
Bachelor thesis
Computer Science

Radboud University

The State of Entropy Generation
in Practice

Author:
Hendrik Werner
s4549775

First supervisor/assessor:
dr. Veelasha Moonsamy
email@veelasha.org

Second supervisor:
prof. dr. Erik Poll

erikpoll@cs.ru.nl

Second assessor:
dr. Asli Bay

a.bay@cs.ru.nl

April 1, 2019

Abstract

Cryptographically secure random number generation using deterministic computers is
a difficult problem. Pseudo-random number generation algorithms with mathematically
proven properties exist, but small implementation errors can lead to disastrous security
vulnerabilities. Additionally, generating high entropy randomness for seeding these algorithms
remains an open problem. While best practices for entropy generation exist, they are often
badly implemented in practice, or completely ignored. Discourse about these issues is hindered
by the fact that the terms entropy and randomness are often used inconsistently, and without
properly defining them, which we also try to rectify by meticulously stipulating the definitions
used in the thesis.

This thesis summarizes the known best practices, and assesses entropy generation failures
in the wild, based on representative examples taken from the open source ecosystem. It
is demonstrated that entropy generation remains problematic in practice, despite being
an important and theoretically well studied discipline; in part due to the ignorance of
implementors who disregard best practices, and in part because it remains an inherently
difficult problem. Advice on how to securely generate random numbers is presented. However,
just knowing about best pratices is not sufficient, and to effectively improve the state of
entropy generation in practice, automated code reviews are required.

A template for this automation process is provided in the form of QL queries, which can
be used to eliminate vulnerabilities by means of variant analysis and data flow analysis. The
effectiveness of this approach is demonstrated by analyzing about 8000 C/C++ projects
on the LGTM code analysis platform, which yields a large number of real vulnerabilities,
allowing the state of entropy generation in practice to be determined, and hopefully improved.

1

Contents
1 Introduction 3

1.1 The Problem . 3
1.2 Contributions . 4

2 Preliminaries 6
2.1 Entropy . 6
2.2 Noise Source . 8
2.3 Entropy Source . 9

3 Literature Review 11
3.1 Entropy . 11
3.2 Entropy Generation . 12
3.3 Entropy Attacks . 13

4 Examples 15
4.1 Hacker News Login Cookie Vulnerability . 15
4.2 Widespread Weak Cryptographic Keys . 15
4.3 Badly Implemented Random Number Generator in 7-Zip 16
4.4 Unsuitable Noise Source in the Godot Game Engine 19

5 Entropy Generation Best Practices 22
5.1 High Entropy Noise Sources . 22
5.2 Multiple Noise Sources . 24
5.3 Conditioning . 24
5.4 Health Testing . 25
5.5 Advice for Implementors . 26

6 Entropy Generation in Practice 28
6.1 Predictable Noise Sources . 29
6.2 Single Noise Source . 29
6.3 No Conditioning . 29
6.4 Missing Health Tests . 30

7 Detecting Entropy Generation Weaknesses 32
7.1 Database extraction . 33

7.1.1 Importing Godot . 35
7.2 Detecting Unsuitable Noise Sources . 35
7.3 Data Flow Analysis . 41
7.4 Analysis Results . 44

8 Conclusions 51

9 Appendix 52
9.1 A: Proof of Concept . 52
9.2 B: Emails from Christian Uldall Pedersen . 53
9.3 C: LGTM Sample Projects . 55

2

1 Introduction
Random numbers are required for a number of applications, such as statistical analysis (e.g. the
bootstrap method), statistical sampling, physics and computer science (e.g. Monte Carlo methods),
and cryptography [7, 20, 18, 24, 32].

Randomness is hard to describe, and relative to the domain it is used in. Some interpretations
even say that no general notion of randomness can exist. We cannot go into much detail here,
as that would fall out of the scope of this thesis. We can say however, that what we essentially
expect of a random sequence is that we cannot reliably predict it [12, 19, 22, 64, 24].

Algorithms on the other hand, are inherently deterministic. Given the same input, they always
produce the same output. That means that by definition it is impossible to create “true” randomness
using an algorithm, and by extension a computer [42]. This leaves us in a difficult situation.
Randomness is hard to define and produce, but required for many tasks.

Thankfully, most applications of randomness do not require “true” random sequences, but rather
they require these sequences to have certain properties [24]. In some areas it is even undesirable to
use “true” randomness, e.g. due to a lack of repeatability [49]. Therefore, the problem of random
number generation has largely been solved by pseudo-random number generators (PRNGs). There
are countless known PRNG algorithms (e.g. Mersenne Twister [39] or Permuted Congruential
Generator (PCG) [43]), and all of them share the same property: given an initial state called seed,
they will produce a sequence that adheres to some set of properties. These properties (e.g. period
length) can be mathematically proven [41, 39, 43].

The PRNG algorithms are still deterministic however, which means that given the seed, the
sequence of pseudo-random numbers can be reproduced. This is because as discussed above, these
numbers are not actually random, they are determined by a PRNG algorithm based on the seed.

Polymath John Von Neumann had the following to say on the matter:

“Anyone who considers arithmetical methods of producing random digits is, of course,
in a state of sin.” [42]

PRNGs solve the problems of repeatability and cheap generation of large sequences of numbers
which appear random according to some set of criteria. One disadvantage of these algorithms is
that they leave open the question of how to initialize (a.k.a. seed) them.

1.1 The Problem
In theory it is well known that the seeds used in PRNGs must be chosen very carefully, and should
be kept confidential. If an attacker knows the seed, the PRNG output can be predicted, and the
security of everything that uses the randomness generated from this seed is compromised [7, 43].

To prevent attackers from guessing the seed, it has to contain high entropy (section 2.1). As
discussed earlier, generating entropy is not an easy task for computers. There are known best
practices for collecting entropy on deterministic computers [70, 7, 68]. These techniques are, for
example, implemented in the Linux kernel’s /dev/random device. /dev/random uses low level
hardware information like clock jitter and user input to collect entropy in an entropy pool, and
contains an estimator for the amount of entropy it has gathered [41]. Estimating entropy is an
exceptionally hard task, and previous research [18, section 5.4] has shown that in certain situations

3

the entropy estimator of /dev/random can be fooled. This means that even following the known
best practices does not necessarily prevent exploits based on insufficient entropy [70].

In practice however, the situation is even worse, and not just limited to theoretical attack scenarios.
An attack vector being well known and often exploited does not mean that it will no longer occur in
the real world [21, 32, 31]. As an example of this, let us consider buffer overflows. We have known
about them at least since 1962 [8], and there are many known techniques to prevent them. These
techniques include bounds checking and formal verification. Despite the attack and prevention
techniques being old and well known, it still occurs in the wild to this day [16, 15].

1.2 Contributions
The main goal of this thesis is to determine, and hopefully improve, the state of entropy generation
in practice. This task is broken down into its constituents, which are tackled individually.

In section 2, the first hurdle is taken on, which consists of meticulously outlining the definitions of
entropy and related concepts like entropy sources, and noise sources, which are used in this thesis.
It is essential to be on the same level about these concepts, and to use consistent terminology, if
the goal is to have a constructive conversation.

The existing rich literature about entropy, how to generate entropy, vulnerabilities arising from
entropy generation, and relevant background information is discussed in section 3. We review a
representative cross section of (academic) research, and how it related to this thesis.

Section 4 covers two recent, and two historical (though still applicable) examples of entropy
generation failures in practice, which are being referred to throughout the remainder of the thesis.
Explanations of why each example was picked are included in the section itself. A common deficit
of the existing literature is the purely theoretical nature of their findings, which are not applied
to practical scenarios. A lot of the time, researchers are content with proving some construction
theoretically unsound according to their security model, without so much as a proof of concept.
We try to address this shortcoming by using real world examples.

All the information about entropy generation best practices, which was scattered throughout the
literature, is compiled into an easy to follow checklist in section 5, which can be used as a guide
for somebody wanting to implement a secure entropy source. The NIST SP 800-90B [68] technical
report was the closest thing to such a manual that could be found in the existing literature, but it
is very technical, and assumes a lot of prior knowledge in order to be properly understood and
followed. Not everybody has the capacity and/or inclination to become an expert on entropy
generation in order to implement an entropy generator. This section improves the status quo by
providing a succinct and easily understood checklist of best practices to follow, describing what
should be done, why it should be done, and how it can be implemented.

As a counterpart to section 5, section 6 demonstrates how several of the best practices are not
applied in many real world cases during the construction of entropy sources, and how this has
led and will lead to countless security vulnerabilities in the field. Common errors and pitfalls
encountered by implementors of entropy sources are listed, which implementors should check their
implementation against, after building an entropy generator according to the instructions in section
5. We refer back to the examples from section 4, which made a lot of errors when constructing
their entropy sources.

4

Judging from hundreds of years of practical experience, it can be said with confidence that humans
are naturally lazy, and will take shortcuts and cut corners whenever they see the possibility to do
so. This means that having a checklist of best practices, as well as a list of common errors and
pitfalls is a great start, but not sufficient to sustainably improve the state of entropy generation in
practice. Even if a codebase was cleaned up 100%, following all the best practices, and removing
all flaws (which is a hopeless endeavor in most cases), errors would seep back in over time. Ideally
the best practices should be automatically enforced by code review tools.

Based on the observations made in sections 4, 5, and 6, section 7 takes a step towards realizing
this goal. QL queries attempting to automatically detect flaws in entropy generation with variant
analysis (section 7) and data flow analysis (section 7.3) are developed, which can be run using the
LGTM code analysis platform. Bas van Schaik, who works for the company behind LGTM, kindly
offered to run the query against their whole catalogue of about 8000 diverse C/C++ projects. The
results of this analysis are discussed, conveying an overview about the state of entropy generation
in practice.

5

2 Preliminaries
In many discussions about randomness and entropy, these terms are not defined satisfactorily, and
thus they are often used contradictorily. By properly defining terms and functions which are used
throughout this thesis, this section is intended to preempt confusion, and to foster a constructive
dialogue that is not hindered by ambiguities, communication problems, or misunderstandings.

2.1 Entropy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

p1

H
α

H0 (Max-entropy)
H1 (Shannon entropy)
H2 (Collision entropy)
H∞ (Min-entropy)

Figure 1: Rényi entropy measures

“No one knows what entropy really is, so in a debate you will always have the advantage.”
(John von Neumann to Claude Shannon) [67]

Entropy is a versatile and fluid concept with applications in many different areas, ranging from
thermodynamics to Information Theory, and cryptography. Naturally, this makes it hard to
pinpoint a generic definition, and hinders discourse. In the following, a short overview of the
history of entropy is given. The section concludes with the definitions and formulas pertaining to
entropy, which are used in this thesis.

Initially, entropy was introduced in 1865 by Rudolf Clausius in the field of classical thermodynamics
[13]. Ludwig Boltzmann later discovered the connection with statistical probability, and Max
Planck wrote his formula in the way it is used today: S = kB lnW , where kB is the Boltzmann
constant. J. Willard Gibbs generalized Boltzmann’s entropy into a form that already looks rather
familiar: S = −kB

∑
i pi ln pi.

6

Following the deployment of large parts of the American national communications network, several
engineering departments of American Telephone & Telegraph (AT&T) and the Western Electric
company were consolidated into Bell Telephone Laboratories, Inc. in 1925 [33]. Formerly tasked
with overcoming the day-to-day engineering challenges of building such a communications network,
the researchers were now dedicated to fundamental research, which resulted in the discovery of
Information Theory, and ultimately led to a breakthrough in the field of statistical entropy.

This began with the article “Transmission of Information” by Ralph V. L. Hartley [29] published
in 1928, in which he sets out a quantitative measure of the capacity of information that can
be transmitted by a system. Even though Hartley’s function H = log |X| can be interpreted in
retrospect as a measure of entropy for equidistributed stochastic processes with |X| outcomes, and
is indeed sometimes called Hartley entropy, it was derived without introducing probability. Today,
Hartley entropy is often referred to as “Max-entropy”, because it assumes a uniform probability
distribution, which coincides with the maximum entropy according to every Rényi entropy measure
(see below).

In 1948, Claude Shannon finally generalized entropy away from physics, in order to apply it to
Information Theory. Shannon entropy measures the average rate at which information is generated
by stochastic processes. It is still in use today, and calculated as follows: H = −K ∑

i pi ln pi,
where K is a positive constant (often K = 1, as “K merely amounts to a choice of a unit of
measure”) [62]. Alfréd Rényi further generalized Shannon entropy, as well as Hartley entropy
(a.k.a. Max-entropy), Collision entropy, and Min-entropy into a new very general entropy measure
called Rényi entropy: Hα = 1

1−α log(∑
i
pαi), where a ≥ 0, a 6= 1 (figure 1) [57].

Although statistical entropy is important in many different areas, it remains elusive, as indicated
by the quote from John von Neumann [67]. The main reason this thesis is concerned with entropy
is that it is needed to provide (security) guarantees for systems based on randomness, such as
many cryptosystems. First of all, a distinction has to be made between entropy of a random
process, and entropy of a sequence.

• Entropy for random processes is easier to define. The statistical entropy of a random process
is the amount of indeterminacy of its outcomes. Each toss of a fair coin is more random, and
therefore has higher entropy, compared with a biased coin. Peak entropy is reached when
no strategy of guessing the outcome gives an attacker an advantage. This is the case for
uniform probability distributions, where ∀i,j. pi = pj.

• Defining entropy for random sequences is harder, and there may not even be such a thing as
a random sequence [12, 19]. Looking at the example of coin tosses again, is the sequence
HHHHHHHHHH any less random than the sequence TTHHTTHTTT? Both sequences
can be produced by flipping a fair coin (the latter sequence was actually produced in this
way), and they are even equally likely to occur. The first sequence, consisting solely of heads,
can be described more concisely, and is therefore less random according to some entropy
measures. However, there is no real consensus if this statement even makes sense. Another
viewpoint is that no general notion of random sequences can exist [64].

In addition to this dichotomy, there are several competing entropy measures for each interpretation
of entropy. Following the example of NIST SP 800-90B [68], this thesis will focus on min-entropy.
Being the lowest of the Rényi entropy measures (α = ∞) (figure 1), it should give the highest
confidence in the guarantees given by systems based on it.

7

Figure 1 plots different Rényi entropy measures with different values of α against the probability
p1, for a random binary process with outcomes x1 and x2. p1 denotes the probability of outcome
x1 occurring, and p2 = 1 − p1 correspondingly denotes the probability of outcome x2. This is
intentionally kept generic, and is therefore applicable to many different situations. For example,
for a fair coin toss, x1 = H, x2 = T , and p1 = p2 = 1

2 .

H∞ = min
i

(− log2 pi)

= − log2(max
i
pi)

Example: Each fair coin toss has two outcomes, which both occur with probability 1
2 , therefore

max
i
pi = 1

2 . Min-entropy tells us that each fair coin toss contains a single bit of entropy:

H∞ = − log2
1
2

= 1

One would expect a biased coin to have less entropy per toss. If a coin lands heads up with
probability 2

3 , then max
i
pi = 2

3 .

H∞ = − log2
2
3

≈ 0.585

This result confirms the intuition that biased coins have less entropy per toss, compared with fair
coins. As expected, a uniform probability distribution leads to the highest uncertainty, and thus
the highest entropy.

2.2 Noise Source
Noise sources are the core of every entropy source, and are ultimately responsible for providing
the unpredictability. If the noise source fails to produce entropy, then this lack of indeterminacy
cannot be compensated for by any other component. This makes noise sources the core of pseudo
random number generation. PRNGs need an entropy source, and entropy sources need at least
one noise source [68].

In NIST SP 800-90B and this thesis, it is assumed that noise sources provide digital output. If a
non-digital process is sampled, the noise source must contain a digitization step (figure 2). The
digital output is called raw data.

In principle, every non-deterministic process with inherent randomness can act as a noise source.
There are two categories of noise sources [68]:

1. Physical noise sources, like radioactive decay, background radiation, accelerometer data,
etc., which typically provide high quality randomness, but require specialized hardware to
capture.

8

Digital Noise Source

Digitization

Raw Data

Noise

(Non-)Physical
Noise Source

Figure 2: NIST SP 800-90B Noise Source

2. Non-physical noise sources, like clock jitter, network packet arrival times, interrupt timings,
and user input (e.g. mouse and keyboard), which rely on system data, and sampling them does
not require specialized hardware. They are easier to sample, but may provide lower quality
randomness, or inconsistent randomness, which can lead to a lack of entropy, especially in
embedded systems, which have less noise sources available [32].

For many processes it is not obvious how much entropy they provide, and how consistent the
resulting entropy is. It is important to have a good understanding of the process which is used as
a noise source, in order to predict the output entropy, as well as possible failure states. If a noise
source fails to provide enough entropy, no security guarantees can be provided by systems relying
on it, and it may not be immediately obvious that it failed [68].

2.3 Entropy Source
Entropy sources are the main focus of this thesis. They depend on a noise source, and provide
random output with a guaranteed minimum entropy. In addition to at least one noise source,
NIST SP 800-90B [68] entropy sources contain an optional conditioning component (section 5.3),
as well as mandatory health tests (section 5.4) (figure 3).

Raw data is taken from the noise source, and fed into the conditioner, as well as into the health
tests. Conditioning is optionally used to increase entropy per bit, and/or decrease bias in the raw
data. The conditioner outputs random bits with a specified minimum amount of entropy. Health
tests ensure the continued functionality of the noise source. If a failure is detected, a corresponding
error is output, and the entropy source refuses to provide further random bits.

NIST SP 800-90B [68] assumes that entropy source implementors make a good faith effort to
implement entropy sources which provide consistent entropy, meeting or exceeding an entropy
threshold. As demonstrated by multiple sources, this is not always a valid assumption to make
(section 4) (section 6) [32].

9

Digital
Noise Source

Conditioning Health
Tests

Random Bits containing
Entropy Error Messages

Entropy Source

Raw Data

Figure 3: NIST SP 800-90B Entropy Source

10

3 Literature Review
The literature contains a plethora of information about randomness, entropy, and related concepts.
It is easy to find (academic) articles about these topics, but harder to pick out the relevant ones.
Additionally, there is no strong consensus a lot of the time, and there exist many competing
theories. This section provides an overview over prior research which is of importance to this
thesis.

3.1 Entropy
Entropy is the main concept underlying this thesis, which focuses on the interpretation of entropy
being a property of randomness, measuring the amount of indeterminacy of the randomness.
Initially, entropy was discovered in physics, specifically thermodynamics, and only later applied to
Information Theory and cryptography, though the generalizations which have been made in these
fields have been applied back to physics. Entropy appears to be a very general concept, applicable
to many phenomena (section 2.1).

“Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen
Wärmetheorie” by German physicist Rudolf Clausius [13] first introduced the concept of entropy
in 1865, but is not really relevant to this thesis, as it is about thermodynamics, and deals with
heat dissipation. It is still included here for completeness’ sake, as the article marks the very fist
discovery of the concept of entropy.

“Transmission of Information” by Ralph V. L. Hartley [29] laid out important groundwork for
Information Theory and later interpretations of entropy in 1928, though the author did not realize
this at the time. The article was written to find a quantitative measure which can be used to
compare the capacities of different systems to transmit information. In retrospect, we can also
interpret this as the amount of information that is revealed by observing a random process, which
is what we now refer to as statistical entropy.

“A Mathematical Theory of Communication” by Claude E. Shannon [62] presents the first inter-
pretation of entropy which is of importance to this thesis, and was discovered independently of
the earlier notions of entropy. Even though the paper ([62]) builds on the aforementioned work
from Ralph Hartley, neither Hartley himself nor Shannon realized that there was a connection
to entropy. Only when talking about his discovery to mathematician and physicist John von
Neumann, Shannon was told that entropy was an existing concept in physics, so he decided to
stick with the name for his generalized version [67]. This also shed new light on Hartley’s article,
and today we often refer to his function as Hartley entropy.

Building on the work of Claude Shannon, Alfréd Rényi generalized Hartley entropy (a.k.a. Max-
entropy), Shannon entropy, Collision entropy, and Min-entropy into an encompassing description
of entropy in his paper “On Measures of Entropy and Information” [57]. Rényi entropy Hα is
parametrized on order α, where α ≥ 0∧α 6= 1. Different values of α give different entropy measures,
like α = 0, which corresponds to Hartley entropy, or α = 1, which corresponds to Shannon entropy.
Higher values of α result in more conservative entropy measures. Min-entropy gets its name from
being the most conservative of the Rényi entropy measures, with the highest value of α =∞, and
is used in this thesis.

11

3.2 Entropy Generation
As discussed in section 1, generating entropy using deterministic computers and algorithms is no
easy task. On the other hand, due to its importance, it is also a well studied problem, and a lot of
guidelines and best practices for entropy generation are available in the literature. This section
contains a summary of this literature, insofar as it is relevant to this thesis.

Cryptographic hash functions in entropy generation are used for conditioning (section 5.3) and
sometimes for output extraction. In his 1979 PhD thesis “Secrecy, Authentication, and Public
Key Systems” [40], Ralph Charles Merkle laid out, among other things, a method of constructing
collision resistant cryptographically secure hash functions, given a one-way compression function.
Many widely used cryptographic hash functions have been derived by this method, including MD5,
SHA1, and SHA2. This construction is known as Merkle-Damgård construction after Ralph Merkle
and Ivan Damgård (see next paragraph), both of whom independently discovered the construction,
and proved it to be sound. While this thesis does not go into the details of cryptographic hash
functions, treating them as primitives, Merkle’s PhD thesis serves as a starting point for readers
wanting to dive deeper into the matter.

Ivan Bjerre Damgård’s independent rediscovery of the Merkle-Damgård construction “A Design
Principle for Hash Functions” [17] was published in 1989 in the proceedings of the Conference on
the Theory and Application of Cryptology, and is included here for completeness’ sake.

Boaz Barak and Shai Halevi present an architecture for PRNGs, and a model thereof, in which they
prove their architecture to be secure, in their article “A Model and Architecture for Pseudo-random
Generation with Applications to /dev/random” from 2005 [7]. They consider resilience, forward
security, and backward security, and advocate for the separation of the entropy extraction, and
output generation, where the entropy extraction phase corresponds to entropy sources as described
in section 2.3. Section 5 of their article is of special relevance to this thesis, and [7, section 5.3]
contains a discussion of the relevance of their findings to /dev/random and /dev/urandom.

The American National Institute of Standards and Technology (NIST) “is responsible for develop-
ing information security standards and guidelines, including minimum requirements for federal
information systems” [68, p. i], and their Information Technology Laboratory (ITL) in collaboration
with the National Security Agency (NSA) released a special publication (SP) titled “NIST SP
800-90B: Recommendation for the Entropy Sources Used for Random Bit Generation” [68] in
January 2018, which has already become an often cited source on entropy generation. Random Bit
Generators (RBGs) as defined in their report are equivalent to RNGs in this thesis, as random
numbers can be interpreted as bit-strings and vice versa. The NIST SP 800-90 series of reports
contains SP 800-90A, which describes deterministic RBGs (equivalent to PRNG), SP 800-90B,
which describes entropy sources, and SP 800-90C, with recommendations on how to combine these
two . This structure is reminiscent of the approach by Barak and Halevi [7] (see above), who also
separate entropy extraction from output generation. From the series, SP 800-90B is of highest
pertinence to this thesis, and several definitions were adopted from it.

John Kelsey, one of the authors of NIST SP 800-90B, gave a presentation about it at the Fault
Diagnosis and Tolerance in Cryptography conference titled “The 90B Approach to Entropy Sources”
[37]. As its name suggests, it serves as a nice primer into the approach the ITL and NSA teams
took to generate entropy, and a handy summary of SP 800-90B.

Germany’s counterpart to America’s ITL, the Bundesamt für Sicherheit in der Informationstechnik

12

(BSI) also conducted researched into entropy and random number generation, and published
their findings in their report “Evaluation of random number generators” [20] in 2013. Though I
personally find it to be written in a needlessly incomprehensible style, it can still be a valuable
resource. The cited document itself is merely a “master document referencing the current version
of all documents” [20, p. 5] making up their methodology. NIST SP 800-90 is referenced by the
BSI report, which was the predecessor to the NIST SP 800-90{A,B,C} series (page 12).

As discussed multiple times throughout this thesis, the Linux kernel (like all mainstream kernels)
contains a cryptographically secure RNG, which is exposed to user space through the /dev/random
and /dev/urandom devices, and since version 3.17 also as the getrandom() system call. On
behalf of the BSI, Stephan Müller from atsec information security GmbH prepared the report
“Documentation and Analysis of the Linux Random Number Generator” [41], which contains
exactly what it says on the tin: analysis of and documentation for the Linux RNG, for every kernel
version from 4.9 up to and including 4.20, which includes the latest stable version, as well as the 3
most recent long-term releases at the time of writing (2019-03-02) [66].

3.3 Entropy Attacks
“Mining Your Ps and Qs: Detection of Widespread Weak Keys in Network Devices” by Nadia
Heninger et al. [32] demonstrates how entropy generation failures in the Linux kernel RNG can
lead to exploitable weaknesses in cryptographic applications such as key generation. The article is
discussed in more detail in section 4.2.

In 2014, Yevgeniy Dodis et al. extended the model by Barak and Halevi (section 3.2) in their
article “Security Analysis of Pseudo-random Number Generators with Input: /dev/random is Not
Robust” [18]. Their extension is concerned with recovering from state compromise, and they show
that the architecture suggested by Barak and Halevi does not meet the extended requirements.
Linux’s PRNG implementation is also evaluated according to the new model, and the findings
show that it is not robust. This is demonstrated by two attacks, one on the entropy estimator, one
on the mixing function. Finally, the authors suggest a new simple PRNG construction that can be
proven robust in their model.

Marcella Hastings and Joshua Fried published their follow up paper to “Mining Your Ps and
Qs” [32] titled “Weak Keys Remain Widespread in Network Devices” [30] in 2016, in which
they collaborated with Nadia Heninger on measuring the response to her original 2012 paper.
The authors found that most vendors did not appear to have produced patches for the original
vulnerability, and that patches were mostly not applied by end-users where available. The number
of vulnerable hosts actually increased after the public disclosure of the security weakness in 2012.

Brillo is an Internet of Things (IoT) operating system developed by Google, and based on the
Linux kernel, thus inheriting its PRNG. Taeill Yoo et al. conducted an investigation into the
security of this PRNG, which was released in 2017 under the title “Recoverable Random Numbers
in an Internet of Things Operating System” [72]. They found that the underlying problems that
lead the the vulnerability of the Linux kernel PRNG (section 4.2) were still present in Brillo.

Joel Gärtner’s 2017 master’s thesis “Anaylsis of Entropy Usage in Random Number Generators”
[24] contains an investigation into how different PRNG implementations use entropy, and presents
different approaches to entropy estimation. Gärtner also explains how entropy overestimation can
lead to security vulnerabilities, and shows that there are scenarios in which real world entropy

13

estimators (e.g. in the Linux kernel) are too optimistic in their predictions, leading to outputs
containing less entropy than desired and/or required.

Nadia Heninger, one of the authors of the aforementioned “Mining Your Ps and Qs” article as well
as its 2016 follow up [30], gave a presentation titled “How not to generate random numbers” [31]
in June of 2018. It covers several practical examples of random number generation having gone
wrong, most of which were traced back to failures during entropy generation. The slides contain a
lot of useful pointers to germane literature, some of which is covered explicitly in this thesis.

14

4 Examples
In the following, some examples of PRNG seeding failures are discussed.

Example 1 (section 4.1) covers a vulnerability that allowed stealing login cookies for a news site.
It was chosen for disregarding every single best practice for entropy generation (section 5), as well
as being easy to understand and explain.

Example 2 (section 4.2) is the Internet scale survey of vulnerable cryptographic keys performed by
Nadia Heninger et al. [32] in 2012, in which they found a large number of RSA and DSA keys
were vulnerable to compromise. The article is included in this thesis for being such a large scale
survey, and for having been very influential. Additionally, as the authors note, their findings can
be generalized to most mainstream OS kernels, so the article has high general applicability.

Example 3 (section 4.3) was included for being representative of a commonly used open source
piece of software whose code has been public for years, yet it still contains obvious vulnerabilities
in the currently distributed version (18.06 as of 2019-02-10).

Example 4 (section 4.4) is included as a representative for the booming gaming industry, and for
being used in gambling software [23]. Like 7-zip, it has publicly available open source code, yet
still contains a low quality entropy generator.

4.1 Hacker News Login Cookie Vulnerability
Example 1. American seed accelerator Y Combinator hosts a popular news forum called Hacker
News. In 2009, user dfranke (David Franke) found a security vulnerability with regards to how
the PRNG was seeded. The vulnerability drastically reduced the range of possible seed values.
dfranke demonstrated that this could be used to guess login cookies by limiting the search space,
which potentially allowed an attacker to perform account theft [21].

The PRNG which was used, among other things, to generate login cookies, used a seed based on
the time the server was started. Here is the underlying code which was used to seed the RNG:

rs = scheme_make_random_state(scheme_get_milliseconds());

While it still requires the attacker to know the approximate startup time of the server to make
brute forcing feasible, this is already a grave security vulnerability. It would have been possible to
simply monitor the server for downtime, and record when it became available again.

This was not even necessary however, as dfranke also showed how this vulnerability could be
paired with a thread exhaustion attack that forced a server restart. Using the combination of
these two vulnerabilities reduced the search space of seeds on demand. The remaining entropy was
low enough to comfortably allow for brute force attacks.

4.2 Widespread Weak Cryptographic Keys
Example 2. As discussed before, high quality randomness is required for cryptographic appli-
cations such as RSA and DSA. Their security models rely on the underlying RNG providing
statistical quality randomness.

15

In their influential 2012 article “Mining Your Ps and Qs: Detection of Widespread Weak Keys in
Network Devices”, Nadia Heninger et al. [32] present the worrying results of their Internet scale
network survey of cryptographic keys. They show that due to insufficient entropy during key
generation, many TLS certificates share keys, or are susceptible to compromise. Even worse, the
team was able to obtain RSA and DSA private keys for a number of TLS and SSH hosts.

The cause of the vulnerabilities has been traced back to the implementations, not the underlying
cryptographic algorithms. Using “plausible software configurations” [32, p. 2], the team was able
to reproduce the vulnerability, using the most common open-source software components from the
population of vulnerable devices that was identified. RSA and DSA still appear to be secure when
used in conjunction with correctly functioning cryptographically strong RNGs.

The authors note however, that “no one implementation is solely responsible” [32, p. 2]. Vulnerable
keys were not limited to Linux, and were also observed under other operating systems like
Windows and FreeBSD, but the team focused their etiology on Linux. They found that all tested
implementations rely on /dev/urandom, which can provide deterministic output under certain
conditions. When reading from /dev/urandom too early after booting up, it is possible for the
entropy pool to not have been sufficiently initialized. /dev/urandom ignores the entropy estimate,
as it is intended to be non-blocking, so it can silently provide insecure output. Embedded devices
are especially likely to exhibit these conditions, due to their limited access to noise sources.

A better design would have been to never block after initially reaching the entropy threshold when
booting up, but Linux has always had a strong focus on backwards compatibility, so changing the
behavior in retrospect is seen as unacceptable by the developers [1]. What the Linux developers
chose to do instead was to include a better interface to the existing PRNGs, via the system call
getrandom() [26], which implements exactly this behavior. By default getrandom() extracts
entropy from the same unblocking entropy pool as /dev/urandom (though this can be changed
with flags), but instead of never blocking, it blocks until the pool has been fully initialized.

It is highly advisable to use this new interface over /dev/urandom, as it does not exhibit the boot
time entropy vulnerability. /dev/random was never affected by the aforementioned vulnerability,
but getrandom() still offers advantages, as it additionally addresses another vulnerability in which
exhausting the file descriptors makes it impossible to open /dev/random, and forces the use of
fallbacks, which are often less well tested, and less secure [1].

4.3 Badly Implemented Random Number Generator in 7-Zip
Example 3. On 22nd of January 2019, Twitter user “@3lbios” (Michal Stanek) posted a series
of Tweets on Twitter [63], detailing a number of security vulnerabilities he found in 7-Zip’s
cryptography code.

Instead of using a proper cryptographically secure PRNG based on a peer reviewed algorithm, 7-Zip
includes a very weak ad hoc implementation of a PRNG. Apparently the author was well aware of
the weaknesses of this generator. Included with the implementation are comments explaining the
shortcomings, and asking the reader to only use it for salting.

Listing 1: 7-Zip 18.06 PRNG (RandGen.cpp) [2]
1 #include " StdAfx . h "
2 #include "RandGen . h "

16

3
4 #include <time . h>
5
6 // This i s not very good random number genera tor .
7 // Please use i t on ly f o r s a l t .
8 // F i r s t genera ted data b l o c k depends from timer and processID .
9 // Other genera ted data b l o c k s depend from prev ious s t a t e
10 // Maybe i t ' s p o s s i b l e to r e s t o r e o r i g i n a l t imer va lue from genera ted

va lue .
11
12 #define HASH_UPD(x) Sha256_Update(&hash , (const Byte ∗)&x , s izeof (x)) ;
13
14 void CRandomGenerator : : I n i t () {
15 CSha256 hash ;
16 Sha256_Init(&hash) ;
17
18 pid_t pid = getp id () ;
19 HASH_UPD(pid) ;
20 pid = getppid () ;
21 HASH_UPD(pid) ;
22
23 for (unsigned i = 0 ; i < 1000 ; i++) {
24 time_t v2 = time (NULL) ;
25 HASH_UPD(v2) ;
26
27 for (unsigned j = 0 ; j < 100 ; j++) {
28 Sha256_Final(&hash , _buff) ;
29 Sha256_Init(&hash) ;
30 Sha256_Update(&hash , _buff , SHA256_DIGEST_SIZE) ;
31 }
32 }
33 Sha256_Final(&hash , _buff) ;
34 _needInit = fa l se ;
35 }
36
37 void CRandomGenerator : : Generate (Byte ∗data , unsigned s i z e) {
38 i f (_needInit)
39 I n i t () ;
40 while (s i z e != 0) {
41 CSha256 hash ;
42
43 Sha256_Init(&hash) ;
44 Sha256_Update(&hash , _buff , SHA256_DIGEST_SIZE) ;
45 Sha256_Final(&hash , _buff) ;
46
47 Sha256_Init(&hash) ;

17

48 UInt32 s a l t = 0xF672ABD1 ;
49 HASH_UPD(s a l t) ;
50 Sha256_Update(&hash , _buff , SHA256_DIGEST_SIZE) ;
51 Byte bu f f [SHA256_DIGEST_SIZE] ;
52 Sha256_Final(&hash , bu f f) ;
53 for (unsigned i = 0 ; i < SHA256_DIGEST_SIZE && s i z e != 0 ; i++,

s i z e −−)
54 ∗data++ = buf f [i] ;
55 }
56 }
57
58 CRandomGenerator g_RandomGenerator ;

The PRNG is seeded by using the process ID (getpid()), the parent’s process ID (getppid()),
and the current time (time(NULL)). All of these noise sources are very predictable, which means
they are not suited for a cryptographic entropy source. Also, because time() has a 1 second
resolution, it is very likely that v2 will share the same value across a significant amount of the 1000
iterations. While SHA256 is used for conditioning (section 5.3), this does not fix the underlying
issue.

During entropy generation, a fixed salt (0xF672ABD1) is mixed into the entropy pool. This is
obviously very bad, as a fixed value does not add any entropy. Combined with previous state,
which is also deterministic, this is the only data influencing the output. In essence, that means no
new entropy is ever mixed into the pool, making the RNG highly insecure.

Blatantly disregarding the warnings about its insecurity, the ad hoc PRNG implementation is
called from security critical code, where it is used to generate Initialization Vectors (IVs) for
AES encryption [2]. The purpose of IVs is to prevent repetition during the encryption, hindering
dictionary attacks. This turn of events showcases a frequent phenomenon: People are lazy. The
author of the RNG code was lazy for not implementing a proper noise source, and for using an
unproven ad-hoc RNG design. The person who used this insecure PRNG in security critical
cryptographic code was lazy for not using a better RNG, and/or for not looking at the comments
warning about the shortcomings of the included RNG. This is not intended as an attack on the
7-zip authors. Laziness is a natural tendency in many animals, including humans. Rather, it
emphasizes the importance of improving the state of the art of entropy generation. As long as
there are insecure PRNGs, they will inevitably be misused in security critical applications.

As of version 19.00, 7-Zip now reads from /dev/urandom [3], which is definitely an improvement
over version 18.06, but still not ideal. A better approach would be using the getrandom() system
call (see section 4.2), which is actually included, but commented out for some reason.

7-Zip also contains an even worse implementation of a PRNG, which uses only a single noise source,
and does not perform any conditioning. In addition, rand() is typically not cryptographically
secure. This PRNG is not used for any security critical tasks though, only to create some names
[2]. Due to this, the second PRNG is of no direct concern, but included here anyway, because it is
indicative of common anti-patterns.

18

Listing 2: 7-Zip 18.06 PRNG (Random.cpp) [2]
1 #include " StdAfx . h "
2 #include "Random . h "
3
4 #include <s t d l i b . h>
5 #include <time . h>
6
7 void CRandom : : I n i t (unsigned int seed) { srand (seed) ; }
8
9 void CRandom : : I n i t () { I n i t ((unsigned int) time (NULL)) ; }
10
11 int CRandom : : Generate () const { return rand () ; }

4.4 Unsuitable Noise Source in the Godot Game Engine
Example 4. Godot [27] is a free and open-source game engine, licensed under the permissive
MIT license. Combined with its expansive feature set, including but not limited to state of the art
3D rendering, a dedicated 2D engine, and cross platform support, this makes it a popular choice
for developing independent computer games.

Many games require a source of randomness, and therefore – if implemented in software – a
(P)RNG [24]. Just think of any card game like the many variants of Poker, or gambling games like
Roulette, or slot machines. These games belong to a large category of games relying in full or part
on chance.

Godot uses PCG32, a specimen of the PCG family [43] of random number generators with a 64-bit
internal state and 32-bit output. In and of itself, members of the PCG family are cryptographically
secure, but depend on a seed like all PRNGs. However, the way this seed is chosen by the Godot
engine negates all security guarantees made by PCG:

Listing 3: Godot RNG (excerpt from random_pcg.cpp) [28]
41 // . . .
42
43 void RandomPCG : : randomize () {
44 seed (OS : : ge t_s ing l e ton ()−>get_ticks_usec () ∗ pcg . s t a t e +

1442695040888963407ULL) ;
45 }
46
47 // . . .

randomize() (listing 3) is the function which is used to set the seed for the Godot RNG. It uses a
linear congruential generator where the multiplier is a timestamp.

19

Listing 4: Godot RNG (excerpt from random_pcg.h) [28]
47 // . . .
48
49 void seed (uint64_t p_seed) {
50 current_seed = p_seed ;
51 pcg . s t a t e = p_seed ;
52 pcg32_random_r(&pcg) ; // Force changing i n t e r n a l s t a t e to avoid

i n i t i a l 0
53 }
54
55 // . . .

seed() (listing 4) simply sets the state to the given seed, and additionally skips one value.

Listing 5: Godot RNG (pcg.cpp) [28]
1 // ∗Rea l l y ∗ minimal PCG32 code / (c) 2014 M.E. O' N e i l l / pcg−random .

org
2 // Licensed under Apache License 2.0 (NO WARRANTY, e t c . see web s i t e)
3
4 #include " pcg . h "
5
6 uint32_t pcg32_random_r (pcg32_random_t∗ rng)
7 {
8 uint64_t o l d s t a t e = rng−>s ta t e ;
9 // Advance i n t e r n a l s t a t e
10 rng−>s ta t e = o l d s t a t e ∗ 6364136223846793005ULL + (rng−>inc | 1) ;
11 // Ca l cu l a t e output f unc t i on (XSH RR) , uses o ld s t a t e f o r max ILP
12 uint32_t xo r s h i f t e d = ((o l d s t a t e >> 18u) ^ o l d s t a t e) >> 27u ;
13 uint32_t ro t = o l d s t a t e >> 59u ;
14 return (x o r s h i f t e d >> rot) | (x o r s h i f t e d << ((− ro t) & 31)) ;
15 }

pcg32_random_r() (listing 5) is just a standard implementation of PCG32.

The only noise source which introduces entropy into the Godot’s PCG state is the timestamp. It
does not contain sufficient entropy in order to secure the seed from being compromised (section
5.1).

It is not easy to use different noise sources within the Godot engine, so it stands to reason that
most game developers will just use what is available, and not bother implementing a better noise
source. This is especially problematic because Godot is used for developing gambling games, where
the quality of randomness used by a game influences the fairness (or lack thereof) of this game.
Additionally the prevalence of e-sports has surged in the past few years, and will probably continue
to do so. With tournaments regularly attracting huge crowds, and prize money in the millions,
a great incentive is created for exploiting every method of gaining an advantage over adversary
players, including using weaknesses in a game’s RNG. All of this means that there can be real

20

money on the line, and high quality randomness is essential to prevent highly motivated individuals
from exploiting weaknesses in games.

Ideally, a game engine like Godot should facilitate the generation of high entropy cryptographically
secure randomness, especially considering that every modern mainstream operating system provides
a cryptographic RNG, so the responsibility of generating better seeds could be foisted on the host
OS. In a perfect world, the path of least resistance is also the best one, so Godot should make
using cryptographically secure randomness easier than using low entropy randomness, which is the
only way to reliably prevent developers from implementing highly insecure games. If making a
game insecure takes more effort than making it secure, developers will start implementing secure
games.

The programmers at Gamblify [23], a Godot sponsor and independent Danish producer of hardware
and software for the gambling industry (e.g. physical slot machines and online casino software),
have recognized and worked around the insufficiency of Godot’s noise source. They only use Godot
for the user interface of their slot machines, while the game logic itself resides within the backend
which includes a Java PRNG (java.util.Random) seeded by an entropy source implemented
in C++ (std::random_device). This approach required implementing a custom TCP based
integration with Godot, in order to be able to send the results from the backend to the Godot
game, which is a nontrivial endeavor [49].

In conclusion, the default method provided for seeding the PRNG included with Godot is insecure.
Obtaining proper cryptographically secure randomness requires more effort than should be necessary,
which nudges game developers into the wrong direction, because many if not most of them will
take the path of least resistance, which in the case of Godot is the insecure path. Working around
this limitation takes considerable effort, and will not be undertaken by a majority of Godot users.

21

5 Entropy Generation Best Practices
In this section I will describe the best practices for entropy generation, as well as common pitfalls.

5.1 High Entropy Noise Sources
Noise sources are the core of every entropy source, which are themselves integral to PRNGs. They
should contain inherently high entropy, which roughly means that no strategy of predicting the
output of a noise source should give a potential attacker an advantage over picking at random.
Predictable noise sources can completely compromise the security of anything relying on a PRNG
seeded by randomness derived from them (section 2.2).

Entropy can be seen as the amount of indeterminacy of some variable. If a fair coin is flipped, the
outcome can be represented by 1 bit, and the outcome is completely indeterminate. No method of
guessing the outcome will result in a better average rate of correct guesses than 1

number of outcomes = 1
2 .

Therefore, each coin flip contains 1 bit of entropy (section 2.1).

Using a simple example, the vulnerability caused by predictable noise sources can be demonstrated.
On the one hand, we have a program which uses a very predictable noise source: the current time.
It uses this noise source directly as a seed to the C standard library random number generator.
After printing the seed to stdout, the program generates NSAMPLES (defined in listing 33; 10 per
default) random number samples, and writes them to an output file (listing 6).

Listing 6: Generator (poc.c)
1 #include <s td i o . h>
2 #include <s t d l i b . h>
3 #include <time . h>
4
5 #include " u t i l . h "
6
7 int main () {
8 time_t seed = time (NULL) ;
9 p r i n t f (" seed : ␣%ld \n " , seed) ;
10 srand (seed) ;
11 FILE ∗ output_f i l e = open_f i l e (" out . txt " , "w") ;
12 for (int i = 0 ; i < NSAMPLES; i++) {
13 f p r i n t f (output_f i l e , "%d\n " , rand ()) ;
14 }
15 f c l o s e (output_f i l e) ;
16 return EXIT_SUCCESS;
17 }

On the other hand, we have an attacker program (listing 7). It reads the output file, and guesses
the seed based on the modification time of the file. Starting with a seed value slightly below the
modification time (i.e. when the generator program has likely been run), the attacker increases
the seed until the generated samples match the samples from the output file. After being able to
reproduce all NSAMPLES random samples, the likely seed is printed to stdout.

22

Listing 7: Attacker (attack.c)
1 #include <errno . h>
2 #include <s td i o . h>
3 #include <s t d l i b . h>
4
5 #include " u t i l . h "
6
7 /∗∗
8 ∗ Guess the seed by comparing the samples .
9 ∗
10 ∗ @return guess o f the seed t ha t produced the samples
11 ∗/
12 unsigned int guess_seed (unsigned int seed , int samples []) {
13 for (; ; seed++) {
14 srand (seed) ;
15 for (int i = 0 ; ; i++) {
16 i f (i == NSAMPLES) { return seed ; }
17 i f (rand () != samples [i]) { break ; }
18 }
19 }
20 }
21
22 int main (int argc , char ∗argv []) {
23 i f (argc != 2) {
24 f p r i n t f (s tde r r , " Exactly ␣one␣command␣ l i n e ␣argument␣ r equ i r ed \n ") ;
25 return EXIT_FAILURE;
26 }
27 int samples [NSAMPLES] ;
28 FILE ∗ i npu t_ f i l e = open_f i l e (argv [1] , " r ") ;
29 for (int i = 0 ; i < NSAMPLES; i++) {
30 f s c a n f (input_f i l e , "%d\n " , samples + i) ;
31 }
32 p r i n t f (" seed : ␣%u\n " , guess_seed (modi f i cat ion_time (argv [1]) − 1 ,

samples)) ;
33 f c l o s e (i npu t_ f i l e) ;
34 return EXIT_SUCCESS;
35 }

After running the first program, the attacker program can recover the seed, just from looking at
the output file:

$./poc
seed: 1548979324
$./attack out.txt
seed: 1548979324

Guessing the seed is straightforward, because the indeterminacy of the noise source is extremely

23

low. Limiting the range of possible seed values enough to make brute forcing feasible is facile,
because we can use the modification time of the output file to estimate the time at which the
program was run. This modification time is stored in the file meta data on most popular file
systems.

Even without this luxury, we could still very easily constrain the search space. If we knew, the
program has been run within the last ten days, for example, that would equate to roughly 1 million
possible seed values. Checking all of them takes less than a second, using the code above.

It might seem like this is an unrealistic scenario, but examples like this are actually very common,
and easy to find (section 6.1). A situation very similar to this can even occur in the Linux RNG,
in circumstances with limited noise sources. Nadia Heninger et al. even observed servers in the
wild that apparently had no noise source whatsoever [32].

5.2 Multiple Noise Sources
We define a noise source as some source of inherently random bit strings. A noise source could be
a physical process like radioactive decay, background radiation, mouse movement, or any other
sensor input that contains randomness. These processes can be used as the basis of an entropy
source [37].

A noise source is an integral part of any random number generator. Without an inherently random
noise source, we cannot generate entropy. The PRNGs are deterministic, and so the randomness
has to come from the seed. The seed is generated from an entropy generator, which is itself
deterministic, so its randomness has to come from the noise source [37, 68].

If only a single noise source is used, an attacker who is able to control or intercept this source has
immediately compromised our system. Ideally, the entropy generator would catch a compromised
noise source by using health tests (section 5.4) on the raw input [31, 37, 68]. However, entropy
estimation is really hard in practice, and most entropy estimators are relatively easy to fool. Even
if we had a perfect entropy estimator, the attacker could intercept the random bits, look at them,
and pass them on to the entropy generator without any modification. That way even perfect
randomness does not guarantee security, if the random stream is not kept confidential.

Therefore, it is advisable to use multiple noise sources. An attacker would need to control or
intercept every randomness source in order to compromise the entropy generator. For this to
work, we need to mix in sufficient entropy from each noise source for the conditioning, otherwise
compromising some of the randomness sources could enable brute force attacks by limiting the
search space. Provided that enough random bits from each of the noise sources are used, brute
forcing the input noise is still at least as hard as brute forcing the output from the entropy generator
itself, making this attack obsolete.

5.3 Conditioning
The noise sources might be random, but not evenly distributed. To rectify this, the input noise
should be uniformly redistributed. We call this process “conditioning” [31, 37, 68].

It is important to note that conditioning is an optional step when implementing an entropy source.
Conditioning can increase the entropy per bit by redistributing the biased output of a noise source,
but this only works if there is still some inherent randomness in the noise source. 1000 consecutive

24

timestamps do not provide more entropy compared to a single timestamp. Conditioning can
“concentrate” entropy in a lower number of bits to meet some entropy target, but does not add
entropy itself.

Cryptographic hash functions like SHA-256 can fill the role of a conditioner in an entropy generator
[70, 37, 68]. The SHA-256 turns an input bit sequence of arbitrary length into a 256-bit, evenly
distributed output bit string. Cryptographic hash functions possess the properties of collision
resistance, pre-image resistance, and second pre-image resistance. Also a small (e.g. 1 bit) change
in the input should lead to a large change in the output. These properties make cryptographic
hash functions suitable as conditioners in entropy generators.

There also exist non-cryptographic conditioning algorithms that can be used to redistribute the
non-uniform output from a noise source. Von Neumann unbiasing is an example of such an
algorithm [37, 42]. It relies on the fact that regardless of the probability of 0 or 1 occurring in the
output, the probability of 01 occurring must be the same as 10. Von Neumann suggested rejecting
occurrences of 00 and 11, and using the first bit from 01 and 10 respectively. This way the input
stream is redistributed uniformly, no matter what the underlying distribution of 0s and 1s is [42].

Von Neumann unbiasing relies on neither the probability of 0, nor the probability of 1 occurring
being 0. This assumption must hold for noise sourced anyway, otherwise they cannot provide any
entropy. It also relies on a constant probability distribution of 0s and 1s, as well as individual bits
being independent. This is somewhat harder to prove for noise sources in practice.

The output of the conditioning step can either be used directly as the output of the entropy
generator, or processed further, for example using a stream cipher [70].

5.4 Health Testing
As discussed earlier, an entropy generator should try to detect major failures in randomness
generation from the noise source. If an attacker assumes control of a noise source, or if the noise
source starts giving significantly non-random output for some other reason, the entropy generator
should detect this. If the health checks fail, the entropy generator should refuse to provide output,
and instead give some error message, or enter some failure state [31, 37, 68].

By definition, entropy estimation is really difficult, and even theoretically impossible. Entropy
cannot be measured directly, as that would be a contradiction, given the definition of entropy as
“the amount of indeterminacy”. If we could mathematically define a sequence as random, it would
no longer be random [22, p. 9–10]. Another interpretation is that no absolute randomness exists,
only randomness with respect to certain properties [64, p. 4–5]. Entropy estimation being difficult
is no reason not to try to do as best as we can, however.

There are different ways of going about estimating entropy. Entropy estimators can either collect
some input noise, and perform statistical randomness tests on it, or try to indirectly estimate
entropy continuously while it is being received. /dev/random, for example, takes the latter
approach, and has been criticized for doing so [7, 72]. In essence, the Linux RNG estimated
incoming entropy based on its timing, not based on the data itself. Therefore very low entropy
data with irregular timing can be estimated to contain higher entropy compared to a source of
high-quality entropy that provides samples regularly.

However, the former approach can be relatively easily tricked as well, even ignoring the questionable

25

validity of talking about the entropy of random sequences as opposed to random processes (section
2.1). A potential attacker could take a sequence of inputs, which contains no entropy from his
point of view, for example a sequence of consecutive integers. By running this sequence through a
cryptographic hash function, he could turn it into a seemingly random sequence from the user’s
point of view. An entropy estimator would classify this sequence as containing high entropy due
to the properties of cryptographic hash functions, even though it does not for the attacker.

Health testing should not be taken as infallible, or seen as a reliable protection against attacks,
but more as a sanity check protecting us from obvious failures of our noise sources. Imagine,
for example, some accelerometer being used as a noise source suddenly getting disconnected.
Accelerometers can be used as viable noise sources providing high entropy even in a resting state
[70], and no attacker is present. In this scenario, the health check should catch that the input from
the accelerometer sensor is suddenly very low entropy, and refuse to provide further output.

5.5 Advice for Implementors
Everybody finding themselves in the position of needing to generate random numbers on a
deterministic computer for some reason or another should follow the advice from this section,
unless they know exactly what they are doing, and why they are deviating from said advice.

• Use a cryptographically secure PRNG. It might not seem obvious why a specific use
case might benefit from this property, but there is also no disadvantage. k-dimensionally
equidistributed cryptographically secure random number generators with arbitrary periods
exist, which exhibit very favorable space and time performance, are difficult to predict, and
posses additional useful features like multiple streams, and compact code size [43]. They are
even suitable for use in embedded devices, though entropy generation in these environments
remains a problem (section 4.2). If you are not sure which PRNG algorithm to use, use
PCG32, which has easy to integrate C, C++, and Haskell implementations [48].

Most (security) vulnerabilities are obvious in hindsight, but they still occur all the time. In
many cases, implementors simply did not think about how some features could be exploited,
or it was not obvious how this could be done. In other cases, it is assumed that everybody ever
working with the code will pay close attention to using the correct PRNG implementation
in the correct place, which is an unrealistic standard to keep up, and entirely unnecessary.
Vulnerabilities often arise from complex interactions between different parts of a codebase,
which are non-trivial to understand, and it cannot be expected that they will always be
considered in their entirety.

Using an insecure RNG for a security critical task can have calamitous consequences, but using
a cryptographically secure RNG for mundane tasks is harmless. If a project does not make use
of non-cryptographic PRNGs, programmers can rest assured that no unforeseen interactions
between different systems can expose exploitable vulnerabilities. The 7-zip example (section
4.3) shows that even explicit comments warning about insecure PRNGs and seeds do not
reliably stop them from being used for security critical applications. Banishing insecure
PRNG implementations from codebases can prevent a whole class of security vulnerabilities,
without any drawbacks. At some point this might have been prohibitively expensive, as
cryptographically secure PRNGs have traditionally been more resource intensive, but the
state of the art of pseudo random number generation has advanced since those days.

26

• Let the operating system (OS) generate seeds for you. As extensively discussed
throughout the whole thesis, generating cryptographically secure seeds on deterministic
hardware is difficult and error prone, so do not try to do it yourself if you can avoid it. All
mainstream operating systems provide an interface to a cryptographically secure random
number generator. These implementations have been intensely scrutinized, and continually
improved over the lifetime of their OS, and a lot of time and effort has been put into trying to
increase their security, due to their central role in providing cryptographic security (sections
3.2, and 3.3). Most implementors will not be able to put a comparable amount of due
diligence into constructing their own entropy generators (and indeed, most do not even try;
see sections 4, and 7.4), so their first impulse should always be to choose an existing proven
implementation. Operating systems are uniquely suited for entropy generation, because they
have a deeper and more comprehensive overview over the system compared with user space
processes, which makes collecting noise easier [70].

When using the secure random number generation facilities provided by the OS, make
sure to use an appropriate interface, for example the getrandom() system call instead of
/dev/urandom on Linux (section 4.2) [1]. Of course, you should also take care to treat your
seeds confidentially at all times.

• If you absolutely have to implement an entropy source yourself, follow the best
practices. This may be seemingly obvious advice, but experience shows that implementors
often fail to take even the most basic best practices into consideration when implementing
entropy sources (see sections 6, and 7.4). The best practices are outlined in this section, as
well as sections 2.2 and 2.3. Therefore, the following is intended only as a short summary.

– Pick your noise sources carefully (section 5.1), and try to understand their behavior
and failure states as best as you can. You should be able to explain where the entropy
in your noise source comes from, and give well-founded estimates for the amount of
entropy they output per bit. Additionally, you should be able to account for the failure
states of your noise sources, and develop techniques to reliably detect them.

– Whenever you can, use multiple noise sources (section 5.2), but not at the expense of
the quality of individual sources. A single high quality noise source is preferable over
combining several low quality ones. If you combine multiple noise sources, take sufficient
entropy from each source, so that even knowing the output of all other sources, each
single sources provides security on its own, requiring a potential attacker to observe
or take control over every single noise source in order to compromise your entropy
generator.

– Perform health testing (section 5.4), by monitory your entropy source for the failure
states you have isolated, and ideally for any unexpected suspicious activity which might
not have been anticipated. As soon as some failure state is detected, refuse to provide
any further entropy output, and raise an error instead.

– If you fall short of your entropy targets, use conditioning (section 5.3) to “condense”
the entropy into a smaller number of bits.

27

6 Entropy Generation in Practice
Evidently, implementing a high quality entropy source is still a difficult endeavor. This section is
about how entropy generation can go wrong in practice. In contrast to the previous section, it
specifically covers cases in which the best practices were not followed.

Pr
ed
ic
ta
bl
e
N
oi
se

So
ur
ce
(s
)

Si
ng

le
N
oi
se

So
ur
ce

N
o
C
on

di
tio

ni
ng

M
iss

in
g
H
ea
lth

Te
st
s

Hacker News Login Cookie
(section 4.1)

X X X X

Weak Cryptographic Keys
(section 4.2)

X X(1) X(2)

7-Zip Weak RNG (section
4.3)

X X(3) X

Godot Unsuitable Noise
Source (section 4.4)

X X X

Figure 4: Overview of Entropy Generation Weaknesses

(1) While Linux tried to gather entropy from multiple noise sources into an entropy pool, in
some situations only a very limited number of noise sources were available. Nadia Heninger
et al. [32] were able to reproduce realistic scenarios in which only a single noise source was
available, or even no noise source at all.

(2) Linux has an entropy estimator which tries to estimate the entropy of the input pool through
the timing of events it uses as noise sources. Regardless of the questionable validity of this
approach, the entropy estimates are completely ignored when reading from /dev/urandom.
Following the definition laid out in section (section 2.3), /dev/urandom does not practice
proper health testing, because it should refuse to give output when its entropy estimate
is too low. This runs contrary to the express purpose of /dev/urandom as a non-blocking
alternative to /dev/random.

(3) 7-zip uses multiple noise sources: the pid of the 7-zip process, the pid of the parent of the
7-zip process, and multiple timestamps (though they are very likely to significantly overlap
(section 4.3)). Strictly speaking it therefore does fulfill this requirement, but before using
multiple noise sources one should make sure that at least one of the noise sources provides
sufficient entropy on its own, which is not the case for 7-zip, as explained in sections 5.2 and
6.2.

28

6.1 Predictable Noise Sources
Noise sources are required to be inherently random (section 2.2). If an attacker can predict the
output of a source, it is unsuitable for use as a noise source in an entropy generator.

A common example of an unsuitable noise source is the current time. It is frequently used due to
the simplicity of retrieving it, and because it changes every time the program is run. On cursory
inspection, things seem to be fine, as the output value changes every time. That does not mean
that the noise source contains high entropy however, as demonstrated by the proof of concept in
section 5.1, and the work by Nadia Heninger et al. [32].

All of the examples (see section 4 and figure 4) used the current time as a source of entropy, which
demonstrates how common this pattern is. These examples were not specially picked in any way,
but when entropy generation fails, often timestamps seems to be involved. Other common bad
noise sources include process identification numbers (pids), and clock ticks. Note that all of these
common unsuitable noise sources are directly (timestamps, clock ticks) or indirectly (pids) related
to the process starting time, so combining them does not increase the entropy in the entropy pool
by the amount one would expect if the sources were independent.

Bad noise sources can contain some limited entropy from the point of view of an attacker, but
do not add much in terms of security. Mixing a timestamp, pid etc. into the entropy pool is not
intrinsically bad in the case of multiple noise sources, but this practice becomes problematic when
they are used as the only noise source, or together with other predictable noise sources (section
6.2).

6.2 Single Noise Source
In case of some noise source providing less entropy than predicted, or in case of it being controlled
or observed by an attacker, the best defense is having other noise sources which can compensate
for this lack of entropy. Ideally, but not necessarily, each noise source should provide sufficient
entropy on its own to make brute forcing infeasible. This way a potential attacker would need to
seize control of or observe every single noise source in order to compromise the system (section
5.2).

Like with predictable noise sources, none of the examples followed all best practices for using
multiple noise sources (figure 4). Linux’s RNG tries to use multiple noise sources, but sometimes
they are not available, 7-zip uses multiple noise sources, but each of them is insufficient, and finally
Hacker News and Godot outright only use a single noise source.

Using a low entropy source, and using a single noise source are problems that mutually exacerbate
each other. Having a single noise source is not so bad, if it is a high entropy noise source, and
having low entropy noise sources can be counteracted by using multiple of them. In practice
however, low entropy noise sources are often used as the sole noise source, or only combined with
a small number of other low entropy noise sources.

6.3 No Conditioning
Conditioning is optional when implementing an entropy source, yet it can still be very useful in
order to redistribute the noise evenly, and increase the entropy per bit (section 5.3).

29

Looking at the vulnerability overview (figure 4), we see that most examples applied some form of
conditioning. Linux’s RNG and 7-zip use cryptographic hash functions for conditioning, while
Godot uses a linear congruential generator. The only example in which no conditioning was used
is the Hacker News vulnerability.

All of the examples still exhibited some vulnerability though, which demonstrates how conditioning
cannot fix failures that arise earlier in the entropy generation process. These failures can be
obfuscated by conditioning, which might be a disadvantage in some cases, because it can lead to
delays in the discovery and fixing of the underlying problems. Well functioning health tests can
help to alleviate this drawback (section 5.4), but they were also absent in most examples (section
6.4).

6.4 Missing Health Tests
Health tests should have recognized the predictability of the unsuitable noise sources used in all
of the examples, and output an error leading to the entropy sources refusing to provide further
output (section 5.4).

Linux’s RNG implementation is the only example which incorporated health tests into its design,
though they are completely ignored when reading from /dev/urandom, which obviously makes
them useless in this case. None of the other examples included health tests (figure 4).

While it is hard to speak to the intentions of the authors when writing the code, comments left
by the implementors can be combined with other indicators to make reasonable guesses about
why they made the decisions they did. After inspecting the code, it seems that often times the
programmers were aware of the low quality of their noise sources, and intentionally excluded health
testing. When the noise source inherently provides low entropy, then health tests must either be
of low quality in order to not catch these obvious failures, or they will constantly fail and prevent
output from being generated. Health tests abiding by the former behavior are superfluous, so
it makes sense not to include them at all. From a security point if view, the latter behavior is
preferred, but from a practical point of view, it would prevent the RNG from ever functioning. In
practice most implementors apparently prefer a working insecure RNG over a secure one which
refuses to provide output.

For the 7-zip example, reconstructing the implementor’s thought process is the easiest, because the
code (listing 1) explicitly contains comments explaining how the RNG is really insecure, and should
only be used to generate salts. The author even warns about the possibility of compromising the
seed just from looking at the output of the RNG. Because the RNG was never intended to be used
for security critical tasks, it is understandable that the author chose to eschew health testing.

When a RNG was needed, but it was not implemented yet, the author reached for (what he
thought to be) the easiest tool available: an insecure ad hoc implementation. Later, when a RNG
was needed in another part of the codebase, the author – again – chose the path of least resistance
and used the implementation which was already available. Both decisions are understandable in
isolation, but detrimental in combination. Corners will inevitably be cut, so we should aim for
purging insecure random number generation in general. If there are no insecure PRNGs, they
cannot be abused for security critical code.

With Linux, the reasoning behind ignoring the health tests when reading from /dev/urandom
is also pretty obvious. /dev/urandom is specifically intended as a non-blocking alternative to

30

/dev/random. As noted by Theodore Ts’o [1], the focus has been on trying to initialize the entropy
pool as quickly as possible, before it can be read from. This is an admirable goal, but not always
achievable. A better design, as well as the solution actually implemented by the Linux developers
are discussed in section 4.2.

31

7 Detecting Entropy Generation Weaknesses
As demonstrated in this thesis, knowing about best practices and possible vulnerabilities is no
sufficient defense. Each implementor will have the tendency to cut as many corners as possible.
Decisions that are harmless in isolation can become security vulnerabilities when interacting with
other seemingly benign decisions (section 4.3). The most effective way to improve the state of
entropy generation in practice is automation. Errors are unavoidable, and should ideally be caught
as early as possible by automated code review tools.

LGTM [4] is such a code review system, which can be used to automatically find anti-patterns and
vulnerabilities, based on the same observation made in this thesis: the same bug often surfaces
multiple times, across time and project boundaries. Using LGTM, bugs can be categorized into
so called variants to find similar problems, in a process called variant analysis. Whole classes of
vulnerabilities can be eliminated by this process, and queries can be shared with other developers
and researchers, thus the gained expertise can proliferate easily.

QL [5] is the query language driving this variant analysis. It is an object-oriented logic programming
language semantically similar to SQL, and is used to query databases which LGTM generates from
a project’s code. While its syntax is based on SQL, its semantics are based on the declarative logic
programming language Datalog, which is itself based on Prolog, which implements propositional
logic. QL allows us to write queries like the following:

Listing 8: QL query: Pythagorean triples
1 from int x , int y , int z
2 where x in [1 . . 1 0] and y in [1 . . 1 0] and z in [1 . . 1 0]
3 and x∗x + y∗y = z∗z
4 select x , y , z

The query (listing 8) was taken from the official introduction to QL [36], and computes all
Pythagorean triples (x2 + y2 = z2, where x, z, y ∈ Z+), where x, y, z ∈ [1, 10]. Making use of the
object-orientation in QL, we can rewrite the query as follows:

Listing 9: QL query: Pythagorean triples with object-orientation
1 class Smal l Int extends int {
2 Smal l Int () { this in [1 . . 1 0] }
3 int squared () { result = this . pow(2) }
4 }
5
6 from Smal l Int x , Smal l Int y , Smal l Int z
7 where x . squared () + y . squared () = z . squared ()
8 select x , y , z

QL also offers more advanced features like aggregate functions (e.g. max(), count()), quantifiers
(e.g. forall, exists), and recursion. These features allow users to succinctly express complex
queries like the following:

32

Listing 10: QL query: longest function name (C/C++)
1 import cpp
2
3 from Function f
4 where not exists (Function g |
5 g . getName () . l ength () > f . getName () . l ength ()
6)
7 select f . getName () , f . getName () . l ength ()

The above QL code (listing 10) queries a C or C++ codebase for the function with the longest
name. Running it against the Linux kernel reveals that there are two functions which both have a
name which is 66 characters long, and both are related to the ext4 file system.

The remainder of this section is dedicated to finding entropy generation weaknesses using QL
queries in LGTM.

7.1 Database extraction
LGTM provides support for querying C/C++, C#, COBOL, Java, JavaScript, and Python
codebases through QL libraries. These libraries provide the framework on which the analysis is
based [4]. In the example query above (listing 10), we imported the cpp library, which is used for
C and C++, because we wanted to analyze the Linux kernel’s C source code.

Before a codebase can be queried, a database needs to be generated from it, which is what the
QL queries then run against [25]. In fact, a database is generated for each commit to track
changes over time, but that is secondary to understanding how this works. Each database contains
an abstract syntax tree (AST) representing the codebase, and additionally some supplementary
information. The database extraction step allows for a unified representation of codebases using
different programming languages, as well as efficient querying.

Programming languages are extremely diverse, so every supported language comes with its own
extractor, which is responsible for turning the codebase into a queryable database, and its own
database schema with a table representing each language constructs. Using multiple custom
extractors, as opposed to a universal representation, ensures that the analysis can be as accurate
as possible.

To be able to build a database, LGTM has to determine which files to analyze. For interpreted
languages such as JavaScript and Python, the extractor runs directly on the source, and resolves
dependencies. For compiled languages (e.g. Java, or C/C++) on the other hand, it works by
observing the build process [25]. Of course, that means that LGTM needs to be able to build the
project, which may require custom configuration. The Linux kernel is included as an example with
LGTM, and was already imported, so we did not need to worry about this, but if we want to
import new projects, this becomes relevant. LGTM comes with default configuration for every
supported language, but oftentimes this is not sufficient. In this case, an lgtm.yml or .lgtm.yml
configuration file is required to be in the repository, in order to customize the build process to suit
the project at hand [38].

33

The extraction process consists of multiple stages which can all be individually configured [14]:

1. prepare: In the preparation step, dependencies are installed, and necessary folders for the
analysis are created. This stage does nothing by default.

2. after_prepare: This stage can be used, for example, to clean up things from the preparation
step, or for setting up things (e.g. environment variables) for later stages, etc. This stage
does nothing by default.

3. before_index: Here, preparations for the index stage can be made, and artifacts from earlier
stages can be cleaned up. For some languages, there are steps in between after_prepare,
and before_index, which are discussed below. This stage does nothing by default.

4. index: In this stage, the extractor finally runs, and turns the identified relevant files into
their LGTM representation called trap files (.trap file extension), which are included in the
database together with copies of the source files they were generated from.

You may wonder why after_prepare and before_index are two separate stages, when they
fulfill mostly the same purpose, and run right after each other. The reason for this is that they
do not actually necessarily run consecutively, because there can be additional stages in between
after_prepare and before_index, depending on the language being imported. If you are using
a language without such an additional stage, it does not matter which of these stages you use,
including using both.

• For C/C++ codebases, there is an additional stage called configure in between the
after_prepare and before_index stages, which is used to generate configuration files
that are needed for building the project in the index stage [10]. The default configuration
tries to identify the build system by looking at the files present in the repository. A number
of build systems are supported by default, but if this stage does not work out of the box, it
can be manually configured.

• Python codebases have an additional extraction stage called python_setup, which also
sits in between the after_prepare and before_index stages. It is used to set up the
Python interpreter and environment. You can choose between Python versions, and specify
requirements to be installed by pip [53].

Figure 5 shows a flow diagram of the extraction pipeline with the stages described above.

prepare after_prepare

configure

python_setup

before_index index

C/C++

Python

other languages

Figure 5: LGTM extraction pipeline

34

7.1.1 Importing Godot

This section demonstrates how to customize the LGTM configuration in order to import projects,
with the Godot game engine [27] acting as an example.

The default C/C++ extraction configuration mostly works well for Godot. LGTM installs the
requirements, and even picks up on the fact that Godot should be build using the SCons [60] build
system. However, from consulting the import logs, we can see that the extraction fails at the
index stage, because in order to build Godot, a target platform has to be specified [35].

By specifying a build_command for the index stage in the C/C++ extraction block, we can override
the default configuration, and get LGTM to successfully build Godot [38]. The configuration file
must be called lgtm.yml or .lgtm.yml, and it has to be included in the source code repository.

Listing 11: lgtm.yml configuration file for Godot
1 ex t r a c t i on :
2 cpp :
3 index :
4 build_command :
5 − scons plat form=x11

After adding the configuration file (listing 11) to the Godot repository, it can be imported into
LGTM without problems. As of 2019-03-23 this configuration has kindly been added to LGTM by
Semmle’s Head of Product Bas van Schaik [61], and the project can now be queried on the LGTM
website1.

As you can see, the import process can be very time consuming, because it requires understanding
the build process of the projects. Even though LGTM offers default configurations for the supported
languages, often customized configuration is required. Luckily, we have the sizable library of
already imported projects at our disposal for the analysis.

7.2 Detecting Unsuitable Noise Sources
Our goal is detecting the use of unsuitable noise sources, which means we must identify functions
that are used to seed a PRNG (henceforth referred to as seed functions), and are being called with
data that is predictable.

Labeling all the low entropy sources manually is possible, but this approach would be very
time consuming, and runs contrary to the goal of automating the vulnerability detection. Thus,
we have to make use of heuristics. With all heuristics, there is a trade-off between sensitivity
(true positives

true positives + false negatives) and specificity (true negatives
true negatives + false positives).

For the detection of unsuitable noise sources, prioritizing specificity over sensitivity makes sense,
because

1. the bar for improvement is relatively low, so even detecting some vulnerabilities is already
an improvement over the status quo, and

1https://lgtm.com/projects/g/godotengine/godot/overview/

35

https://lgtm.com/projects/g/godotengine/godot/overview/

2. having low specificity negates the advantages of automation, because sifting through a large
number of false positives is no substantial improvement over manually reviewing the code.

A good starting point for our analysis is identifying the seed functions, which are defined in the
SeedFunction QL class (listing 12). After some experimentation with a heuristic for identifying
seed functions, it was decided to just use a list of known seed functions from popular PRNG
libraries, because while slightly increasing the sensitivity, using a heuristic also drastically decreased
the specificity, which we decided to prioritize. The supported PRNG libraries are: GNU libc [65]
(including ISO random, BSD random, and SVID random), C++ stdlib [11], OpenSSL [46], and
PCG [48].

Listing 12: QL class: Seed Functions
1 class SeedFunction extends Function {
2 SeedFunction () {
3 // ISO random : h t t p s ://www. gnu . org / so f tware / l i b c /manual/html_node/

ISO−Random. html
4 this . hasName(" rand_r ")
5 or this . hasName(" srand ")
6 // BSD random : h t t p s ://www. gnu . org / so f tware / l i b c /manual/html_node/

BSD−Random. html
7 or this . hasName(" i n i t s t a t e ")
8 or this . hasName(" i n i t s t a t e_ r ")
9 or this . hasName(" srandom ")
10 or this . hasName(" srandom_r ")
11 // SVID random : h t t p s ://www. gnu . org / so f tware / l i b c /manual/html_node

/SVID−Random. html
12 or this . getName () . matches (" _rand48 ")
13 or this . getName () . matches (" _rand48_r ")
14 or this . hasName(" lcong48 ")
15 or this . hasName(" lcong48_r ")
16 or this . hasName(" seed48 ")
17 or this . hasName(" seed48_r ")
18 // C++ s t d l i b
19 or this . hasName(" seed ")
20 // OpenSSL : h t t p s ://www. opens s l . org /docs /man1 . 1 . 1/man3/RAND_seed .

html
21 or this . hasName("RAND_add")
22 or this . hasName("RAND_seed")
23 // PCG C l i b r a r y : h t t p ://www. pcg−random . org /using−pcg−c . html
24 or this . getName () . matches (" pcg%_srandom")
25 or this . getName () . matches (" pcg%_srandom_r ")
26 // PCG C++ l i b r a r y : h t t p ://www. pcg−random . org /using−pcg−cpp . html
27 or this . getQual i f iedName () . matches (" pcg%:: pcg%")
28 or this . getQual i f iedName () . matches (" pcg%:: seed ")
29 }
30 }

36

We want to scrutinize how these functions are being called, so we need to look at seed function
calls. It follows from listing 12, that seed function calls are function calls with a seed function as
their target, which is expressed in the QL class SeedFunctionCall (listing 13).

Listing 13: QL class: Seed Function Calls
1 class SeedFunct ionCal l extends Funct ionCal l {
2 SeedFunct ionCal l () { this . getTarget () instanceof SeedFunction }
3 }

The SeedFunctionCall class is already sufficient for some cursory analysis, like the following
query (listing 14), which finds seed functions being called with a literal argument:

Listing 14: QL query: Seed Function Calls with Literal Arguments
1 import cpp
2
3 from SeedFunct ionCal l func_ca l l
4 where func_ca l l . getAnArgument () instanceof L i t e r a l
5 select func_ca l l

Running this query (listing 14) yields a lot of false positives, because not all arguments of seed
functions correspond to a required entropy input. Some arguments may just contain the length of
other arguments, a personalization string, or some other auxiliary information. The specificity,
which we decided to prioritize, is not high enough, resulting in many false positives being picked
up. To rectify the query, we introduce the concept of relevant parameters (listing 15), which were
taken from the documentation of the popular PRNG libraries we used [51, 52, 69, 47].

Listing 15: QL class: Relevant Parameters
1 class RelevantParameter extends Parameter {
2 RelevantParameter () {
3 // ISO random
4 this . getFunct ion () . hasName(" rand_r ") // s i n g l e parameter
5 or this . getFunct ion () . hasName(" srand ") // s i n g l e parameter
6 // BSD random
7 or (
8 this . getIndex () = 0 // a l l r e l e v an t parameters have index 0
9 and (
10 this . getFunct ion () . hasName(" i n i t s t a t e ")
11 or this . getFunct ion () . hasName(" i n i t s t a t e_ r ")
12 or this . getFunct ion () . hasName(" srandom ")
13 or this . getFunct ion () . hasName(" srandom_r ")
14)
15)
16 // SVID random
17 or (
18 this . getIndex () = 0 // a l l r e l e v an t parameters have index 0

37

19 and (
20 this . getFunct ion () . hasName(" lcong48 ")
21 or this . getFunct ion () . hasName(" lcong48_r ")
22 or this . getFunct ion () . hasName(" seed48 ")
23 or this . getFunct ion () . hasName(" seed48_r ")
24 or this . getFunct ion () . getName () . matches (" _rand48 ")
25 or this . getFunct ion () . getName () . matches (" _rand48_r ")
26)
27)
28 // C++ s t d l i b
29 or this . getFunct ion () . hasName(" seed ") // s i n g l e parameter
30 // OpenSSL
31 or this . getFunct ion () . hasName("RAND_add") and this . getIndex () = 0
32 or this . getFunct ion () . hasName("RAND_seed") and this . getIndex () = 0
33 // PCG C l i b r a r y
34 or this . getFunct ion () . getName () . matches (" pcg%_srandom")
35 and this . getIndex () = 0
36 or this . getFunct ion () . getName () . matches (" pcg%_srandom_r ")
37 and this . getIndex () = 1
38 // PCG C++ l i b r a r y
39 or this . getFunct ion () . getQual i f iedName () . matches (" pcg%:: pcg%")
40 and this . hasName(" seed ")
41 or this . getFunct ion () . getQual i f iedName () . matches (" pcg%:: pcg%")
42 and this . hasName(" seq ")
43 or this . getFunct ion () . getQual i f iedName () . matches (" pcg%:: seed ")
44 and this . hasName(" seed ")
45 or this . getFunct ion () . getQual i f iedName () . matches (" pcg%:: seed ")
46 and this . hasName(" seq ")
47 }
48 }

It follows that relevant arguments are arguments from a seed function call that correspond to a
relevant parameter of the target function, which is codified in listing 16.

Listing 16: QL class: Relevant Arguments
1 class RelevantArgument extends Expr {
2 RelevantArgument () {
3 exists (SeedFunction s f , SeedFunct ionCal l s f_ca l l , int i |
4 s f_ c a l l . getTarget () = s f
5 and s f_ c a l l . getArgument (i) = this
6 and s f . getParameter (i) instanceof RelevantParameter
7)
8 }
9 }

Many other false positives are caused by the fact that predetermined seeds are often consciously
chosen in testing code, in order to facilitate reproducibility, so these cases should be filtered out as

38

well. That is handled by the IgnoredFile class (listing 17), which contains a heuristic rejecting
probably irrelevant files.

Listing 17: QL class: Ignored Files
1 class I gno r edF i l e extends F i l e {
2 Igno r edF i l e () {
3 this instanceof Tes tF i l e
4 or this . getBaseName () . matches ("%t e s t%")
5 or this . getBaseName () . matches ("%bench%")
6 }
7 }

Making use of these ingredients, we can already put together quite a sophisticated query (listing
18). Instead of looking only for literals, we can also widen our search to include all constants, now
that we have achieved a far higher specificity.

Listing 18: QL query: Seed Function Calls with constant Relevant Arguments
1 import cpp
2 import semmle . code . cpp . Tes tF i l e
3
4 from SeedFunct ionCal l s f_ca l l , RelevantArgument arg
5 where arg . i sConstant ()
6 and s f_ c a l l . getAnArgument () = arg
7 and not s f_ c a l l . g e tF i l e () instanceof I gno r edF i l e
8 select s f_ca l l , arg

From the examples (section 4), we know that often low entropy arguments are not constants, but
functions returning low entropy outputs, like in the common anti-pattern srand(time(NULL)). To
catch cases like this, let us introduce the concept of low entropy functions (listing 19), and low
entropy function calls (listing 20).

Listing 19: QL class: Low Entropy Functions
1 class LowEntropyFunction extends Function {
2 LowEntropyFunction () {
3 this . hasName("now")
4 or this . hasName(" pid ")
5 or this . hasName(" ppid ")
6 or this . getName () . matches ("%time%")
7 or this . getName () . matches ("%t i c k s%")
8 }
9 }

For detecting low entropy functions, a whitelist is used in combination with a heuristic based on
the function name containing some keywords like “time”. The LGTM staff was kind enough to
offer an assortment of 69 sample projects to test the queries on, and this combination appears to

39

work really well in practice, picking up a lot of low entropy functions, without any false positives
in the test set. The full set of sample project is included in Appendix C: LGTM Sample Projects.

Listing 20: QL class: Low Entropy Function Calls
1 class LowEntropyFunctionCall extends Funct ionCal l {
2 LowEntropyFunctionCall () {
3 this . getTarget () instanceof LowEntropyFunction
4 }
5 }

Using the LowEntropyFunctionCall class, we can now also find problems arising from PRNGs
being seeded with low entropy functions, as shown in listing 21:

Listing 21: QL query: Seed Function Calls with Low Entropy Function as Relevant Argument
1 import cpp
2 import semmle . code . cpp . Tes tF i l e
3
4 from SeedFunct ionCal l s f_ca l l , RelevantArgument arg
5 where arg instanceof LowEntropyFunctionCall
6 and s f_ c a l l . getAnArgument () = arg
7 and not s f_ c a l l . g e tF i l e () instanceof I gno r edF i l e
8 select s f_ca l l , arg

In pursuit of covering more complicated cases like seed(time(NULL) ˆ 1337), in which constants
and low entropy function calls are combined in arbitrary operations, we introduce the mutually
recursive classes LowEntropySource (listing 22), and LowEntropyOperation (listing 23).

Listing 22: QL class: Low Entropy Source
1 class LowEntropySource extends Expr {
2 LowEntropySource () {
3 this . i sConstant ()
4 or this instanceof LowEntropyFunctionCall
5 or this instanceof LowEntropyOperation
6 }
7 }

A low entropy source is defined as being either a constant, a low entropy function call, or a low
entropy operation, which itself is an operation with only low entropy sources as operands (figure 6).

40

Listing 23: QL class: Low Entropy Operation
1 class LowEntropyOperation extends Expr {
2 LowEntropyOperation () {
3 this instanceof Operation and
4 f o ra l l (Expr operand | this . (Operation) . getAnOperand () = operand |
5 operand instanceof LowEntropySource
6)
7 }
8 }

Low Entropy Source
Constants
Low Entropy Function Calls
Low Entropy Operations

Low Entropy Operation
∀op. op ∈ Low Entropy Sources

Figure 6: Mutually recursive relation between low entropy sources and low entropy operations

With this framework in place, we can now formulate a query which finds a wide range of low
entropy sources being used as arguments to seed functions, as shown in listing 24.

Listing 24: QL query: Seed Function Calls with Low Entropy Source as Relevant Argument
1 import cpp
2 import semmle . code . cpp . Tes tF i l e
3 import semmle . code . cpp . data f low . DataFlow
4
5 from SeedFunct ionCal l s f_ca l l , RelevantArgument argument
6 where not s f_ c a l l . g e tF i l e () instanceof I gno r edF i l e
7 and s f_ c a l l . getAnArgument () = argument
8 and argument instanceof LowEntropySource
9 select s f_ca l l , argument

The queries in this section (listings 14, 18, 21, and 24) already match a number of security
vulnerabilities with impressive specificity, but we can do much better in terms of sensitivity, as
demonstrated in section 7.3.

7.3 Data Flow Analysis
The queries shown in section 7.2 are already a good basis for our analysis, but are very limited
in their scope. They are able to identify cases in which seed functions are being called directly
with constants (e.g. srand(23)), low entropy functions (e.g. srand(time(NULL))), or low entropy
operations (e.g. srand(time(NULL) ˆ 42)) as their arguments. In reality, most vulnerabilities are
not that obvious, and they look more like this:

41

Listing 25: More typical vulnerability
1 int seed ;
2 i f (some_condition) {
3 seed = secure_noise_source () ;
4 } else i f (another_condit ion) {
5 seed = 322 ;
6 } else {
7 seed = time (NULL) ;
8 }
9 srand (seed) ;

Keeping track of all the possible values a variable could hold with the tools we have used so far
would theoretically be possible though very cumbersome. In real code, vulnerabilities are often
much more complicated than this, and can involve multiple file and function call boundaries.
Fortunately, LGTM offers excellent data flow analysis libraries [34], which aid us in writing exactly
these sorts of queries.

“Data flow analysis computes the possible values that a variable can hold at various
points in a program, determining how those values propagate through the program
and where they are used.” [34]

LGTM represents this information as data flow graphs, in which data flows from sources to sinks.
Computing these graphs as a prerequisite for data flow analysis presents several challenges, and
can get highly resource intensive. Certain information is only available at runtime, and requires
the data flow libraries to perform additional work in order to determine call targets. Aliasing
complicates the analysis further, because a single memory location can be aliased to several
pointers, and writes to such a memory location affect all of them. For these reasons, LGTM offers
two different flavors of data flow analysis.

Local data flow concerns data flow within a single function, and is much cheaper to analyze and
more accurate compared to global data flow, which deals with data flow across an entire program.
For many queries, local data flow analysis is sufficient, but some queries necessitate the use of
global data flow analysis. In that case, sources and sinks of data flows should be prefiltered in
order to make the performance more palatable.

Before we can use the data flow library, we need to import the C/C++ specific version of the
library semmle.code.cpp.dataflow.DataFlow [6]. Each language comes with its own data flow
library, for the same reason they come with their own extractor. The languages are too diverse
for a unified representation to do justice to all the language features. Having separate libraries
guarantees maximum accuracy.

Next we can prepare the data flow analysis by telling LGTM which sources and sinks we are
interested in, by extending the DatFlow::Configuration class representing data flow configura-
tions, and overriding the isSource and isSink predicates (listing 26). This configuration step
is necessary because we want to use global data flow analysis, which is more conducive to high
sensitivity compared to local data flow analysis.

42

Listing 26: QL class: Low Entropy Flows
1 class LowEntropyFlow extends DataFlow : : Con f igurat ion {
2 LowEntropyFlow () { this = "LowEntropyFlow " }
3 override predicate i s Sou r c e (DataFlow : : Node source) {
4 source . asExpr () instanceof LowEntropySource
5 }
6 override predicate i s S i nk (DataFlow : : Node s ink) {
7 s ink . asExpr () instanceof RelevantArgument
8 }
9 }

We want to investigate data flows from low entropy sources to relevant arguments, so that is
what we filter by. With the configuration out of the way, we can finally implement our last query,
checking for data flow from low entropy sources to relevant arguments (listing 27).

Listing 27: QL query: Data Flow from Low Entropy Source to Relevant Argument
1 import cpp
2 import semmle . code . cpp . Tes tF i l e
3 import semmle . code . cpp . data f low . DataFlow
4
5 from LowEntropyFlow flow_conf , SeedFunct ionCal l s f_ca l l ,

RelevantArgument s ink , LowEntropySource source
6 where not s f_ c a l l . g e tF i l e () instanceof I gno r edF i l e
7 and not source . g e tF i l e () instanceof I gno r edF i l e
8 and s f_ c a l l . getAnArgument () = s ink
9 and f low_conf . hasFlow (
10 DataFlow : : exprNode (source) , DataFlow : : exprNode (s ink)
11)
12 select s f_ca l l , source

The query we have developed in this section is able to robustly identify a wide range of vulnerabilities,
by globally tracing data flow from diverse low entropy sources to relevant arguments of seed functions
from many popular PRNG libraries. When run against the 69 sample projects (section 9.3), it
finds 74 separate instances of unsuitable noise sources used as relevant arguments, in 20 of the
projects.

For some of these instances, it is difficult to say whether the behavior is intentional, which could be
classified as a bug regardless of whether it leads to a vulnerability. If a bad noise source is used, it
should be immediately obvious that this is safe and intentional (like in testing code). For example,
the Bullet physics engine [9], which is included as a dependency in many projects, contains this
call: seed(1806) in the btSoftBodyHelpers.cpp file. There are no comments explaining why a
constant seed is chosen, and the call is made in non-testing code, making this either a vulnerability,
or a documentation bug. Overall, no obvious false positives are found in the test set.

Once the query had been finalized on the test set of 69 sample projects, Bas van Schaik [61]
kindly offered to perform an analysis on the whole LGTM project catalogue, containing about

43

8000 C/C++ projects. Unfortunately, this is not possible for normal LGTM users, due to the
high resource cost of performing such a comprehensive analysis, but the LGTM team is extremely
approachable.

7.4 Analysis Results
Out of the about 8000 C/C++ projects the analysis was run on, 1229 (~15%) used at least one
bad noise source to seed a PRNG, and are henceforth referred to as vulnerable projects. Regardless
of whether these PRNG seeding failures directly lead to exploitable (security) vulnerabilities, this
classification is justified, because even if badly seeded PRNGs do not directly lead to exploitable
weaknesses, they unnecessarily expose attack surfaces in projects they are used in (see section 4.3),
requiring increased diligence from the programmers, which is impossible to keep up indefinitely. If
there are no badly seeded PRNGs in a project, they cannot be misused, and the responsibility
of generating secure seeds can and should be deferred to the host operating system in almost all
cases (section 5.5).

0 0.5 1 1.5 2 2.5 3 3.5
·104

100

101

102

103

GitHub stars

#
vu

ln
er

ab
le

pr
oj

ec
ts

Figure 7: Popularity of the projects containing bad noise sources

From the 1229 vulnerable projects, 1224 were hosted on GitHub, 1223 of which are still available.
The TheZ3ro/c-3po repository appears to have been deleted, so the number of stars it had could
not be retrieved. That means we know the number of GitHub stars for over 99.5% of vulnerable
projects. Figure 7 plots GitHub stars against the number of vulnerable projects with at least that
many stars (in steps of 1000 stars), and shows that the vast majority of bad noise sources were
found in projects having a low number of stars on GitHub, which can be seen as a rough indicator

44

of their popularity. It is likely that most of these unpopular projects with a low number of stars
are never going to be manually audited, emphasizing the importance of automation. The number
of popular projects on GitHub is low in general, so it makes sense that the number of popular
vulnerable projects is low as well. However, included in the vulnerable projects are 183 projects
with more than 1000 stars, and even 15 projects with more than 10 000 stars, such as the very
popular projects Redis, scikit-learn, OpenCV, Godot, and vim.

100 101 102 103

srand
seed

srandom
srand48
rand_r

RAND_add
pcg_setseq_64_srandom_r

pcg32_srandom_r
initstate_r

pcg_setseq_128_srandom_r
pcg_oneseq_128_srandom_r
pcg_oneseq_64_srandom_r
pcg_unique_64_srandom_r

pcg_unique_128_srandom_r
RAND_seed
initstate

pcg32_srandom
pcg_mcg_128_srandom_r
pcg_mcg_64_srandom_r

pcg_oneseq_16_srandom_r
pcg_oneseq_32_srandom_r
pcg_setseq_16_srandom_r
pcg_setseq_32_srandom_r

pcg32x2_srandom_r
pcg_unique_16_srandom_r
pcg_unique_32_srandom_r

lrand48_r
pcg_mcg_16_srandom_r
pcg_mcg_32_srandom_r

pcg_oneseq_8_srandom_r
pcg_setseq_8_srandom_r

srand48_r
srandom_r

pcg64_srandom

vulnerabilities

Figure 8: Seed Function Frequencies

34 different seed functions with low entropy data flow to one of their relevant arguments have been

45

detected in all of the analyzed projects. As visualized in figure 8, the overwhelming majority of the
seed function calls with low entropy arguments had the srand function from the C standard library,
or the seed function from the C++ standard library as their targets. Occurrence frequencies drop
off sharply thereafter, with a long tail of seldom used seed functions, many of which coming from
the PCG family [43].

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
100

101

102

vulnerabilities

#
pr

oj
ec

ts

Figure 9: Number of vulnerabilities per project

The majority of vulnerable projects, consisting of 709 individuals, contained only a single vulnera-
bility, with a long tail of projects containing up to 90 bad seed function calls in one case (figure 9).
Fixing most of the affected projects would be as simple as replacing a single insecure noise source
with a better one, like the one provided by the host operating system (section 5.5). This also
underlines the importance of automating the vulnerability detection (as accomplished in sections
7.2, and 7.3), as manually reviewing hundreds of projects containing a single vulnerability each is
impractical, but with variant analysis this task becomes trivial.

Figure 10 illustrates the low entropy source occurrence frequencies. The full list of low entropy
sources from the analysis is too long to be reproduced in full here, with a large number of rarely
used sources, so the figure contains the 20 most commonly used ones. The most frequent low
entropy source by an order of magnitude (with 1711 occurrences) are calls to time(), which is a
common anti-pattern we have already identified earlier (section 6.1). After that we have mostly
constants like 0 or 1, and low entropy operations like the negation operation - ..., or the bitwise
exclusive or operation ... ^ The LowEntropySource class (listing 22) seems to be working
well, and is picking up a varied assortment of bad entropy sources.

For the remainder of this section, we will focus on the most popular vulnerable projects in greater
detail.

Redis

With over 35 000 stars on GitHub, Redis [54], an open source in-memory database, is the most
popular vulnerable project which was identified during the analysis. It is relied on by many

46

100 101 102 103
call to time

0
1

- ...
42

& ...
123

23432
... ^ ...

variable access
1851696952

137
256

... % ...
~ ...
12345

198
1337
5489

37

vulnerabilities

lo
w

en
tr

op
y

so
ur

ce
s

Figure 10: Low Entropy Source Frequencies

high profile corporations, including Microsoft, American Express, and Master Card [55], so an
exploitable vulnerability could lead to critical infrastructure outages.

During the analysis, 4 instances of improper seeding of random number generators were found, all
concerning the srand C standard library ISO seeding function. Three of these are in the Redis
code itself, and another one in Lua, which is included as a dependency. Let us get the dependency
out of the way, so that we can focus on Redis’ own code. The query identified the function call to
srand shown in listing 28 as potentially being called with the literal 0.

Listing 28: Redis vulnerability #1 part 1 (excerpt from deps/lua/src/lmathlib.c) [56]
208 // . . .
209 stat ic int math_randomseed (lua_State ∗L) {
210 srand (luaL_checkint (L , 1)) ;
211 return 0 ;
212 }
213 // . . .

If we look at the definition of the luaL_checkinteger function (listing 29), we see that it uses
luaL_tointeger, which can return 0 (listing 30). luaL_checkinteger does check for the return
value being 0, but then passes it on anyway, leading to the vulnerability.

47

Listing 29: Redis vulnerability #1 part 2 (excerpt from deps/lua/src/lauxlib.c) [56]
188 // . . .
189 LUALIB_API lua_Integer luaL_checkinteger (lua_State ∗L , int narg) {
190 lua_Integer d = lua_to in tege r (L , narg) ;
191 i f (d == 0 && ! lua_isnumber (L , narg)) /∗ avoid ex t ra t e s t when d i s

not 0 ∗/
192 tag_error (L , narg , LUA_TNUMBER) ;
193 return d ;
194 }
195 // . . .

Listing 30: Redis vulnerability #1 part 3 (excerpt from deps/lua/src/lapi.c) [56]
322 // . . .
323 LUA_API lua_Integer lua_to in tege r (lua_State ∗L , int idx) {
324 TValue n ;
325 const TValue ∗o = index2adr (L , idx) ;
326 i f (tonumber (o , &n)) {
327 lua_Integer r e s ;
328 lua_Number num = nvalue (o) ;
329 lua_number2integer (res , num) ;
330 return r e s ;
331 }
332 else
333 return 0 ;
334 }
335 // . . .

The three remaining vulnerabilities in Redis were all found in the src/redis-cli.c file, which is
responsible for the command line interface. They are all manifestations of the same vulnerable
seeding method srand(time(NULL)), confirming the abundance of this anti-pattern, which we
have identified and discussed in section 6.1.

scikit-learn

scikit-learn [59] is a machine learning framework for Python, based on NumPy, SciPy, and
matplotlib. With over 34 thousand GitHub stars, it is the second most popular vulnerable project
by this metric, and is used by companies like JPMorgan Chase and Co., and Spotify [71].

22 vulnerabilities have been detected, all referencing a single function call to srand
in the sklearn/svm/src/liblinear/liblinear_helper.c file, specifically within the
set_parameter() helper function (listing 31).

48

Listing 31: scikit-learn vulnerability (excerpt from liblinear_helper.c) [58]
184 // . . .
185 /∗ Create a paramater s t r u c t wi th and re turn i t ∗/
186 struct parameter ∗ set_parameter (
187 int solver_type , double eps , double C, npy_intp nr_weight ,
188 char ∗weight_label , char ∗weight , int max_iter , unsigned seed ,
189 double ep s i l o n
190) {
191 struct parameter ∗param = malloc (s izeof (struct parameter)) ;
192 i f (param == NULL)
193 return NULL;
194
195 srand (seed) ;
196 param−>solver_type = solver_type ;
197 param−>eps = eps ;
198 param−>C = C;
199 param−>p = ep s i l o n ; // ep s i l o n f o r eps i l on−SVR
200 param−>nr_weight = (int) nr_weight ;
201 param−>weight_labe l = (int ∗) weight_labe l ;
202 param−>weight = (double ∗) weight ;
203 param−>max_iter = max_iter ;
204 return param ;
205 }
206 // . . .

The source for all 22 vulnerabilities lies within the over 9500 lines long auto-generated file
sklearn/svm/liblinear.c, which does indeed contain a call to set_parameter(), but is otherwise
utterly incomprehensible. sklearn/svm/liblinear.c is generated during the build process, in
such a way that it is not really humanly readable, and thus not reasonably manually auditable. It
does, however, contain a number of other oddities, like empty else clauses. These vulnerabilities
were not investigated much further, because in any case there is definitely a problem here. It is
pretty improbable – if not impossible – that anyone understands what this file does in its entirety,
and it is therefore almost guaranteed to contain bugs of some sort. The LGTM data flow libraries
can probably be trusted when they say that the file contains 22 improper seed function calls.

OpenCV

The third most popular vulnerable project, according to its number of GitHub stars, is the open
source computer vision library OpenCV [44]. With over 33 000 stars, it is not far behind Redis
and scikit-learn, which is not surprising. With over 2500 optimized implementations of algorithms
ranging from classical to state of the art, and a permissive license, it has become a top choice
when it comes to computer vision libraries.

The analysis flagged up a single vulnerable call to srand in the modules/core/src/rand.cpp file,
which contains a constructor for a Mersenne Twister PRNG with a constant seed (5489) (listing
32). This should definitely be improved with a proper noise source, because unsuspecting users
might reasonably expect the PRNG to be properly seeded when using this constructor. When

49

seeded with a constant, the Mersenne Twister algorithm produces predictable output, which is
generally not desired from a PRNG.

Listing 32: OpenCV vulnerability (excerpt from rand.cpp) [45]
817 // . . .
818 cv : : RNG_MT19937 : : RNG_MT19937() { seed (5489U) ; }
819 // . . .

Investigating the matches for several high-profile projects in detail has proved that the QL query,
which we developed in sections 7.2 and 7.3, reliably captures real vulnerabilities, some of which
are extremely hard to find manually.

50

8 Conclusions
Addressing the common need of generating randomness, increasingly sophisticated PRNG algo-
rithms have been developed over the last few years, offering excellent statistical performance and
cryptographic security, with a low memory and time complexity. There is no excuse for not using
a secure random number generator in this day and age, even on embedded and IoT devices with
extremely limited resources. Securely seeding these generators is still a problem, and their security
model relies on the seed being kept secret and hard to predict.

Weaknesses in entropy generation remain widespread (section 7.4), even though best practices for
entropy generation exist, and have been implemented in all mainstream operating systems, all
of which expose interfaces to cryptographically secure and well tested PRNGs, offering a solid
base for seeding PRNGs. Nonetheless, many popular projects still use bad entropy generation
schemes, which unnecessarily exposes attack surfaces, and the potential for security vulnerabilities.
Large scale efforts to improve the situation over several years have largely failed [32, 30], making it
clear that a different approach is needed to effectively improve the state of entropy generation in
practice.

In section 7, such a novel approach is presented, which combines variant analysis (section 7.2) with
data flow analysis (section 7.3), in order to identify low entropy sources being used as relevant
seed function arguments. This takes the form of a QL query, which can be run on the LGTM code
analysis platform. Analyzing all of the about 8000 C/C++ projects which have been imported
into LGTM with this method reveals that the developed QL query is effective in detecting even
relatively complicated cases of data flowing from unsuitable noise sources to relevant arguments of
seed functions, which can be an invaluable tool in pushing back against the prevalence of insecure
entropy generation (section 7.4).

In spite of the query already being quite effective, there is still room for improvement; for example
by detecting even more forms of data flow, by supporting other programming languages, or by
broadening the variant analysis to include other cases of entropy generation best practices being
disregarded. I was declared New User of the Month for April 2019 by LGTM [50], whose staff
is still collaborating with me on improving the query, which is under consideration for inclusion
in the LGTM standard query catalogue. Once it has been accepted, everybody can profit from
the insights gained in this thesis (in addition to the whole array of queries which LGTM already
offers) without much effort, by simply importing their project into LGTM. This represents one of
the main advantages of automating vulnerability detection with tools like LGTM.

It remains to be seen whether variant analysis and data flow analysis will effectively raise the
standard of entropy generation in practice, considering that previous efforts have largely failed
in doing so; though they definitely have the potential of sustainably increasing the security of
entropy generation, and thus random number generation. The ineffectiveness of earlier approaches
to improve the state of affairs with regards to entropy generation can largely be attributed to
them failing to be accepted by the community, and incorporated into standard quality assurance
practices. Lowering the bar of entry for applying the techniques developed in this thesis, by offering
them in an easy to use package like LGTM, should benefit their uptake, and hopefully lead to
increased efficacy.

51

9 Appendix
9.1 A: Proof of Concept
This section contains auxiliary files for the proof of concept presented in section 5.1.

Listing 33: util.h
1 #define NSAMPLES 10
2
3 time_t modi f i cat ion_time (char const ∗ f i l ename) ;
4 FILE ∗ open_f i l e (char const ∗ f i l ename , char const ∗mode) ;

Listing 34: util.c
1 #include <errno . h>
2 #include <s td i o . h>
3 #include <s t d l i b . h>
4
5 #include <sys / s t a t . h>
6
7 /∗∗
8 ∗ Ret r i eve the time o f l a s t mod i f i ca t i on o f some f i l e , and check f o r
9 ∗ e r ro r s .
10 ∗
11 ∗ @param f i l ename path to the f i l e
12 ∗
13 ∗ @return time o f l a s t mod i f i ca t i on
14 ∗/
15 time_t modi f i cat ion_time (char const ∗ f i l ename) {
16 struct s t a t s t a t s ;
17 i f (s t a t (f i l ename , &s t a t s)) {
18 f p r i n t f (s tde r r , " Could␣not␣ r e t r i e v e ␣ in fo rmat ion ␣about␣ f i l e ␣\"%s \ " :

␣%d\n " , f i l ename , er rno) ;
19 e x i t (EXIT_FAILURE) ;
20 }
21 return s t a t s . st_mtim . tv_sec ;
22 }
23
24 /∗∗
25 ∗ Open a f i l e , and check f o r e r ro r s .
26 ∗
27 ∗ @param f i l ename path to the f i l e
28 ∗ @param mode f i l e acces s mode
29 ∗
30 ∗ @return f i l e po in t e r
31 ∗/
32 FILE ∗ open_f i l e (char const ∗ f i l ename , char const ∗mode) {
33 FILE ∗ f i l e = fopen (f i l ename , mode) ;

52

34 i f (! f i l e) {
35 f p r i n t f (s tde r r , " Could␣not␣open␣ f i l e ␣\"%s \ " : ␣%d\n " , f i l ename ,

er rno) ;
36 e x i t (EXIT_FAILURE) ;
37 }
38 return f i l e ;
39 }

Listing 35: Makefile
1 CC ?= gcc
2 CFLAGS += −Wall −Wextra
3
4 a l l : a t tack poc
5
6 %: %.c u t i l . c
7 $ (CC) $ (CFLAGS) −o $@ $^

9.2 B: Emails from Christian Uldall Pedersen
Some of the information in the section about Godot (section 4.4) was taken from emails by
Christian Uldall Pedersen, who is the CTO of Gamblify.

Listing 36: Email from 2019-03-12
1 FROM: cup@gamblify . com
2 TO: hendr ik . to@gmail . com
3
4 Hi Hendrik ,
5
6 Thank you f o r your email , and i n t e r e s t in our games .
7
8 Gamblify a c t ua l l y only use Godot f o r the g raph i c a l part o f our s l o t−
9 machine games . The ac tua l randomness i s done us ing a combination o f
10 C++ and Java , where we use C++ fo r the seed generat ion , and Java f o r
11 gene ra t ing pseudo randomness based on t h i s seed .
12
13 In C++ we use C++11' s std : : random_device , whi l e in Java we use "new
14 Random(long) " : https : // docs . o r a c l e . com/ javase /8/ docs / api / java / u t i l /

Random . html#Random−long−
15
16 The reason why we use a pseudo random number genera to r i s to be ab le
17 to playback our game l o g i c g iven a s p e c i f i c seed .
18
19 I would love to hear from you , i f you have any comments on t h i s
20 approach .

53

21
22 Best regards ,
23 Chr i s t i an U lda l l Pedersen
24 CTO
25 Gamblify

Listing 37: Email from 2019-03-13
1 FROM: cup@gamblify . com
2 TO: hendr ik . to@gmail . com
3
4 Hi Hendrik ,
5
6 We are only sending a d e s c r i p t i o n o f what r e s u l t to show in the Godot
7 f rontend . No randomness i s sent . We implemented a TCP based integra−
8 t i on f o r t h i s .
9
10 You are welcome to quote me . I would l i k e to have i t sent f o r
11 approval .
12
13 Good luck with your t h e s i s !
14
15 Best regards ,
16 Chr i s t i an

Listing 38: Email from 2019-03-18
1 FROM: cup@gamblify . com
2 TO: hendr ik . to@gmail . com
3
4 Hi Hendrik ,
5
6 We are us ing java . u t i l .Random cons t ruc ted with the random seed gener−
7 ated from the C++ code . The purpose i s that we want our Java " eng ine "
8 to behave as a func t i on . I . e . same input y i e l d s same output . This re−
9 qu i r e s a d e t e rm i n i s t i c PRNG. The " t rue " random seed from the C++ code
10 ensure s that the outcomes on the machine are random . Giving the Java
11 engine t h i s property makes i t much e a s i e r to debug po t e n t i a l e r r o r s ,
12 i . e . we can rep lay an outcome in case o f a d i spute .
13
14 I approve the quotat ion :)
15
16 Best regards ,
17 Chr i s t i an

54

I want to thank Christian for being very open, swiftly answering my questions, and for giving his
permission for me to quote his answers for my thesis.

9.3 C: LGTM Sample Projects
The following is an exhaustive list of the 69 sample projects generously offered by the LGTM staff
for testing the QL queries.

• assimp/assimp

• autopilot-rs/autopy-legacy

• awslabs/s2n

• bingmann/cryptote

• Blizzard/s2client-api

• bloomberg/comdb2

• casadi/casadi

• chriscamacho/gles2framework

• coreutils/coreutils

• cossacklabs/themis

• couchbase/libcouchbase

• csete/gqrx

• curl/curl

• cxong/cdogs-sdl

• davidstutz/superpixels-revisited

• diffblue/cbmc

• dns-stats/compactor

• domoticz/domoticz

• dotnet/coreclr

• Enlightenment/efl

• fawkesrobotics/fawkes

• FFmpeg/FFmpeg

• fish-shell/fish-shell

• GNOME/libgnome-keyring

• godotengine/godot

• google/breadboard

• hishamhm/htop

• horde3d/Horde3D

• jbj/magicrescue

• jedisct1/libsodium

• KhronosGroup/VK-GL-CTS

• lastpass/lastpass-cli

• libretro/RetroArch

• LibtraceTeam/libtrace

• lightspark/lightspark

• logrotate/logrotate

• LuaJIT/LuaJIT

• lvmteam/lvm2

• madler/zlib

• ManaPlus/ManaPlus

• mbroz/cryptsetup

• Microsoft/ChakraCore

• MidnightCommander/mc

• miguelfreitas/twister-core

• musescore/MuseScore

• nishadg246/pybullet-play

• nlohmann/json

• ntpsec/ntpsec

• numpy/numpy

• pgsql-jp/jpug-doc

• pmacct/pmacct

• PowerDNS/pdns

55

• protocolbuffers/protobuf

• pwsafe/pwsafe

• qayshp/TestDisk

• sustrik/libmill

• systemd/systemd

• taglib/taglib

• tesseract-ocr/tesseract

• thegenemyers/DALIGNER

• thestk/stk

• torvalds/linux

• vim/vim

• VowpalWabbit/vowpal_wabbit

• wireshark/wireshark

• xiph/vorbis

• Z3Prover/z3

• zealdocs/zeal

• zeromq/libzmq

56

Figures
1 Rényi entropy measures . 6
2 NIST SP 800-90B Noise Source . 9
3 NIST SP 800-90B Entropy Source . 10
4 Overview of Entropy Generation Weaknesses . 28
5 LGTM extraction pipeline . 34
6 Mutually recursive relation between low entropy sources and low entropy operations 41
7 Popularity of the projects containing bad noise sources 44
8 Seed Function Frequencies . 45
9 Number of vulnerabilities per project . 46
10 Low Entropy Source Frequencies . 47

57

Listings
1 7-Zip 18.06 PRNG (RandGen.cpp) [2] . 16
2 7-Zip 18.06 PRNG (Random.cpp) [2] . 19
3 Godot RNG (excerpt from random_pcg.cpp) [28] 19
4 Godot RNG (excerpt from random_pcg.h) [28] . 20
5 Godot RNG (pcg.cpp) [28] . 20
6 Generator (poc.c) . 22
7 Attacker (attack.c) . 23
8 QL query: Pythagorean triples . 32
9 QL query: Pythagorean triples with object-orientation 32
10 QL query: longest function name (C/C++) . 33
11 lgtm.yml configuration file for Godot . 35
12 QL class: Seed Functions . 36
13 QL class: Seed Function Calls . 37
14 QL query: Seed Function Calls with Literal Arguments 37
15 QL class: Relevant Parameters . 37
16 QL class: Relevant Arguments . 38
17 QL class: Ignored Files . 39
18 QL query: Seed Function Calls with constant Relevant Arguments 39
19 QL class: Low Entropy Functions . 39
20 QL class: Low Entropy Function Calls . 40
21 QL query: Seed Function Calls with Low Entropy Function as Relevant Argument 40
22 QL class: Low Entropy Source . 40
23 QL class: Low Entropy Operation . 41
24 QL query: Seed Function Calls with Low Entropy Source as Relevant Argument . 41
25 More typical vulnerability . 42
26 QL class: Low Entropy Flows . 43
27 QL query: Data Flow from Low Entropy Source to Relevant Argument 43
28 Redis vulnerability #1 part 1 (excerpt from deps/lua/src/lmathlib.c) [56] . . . 47
29 Redis vulnerability #1 part 2 (excerpt from deps/lua/src/lauxlib.c) [56] . . . 48
30 Redis vulnerability #1 part 3 (excerpt from deps/lua/src/lapi.c) [56] 48
31 scikit-learn vulnerability (excerpt from liblinear_helper.c) [58] 49
32 OpenCV vulnerability (excerpt from rand.cpp) [45] 50
33 util.h . 52
34 util.c . 52
35 Makefile . 53
36 Email from 2019-03-12 . 53
37 Email from 2019-03-13 . 54
38 Email from 2019-03-18 . 54

58

Bibliography
[1] [RFC,-v2] random: introduce getrandom(2) system call. Linux Kernel Mailing List. url:

https://lore.kernel.org/patchwork/patch/484605/ (visited on 2019-03-17).
[2] 7-Zip Source Code. version 18.06. url: https://sourceforge.net/projects/sevenzip/files/7-

Zip/18.06/7z1806-src.7z/download (visited on 2019-02-10).
[3] 7-Zip Source Code. version 19.00. url: https://sourceforge.net/projects/sevenzip/files/7-

Zip/19.00/7z1900-src.7z/download (visited on 2019-03-23).
[4] About LGTM - Help - LGTM. url: https://lgtm.com/help/lgtm/about-lgtm (visited on

2019-03-17).
[5] About QL — Learn QL. url: https://help.semmle.com/QL/learn-ql/ql/about-ql.html

(visited on 2019-03-17).
[6] Analyzing data flow in C/C++ - Help - LGTM. url: https://lgtm.com/help/ql/cpp/dataflow

(visited on 2019-03-27).
[7] Boaz Barak and Shai Halevi. “A Model and Architecture for Pseudo-random Generation with

Applications to /dev/random”. In: Proceedings of the 12th ACM Conference on Computer
and Communications Security. CCS ’05. Alexandria, VA, USA: ACM, 2005, pp. 203–212.
isbn: 1-59593-226-7. doi: 10.1145/1102120.1102148. url: http://doi.acm.org/10.1145/
1102120.1102148.

[8] H. Blasbalg and R. van Blerkom. “Message Compression”. In: IRE Transactions on Space
Electronics and Telemetry SET-8 (Sept. 1962), pp. 228–238. doi: 10.1109/IRET-SET.1962.
5008841.

[9] Bullet Real-Time Physics Simulation | Home of Bullet and PyBullet: physics simulation
for games, visual effects, robotics and reinforcement learning. url: http://bulletphysics.org
(visited on 2019-03-29).

[10] C/C++ extraction - Help - LGTM. url: https://lgtm.com/help/lgtm/cpp-extraction
(visited on 2019-03-21).

[11] C++ Standard Library headers - cppreference.com. url: https://en.cppreference.com/w/
cpp/header (visited on 2019-03-28).

[12] Alonzo Church. “On the concept of a random sequence”. In: Bulletin of the American
Mathematical Society 46.2 (Feb. 1940), pp. 130–135. url: https://projecteuclid.org:443/
euclid.bams/1183502434.

[13] Rudolf Clausius. “Ueber verschiedene für die Anwendung bequeme Formen der Haupt-
gleichungen der mechanischen Wärmetheorie”. In: Annalen der Physik 201.7 (Apr. 1865),
pp. 353–400. doi: 10.1002/andp.18652010702. url: https://onlinelibrary.wiley.com/doi/abs/
10.1002/andp.18652010702.

[14] Customizing code extraction - Help - LGTM. url: https://lgtm.com/help/lgtm/customizing-
code-extraction (visited on 2019-03-21).

[15] CVE-2018-9139. 2018. url: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-
9139.

[16] CVE-2018-9264. 2018. url: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-
9264.

[17] Ivan Bjerre Damgård. “A Design Principle for Hash Functions”. In: Advances in Cryptology
— CRYPTO’ 89 Proceedings. Ed. by Gilles Brassard. New York, NY, USA: Springer New
York, 1989, pp. 416–427. isbn: 978-0-387-34805-6.

[18] Yevgeniy Dodis et al. “Security Analysis of Pseudo-random Number Generators with Input:
/dev/random is Not Robust”. In: Proceedings of the 2013 ACM SIGSAC Conference on

59

https://lore.kernel.org/patchwork/patch/484605/
https://sourceforge.net/projects/sevenzip/files/7-Zip/18.06/7z1806-src.7z/download
https://sourceforge.net/projects/sevenzip/files/7-Zip/18.06/7z1806-src.7z/download
https://sourceforge.net/projects/sevenzip/files/7-Zip/19.00/7z1900-src.7z/download
https://sourceforge.net/projects/sevenzip/files/7-Zip/19.00/7z1900-src.7z/download
https://lgtm.com/help/lgtm/about-lgtm
https://help.semmle.com/QL/learn-ql/ql/about-ql.html
https://lgtm.com/help/ql/cpp/dataflow
https://doi.org/10.1145/1102120.1102148
http://doi.acm.org/10.1145/1102120.1102148
http://doi.acm.org/10.1145/1102120.1102148
https://doi.org/10.1109/IRET-SET.1962.5008841
https://doi.org/10.1109/IRET-SET.1962.5008841
http://bulletphysics.org
https://lgtm.com/help/lgtm/cpp-extraction
https://en.cppreference.com/w/cpp/header
https://en.cppreference.com/w/cpp/header
https://projecteuclid.org:443/euclid.bams/1183502434
https://projecteuclid.org:443/euclid.bams/1183502434
https://doi.org/10.1002/andp.18652010702
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18652010702
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18652010702
https://lgtm.com/help/lgtm/customizing-code-extraction
https://lgtm.com/help/lgtm/customizing-code-extraction
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9139
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9139
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9264
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-9264

Computer & Communications Security. CCS ’13. Berlin, Germany: ACM, 2013, pp. 647–658.
isbn: 978-1-4503-2477-9. doi: 10.1145/2508859.2516653. url: http://doi.acm.org/10.1145/
2508859.2516653.

[19] Peter G. Doyle. “Maybe there’s no such thing as a random sequence”. In: Mar. 2011.
[20] Evaluation of random number generators. Tech. rep. Bundesamt für Sicherheit in der In-

formationstechnik, 2013. url: https://www.bsi.bund.de/SharedDocs/Downloads/DE/
BSI/Zertifizierung/Interpretationen/AIS_20_AIS_31_Evaluation_of_random_number_
generators_e.pdf.

[21] "dfranke" (Daniel Franke). How I Hacked Hacker News (with arc security advisory). June
2009. url: https://news.ycombinator.com/item?id=639976.

[22] Hans Freudenthal. “Realistic Models in Probability”. In: Studies in Logic and the Foundations
of Mathematics. Ed. by Imre Lakatos. Vol. 51. Utrecht University. 1986.

[23] Gamblify | Slotmachines, Bookmaking, Online Casino. url: https://www.gamblify.com/
(visited on 2019-03-17).

[24] Joel Gärtner. “Anaylsis of Entropy Usage in Random Number Generators”. MA thesis.
Sweden: School of Cumputer Science and Communication, Sept. 2017.

[25] Generating snapshot databases - Help - LGTM. url: https://lgtm.com/help/lgtm/generate-
database (visited on 2019-03-20).

[26] getrandom(2) - Linux manual page. also available via man 2 getrandom. url: http://man7.
org/linux/man-pages/man2/getrandom.2.html (visited on 2019-03-17).

[27] Godot Engine - Free and open source 2D and 3D game engine. url: https://godotengine.org/
(visited on 2019-03-14).

[28] Godot Engine Source Code. version 3.1-stable. url: https://github.com/godotengine/godot
(visited on 2019-03-15).

[29] Ralph V. L. Hartley. “Transmission of Information”. In: The Bell System Technical Journal
7.3 (July 1928), pp. 535–563. doi: 10.1002/j.1538-7305.1928.tb01236.x.

[30] Marcella Hastings, Joshua Fried, and Nadia Heninger. “Weak Keys Remain Widespread
in Network Devices”. In: Proceedings of the 2016 Internet Measurement Conference. IMC
’16. Santa Monica, California, USA: ACM, 2016, pp. 49–63. isbn: 978-1-4503-4526-2. doi:
10.1145/2987443.2987486. url: http://doi.acm.org/10.1145/2987443.2987486.

[31] Nadia Heninger. How not to generate random numbers. June 2018. url: https :
//summerschool-croatia.cs.ru.nl/2018/slides/How%20not%20to%20generate%20random%
20numbers.pdf.

[32] Nadia Heninger et al. “Mining Your Ps and Qs: Detection of Widespread Weak Keys in
Network Devices”. In: Proceedings of the 21st USENIX Security Symposium. Vol. 8. Aug.
2012.

[33] History - Bell Labs. 2019. url: https://www.bell-labs.com/about/history-bell-labs/ (visited
on 2019-02-24).

[34] Introduction to data flow analysis in QL - Help - LGTM. url: https://lgtm.com/help/ql/
intro-to-data-flow (visited on 2019-03-25).

[35] Introduction to the buildsystem — Godot Engine latest documentation. version 3.1-stable.
url: https://godot.readthedocs.io/en/3.1/development/compiling/introduction_to_the_
buildsystem.html (visited on 2019-03-21).

[36] Introduction to the QL language — Learn QL. url: https://help.semmle.com/QL/learn-
ql/ql/introduction-to-ql.html (visited on 2019-03-17).

60

https://doi.org/10.1145/2508859.2516653
http://doi.acm.org/10.1145/2508859.2516653
http://doi.acm.org/10.1145/2508859.2516653
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_20_AIS_31_Evaluation_of_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_20_AIS_31_Evaluation_of_random_number_generators_e.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_20_AIS_31_Evaluation_of_random_number_generators_e.pdf
https://news.ycombinator.com/item?id=639976
https://www.gamblify.com/
https://lgtm.com/help/lgtm/generate-database
https://lgtm.com/help/lgtm/generate-database
http://man7.org/linux/man-pages/man2/getrandom.2.html
http://man7.org/linux/man-pages/man2/getrandom.2.html
https://godotengine.org/
https://github.com/godotengine/godot
https://doi.org/10.1002/j.1538-7305.1928.tb01236.x
https://doi.org/10.1145/2987443.2987486
http://doi.acm.org/10.1145/2987443.2987486
https://summerschool-croatia.cs.ru.nl/2018/slides/How%20not%20to%20generate%20random%20numbers.pdf
https://summerschool-croatia.cs.ru.nl/2018/slides/How%20not%20to%20generate%20random%20numbers.pdf
https://summerschool-croatia.cs.ru.nl/2018/slides/How%20not%20to%20generate%20random%20numbers.pdf
https://www.bell-labs.com/about/history-bell-labs/
https://lgtm.com/help/ql/intro-to-data-flow
https://lgtm.com/help/ql/intro-to-data-flow
https://godot.readthedocs.io/en/3.1/development/compiling/introduction_to_the_buildsystem.html
https://godot.readthedocs.io/en/3.1/development/compiling/introduction_to_the_buildsystem.html
https://help.semmle.com/QL/learn-ql/ql/introduction-to-ql.html
https://help.semmle.com/QL/learn-ql/ql/introduction-to-ql.html

[37] John Kelsey. “The 90B Approach to Entropy Sources”. In: International Association for
Cryptologic Research. Fault Diagnosis and Tolerance in Cryptography, 2018. url: http:
//conferenze.dei.polimi.it/FDTC18/shared/FDTC%202018%20-%20keynote.pdf.

[38] lgtm.yml project configuration file - Help - LGTM. url: https://lgtm.com/help/lgtm/lgtm.
yml-configuration-file (visited on 2019-03-20).

[39] Makoto Matsumoto and Takuji Nishimura. “Mersenne Twister: A 623-dimensionally Equidis-
tributed Uniform Pseudo-random Number Generator”. In: ACM Trans. Model. Comput.
Simul. 8.1 (Jan. 1998), pp. 3–30. issn: 1049-3301. doi: 10 . 1145/272991 . 272995. url:
http://doi.acm.org/10.1145/272991.272995.

[40] Ralph Charles Merkle. “Secrecy, Authentication, and Public Key Systems”. AAI8001972.
PhD thesis. Stanford, CA, USA, July 1979.

[41] Stephan Müller. Documentation and Analysis of the Linux Random Number Generator.
Tech. rep. version 2.6. Bundesamt für Sicherheit in der Informationstechnik, Jan. 2019.
url: https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/
LinuxRNG/LinuxRNG_EN.pdf.

[42] John von Neumann. “Various Techniques Used in Connection With Random Digits”. In:
National Bureau of Standards applied mathematics series. Ed. by USA National Bureau of
Standards. U.S. Government Print Office, 1951.

[43] Melissa E. O’Neill. PCG: A Family of Simple Fast Space-Efficient Statistically Good Algo-
rithms for Random Number Generation. Tech. rep. HMC-CS-2014-0905. Claremont, CA, USA:
Harvey Mudd College, Sept. 2014. url: https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf.

[44] OpenCV library. url: https://opencv.org/ (visited on 2019-03-30).
[45] OpenCV source code. url: https://github.com/opencv/opencv (visited on 2019-03-31).
[46] OpenSSL Cryptography and SSL/TLF Toolkit. url: https://www.openssl.org/ (visited on

2019-03-28).
[47] OpenSSL documentation for RAND. url: https://www.openssl.org/docs/man1.1.1/man3/

RAND_seed.html (visited on 2019-03-27).
[48] PCG, A Family of Better Random Number Generators. url: http://www.pcg-random.org/

(visited on 2019-03-28).
[49] Christian Uldall Pedersen. email. B: Emails from Christian Uldall Pedersen. Mar. 2019.
[50] Profile - Hendrikto - LGTM community. url: https://discuss.lgtm.com/u/Hendrikto/badges

(visited on 2019-04-01).
[51] Pseudo-random number generation - cppreference.com. url: https://en.cppreference.com/w/

cpp/numeric/random (visited on 2019-03-27).
[52] Pseudo-Random Numbers (The GNU C Library). url: https://www.gnu.org/software/libc/

manual/html_node/Pseudo_002dRandom-Numbers.html (visited on 2019-03-27).
[53] Python extraction - Help - LGTM. url: https://lgtm.com/help/lgtm/python-extraction

(visited on 2019-03-21).
[54] Redis. url: https://redis.io/ (visited on 2019-03-30).
[55] Redis Labs | Database for the Instant Experience. url: https://redislabs.com/ (visited on

2019-03-30).
[56] Redis source code. url: https://github.com/antirez/redis/ (visited on 2019-03-30).
[57] Alfréd Rényi. “On Measures of Entropy and Information”. In: Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to
the Theory of Statistics. Berkeley, California: University of California Press, 1961, pp. 547–561.
url: https://projecteuclid.org/euclid.bsmsp/1200512181.

61

http://conferenze.dei.polimi.it/FDTC18/shared/FDTC%202018%20-%20keynote.pdf
http://conferenze.dei.polimi.it/FDTC18/shared/FDTC%202018%20-%20keynote.pdf
https://lgtm.com/help/lgtm/lgtm.yml-configuration-file
https://lgtm.com/help/lgtm/lgtm.yml-configuration-file
https://doi.org/10.1145/272991.272995
http://doi.acm.org/10.1145/272991.272995
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/Studies/LinuxRNG/LinuxRNG_EN.pdf
https://www.cs.hmc.edu/tr/hmc-cs-2014-0905.pdf
https://opencv.org/
https://github.com/opencv/opencv
https://www.openssl.org/
https://www.openssl.org/docs/man1.1.1/man3/RAND_seed.html
https://www.openssl.org/docs/man1.1.1/man3/RAND_seed.html
http://www.pcg-random.org/
https://discuss.lgtm.com/u/Hendrikto/badges
https://en.cppreference.com/w/cpp/numeric/random
https://en.cppreference.com/w/cpp/numeric/random
https://www.gnu.org/software/libc/manual/html_node/Pseudo_002dRandom-Numbers.html
https://www.gnu.org/software/libc/manual/html_node/Pseudo_002dRandom-Numbers.html
https://lgtm.com/help/lgtm/python-extraction
https://redis.io/
https://redislabs.com/
https://github.com/antirez/redis/
https://projecteuclid.org/euclid.bsmsp/1200512181

[58] scikit-learn source code. url: https://github.com/scikit- learn/scikit- learn (visited on
2019-03-31).

[59] scikit-learn: machine learning in Python. url: https://scikit-learn.org/ (visited on 2019-03-
30).

[60] SCons: A software construction tool - SCons. url: https://scons.org/ (visited on 2019-03-21).
[61] Semmle | About. url: https://semmle.com/about (visited on 2019-03-25).
[62] Claude E. Shannon. “A Mathematical Theory of Communication”. In: The Bell System

Technical Journal 27 (July 1948), pp. 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.
[63] "@3lbios" (Michal Stanek). 7-Zip Weak Encryption. Jan. 2019. url: https://threadreaderapp.

com/thread/1087848040583626753.html.
[64] Sebastiaan Terwijn. “The Mathematical Foundations of Randomness”. In: 2018.
[65] The GNU C Library. url: https://www.gnu.org/software/libc/ (visited on 2019-03-28).
[66] The Linux Kernel Archives. url: https://www.kernel.org/ (visited on 2019-03-02).
[67] Myrion Tribus and Edward C. McIrvine. “Energy and Information”. In: Scientific American

224 (1971), pp. 179–188. doi: 10.1038/scientificamerican0971-179.
[68] Meltem Sönmez Turan et al. NIST SP 800-90B: Recommendation for the Entropy Sources

Used for Random Bit Generation. Tech. rep. National Institute for Standards and Technology,
Jan. 2018.

[69] Using the PCG Library | PCG, A Better Random Number Generator. url: http://www.pcg-
random.org/using-pcg.html (visited on 2019-03-27).

[70] Bas C.M. Visser. “Additional source of entropy as a service in the Android user-space”.
MA thesis. Radboud University, July 2015.

[71] Who is using scikit-learn? url: https://scikit-learn.org/stable/testimonials/testimonials.
html (visited on 2019-03-30).

[72] Taeill Yoo, Ju-Sung Kang, and Yongjin Yeom. “Recoverable Random Numbers in an Internet
of Things Operating System”. In: Entropy 19.3 (2017). issn: 1099-4300. doi: 10.3390/
e19030113. url: http://www.mdpi.com/1099-4300/19/3/113.

62

https://github.com/scikit-learn/scikit-learn
https://scikit-learn.org/
https://scons.org/
https://semmle.com/about
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://threadreaderapp.com/thread/1087848040583626753.html
https://threadreaderapp.com/thread/1087848040583626753.html
https://www.gnu.org/software/libc/
https://www.kernel.org/
https://doi.org/10.1038/scientificamerican0971-179
http://www.pcg-random.org/using-pcg.html
http://www.pcg-random.org/using-pcg.html
https://scikit-learn.org/stable/testimonials/testimonials.html
https://scikit-learn.org/stable/testimonials/testimonials.html
https://doi.org/10.3390/e19030113
https://doi.org/10.3390/e19030113
http://www.mdpi.com/1099-4300/19/3/113

	Introduction
	The Problem
	Contributions

	Preliminaries
	Entropy
	Noise Source
	Entropy Source

	Literature Review
	Entropy
	Entropy Generation
	Entropy Attacks

	Examples
	Hacker News Login Cookie Vulnerability
	Widespread Weak Cryptographic Keys
	Badly Implemented Random Number Generator in 7-Zip
	Unsuitable Noise Source in the Godot Game Engine

	Entropy Generation Best Practices
	High Entropy Noise Sources
	Multiple Noise Sources
	Conditioning
	Health Testing
	Advice for Implementors

	Entropy Generation in Practice
	Predictable Noise Sources
	Single Noise Source
	No Conditioning
	Missing Health Tests

	Detecting Entropy Generation Weaknesses
	Database extraction
	Importing Godot

	Detecting Unsuitable Noise Sources
	Data Flow Analysis
	Analysis Results

	Conclusions
	Appendix
	A: Proof of Concept
	B: Emails from Christian Uldall Pedersen
	C: LGTM Sample Projects

