in [9] (5, 10, 20 or 40 words), and tried some other, larger
values as well (60 or 80 words, or the full document). We also experimented
with two different ways to combine the results Elasticsearch gave us. The
first was to use the highest score found, and the second was to take the sum
of all the returned scores. Again, the experiments were repeated many times
to ensure they were not influenced by the set of randomly selected relevant
documents. The results of these experiments can be found in table 5.2.

1https://moz.com/link-explorer
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Context
length

Combination
method 1 2 3 4 5 6 7 8 9 10

5 Max 0.46 0.48 0.56 0.61 0.62 0.63 0.65 0.65 0.65 0.67

5 Sum 0.51 0.50 0.56 0.56 0.57 0.61 0.62 0.64 0.65 0.67

10 Max 0.59 0.55 0.55 0.57 0.60 0.60 0.62 0.63 0.63 0.64

10 Sum 0.56 0.57 0.55 0.58 0.60 0.61 0.63 0.64 0.65 0.65

20 Max 0.56 0.53 0.55 0.56 0.58 0.60 0.62 0.62 0.63 0.65

20 Sum 0.59 0.55 0.58 0.57 0.60 0.62 0.63 0.64 0.64 0.65

40 Max 0.56 0.53 0.56 0.58 0.60 0.61 0.63 0.63 0.65 0.66

40 Sum 0.56 0.55 0.57 0.59 0.61 0.64 0.66 0.67 0.68 0.68

60 Max 0.61 0.61 0.61 0.66 0.69 0.71 0.73 0.73 0.73 0.73

60 Sum 0.63 0.63 0.65 0.68 0.70 0.71 0.72 0.73 0.73 0.74

80 Max 0.61 0.62 0.62 0.66 0.68 0.70 0.71 0.72 0.72 0.73

80 Sum 0.63 0.62 0.65 0.68 0.70 0.71 0.72 0.73 0.74 0.74

All Max 0.61 0.65 0.65 0.66 0.68 0.69 0.70 0.70 0.70 0.70

All Sum 0.61 0.65 0.66 0.67 0.69 0.70 0.71 0.71 0.71 0.72

Table 5.2: nDCGp for different values of p, calculated for each of the per-
formed experiments. Each row depicts the average values of nDCGp for p
from 1 through 10, computed when using the mentioned amount of context
words and combination method. The combination method indicates how
we combined the scores returned by Elasticsearch, i.e. whether we take the
maximum score or the sum of all scores.
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From these values, we can see that a larger context window results in a better
crawl ordering, but only to a certain extent. Using the full document a link
is found in as its context performs slightly worse than using a context of 60
or 80 words surrounding the link. Taking into account that we also want
to limit the storage space used up by the links and contexts, we concluded
WASP should store the 60 words surrounding a URL when storing it for
further crawling. The scores returned by Elasticsearch are then summed up
to obtain the best crawl ordering.

However, in these experiments we were limited by the data we had access to.
As we mentioned, we crawled backlinks of documents known to be relevant or
irrelevant, and extracted the context of the corresponding links in order for
us to perform this experiment. In the case of larger context windows, though,
it is very likely that the extracted context surrounds other hyperlinks, too.
Unfortunately we do not know whether these other documents are relevant
or irrelevant, which degrades our experiment somewhat.

For instance, if the user has visited a web page containing a news article,
that page might contain a list of other popular articles in a sidebar. If we
take a large number of context words, all of these closely grouped links will
have roughly the same context. As a result, each of these links will receive
approximately the same score, even though some might clearly be relevant
and others might not seem even remotely similar.

In such a situation, it is probably better to use a smaller context size, such
that the context is limited to the corresponding anchor tag only, and not
to other links in the neighborhood. Unfortunately, in the data set we have,
we only know for one link in each document whether it is relevant: the
document of which we retrieved the backlink. Thus, we miss out on the
subtleties mentioned above, meaning the larger context windows perform
better according to our experiments.

In order for this experiment to be improved, a more comprehensive data
set is necessary. Besides the current set of queries and corresponding web
pages, we would also need to have one or more documents referencing each
of the web pages in our data set. And, for each of the web pages referenced
by these documents, we would require a relevance assessment or some other
form of classification. Using this larger and more comprehensive data set, we
could repeat the experiment as described above, where the smaller context
windows will probably outperform the larger ones. Creating such a data
set and corresponding relevance assessments takes a lot of time and effort,
though, as relevance assessments often have to be made manually. Therefore,
we decided not to do so in this thesis, and leave the fine tuning of the context
lengths up for future research.
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Chapter 6

Related Work

6.1 Topical crawling

There is not yet a solution for focused crawling in which the topic of the
crawl is dynamic. Multiple papers have been dedicated to focused crawling,
but the common denominator between each of these papers is that they first
establish a topic to crawl, feed it to the crawler and then let it run.

For instance, [2] describes a way of focused crawling in which the topic is
already known beforehand, and relevant keywords are extracted from pages
known to be relevant. These keywords can then be used as a similarity
query on any new pages crawled, indicating whether they are relevant to
the given topic. Or, they can be compared against the context of a given
link, to determine whether the crawler should follow that link.

In our case, though, the topic depends entirely on the contents of the WASP
index, which solely consists of pages visited by the end user, meaning their
topic can be anything. Therefore, we cannot extract relevant keywords to
query new pages against beforehand. The closest we can come to this is
computing the relevant keywords on the fly, whenever we want to compare
a document to our existing set of relevant documents, but this is actually
exactly what our proposed relevance measurement does.

Another common approach to topical crawling is to train a classifier on
the topic of the crawl, and use this classifier to determine whether a crawl
candidate is relevant to the given subject. [9] poses an example of such a
setup. However, like the method mentioned above, this approach suffers
from the issue that subjects in our WASP index are not fixed beforehand.
Since the topic of the crawl can be any possible combination of subjects,

28



training a classifier based on these subjects beforehand is quite impossible.

Moreover, classifiers need a lot of data to train on before their results are
really trustworthy. Since our index only consists of pages visited by the
user, the amount of data completely depends on the amount of pages the
user visits. Without going into the specific numbers, it is quite unlikely that
the average user visits enough pages to fully train a classifier in a reasonable
amount of time.

Finally, another reason that classifiers would be hard to use with our current
setup is that we only have examples of documents that are relevant to our
subject. Training a classifier would require a set of irrelevant documents, too,
as the classifier has to somehow find the features that distinguish between
‘relevant’ and ‘irrelevant’.

6.2 Similarity measurement

As mentioned in section 2.3, there are many different ways to measure the
similarity between two documents. And, even though semantical analysis
performs better in most tasks than lexical analysis, we have still chosen to
adopt the simple bag-of-words model in this extension to WASP. Again, this
is mostly due to the basic reason that we are unable to use classifiers (or any
other trained network for that matter) in our current use case. A regular user
does simply not have enough data to train a network on. Another option
could be to use a pre-trained classifier, but that would mean we know the
set of subjects a user is interested in beforehand, which is also not the case.

But even if we look past the issues that arise if we want to train a classifier,
even with a trained network we might not be able to use the top-of-the-line
similarity measures in this context. For instance, the Doc2vec measure [6]
seems to do what we want, as it represents the meaning of a document in
a vector. However, because of the way the vector is computed, the location
of each paragraphs is embedded in this vector, alongside the paragraph’s
computed ‘meaning’. However, in our case, the structure of the document
is irrelevant; we are only concerned with the actual topic of the document.
Thus, we don’t want the structure of two documents to impact the similarity
between them. And that is exactly why the bag-of-words model might be
more suitable in this case, even though it is less sophisticated.
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Chapter 7

Conclusions

In this paper, we introduced an extension to WASP that enables the user
to search through pages they did not necessarily visit themselves. We do
this by storing all URLs found in visited documents, along with the context
surrounding the anchor tags they are found in. With a set of experiments
we found that we should use a context of 60 words for a simple crawl or-
dering, and that this crawl ordering makes sure the documents more likely
to be relevant are crawled first. However, we also acknowledged that these
experiments miss some subtleties due to a lack of relevance assessments for
certain groups of documents. This causes the results of our context exper-
iments to be inconclusive, as it might turn out later that smaller context
windows outperform the 60 word window.

When reviewing a crawled document for its relevance, we found the simple
bag-of-words model with a cosine similarity measure to be the most suitable
measurement. With extensive testing, we have shown that results are quite
accurate, especially if we use a higher cosine similarity threshold. We also
noticed that a different use case of the system might call for a different cosine
similarity threshold. For instance, when false positives are not much of an
issue, we could increase the recall, or amount of relevant documents we find,
by lowering the threshold.

The final extension to WASP, in which we implemented the findings from
our experiments, can be found on GitHub1.

1https://github.com/gijshendriksen/wasp
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Chapter 8

Future work

8.1 User testing

In this research, we mentioned several well-known metrics and used them
to validate the accuracy of the extension we built. From these metrics, it
followed that the theory behind our extension is valid, and that the extension
should work as expected. However, for these experiments, we used a couple
of existing data sets and one smaller, custom data set. And, although these
data sets were selected to mimic user interests in the form of subjects or
categories, it is infeasible that these data sets and the random samples we
extracted from them accurately represent actual user behavior.

In order to actually verify this new system works accurately for actual, real
life users, a different type of experiment should be executed. For instance,
a larger scale experiment with multiple users using WASP as a part of their
daily browsing behavior, who can verify whether the suggestions for related
documents are actually relevant to their interests. This way, we test the
performance of WASP on actual user data, and the relevance of documents
is determined by the user whose interests we are trying to predict.

8.2 User interaction

As it stands right now, suggestions made by WASP cannot be removed by
the user, nor can they be accepted or assessed in any other way. Currently,
it is built to not include these suggestions when determining the relevance
of other crawled documents, meaning the system will not recommend doc-
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uments similar to other suggestions. However, by providing the user with
the means to rate a recommendation’s relevance, we can get more insight
into their interests and get a larger sample of positive documents to com-
pare new documents against. The most interesting development, though,
could be that we gain access to a set of negative examples (i.e. irrelevant
documents), which could allow us to predict the relevance of new documents
more accurately.

8.3 Performance

Mostly concerned with the technical possibilities, this research does not
cover the performance of the new system all too much. Since WASP is
designed to run locally on a normal computer with regular hardware, one of
its key requirements is that running WASP is not too taxing on the user’s
computer. Concretely, this means it should not take up too much of the
computer’s processing time, memory or bandwidth. Therefore, a possibility
for further research is finding out how this extension to WASP influences
these parts of the user’s computer, for instance by measuring memory or
network usage over time and finding the optimal interval between crawling
operations.

8.4 Slow search

The current crawler and relevance metric, as they are introduced in this
paper, are both quite basic. This was mostly done deliberately to limit the
impact WASP has on the performance of the computer it runs on. However,
since the crawler runs in the background, there is no need for it to hurry
when searching for relevant documents. Therefore, in the spirit of ‘slow
search’ [11], we could also decide to spend more resources on determining
the relevance of a certain document using more difficult measures than the
simple bag-of-words model with a cosine similarity. This would mean we
process fewer possible relevant documents within a given time span, in return
for more accurate relevance predictions. And by assigning a relatively low
priority to the crawler process, we could still keep the impact on the normal
performance of the computer in check.
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