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Abstract

Tremendous popularity of Android devices makes Android malware detec-
tion an important issue that needs to be resolved. Machine learning algo-
rithms are often used to detect malicious applications (malwares). Many of
these machine learning models have shown to be vulnerable to adversarial
inputs: inputs intentionally crafted to cause a machine learning model to
misclassify. This vulnerability is a general problem in various state-of-the-
art machine learning algorithms.

This work focuses on a malware detector based on a deep neural net-
work (DNN). We evaluate different defensive measures, including feature
reduction and ensemble learning, whether they can effectively reduce the
sensitivity of deep neural network based malware detectors against adver-
sarial inputs. This study shows that especially ensemble learning is able to
reduce the success of adversarial samples. An ensemble of a deep neural
network and K-Nearest Neighbor (KNN) model was used to improve the
detection rate of adversarial inputs from 54% to almost 90% for the studied
models. However, the evaluation also shows that these methods can limit
the harm only to a certain extent.
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Chapter 1

Introduction

Over the last years, smartphones and tablets have become extremely pop-
ular. One of the most popular operating systems on those devices is An-
droid [2]. Due to its popularity, Android is an interesting target for attacks.
Attackers offer their malicious software in the form of small applications
(apps). According to current analysis in Google’s annual Android Secu-
rity and Privacy Year in Review [3] the percentage of potentially harmful
app installs amounts to 0.04% for the official Google Play store and 0.92%
for Apps outside of the Google Play store. Even though this seems to be
a very low percentage, with over 2 million available apps in the Google
Play store [4], security is a major aspect that needs to be considered. G
Data identified more than four million malwares in 2018; more than ever
before [5][6]. For users, these apps masquerade as normal and useful. How-
ever, in the background they perform malicious actions to gain access to
the device or to harm their users. To protect users’ privacy and to be able
to detect malicious apps, machine learning has become widely established.
Different machine learning algorithms and models are used for classification
to determine whether an app is benign or malicious. Nevertheless, recent
research has shown that many machine learning algorithms lack robustness
against adversarial inputs. These are inputs formed by applying some mi-
nor changes to earlier classified data such that the model gives an incorrect
answer - often with high confidence.
In this bachelor’s thesis, we investigate the following question:

Can a machine learning model for Android malware detection be
made more robust against adversarial inputs?

Therefore, we take a look at deep neural networks, one type of machine
learning models. We analyze whether different pre-processing techniques can
improve the performance of the classifier against adversarial inputs. With
this thesis, we would like to answer the questions of whether common defense
mechanisms are able to counteract adversarial inputs. Further, we want to



identify which features and which properties of apps are especially important
to differentiate between malware and cleanware. This makes it possible
to additionally determine how those mechanisms can be used to improve
both, the accuracy of a classifier and the robustness against adversarial
inputs. After each of these techniques (defense mechanisms) is tested against
adversarial inputs, the results are compared and analyzed to determine why
a certain combination of features and model performed that way. Finally,
we make suggestions on which method is able to improve a malware classifier
and to increase its robustness against adversarial inputs.

The thesis will mainly base upon research from Grosse et al. [1]. In
their research, they showed that adversarial samples are not only a threat
for image classification but that they can also be applied in the domain of
malware detection. We will rebuild their model and use its performance as
a basis, to determine the efficiency of each defense mechanism.

Chapter two will give some background information about basic terms.
In chapter three, we will discuss the previous research done in this field.
Chapter four deals with the set up of the thesis. The chapter will give an
overview of the methodology and provide all the technical details of the ex-
periments. Chapter five discusses the results and findings of the experiments
and chapter six will conclude this thesis and give suggestions for future re-
search.

The source code of this thesis is available at https://github.com/hendrikw257/
defense-adversarial-android-malware
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Chapter 2

Preliminaries

2.1 Android App Structure

Android is an open-source operating system that was initially released in
2008. It runs on top of a modified Linux kernel and runs Java-written
applications, called apps.

Android apps are bundled in the form of an APK file. When unpacked,
an app consists of several different files and folders. One file that is manda-
tory for each app is called AndroidManifest.zml. It contains metadata of the
app and describes its essential information, such as permissions. To access
the system, each app must request permissions. A user needs to accept all
permissions the app requests to be able to install it. Once installed, apps can
interact with each other and the system through application programming
interface (API) calls.

Furthermore, Android apps consist of various components [7]: activities,
services, broadcast receivers, and content providers. An activity is the rep-
resentation of a single screen that handles interactions between users and
apps. Services are components that run in the background of the operating
system to perform long-running operations while a different application is
running in the foreground. Broadcast receivers respond to broadcast mes-
sages from other applications or the system. They allow an app to respond to
broadcast announcements outside of a regular user flow. A content provider
manages a shared set of app data and stores them in the file system. It also
supplies data from one app to another on request.

2.2 Machine Learning

Machine learning algorithms classify given data based on different properties
they identify in that data. These algorithms allow us to better understand
all kinds of data and make predictions about it. Therefore, machine learning
algorithms make use of statistics and mathematics to analyze given data and



give us new insights into that data. Furthermore, machine learning models
search for interesting patterns in data, which can help to gain a better un-
derstanding of the relations between specific properties of it. In the context
of security, machine learning models support us in detecting threats and ma-
licious behavior in software. One fundamental difference between machine
learning algorithms and other kinds of algorithms is that traditional algo-
rithms define what a computer needs to do. Machine learning algorithms, in
contrast, learn how to solve a problem while they get trained on representa-
tive example data. Instead of simply deciding based on preconfigured rules,
a machine learning malware detector learns to determine whether an appli-
cation is benign or malicious by learning from given examples of cleanware
and malware. The model, therefore, extracts different features from each
of the given examples to figure out dependencies and to be able to make
accurate decisions.

2.2.1 Neural Networks

A neural network is one type of machine learning algorithm. It is a network
of small units, called neurons. Each neuron itself is a small, simple function.
Neurons output a function based on their input data and some parameters,
which are optimized during training. In a neural network, the neurons are
arranged in a graph that is organized in a number of layers linked to each
other.

In this thesis, we will use a deep feed-forward neural network (Figure @),
where deep means that the network consists of multiple layers, called hidden
layers. Feed-forward neural networks consist of multiple layers in that each
neuron is connected to all neurons in the next layer, but connections never
go backward.

2.2.2 Adversarial Samples

Adversarial samples are crafted by adding small perturbations to inputs to
force a targeted model to misclassify the sample. Often these perturbations
are so small that they cannot be detected by humans.

In this research, we will use the forward derivative based approach, which
was initially introduced by Papernot et al. [8] and slightly adjusted by Grosse
et al. [l]. This approach evaluates the model’s output sensitivity to each in-
put component using its Jacobian matrix, the forward derivative. After that,
a perturbation is selected which is based on the derivative. For a successful
application of this method, full knowledge of the model’s architecture and
parameters is needed. This might not be the case for real-life attacks since
often attackers do not have full access to the architecture of a model. An
attack like this is called black-box attack: an attacker is only able to observe
labels given by an unknown deep neural network (black-box) in response to



chosen inputs. Papernot et al. [9] proposed such an attack. They use the
output labels of a remote deep neural network to create a local substitute
model. Adversarial samples are then crafted on the local substitute model.
Since the methods are basically the same for both attacks, we will skip the
step of creating a substitute model and evaluate each method on a model,
which we have full access to.



n hidden layers

Notation

F: function learned by neural network during training

X: input of neural network

Y: output of neural network

M: input dimension (number of neurons on input layer)
N: output dimension (number of neurons on output layer)
n: number of hidden layers in neural network

f: activation function of a neuron

Hy: output vector of layer k neuron

Indices

k: index for layers (between 0 and n + 1)

i: index for Input X component (between 0 and N)

j: index for output Y component (between 0 and M)

p: index for neurons (between 0 and My for any layer k)

Figure 2.1: The structure of deep feed-forward neural network with nota-
tions used in this thesis, via Papernot et al. [§]



Chapter 3

Related Work

The process of analysis in malware detectors can be divided into two main
groups: static analysis and dynamic analysis [10]. In static analysis, the
features are extracted from an application without executing. The analysis
is done based on the extracted features. One disadvantage of this technique
is that an application might hide some of its functions by making use of
encryption or dynamically downloaded code from an external server. These
methods cannot be detected by static analysis. In order to detect those
cases and to defend against them, dynamic analysis is used. During dynamic
analysis, the malware runs in an isolated environment - a sandbox - in that
the application is monitored. This allows a malware detector to analyze the
dynamic behavior of an application. Dynamic analysis thereby reveals what
an application really does when it attacks a real device.

Next to these methods, malware detectors use signatures or file hashes
to detect malicious software. They generate a unique fingerprint for known
malware and compare them to new samples to determine whether an appli-
cation is benign or malicious. This method has one significant disadvantage,
namely each malicious sample must be known before it can be classified. It
offers no protection against new and unknown threats, the so-called zero-day
vulnerabilities. In the fast-evolving sector of cyber security, however, this
ability is crucial to make a good model and be able to provide proper pro-
tection. That is one of the reasons for the growing importance of machine
learning models in that area.

3.1 Adversarial Samples

In research, published in 2014, Szegedy et al. [11] made a concerning discov-
ery: several machine learning models are vulnerable to adversarial samples.
This means that machine learning models consistently misclassify inputs,
which are built by intentionally adding small perturbations to existing sam-
ples from a dataset. The perturbations can be really small, such that they



are not detectable by humans. These small changes can, however, be suffi-
cient to cause a model to output the wrong result with high confidence.

Goodfellow et al. [12] argue that the linear nature of neural networks
is the primary cause of the vulnerability to adversarial perturbation. They
proposed a simple and fast method to craft adversarial methods that are
consistently misclassified by machine learning models with high confidence.
Furthermore, they show that the problem of adversarial samples can be gen-
eralized across architectures and training sets. Papernot et al. [§] built on
that approach and introduced different algorithms to craft adversarial sam-
ples. They focus especially on deep neural networks (DNNs). To craft adver-
sarial samples, the algorithms need a precise understanding of the mapping
between inputs and outputs of DNNs. The algorithms then reliably produce
samples correctly classified by humans but misclassified by a DNN while
only modifying a small number of input features per sample.

These two papers focused mainly on the domain of image classification.
To show that this is a general problem of machine learning models and that
it is not limited to a specific domain, Grosse et al. [l] transferred the results
to the domain of Android malware classification. They showed that the
same methods and algorithms can be used to slightly manipulate the input
of a malware classifier such that it will be misclassified, without breaking the
functionality of the application. They additionally evaluate different poten-
tial defense mechanisms against adversarial crafted samples. To perform the
experiments, we will make use of the model they describe in their research.
Their model serves as a basis with that we can compare the results of our
experiments. We will also use some of their results and evaluate additional
defense mechanisms. Moreover, we will make use of their algorithm to craft
adversarial samples to perform the evaluation.

The techniques described in the research above do require full knowledge
about the configuration of the model. As Papernot and Goodfellow et al.
showed [13], full knowledge is not necessary to be able to successfully craft
adversarial samples. An attacker may create and train a local substitute
model, which is then used to craft adversarial samples. After that, the
attacker can transfer these samples to a victim model that an attacker has
only limited information about. They show that adversarial samples crafted
for one model might also deceive other models. It demonstrates that machine
learning models are in general vulnerable to adversarial samples regardless
of their structure.

3.2 Android Malware Detection

One of the biggest benefits of machine learning models is their ability to
generalize. It allows malware detectors that are based on machine learning
algorithms to adapt properly to new, previously unseen attacks. This is
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one of the reasons why machine learning models are increasingly applied in
security-related tasks over the last years.

To deal with the variability of attacks and to understand how to improve
models against different attacks, Demontis et al. [14] model different attack-
ers with different skills and capabilities. With their work, they show that
machine learning can be used to improve security if one takes adversaries
into account and proactively anticipates attackers.

Saracino et al. [15] developed an Android app for Android malware de-
tection. Their app evaluates the behavior of an application on different
levels to determine if it is malicious or benign. Additionally, they propose
a taxonomy of malware into different classes and describe common patterns
across the classes.

In this thesis, we will evaluate different defense mechanisms.

The first method that we will evaluate is the reduction of features to
represent the applications. Similar approaches were followed by Xiong et
al. [16] and Grosse et al. [l]. They reduce the feature space by selecting
features based on how they are represented in the dataset. By formulating
different restrictions, they reduced the size of the feature vectors and re-
moved some of the features from the initial sample set. Only features that
complied with their restrictions were kept in the dataset.

A different approach was followed by Moonsamy et al. [17]. They searched
for patterns in the permissions of Android applications by investigating the
differences of permission patterns between benign and malicious apps. This
distinction can be important to determine whether an app is benign or ma-
licious.

To evaluate the first defense method, we will make use of a combination
of these two approaches. First, we will reduce the number of features by
applying different manually selected restrictions. After that, we will search
for the most important patterns in the remaining features. The findings of
the analysis will then be used to further reduce the amount of features.

Another method that we will evaluate is an ensemble of the DNN with
another machine learning algorithm. This means that we train multiple
models instead of a single model and combine the predictions from each of
these models. This can result in predictions that are better than any single
model. Abouelnaga et al. [18] followed a similar approach in their work.
They trained various machine learning algorithms and evaluated the perfor-
mance of different combinations of them. They showed that it is possible
to improve the accuracy of a model and how fine-tuning the parameters can
further improve the model.

Xiong et al. [16] propose two different methods to combine clustering
and classification. The resulting model does not only outperform the sin-
gle model accuracy but they also improved the ability to detect new and

11



previously unknown malware families.

We will use the findings of these papers to build our own ensemble.
Next to the optimal selection of parameters, we will also incorporate the
vulnerability of the second model to adversarial samples, which were initially
crafted to mislead a DNN [13].
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Chapter 4

Research

Methodology

This section describes the setup and process of the experiments. For this
thesis, we will make use of the machine learning model and configuration
described in [1]. To evaluate the model’s performance, the DREBIN [19][20]
dataset is used.

The next sections describe the configuration of the model and the dataset.
We further inspect the process of training the model and the algorithm to
craft adversarial samples. After that, we implement and evaluate different
defense mechanisms.

4.1 Reproduction of Results from Grosse et al. [1]

4.1.1 Classifier

To be able to perform the experiments, we start by implementing the ma-
chine learning model, a deep neural network, as described in [L]. The model
serves as a fundament from which we can expand further and evaluate differ-
ent defense methods on. Moreover, we will use it to compare the efficiency
of each of the applied methods. As shown in the paper, the deep neural
network achieves performances comparable to other current malware clas-
sifiers. The model consists of various layers - between one and four - and
different amounts of neurons in each layer. Fach layer contains between 10
and 300 neurons. Between the layers, a dropout of 50% was chosen. This
means that the output of 50% of all neurons in each layer is ignored and set
to 0. It helps the model to avert overfitting. After the final hidden layer,
they use a softmaz layer to normalize the output of the network. Moreover,
they use rectified non-linearity as activation function for each hidden neuron

in the network:
Vp € [1,my] : fip(x) = max(0, )
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The activation function describes a calculation each neuron does on its in-
puts to decide whether it should be “fired” (activated) or not. As model
input, static features of applications are used. These are information about
an application, which can be extracted without executing the application
but rather information that can be extracted from, e.g. the AndroidMani-
fest.xml, such as permissions.

4.1.2 DREBIN Dataset

The DREBIN dataset contains 5,560 malwares and 123,453 cleanwares,
which, in total, contain 545,333 different features. The dataset provides a
text file for each app containing all features of that application. First of all,
we have to check whether the dataset is the same compared to the research
from Grosse et al. [1l] to make sure that our model is trained on the same
data. For that, we build a table as in [[] (table [l]) and make use of a set of
Python scripts. Initially, we extract the amount of features from the dataset
and compare them to the amount of features in the given paper. We do
this by iterating through all the files and reading it line by line. Each line
contains the feature class and the feature. For every feature class, a Python
list is created in that the features are stored. After reading all the files, we
count the number of unique features in each of the lists.

During comparison, we noticed that most of the categories match (see
table §.1)). However, we see that the amounts of network addresses do not
match. Overall, we identified 41 network addresses more than in the given
paperH After summing up all the individual features we get a total of
545, 333 features, which is the same as in the underlying paper. The different
amount of network addresses therefore does not affect our model. Overall,
we train and evaluate our model with the same total amount of features.

ID Category Amount ([1]) Amount
S1  Hardware Components 4,513 4,513
So Permissions 3,812 3,812
S3 Components 218,951 218,951
Sy Intents 6,379 6,379
S Restr. API Calls 733 733
Se Used Permissions 70 70

S Susp. API Calls 315 315
Sy Network Addresses 310, 447 310, 488

Table 4.1: Amount of features distinguished by category

!This mismatch was also communicated to the author of the paper [l]. We were,
however, not able to resolve this difference.
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The categories above actually contain different types of features. Table @
shows the distribution of features over the different categories.

Category-ID Type Amount

S1 provider 4,513
So permission 3,812
S3 service receiver 33,222
S3 activity 185,729
Sy intent 6,379
S5 call 733
Se real permission 70
S api_ call 315
Ss url 310,488

Unassigned  feature 72

Table 4.2: Amount of features distinguished by type

The DREBIN dataset distinguishes feature types as in table @ above. Each
feature type is, again, assigned to one of the categories from table {.1.

We can see that feature types url and activity contain, by far, the most
features. URLs describe every single network address an app tries to connect
with and they belong to category Sg. Activities describe a single screen of
an Android app. Since an app often consists of various screens, the number
of activities can be very large. As for URLs, there are no restrictions for
the name of activities. The name of it can be freely chosen by the publisher
of the app. This explains the high amount of features, compared to other
types.

Category S3 contains the components of an application. An Android app
consists of four different components: activities, services, content providers,
and broadcast receivers. This means that the category combines the two
feature types service receiver and activity from the dataset.

One feature type that was not assigned to any category is feature. It
mainly describes features of category Si, like ‘android.hardware.location’ or
‘android. hardware.sensor.compass’. Features of this type were not assigned
to any category in [[], which is the reason that we also do not assign them.

15



However, we include them in the final feature vector as we will see in the
following section.

4.1.3 Preparing the Data for Training

We represent each app in the form of a binary feature vector, which we
will then feed into the model. These vectors contain all features of an app.
They are defined as X € {0,1}, where X; indicates whether the feature
i is part of the application (X; = 1) or not (X; = 0). Since there are
many different functionalities, M can become very large. As we saw in
the previous section (), the DREBIN dataset contains 545, 333 different
features. This means that for our model M = 545, 333.

We, again, use a Python script to create the feature vectors. Each vector
X is represented by a NumPyd array of size M. For each feature of that
application, the value at the corresponding position in the array is set to 1,
X[i] = 1. The values at all the remaining indexes are set to 0.

4.1.4 Training the Malware Classifier

To build a classifier, we make use of the Python library TensorFlowE. The
feature vectors from the previous section are used to represent the apps. To
determine the best classifier, the authors of [[] compared several classifiers
with different configurations (table {.3). Every configuration gets the same
binary feature vectors as input. The models differ in the number of hidden
layers and the amount of neurons per layer. To train the model, we craft
batches of size 1,000. Each batch contains a pre-defined ratio of malwares as
defined in table #.3. First, we randomly select the amount of malware sam-
ples according to the ratios. After that, we fill up the batch with randomly
selected benign apps. For training, we split each batch into mini-batches
of size 100 and train the model using 10 epochs per iteration. To evaluate
the performance of each of the configurations, we determine accuracy, false
negative and false positive rates as measurements. Based on these measures,
we compare the performance of our model with the base model.

4.1.5 Evaluating the Malware Classifier

The batches for the evaluation of the model are created in the same way as
for the training. First, we randomly select the number of malwares according
to the malware ratio. Next, we fill up the batch with the appropriate amount
of cleanwares. Each model configuration is tested with 5 different batches.
After that, we compute the average of all resulting measures of the validation

Zhttps://www.numpy . org/
3https://www.tensorflow.org
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batches. The results of the evaluation of the base classifier are depicted in

table [.3.

FN FP
. Accuracy | FNR | FPR Accuracy R R
Configuration MWR () () () ( del) (our (our
our mode
model) | model)
[200] 0.4 97.83 8.06 1.86 95.99 4.57 3.63
[200] 0.5 95.85 5.41 4.06 96.35 4.37 2.93
[10,10] 0.3 97.59 16.37 1.74 96.53 6.87 2.00
[10,10] 0.4 94.85 9.68 4.90 96.72 4.37 2.60
[10,10] 0.5 94.75 7.34 5.11 95.73 5.37 3.20
[10,200] 0.3 97.53 11.21 2.04 95.93 9.80 1.63
[10,200] 0.4 96.14 8.67 3.6 96.63 6.43 1.33
[10,200] 0.5 94.26 5.72 5.71 95.93 6.03 2.10
[200, 10] 0.3 95.63 15.25 3.86 96.93 7.73 1.10
[200, 10] 0.4 93.95 10.81 5.82 96.59 4.07 3.00
[200, 10] 0.5 92.97 8.96 6.92 96.88 4.23 2.00
[50, 50] 0.3 96.57 12.57 2.98 96.47 6.17 2.37
[50, 50] 0.4 96.79 13.08 2.73 96.60 4.43 2.77
[50, 50] 0.5 93.82 6.76 6.11 96.23 4.13 3.43
[50,200] 0.3 97.58 17.30 1.71 96.71 8.87 0.90
[50,200] 0.4 97.35 10.14 2.29 96.53 3.90 3.20
[50,200] 0.5 95.65 6.01 4.25 96.03 4.27 3.67
[200, 50] 0.3 96.89 6.37 2.94 96.06 7.87 2.27
[200, 50] 0.4 95.87 5.36 4.06 96.11 5.53 2.20
[200, 50] 0.5 93.93 4.55 6.12 95.63 7.70 1.03
(100, 200] 0.4 97.43 8.35 2.27 96.58 5.70 1.90
[200, 100] 0.4 97.32 9.23 2.35 95.82 6.00 2.97
(200, 100] 0.5 96.35 6.66 3.48 96.39 2.80 4.37
(200, 200] 0.1 98.92 17.18 0.32 97.55 16.67 0.90
(200, 200] 0.2 98.38 8.74 1.29 96.41 14.17 0.97
(200, 200] 0.3 98.35 9.73 1.29 96.45 8.40 1.50
(200, 200] 0.4 96.6 8.13 3.19 96.91 5.27 1.63
(200, 200] 0.5 95.93 6.37 3.96 96.60 3.53 3.27
(200, 300] 0.3 98.35 9.59 1.25 95.94 10.37 1.37
(200, 300] 0.4 97.62 8.74 2.05 95.47 4.00 4.90
[300, 200] 0.2 98.13 9.34 1.5 95.57 5.87 4.07
[300, 200] 0.4 97.29 8.06 2.43 96.39 6.20 1.90
[200, 200, 200] 0.1 98.91 17.84 0.31 97.53 18.87 0.63
[200, 200, 200] 0.4 97.69 10.34 1.91 95.95 4.03 4.07
[200, 200, 200, 200] 0.4 97.42 13.08 1.07 96.52 4.80 2.63
[200, 200, 200, 200] 0.5 97.5 12.37 2.01 96.27 4.91 2.53

Table 4.3: Comparison of the performance of the different configurations

of our malware detector with the model from the literature.

Given are

used malware ratio (MWR), accuracy, false negative rate (FNR) and false positive

rate (FPR)
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Comparison accuracy of our base classifier with the classifier from the literature
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Figure 4.1: Comparison of the performance of the base classifier from the
literature [1] and our base classifier.

When we compare the results of our model with the one from the lit-
erature, we can see that our model is able to achieve similar outputs. The
accuracy of the two models is consistently within a range of, at most, +2.6%
for all configurations. Also, the false positive rate and false negative rate
behave the same for most of the configurations. The small discrepancies
between the values are mainly a consequence of the fact that the source
code of the classifier from the literature was not accessible. As a result, the
model was rebuilt based on its description in the given paper. Since both
models work with the same dataset the generalizations, and therefore the
achieved performance approximately should be the same. In reality, how-
ever, slight differences in the methodology of training and composition of
training sets and validation sets lead to minor differences in the values of
the model’s hyperparameters. As a consequence, the performance of both
models slightly differ. These differences are also depicted in false positive
rates and false negative rates. Even though the differences are rather large
for various configurations, the values generally evolve proportionally evenly
across the configurations. The main reason for those differences is the com-
position of datasets, which are randomly assembled. Overall, our model
achieves performances comparable to the network from Grosse et al. [I]].
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4.1.6 Crafting Adversarial Samples

The goal of adversarial samples is to entice a machine learning model to
misclassify a certain input. In the domain of malware detection, this means
that an attacker wants to change the input of a malware detection system
such that the classification result changes according to the desired result
of the attacker. Usually, this means that an attacker would like to slightly
adjust the application by adding or removing features such that it will not
be detected by a malware detector. Since, in our case, we use binary feature
vectors to represent an application, it is enough to adjust the value of the
feature vector at the corresponding index.

Grosse et al. [1],
introduced an algo-
rithm (Algorithm [l))
that can be used to
craft adversarial in- 1 X ¢ X
puts for our DNN. r={1...|x[}

They adopt a craft- while arg max; F;(x*) # y and || x |[< k
ing algorithm, which do

Algorithm 1: Crafting adversarial samples

input: x, y, F, k

w N

was introduced by 4 Compute forward derivative VF(x*)
Papernot et al. [§] s imas = AIg MAX; crrp x,—0 a]_:*ay)g*)

to craft adversarial if 4,0, < 0 then

samples in the do- L return Failure

main of image clas- .

sification. It makes ° Ximas :*1

use of the forward o | dxe&xX-x

derivative approach. 10 return x*
This approach evalu-
ates the model’s out-
put to each input component by computing its Jacobian matrix. Adversarial
samples are crafted in mainly two steps. In the first step, they compute the
gradient of F with respect to the input X to estimate the direction in which
a perturbation in X would change F’s output. This is called the forward
derivative and it is essentially the Jacobian of the function corresponding to
what the neural network learned during training. Secondly, they choose a
perturbation § of X with maximal positive gradient into the target class. In
other words, they choose the index %,,q, that causes the maximum change
into the target class by changing X; . the value of X at index i,,q5.
Describing the process of adversarial sample crafting and the algorithm
more formally, we start with a binary feature vector, X € {0,1} which
represents the features of an application. Given X, classifier F returns
a two dimensional vector F(X) = [Fo(X),F;(X)], for which holds that
Fo(X) + F1(X) = 1. This vector contains the output of the classifier. It
describes the assessment with the probabilities to which extent X is benign
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(Fo(X)) or malicious (F1(X)). The final classification result y is the op-
tion with the higher probability, so y = arg max(F(X)). The goal is to
find a small perturbation § such that the result of the classification changes:
y' = arg max(F(X + ¢§)) and ¢y’ # y. To achieve this, the algorithm iter-
atively changes the value of X that causes the maximum change into the
direction of the classification result towards the target class, v’ = 0.

Ideally, the changes should be kept small to make sure that they do not
negatively affect intermediate perturbations. However, for malware classifi-
cation, there are some additional challenges compared to adversarial sample
crafting in the domain of image classification. The values of pixels are con-
tinuous, which means that we can change them in very small steps. For
malware detection, however, there are only discrete values 0 and 1. One of
the restrictions of the algorithm is that it only adds features to X. It does
not remove any. This is to make sure that the application still functions
after the changes and that the functionality of the application is not dis-
turbed. In other words, the algorithm only changes X; from 0 to 1 and not
vice versa.

The performance of our model is depicted in table @ and figure §.2. As
for the performance of the original model on regular data in section }.1.5,
we notice differences in achieved misclassification rates between our model
and that from the literature. Again, this is mainly based on the fact that
training and validation sets are randomly selected.

»n
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. MR | Distortion MR Distortion
Configuration MWR (@ (@ (our (our model)
model)
[200] 0.4 81.89 11.52 41.59 6.85
[200] 0.5 79.37 11.92 51.22 6.33
[10,10] 0.3 69.62 13.15 27.80 10.30
[10,10] 0.4 55.88 16.12 34.83 10.87
(10, 10] 0.5 84.05 11.48 37.50 14.17
[10, 200] 0.3 75.47 12.89 27.47 11.22
[10, 200] 0.4 55.70 14.84 37.03 9.26
(10, 200] 0.5 57.19 14.96 47.33 10.20
(200, 10] 0.3 50.07 14.96 33.27 10.39
[200, 10] 0.4 35.31 17.79 39.30 8.31
[200, 10] 0.5 36.62 17.49 48.13 9.08
[50, 50] 0.3 61.71 15.37 30.70 8.21
(50, 50] 0.4 60.02 14.70 39.70 8.58
[50, 50] 0.5 40.97 17.64 50.23 7.94
(50, 200] 0.3 79.25 11.61 30.50 5.84
(50, 200] 0.4 69.44 13.95 38.20 10.03
(50, 200] 0.5 64.66 15.16 45.83 10.43
(200, 50] 0.3 66.55 14.99 31.03 8.37
(200, 50] 0.4 58.31 15.76 40.53 7.47
200, 50] 0.5 62.34 14.54 49.93 6.61
(100, 200] 0.4 74.93 12.87 39.87 777
[200,100] 0.4 71.42 13.12 76.18 40.97
(200, 100] 0.5 73.02 12.98 44.50 11.39
200, 200] 0.1 78.28 10.99 10.87 4.42
(200, 200] 0.2 63.49 13.43 20.73 4.99
(200, 200] 0.3 63.08 14.52 30.63 6.57
[200, 200] 0.4 64.01 14.84 40.47 6.27
200, 200] 0.5 69.35 13.47 48.60 8.28
(200, 300] 0.3 70.99 13.24 30.70 5.27
[200, 300] 0.4 61.91 14.19 42.13 8.60
(300, 200] 0.2 69.96 13.62 22.23 7.35
(300, 200] 0.4 63.51 14.01 40.77 6.59
[200, 200, 200] 0.1 75.41 10.50 10.60 7.08
[200, 200, 200] 0.4 71.31 13.08 41.17 8.78
[200, 200, 200, 200] 0.4 62.66 14.64 39.00 7.93

Table 4.4: Comparison of the performance of our model with the
model from the literature on adversarial input. Given are the differ-
ent configurations of our malware detector, malware ratio, misclassification
rates (MR), and required average distortion (in number of added features)
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Comparison misclassification rate of our base classifier with classifier from literature on adversarial samples
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Figure 4.2: Comparison of the performance of the base classifier from the
literature and our own base classifier on adversarial crafted samples.

4.2 Defenses

In this section, we evaluate different potential defense mechanisms to fig-
ure out whether they can help to support neural network based malware
detectors against adversarial samples. We measure the effectiveness of each
method by comparing the classification results with the results of the con-
ventional model from section 4.1l.

First, we look at feature reduction: we reduce the number of features
to decrease the size of the feature vectors. On the one hand, we limit the
number of adjustable features for an attacker. On the other hand, we hope
to make the neural network more sensitive to changes in the input. We desire
to make it more difficult for attackers to find proper features for changes,
necessary to craft adversarial samples.

After that, we consider an ensemble of different machine learning models.
Research by Papernot et al. [13] suggests that different machine learning
models are not generally vulnerable to the same adversarial samples. By
combining different machine learning models, we hope to get models that
individually may have weaknesses against adversarial inputs but do cancel
out these weaknesses when combined.

Next, we combine the methods of feature reduction and ensemble learn-
ing. Instead of using the entire feature space, we evaluate our ensemble of
models on the reduced feature space.

Finally, we inspect two methods already proposed in the literature:

22



distillation [21][l] and re-training on adversarial samples [11][1].

4.2.1 Feature Reduction

The amount of features in the DREBIN dataset leads to feature vectors with
vast dimensionality. This leads to high computational costs. Furthermore, it
means that the feature set contains many features with low support. Support
describes the fraction by which an itemset is represented in the dataset. In
other words, the percentage to which the feature occurs concerning other
features in the dataset. As a result, these features are not important for
classification. Another drawback of such large feature vectors is that it is
comparatively easy for an attacker to find possible features that cause a
significant change in the model’s prediction. This makes it easier for an
attacker to craft adversarial samples.

In the first step, we eliminate some of the feature classes. The first cat-
egory of features we remove is the category of network addresses. Attackers
can change URLs very easily and without much effort. Another aspect is
that most of the addresses in the dataset are unique. From 310,488 ad-
dresses in total, only 57,392 appear in at least three apps. Next to the class
of URLs, we remove the features of the type activity. In Android Apps,
activities are only the representation of a single screen of an App that acts
as a user interface. The name of an activity can be freely chosen. Almost
every application contains an application called ’Main’ but other than that,
there are no further restrictions or requirements. This gives us almost the
same picture as for network addresses: the majority of the names are unique
to single apps. These categories contain a large number of features while
having only little effect on malware detection, which means that we can
remove them.

The whole dataset contains 545,333 features in total. After removing
these types, the dataset still contains 49,116 features. On the resulting
dataset, we make a feature analysis to extract the most important features
and to determine how to reduce the feature space even more. During the
analysis, we noticed that the dataset contains many features that do occur in
only a few apps and some features that have very high support (see table {1.5).
Those features have only little effect on the results of malware detection.
Therefore, we additionally remove features that occur in 5 applications or
less. Furthermore, we remove all features with a support > 90% in both
classes, malwares and cleanwares. For the DREBIN dataset, this means that
the three features ‘feature::android.hardware.touchscreen’, ‘intent::android.-
intent.action. MAIN’, and ‘intent::android.intent.category. LAUNCHER’ are
removed. All these features have a support of more than 93% in both target
classes.
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cleanwares malwares

feature support | feature support

feature::android.hardware.- 99.78% feature::android.hardware.- 99.35%

touchscreen touchscreen

intent::android.intent.action.- 97.48% intent::android.intent.action.- 96.24%

MAIN MAIN

intent::android.intent.category.- 95.99% permission::android.permission.-  95.74%

LAUNCHER INTERNET

call::getSystemService 84.68% intent::android.intent.category.- 93.96%
LAUNCHER

real__permission::android.- 83.78% call::getSystemService 93.26%

permission.INTERNET

permission::android.permission.-  83.42% real permission::android.- 89.78%

INTERNET permission.INTERNET

call::get Packagelnfo 57.19% permission::android.permission.-  88.69%
READ_PHONE_STATE

call::printStackTrace 53.43% real__permission::- 75.29%
android.permission.-
READ_PHONE_STATE

permission::android.permission.-  51.69% call::getDeviceld 67.64%

ACCESS_NETWORK_STATE

Table 4.5: Most frequent features of cleanware and malware

After the removal of all these features as explained above, we were able
to reduce the size of each feature vector X to 4, 109.

In total, the DREBIN dataset contains malwares from 179 different fam-
ilies. Arp et al_[19] extracted the five most common features in the top 20
families (table {.6)

ég{% Malware Family
r;‘y&} A B CDEUFGH I J KU LMDNUOZPI QRS T
S1 v v v v
So v v v v v v v v Vv v v v Vv Vv Vv Vv Vv Vv Vv V
S3 v vV v v v v
Sy v v v v v
Ss v v
Se v
S v v v v v v v v v v v v v v Y
Sg v v v vV v v v v

Table 4.6: Contribution of the most used features of the top 20
malware families.
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Table @ shows that category S (requested permissions) - are represented
in all malware families. The reason for that is rather simple: every app
needs to define the permission it wants to use in its AndroidManifest.xml.
Features from category S7 are used second-most by malwares of the top 20
malware families. These findings may indicate that this category can be
very important for Android malware detection. None of the most frequent
features we identified (table @) originates from this category.

Evaluation

In order to evaluate the effectiveness of feature reduction, we first need to
adjust our model such that it is able to handle the new input dimension.
As we will see, the performance of the model on regular data is comparable
with the performance of the base classifier from section . Nevertheless,
the performance of the new model continuously is slightly lower than the
performance of our base model. Therefore, feature reduction massively re-
duces the computational overhead resulting in a reduction of running time.

Comparison accuracy of the base classifier and the feature-reduced classifier
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Figure 4.3: Comparison of the performance of the base classifier, trained
on the entire feature space, and a classifier, trained on the reduced feature
space.

In comparison with the performance of the base model, we notice that both
models achieve approximately the same results, even though the perfor-
mance of the feature-reduced model is consistently below the performance
of the original model (figure {.3). This means that by reducing the amount
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of features, we do not lose too much information necessary for malware de-
tection. The model is still able to detect malware pretty well. Only for a
few configurations, like the configuration with two layers of ten neurons that
were trained on datasets with malware ratio 0.5, we notice a massive drop in
achieved accuracy compared to the original model. On average, the original
model is 1.3% better than the feature-reduced model.

The performance on adversarial samples, in contrast, demonstrates that
a reduced feature space causes a higher misclassification (figure @), while at
the same time reducing the amount of minimum average amount of changes
(figure @) For attackers, this has the consequence that crafting an adver-
sarial sample becomes easier when the amount of features reduces. These
observations are similar to the findings of Grosse et al. The feature reduc-
tion methods they describe in their paper were also not able to strengthen
a malware classifier on the input of adversarial samples.

Comparison misclassification rate of feature-reduced classifier with our base classifier on adversarial samples
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Figure 4.4: Comparison of the performance of the base classifier, trained
on the entire feature space, and a classifier, trained on the reduced feature
space on adversarial samples.

As the graph (figure @) shows, the model that was trained on a reduced
feature space consistently has a higher misclassification rate. Compared to
the base model, which achieves a misclassification rate between 10.6% and
51.22%, the misclassification rate of the feature-reduced model ranges from
12.77% to 53.4%. On average, each configuration of the model trained on a
reduced feature space performs about 2% worse according to its misclassifi-
cation rate.
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Comparison average distortion of feature-reduced classifier with our base classifier on adversarial samples
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Figure 4.5: Comparison of the average distortion of the base classifier,
trained on the entire feature space, and a classifier, trained on the reduced
feature space on adversarial samples.

The minimum amount of features that need to be changed to successfully
craft an adversarial sample decreased to 3.44, compared to 4.42 for our base
model. On average, the distortion decreased by about 2 (2.66). In other
words, for each configuration, we need to change about 2 features less to
adjust a malware to cause our malware detector to classify it as benign.

The reduced amount of features negatively affects the detection rate of
adversarial samples. Instead of making it more difficult for an attacker to
find suitable features to change, fewer features make it easier for an attacker
to find features and craft adversarial samples. This may be related to the
fact that each feature, in the reduced feature space, has a higher weight. The
value of every individual feature has a greater impact on the final prediction
of the model. One change in an iteration of the crafting algorithm [l causes
a greater shift in the direction of the target class.

All in all, we can infer that feature reduction does not help to increase
the robustness of a neural network against adversarial input. It even weak-
ens our model on both regular inputs and especially on adversarial inputs.
Therefore, feature reduction is not a suitable method to strengthen a neural
network based malware classifier against adversarial crafted samples.
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4.2.2 Ensemble of Models

Next, we take a look at a combination of two different machine learning mod-
els. We combine the deep neural network from section @ with a K-Nearest
Neighbors (KNN) model. As earlier research [13] suggests, KNN is one of
the machine learning models that is least vulnerable to adversarial samples,
which were initially crafted to mislead deep neural networks. We, therefore,
hope not only to improve the overall performance of the malware detector
but more importantly, we hope to reduce the model’s misclassification rate
on adversarial samples. For the implementation of the K-Nearest Neighbors
algorithm, we use the Python machine learning library scikit-learnB.

K-Nearest Neighbors is a supervised machine learning algorithm used
for classification. It scans through all past experiences and looks up the
k closest data points. In other words, it looks for the k points nearest to
the new point to predict the class of it. The performance of a KNN model
depends on the value of K. To determine the best possible value for K, we
compare the results of the model on datasets with malware ratios ranging
from 0.1 to 0.5 and with k’s up to 20. The results of that analysis are
depicted in figure @

Accuracy for different values for K
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Figure 4.6: Validation accuracy of the KNN model with values for K ranging
from 1 to 20 on a dataset containing different ratios of malwares.

As we can see, for values ranging between k = 3 and k£ = 7, the three graphs
of datasets with malware ratio 0.1, 0.2, and 0.3 are very similar. Even though
the models with lower malware ratio almost consistently achieve better per-
formances. Between k = 1 and k = 7 the accuracy on datasets with malware
ratio 0.3 almost remains constant. The graphs for datasets with malware
ratio 0.4 and 0.5 are also pretty similar. Both graphs level out at about
92.5% and slowly decline after that. For the datasets with malware ratios of
0.4 and 0.5, the accuracy already deteriorates from k = 3. Overall, we see
that the lower the malware ratio in a dataset, the better the accuracy of the

“https://scikit-learn.org/stable/
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KNN model. On datasets with lower malware ratio the model constantly
achieves better performance for all tested values of K out of the tested ra-
tios. The optimal value for our model seems to be 3. Especially at the two
graphs for datasets with higher malware ratio we see that the accuracy at
k = 4 drops by about 1% compared to the accuracy at k = 3. After that, the
accuracy further declines. We will, therefore, train our KNN with k = 3.
This means the model decides, whether a sample is benign or malicious,
based on the three nearest data points to that sample. As the DNN, given
an input feature vector, the model KININ returns a two dimensional vector
KNN(X) = [KNN(X), KNN; (X)], where KNN(X) + KNN;(X) = 1.
The vector describes the probabilities the KNN model beliefs that X is be-
nign (KNNj(X)) or malicious (KNN;(X)).

In this thesis, we will use the model averaging approach. Model averag-
ing is an approach where each model of an ensemble contributes to the final
prediction. Typically, each ensemble member contributes an equal amount
to the final prediction. After an analysis, it turned out that for our model
a weighted average ensemble is more suitable and is able to achieve better
performance. In a weighted average ensemble, every individual model does
not have an equal contribution to the final prediction but each prediction
is weighted. Since the performance of the DNN is generally better than the
performance of the KNN, the predictions of the DNN should get a slightly
higher weight than the predictions of the KNN model. We chose factor
0.6 for the DNN and factor 0.4 for the KNN. As we will see, the ensemble
achieves performances similar to the basis DNN model with these weights.
By fine-tuning the parameters, the model might achieve even better perfor-
mance. Within the framework of this thesis, we did not make an exhaustive
analysis because the initially chosen values worked very well. With these
values, the model produced meaningful results sufficient for the experiments.
Further fine-tuning of the parameters might improve the performance even
more. Figure shows the structure of the ensemble we use in this thesis.
We train each of the models independently on randomly composed subsets
of the DREBIN dataset. The combination of malicious and benign samples
in each subset is the same as in section . After training each model we
evaluate the performance of our ensemble on the same kind of test sets as in
section . For the final prediction, both models individually evaluate a
sample and output their resulting predictions. These are combined to make
a final prediction:

max ((0.6 - Fo(X) + 0.4 - KNN(X)), (0.6 - F1(X) + 0.4 - KNN; (X)))
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Figure 4.7: Schema of the structure of the model ensemble.

Evaluation

To craft adversarial samples for our ensemble, we use the same algorithm
(E]) as in the previous sections. This means that each adversarial sample is
only based on the DNN alone. Only when evaluating the final classification

result, the KNN model is included.
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Comparison accuracy of the base classifier and the model ensemble
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Comparison of the accuracy of our base classifier with the accu-

racy of the model ensemble.
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Comparison of the performance of our base classifier with the

performance of the model ensemble on adversarial samples.

Figure 4.9

31



In figure @ we see that the general performance of the ensemble learn-
ing is very similar to our base DNN. For most of the tested configurations,
the performance of both models is almost the same. Only for a few config-
urations, the achieved accuracies slightly drift apart. The differences are,
however, only marginal. Compared to the feature-reduced model, we can al-
ready say that ensemble learning can achieve better performances on regular
data. The largest differences between the two models for one configuration
is maximally 0.81%. These minor differences probably result from the com-
position of the training sets and test sets on that the model was trained
and evaluated. Different samples within the datasets cause the models to
produce slightly different outputs.

Also on adversarial samples ensemble learning does improve the resis-
tance of a malware detector. As figure shows, the performance massively
improved for every configuration. Overall, we were able to reduce the av-
erage misclassification rate of all configurations by nearly 17% compared to
the base classifier. The reduction of the misclassification rate is also reflected
in the maximum misclassification rate. Compared to the base model - with
51.22% - ensemble learning was able to reduce the maximum misclassifica-
tion rate by about 12% to 38.93% Since adversarial samples are crafted in
the same way as for the base model, the average distortion is comparable to
the results of the base model.

These findings are in line with the findings of Papernot et al. [13]. Of-
ten, adversarially crafted samples are only able to mislead one of the models,
namely the DNN the samples were crafted for. The samples are, however,
not able to fool the other part of the ensemble, the KNN model. To success-
fully cause the whole ensemble to misclassify a sample, the predictions of
both individual models are important. The fact that an adversarial sample,
which was crafted on a DNN cannot easily be transferred to a KNN model
makes an ensemble with a combination of these models so strong against
adversarial samples crafted by the proposed algorithm ([l]).

4.2.3 Combination of Feature Reduction and Ensemble Learn-
ing

After we tested both possible countermeasures independently, we now test
them in combination. The set up for our ensemble learning stays the same
as in the previous section () The only difference is that instead of the
entire feature space, we now use the reduced feature space from section
for the input feature vectors.
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Evaluation

The performance of the feature-reduced model ensemble shows similar re-
sults as the model ensemble from the previous section that was trained on
the entire feature space. We constantly achieve a better misclassification
rate compared to the misclassification rate of the base model (figure )
On average, we were able to reduce the average misclassification rate from
section by almost 15%. Even though this is a massive improvement it
is still about 2% worse than the model ensemble from the previous section.
Figure demonstrates the differences between both model ensembles. A
vast advantage of the feature-reduced ensemble is, however, its execution
time. In our experimental setup (specifications are in Appendix ), the
model ensemble trained on a reduced feature space needs nearly one second
to classify 100 samples. In contrast, the ensemble that was trained on the
whole feature space needs about 70 seconds for 100 samples. The minor
differences in misclassification rates of the feature-reduced model ensem-
ble, which is on average about 3.2% worse, might, therefore, be negligible.
Compared to our base model, the results could be significantly improved.

Comparison misclassification rate of combination of feature reduction and
model ensemble with our base classifier on adversarial samples
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Figure 4.10: Comparison of the performance of our model base model with
the combination of feature reduction and model ensemble on adversarial
samples.
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Comparison misclassification rate of model ensemble trained on entire dataset
with model ensemble trained on reduced feature space on adversarial samples
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Figure 4.11: Comparison of the performance of both our model ensembles
on adversarial samples.

4.2.4 Defensive Distillation

Distillation originally was proposed to deploy bulky machine learning mod-
els that can perform complex tasks on smaller devices, like mobile devices.
One possibility is to train an ensemble of multiple small networks that can
run on devices with limited computational resources. This approach is called
knowledge distillation and can improve the performance of machine learning
models on small devices. Instead of using an ensemble of models, distillation
can be used for model compression. Model compression makes it possible
to compress the knowledge of an ensemble into one single model [22]. Be-
yond these two techniques of knowledge distillation and model compression,
distillation can be used as a defense mechanism against adversarial crafted
inputs [21][1].

Defensive distillation can, in some cases, dramatically improve the per-
formance of DNNs on adversarial crafted samples. Besides that, defensive
distillation increases the average minimum distortion, so the number of fea-
tures that need to be modified to successfully create an adversarial sam-
ple [21]].

The process of distillation, as it is described in [, consists of three major
steps. First, they craft a new training dataset. Additionally, to the features
of applications, the new dataset does contain the output F(X) of the base
model. Second, they build a new DNN F’ with the same architecture as the
base classifier F. The aim of the network F’ is to achieve at least the same
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performance than network F on the same dataset. Third, they train F’ on
the dataset that was created in the first step. By using the results of the
base model (F) to train the second model F’, the second model’s generaliza-
tion performance improves[21]. This means that the model’s performance
improves on new data outside the training set.

As their results show, Grosse et al. [[l] were able to strengthen their neural
network against adversarial samples by using distillation. On the other side,
however, although the misclassification rates drop significantly compared to
the base model, they are still around 40% and the general performance on
regular - with no adversarial crafted samples - data worsens. In comparison
to the base model, distillation causes a strong increase in the false positive
rate and a slight increase in the false negative rate.

4.2.5 Re-Training

Finally, we take a look at re-training a classifier with adversarial sam-
ples [11][l]. As we have seen in section , typically there are one or
more datasets on which a classifier gets trained. These datasets consist
of representative samples of the target domain within which the machine
learning model will operate. During re-training, we not only train a model
on the pure dataset (as we did earlier) but use additional training epochs
on adversarial samples. Applying adversarial crafted samples already dur-
ing training aims at improving the generalization of the model and making
it less sensitive to small perturbations in the input data. Since adversar-
ial samples take advantage of exactly those small perturbations, re-training
aims to make a model more robust against adversarial inputs outside the
training set.

Grosse et al. [I] demonstrated that re-training on adversarial malware
samples does improve the performance of a DNN on adversarial input data.
On several datasets, re-training was able to reduce the misclassification rate
and increase the required average distortion. The evaluation shows that
the misclassification rate of a re-trained model persists very similar to the
misclassification rate of the original model. They argue that a network needs
a higher ratio of adversarial samples to properly generalize and improve the
resistance of the network against adversarial samples.
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Chapter 5

Discussion

We examined five different defense mechanisms and studied the effectiveness
of these methods on adversarial samples. During the first method, feature
reduction, we considerably reduced the dimensionality of feature vectors
by including only the most important features, according to their support.
Instead of making it harder for attackers to successfully craft adversarial
samples, feature reduction generally weakens the neural networks’ resistance.
The reduced amount of feature causes a single feature to have more weight.
It follows that every feature has a larger impact on the result of the machine
learning model, which makes it easier for an attacker to find a suitable
feature for crafting adversarial samples. Feature reduction is therefore not
a recommendable defensive measure against adversarial inputs.

Ensemble learning, in contrast, is able to strengthen a DNN on adver-
sarial samples. The analysis of both ensembles, trained on the total feature
space as well as trained on a reduced range of features, show that they can
facilitate a neural network to make it more resistant to adversarial inputs.
Compared to the performance of the base model, with ensemble learning,
we were able to decrease the misclassification rate by 35% and 30% respec-
tively. The model ensemble performs on average slightly worse on reduced
feature vectors compared to the performance on the complete feature space.
However, if we consider the differences in execution time, this loss in accu-
racy might be tolerable. With half a second (0.56s) per 100 samples, the
feature-reduced ensemble is about 120 times faster than the ensemble that
uses all available features. This needs around 70 seconds to process 100
samples. Of course, this time highly depends on the environment in that
the model is executed and especially for KNN it depends on the number of
samples on that the model was trained. The higher the number of training
samples, the more data points KNN needs to compare to determine the &
closest points. In consideration of such a large difference, however, feature
reduction might be a decent option. Overall, the ensembles benefit from the
fact that a KNN model is less vulnerable to adversarial samples crafted for
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DNNs. Another factor that benefits the studied ensemble is that we craft
adversarial samples only on the neural network. Other studies propose a
method by which adversarial samples for KNNs are crafted using the fast
gradient sign method [21][9][23]. The fast gradient sign method slightly dif-
fers from the method we used in this research. Despite these differences,
ensemble learning shows promising results. Future research will have to in-
vestigate ensemble learning under different crafting algorithms that involve
both models during the process of crafting.

Furthermore, we investigated two methods that were already suggested
in earlier research. First, we took a look at distillation. Distillation was
able to reduce misclassification rates up to 38.5% compared to their base
model. This drop is in the same range our ensemble learning achieved. A
drawback of distillation is, however, that the general performance of the
classifier degrades. With distillation, model accuracy ranges in between
93% — 95%. Without distillation, the model achieves performances ranging
from 96% to 98%.

Secondly, we considered re-training. Grosse et al. [I] showed that re-
training can improve resistance under the right circumstances. The perfor-
mance of the neural network highly depends on the number of adversarial
samples in an input dataset and the training parameters they chose for train-
ing their model. On datasets with malware ratio 0.3 and 0.4 misclassification
reduces. Further increase of adversarial samples causes the misclassification
rate to increase again. With at least roughly 61%, however, the misclassifi-
cation rate was still rather high.

All in all, we can say that from the defensive measures, we tested in
this thesis, ensemble learning, distillation, and adversarial re-training show
promising results. All three methods consistently achieve reduced misclassi-
fication rates across different model inputs and architectures. Only feature
reduction is not a suitable countermeasure for adversarial inputs. Instead of
making a model more robust, it weakens a model against adversarial crafted
samples.
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Chapter 6

Conclusions and Future
Research

In this thesis, we evaluated five potential defense mechanisms to increase
the robustness of deep neural network based Android malware detectors
against adversarial inputs. The experiments provided us with the following
results: First, feature reduction does not only make a neural network more
vulnerable to adversarial inputs, but it also makes crafting adversarial sam-
ples easier. An attacker needs to make fewer changes to a given malware to
successfully create an adversarial sample and mislead a malware detector.
Second, ensemble learning does improve a model’s performance on adversar-
ial inputs. Third, distillation also reduces misclassification rates to a certain
extent. Fourth, adversarial re-training can strengthen a model on adversar-
ial crafted inputs. Performance thereby highly depends on the selection of
training parameters and the compilation of input datasets. Nevertheless,
the experiments also show that none of the studied methods was able to
completely diminish the threat of adversarial crafted samples. Adversarial
samples on machine learning models remains a topic that requires further
research.

Further research should investigate ensemble learning in more detail. The
effectiveness of the method should be tested against a modified algorithm,
which for example, tries to maximize the change into the direction of the
target class. Further, it should be investigated whether the same results can
be achieved on a crafting algorithm that takes both parts of an ensemble
into account.

Additionally, the defensive measures proposed in this thesis could be
tested in a black-box environment as introduced by Papernot et al. [9].
This shows the effectiveness of each method in a more realistic scenario
because mostly an attacker does not have entire knowledge about a malware
detector.
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Appendix A

Appendix

Category | Item ‘ Description
Hardware | CPU Intel(R) Core(TM) i7-4770K CPU @ 3.50GHz
Memory 32 GB
Software 0OS SMP Debian 4.9.130-2 (2018-10-27) x86_ 64
GNU/Linux

Python 3.5.3

Tensorflow | 1.13.1
Numpy 1.16.2
scikit-learn | 0.20.2

Table A.1: Specifications of the experiment environment.
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A.1 Performance Feature-Reduced DNN

Configuration H MWR H Accuracy ‘ FNR ‘ FPR

[200] 0.4 95.17 4.93 | 4.76
[200] 0.5 94.75 3.67 | 6.84

(10, 10] 0.3 94.31 14.78 | 1.80
(10, 10] 0.4 93.64 9.35 | 4.37
(10, 10] 0.5 92.87 8.40 | 3.75
[10, 200] 0.3 94.48 622 | 5.22
(10, 200] 0.4 94.78 750 | 3.70
[10, 200] 0.5 94.97 6.55 | 3.51
[200, 10] 0.3 95.37 10.69 | 4.61
[200, 10] 0.4 95.56 625 | 3.23
[200, 10] 0.5 95.27 528 | 4.17
[50, 50] 0.3 94.59 15.98 | 0.89
[50, 50] 0.4 92.49 17.37 | 0.94
(50, 50] 0.5 94.63 3.35 | 7.39
50, 200] 0.3 95.63 10.86 | 1.59
50, 200] 0.4 93.87 13.03 | 1.52
[50, 200] 0.5 94.71 401 | 6.56
[200, 50] 0.3 95.53 8.49 | 2.74
[200, 50] 0.4 94.05 563 | 6.17
[200, 50] 0.5 95.20 748 | 2.12
[100, 200] 0.4 95.05 547 | 4.61
[200, 100] 0.4 95.51 467 | 4.36
[200, 100] 0.5 95.57 392 | 4.93
[200, 200] 0.1 96.99 274 | 0.30
[200, 200] 0.2 96.08 1223 | 1.84
200, 200] 0.3 95.73 998 | 1.83
200, 200] 0.4 95.33 7.33 | 2.89
[200, 200] 0.5 95.78 563 | 2.81
[200, 300] 0.3 94.77 10.00 | 3.19
[200, 300] 0.4 94.07 10.08 | 3.15
[300, 200] 0.2 95.46 17.60 | 1.28
300, 200] 0.4 95.59 622 | 3.20
[200, 200, 200] 0.1 95.97 10.60 | 3.31
[200, 200, 200] 0.4 95.38 873 | 1.88
[200, 200, 200, 200] 0.4 95.11 8.60 | 2.42
[200, 200, 200, 200] 0.5 94.53 432 | 6.61

Table A.2: Performance of the DNN on a feature-reduced dataset.
Given are used malware ratio (MWR), accuracy, false negative rate (FNR),
and false positive rate (FPR)
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Configuration H MWR H MR ‘ Distortion

[200] 0.4 43.10 4.90
[200] 0.5 53.20 5.54
[10, 10] 0.3 36.46 5.05
[10, 10] 0.4 41.91 5.63
[10,10] 0.5 50.57 7.85
[10, 200] 0.3 31.70 7.38
[10, 200] 0.4 39.90 8.19
[10, 200] 0.5 51.73 5.51
[200, 10] 0.3 31.17 4.59
[200, 10] 0.4 41.10 7.78
200, 10] 0.5 27.95 7.06
(50, 50] 0.3 30.77 4.43
[50, 50] 0.4 40.60 4.32
[50, 50] 0.5 52.83 6.87
[50, 200] 0.3 30.93 471
[50, 200] 0.4 40.70 5.05
[50, 200] 0.5 53.40 5.49
[200, 50] 0.3 31.37 5.14
[200, 50] 0.4 43.70 6.20
200, 50] 0.5 50.03 6.97
100, 200] 0.4 42.10 4.84
200, 100] 0.4 41.97 6.30
200, 100] 0.5 52.37 5.48
200, 200] 0.1 13.97 3.69
200, 200] 0.2 21.63 4.93
200, 200] 0.3 31.27 4.13
200, 200] 0.4 41.73 5.76
200, 200] 0.5 51.47 5.93
200, 300] 0.3 32.83 5.06
200, 300] 0.4 41.33 4.73
300, 200] 0.2 20.43 3.44
300, 200] 0.4 42.23 5.04
[200, 200, 200] 0.1 12.77 5.25
[200, 200, 200] 0.4 41.13 4.93
[200, 200, 200, 200] 0.4 41.70 5.00

Table A.3: Performance of the DNN that was trained on a feature-
reduced dataset on adversarial inputs. Given are the different config-
urations of our malware detector, malware ratio (MWR), misclassification
rates (MR), and required average distortion (in number of added features)
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A.2 Performance Model Ensemble

Configuration H MWR H Accuracy ‘ FNR ‘ FPR

[200] 0.4 96.12 472 | 3.32
[200] 0.5 96.48 427 | 277

(10, 10] 0.3 96.24 8.18 | 1.87
[10,10] 0.4 95.99 577 | 2.84
(10, 10] 0.5 95.88 5.24 | 3.00
[10, 200] 0.3 95.38 11.08 | 7.15
10, 200] 0.4 96.32 7.08 | 1.41
[10, 200] 0.5 95.97 6.09 | 1.97
[200, 10] 0.3 96.12 3.89 | 3.88
[200, 10] 0.4 96.59 6.42 | 1.40
[200, 10] 0.5 96.95 3.92 | 217
[50, 50] 0.3 96.62 6.38 | 2.09
50, 50] 0.4 96.67 4.07 | 2.85
50, 50] 0.5 95.99 501 | 3.00
50, 200] 0.3 96.55 9.11 | 1.03
50, 200] 0.4 96.28 443 | 3.24
50, 200] 0.5 96.26 415 | 3.33
[200, 50] 0.3 96.14 8.02 | 2.08
[200, 50] 0.4 96.15 6.75 | 1.91
[200, 50] 0.5 95.75 748 | 1.03
100, 200] 0.4 96.55 5.80 | 1.89
[200, 100 0.4 96.17 6.12 | 2.30
[200, 100 0.5 96.47 3.13 | 3.93
[200, 200] 0.1 97.49 19.4 | 0.64
[200, 200] 0.2 96.21 162 | 0.68
[200, 200 0.3 96.93 8.31 | 1.30
[200, 200] 0.4 96.65 6.03 | 1.55
[200, 200 0.5 96.33 423 | 311
200, 300] 0.3 95.90 1127 | 1.03
[200, 300] 0.4 96.23 3.80 | 3.75
300, 200] 0.2 96.18 8.37 | 2.68
[300, 200] 0.4 96.05 6.73 | 2.09
[200, 200, 200] 0.1 97.45 20.47 | 0.56
[200, 200, 200] 0.4 95.96 525 | 3.22
[200, 200, 200, 200] 0.4 96.38 580 | 2.17
[200, 200, 200, 200] 0.5 96.39 524 | 1.97

Table A.4: Performance of the model ensemble. Given are used mal-
ware ratio (MWR), accuracy, false negative rate (FNR), and false positive
rate (FPR)
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Configuration H MWR H MR ‘ Distortion

[200] 0.4 18.57 6.65
[200] 0.5 16.80 6.26
[10,10] 0.3 15.77 10.19
[10,10] 0.4 16.53 10.62
[10,10] 0.5 8.40 14.23
[10, 200] 0.3 10.50 11.21
[10, 200] 0.4 12.30 9.35
[10, 200] 0.5 12.97 10.13
[200, 10] 0.3 17.77 10.61
[200, 10] 0.4 22.27 8.20
200, 10] 0.5 22.67 9.48
[50, 50] 0.3 18.90 8.31
[50, 50] 0.4 20.50 8.66
[50, 50] 0.5 21.75 8.07
[50, 200] 0.3 18.23 5.66
[50, 200] 0.4 22.87 10.16
[50, 200] 0.5 10.07 10.28
200, 50] 0.3 17.60 8.07
[200, 50] 0.4 27.90 7.63
200, 50] 0.5 21.23 6.55
100, 200] 0.4 24.90 7.86
200, 100] 0.4 23.87 6.62
200, 100] 0.5 18.93 11.63
200, 200] 0.1 6.97 4.66
200, 200] 0.2 15.53 5.51
200, 200] 0.3 21.80 6.48
200, 200] 0.4 29.10 6.23
[200, 200] 0.5 24.73 8.30
200, 300] 0.3 13.53 5.15
200, 300] 0.4 23.23 8.58
300, 200] 0.2 14.73 7.56
300, 200] 0.4 14.03 7.14
[200, 200, 200] 0.1 6.83 6.15
[200, 200, 200] 0.4 30.77 8.81
[200, 200, 200, 200] 0.4 29.00 9.04

Table A.5: Performance of the model ensemble on adversarial in-
puts. Given are the different configurations of our malware detector, mal-
ware ratio (MWR), misclassification rates (MR), and required average dis-
tortion (in number of added features)
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A.3 Performance Combination of Feature Reduc-
tion and Model Ensemble

Configuration H MWR H Accuracy ‘ FNR ‘ FPR

[200] 0.4 95.67 5.83 | 3.32
[200] 0.5 95.07 467 | 520

[10, 10] 0.3 94.95 13.76 | 1.33
[10, 10] 0.4 94.77 9.12 | 2.65
10, 10] 0.5 94.57 8.36 | 2.51
10, 200] 0.3 95.26 6.72 | 4.86
[10, 200] 0.4 94.92 8.43 | 2.85
10, 200] 0.5 95.17 5.03 | 4.64
[200, 10] 0.3 95.89 10.53 | 1.35
[200, 10] 0.4 95.40 727 | 2.82
[200, 10] 0.5 94.99 6.23 | 3.79
50, 50] 0.3 94.79 1522 | 0.91
50, 50] 0.4 93.37 15.35 | 0.82
50, 50] 0.5 95.27 3.89 | 5.56
50, 200] 0.3 95.77 10.60 | 1.50
50, 200] 0.4 93.91 13.35 | 1.25
50, 200] 0.5 95.05 5.97 | 3.92
[200, 50] 0.3 95.83 9.55 | 1.86
[200, 50] 0.4 95.32 5.00 | 4.47
[200, 50] 0.5 95.23 743 | 2.11
[100, 200] 0.4 95.81 6.00 | 2.98
[200, 100 0.4 95.73 5.23 | 3.08
[200, 100 0.5 95.69 445 | 4.16
[200, 200] 0.1 96.85 28.73 | 0.31
[200, 200] 0.2 95.99 14.3 | 1.43
[200, 200] 0.3 95.79 9.89 | 1.77
[200, 200] 0.4 95.53 7.23 | 2.62
[200, 200] 0.5 95.84 5.71 | 2.61
[200, 300] 0.3 95.23 1047 | 2.32
[200, 300] 0.4 94.67 9.77 | 2.38
[300, 200] 0.2 95.47 18.73 | 0.98
(300, 200] 0.4 95.46 6.97 | 2.92
[200, 200, 200] 0.1 96.98 13.07 | 1.90
[200, 200, 200] 0.4 95.39 8.62 | 1.93
[200, 200, 200, 200] 0.4 95.61 8.48 | 1.66
[200, 200, 200, 200] 0.5 94.87 479 | 5.48

Table A.6: Performance of the combination of feature reduction
and model ensemble. Given are used malware ratio (MWR), accuracy,
false negative rate (FNR), and false positive rate (FPR)
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Configuration H MWR H MR ‘ Distortion

[200] 0.4 25.37 4.90
[200] 0.5 21.13 5.39
[10, 10] 0.3 13.80 5.00
[10, 10] 0.4 24.33 5.78
[10, 10] 0.5 13.47 8.00
[10, 200] 0.3 16.95 7.41
[10, 200] 0.4 17.90 8.01
[10, 200] 0.5 23.97 5.27
[200, 10] 0.3 21.27 4.58
[200, 10] 0.4 15.73 7.55
200, 10] 0.5 21.65 14.64
[50, 50] 0.3 15.80 4.42
[50, 50] 0.4 23.47 4.32
[50, 50] 0.5 26.43 6.62
[50, 200] 0.3 20.30 4.69
[50, 200] 0.4 22.93 5.12
[50, 200] 0.5 33.10 5.57
[200, 50] 0.3 16.27 5.07
[200, 50] 0.4 29.50 6.02
200, 50] 0.5 35.87 6.91
[100, 200] 0.4 23.63 5.90
200, 100] 0.4 19.30 6.17
200, 100] 0.5 33.57 5.40
200, 200] 0.1 8.53 3.17
200, 200] 0.2 11.60 4.94
200, 200] 0.3 23.53 4.06
200, 200] 0.4 24.17 5.70
200, 200] 0.5 19.67 6.26
200, 300] 0.3 22.27 5.03
200, 300] 0.4 23.07 4.69
300, 200] 0.2 16.07 3.62
300, 200] 0.4 28.53 4.95
[200, 200, 200] 0.1 10.00 4.95
[200, 200, 200] 0.4 32.10 4.89
[200, 200, 200, 200] 0.4 29.17 5.05

Table A.7: Performance of the combination of feature reduction
and model ensemble on adversarial inputs. Given are the different
configurations of our malware detector, malware ratio (MWR), misclassi-
fication rates (MR), and required average distortion (in number of added
features)
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