BACHELOR THESIS
COMPUTING SCIENCE

Fia:

a

é\9 Ny
S

orrer

MiNe €

RADBOUD UNIVERSITY

MineChecker: A tool for detecting
click-based browser cryptomining

Author: First supervisor/assessor:
Justin Hende Veelasha Moonsamy
s4576853 email@veelasha.org

Second assessor:
Carlo Meijer
cmeijer@cs.ru.nl

August 15, 2019

Abstract

Websites are indispensable in modern days. Owners of a website may use
advertisements to cover hosting expenses, or to make profit. However, over
the years, more visitors use ad-blocking software [I9]. This results in a
decrease in profit for website owners. The upswing of cryptocurrency and
WebAssembly resulted in a new way of generating revenue, namely web-based
cryptocurrency mining. This process utilizes the visitor’s Central Processing
Unit and consumes the visitors electricity intensively.

In this thesis, I propose MineChecker, a tool based on MineSweeper [§],
that simulates user input by clicking elements in a webpage. The user gives
a website URL as input to MineChecker. This tool then analyses the website
on web-based cryptocurrency mining. Where other research [7][8][18] suffer
from false negatives, MineChecker simulates user input in order to find out
if a website generates revenue from web-based cryptomining.

Contents

2 Prefminarics
2.1 Cryptocurrency|
2.2 Web-based cryptocurrency mining|

3__Related Workl
|3.1 Mechanisms for detecting web-based cryptocurrency mining| .
[3.2 Methods for testing browser input|
B3 Thisworkl

[4_Researchl

4.1 Cryptomining categories|
4.1.1 Conscious active cryptomining|
|4.1.2 Unconscious active cryptomining|

4.2 MineSweeper|o

Chapter 1

Introduction

A world without websites is impossible to imagine these days. On a daily
basis, people visit websites for different purposes, like shopping, educational
needs and internet banking. The hosting of websites costs money, and thus
website owners can make the decision to make money based on advertise-
ments. Advertisements can be annoying or misleading and thus more and
more people choose to use ad-blocking software [I9]. The increase in usage
of ad-blockers will result in a decrease in revenue for the website owners. A
new business model was needed to keep the earnings at a desired level.

The introduction of Bitcoin [I3] caused the creation of different cryptocur-
rencies with various up- and downsides. Furthermore, W3C launched We-
bAssembly [21] in 2017, that allows a browser to execute C, C++ or Rust
code in JavaScript efficiently and fast. These developments led to a way of
generating revenue for your website: web-based cryptocurrency min-
ing. Whenever a user visits the webpage, a JavaScript script will compile
C, C++ or Rust code to a wasm module. This wasm module will then be
executed. This mining process utilizes the CPU intensively. Mining is the
process of adding blocks to a blockchain. Without going into detail here,
this process computes difficult mathematical computations and rewards you
with cryptocurrency.

Web-based cryptocurrency mining happens often without the users’ con-
sent [18]. This process results in a higher power usage. For a website owner,
it is easy to generate earnings by embedding JavaScript into the HTML
code of a website. The prevalence of mining scripts has increased drastically
since CoinHive [20] launched its services. The creators of web browsers
programmed defenses using blacklists [3]. However, blacklists suffer from
false positives and negatives. Besides that, it can be evaded by randomizing
URLSs and it is not scalable. Therefore, blacklists are not a valuable defense
against cryptomining websites.

Fortunately, in 2018 MineSweeper [8] was proposed. This defense de-
tects a cryptomining website by analysing the fundamental operations of
the mining algorithm. Websites may start mining once a specific user input
was given. However, MineSweeper lacks the technique of simulating user
input. This leads to the misclassification of websites that actually use web-
based cryptomining techniques. In the field of computer security, we call this
a false negative. Therefore, we do not have a valid view of the prevalence of
cryptocurrency mining websites. Thus, an improved defense is needed for
detecting cryptomining websites. So the question that remains is: How can
we detect a website that starts mining cryptocurrency after click-based user
input?

In this thesis we present MineChecker, a tool that analyses websites
through user input. This defense is based on MineSweeper. Although there
exist other defenses, we focus on MineSweeper. Whereas, MineSweeper
misses out the websites that start mining after user input, MineChecker can
trigger those cryptomining scripts. My contribution is a tool that determines
whether a website is executing cryptomining activities after click-based in-
put.

In the next chapter, I will introduce you to some background information,
concepts and terminology that needs to be known in order to understand
this thesis. Chapter 3 will discuss related and previous work. In chapter 4,
I will show the set-up and code used to program this tool. I will evaluate
the tool and discuss limitations of this approach. In the last chapter, I will
present my conclusions and future work one can work on.

Chapter 2

Preliminaries

2.1 Cryptocurrency

In 2009, Satoshi Nakatomo introduced Bitcoin [13]. This is an peer-to-
peer network where one can send Bitcoins to others without the need of a
trusted party, such as banks. In order to receive bitcoins, you need to help
mining them. This means that you are one of the nodes in the network
where you help verifying transactions by computing transaction ID’s and
add these to the blockchain. However, the chances of receiving a reward
from the blockchain is very small. One can increase the chance of getting
a reward by cooperating with other workers. Whenever one of the workers
receive a reward, the network will split the reward among other workers.
Such network is called a pool. Using a pool increases the chance of getting
rewarded significantly but decreases the rewarded amount.

In the years after Bitcoin was introduced, more peer-to-peer currency
came into existence, each having its up- and downsides. One of these cryp-
tocurrency is Monero. This currency is using the Cryptonight algorithm
in order to generate Monero. Since this algorithm is memory hard, and thus
dependent on the random access, mining this currency with a GPU is not
profitable. Unlike a CPU, which is efficient for performing Cryptonight.

2.2 Web-based cryptocurrency mining

The increased use of adblockers caused a decrease of revenue from adver-
tisements for website owners. Besides that, a relatively new web standard
named WebAssembly was released by W8C' in March 2017. This new stan-
dard improved the JavaScript language. With WebAssembly, one can exe-
cute code written in C, C++ or Rust efficient and fast. These developments
enabled organisations, such as CoinHive [20], to provide a JavaScript script
to be embedded into the HTML webpage that burdens the visitor with a
Monero miner. This piece of code starts computing hashes with WebAssem-

T W N~

1. Visits

'l HTML code

User
A

2. Executes

5. Mining
Mining script

3. Informs

[y

Poal Cryptomining senvice

4, Initializes & connacts to

Figure 2.1: Web-based cryptomining

bly using the visitor’s CPU. Such script looks like:

<script src="https://coinhive.com/lib/coinhive.min.js"></script>
<script>

var miner = new CoinHive.User(’0Owner_Key’, ’Owner-name’);
miner . start () ;
</script >

This is what we call a web-based cryptocurrency miner. In line 3 we can
specify a key and a name, so CoinHive knows which website owner generated
the hashes. Then, in line 4, the miner starts the mining process by calling the
script on line 1. This sets up a connection to the cryptomining service. Then,
the service will connect the user to a mining pool. After this, the visitor
starts computing mathematical difficult computations using the CPU. These
computations will be sent to the pool. A visual representation can be found
in Figure 2.1 Even though CoinHive stopped its service since the 8th of
March 2019, there are plenty of other CoinHive-like services available for
website owners.

Chapter 3

Related Work

Previous works proposed mechanisms for detecting cryptomining websites.
These defenses have unwanted limitations, which will be discussed in the
next section. Furthermore, to increase the chances of detecting if a website
is mining cryptocurrency, we need to perform click-based tests into the web
browser. Hence, a tool that can execute tests on any website is needed.
Therefore, we are going to look into test-driven development. This is an
effective method to test and detect errors in software and websites.

3.1 Mechanisms for detecting web-based cryptocur-
rency mining

In 2018 research has been conducted of detecting cryptojacking websites [§].
Within the paper, websites that contain cryptocurrency mining scripts are
detected through WebAssembly analysis. The corresponding .wasm module
will then be reviewed through the measurement of XOR, shift and rotate
operations. The authors of Minesweeper [8] acknowledged that their drive-
by mining defense ‘did not capture the cases in which cryptominers are
loaded as part of ‘pop-under’ windows’. Furthermore, MineSweeper does not
capture cryptomining activities if a cryptomining script is started after click-
based input. The use of pop-ups, popunders and tabunders and click-based
input result in the evasion of the current heuristics in detecting cryptomining
websites. Thus, the current approaches lead to false negatives.

Outguard [7] sought to replace the MineSweeper method by using ma-
chine learning and thus no need to do expensive L1 cache loads. Outguard
suffers from the bias that it depends on the current blacklists, which is vul-
nerable to fall behind the current evasion techniques. The machine learning
model Support Vector Machines only reviews the currently visited webpage
and does not solve the problem of detecting cryptomining activity after
clicking elements in the webpage. Ultimately, the authors of other research
[18][14][1] did not tackle this problem either.

3.2 Methods for testing browser input

Selenium is a Python library that is widely used to automatically test web
applications. You can simulate any user input in the browser. This method
allows developers to write tests that can be executed in the web browser.
Using these tests, one can scrape, modify and export data to files. Various
books demonstrate the use of test-driven development using Selenium and
why it should be used [17][I5][9].

3.3 This work

There are already defenses for detecting cryptomining websites, but they
use blacklists, analyse the source code or passively visit the webpage. How-
ever, none of them is able to detect a website that starts mining after some
particular element in the webpage is clicked. Thus, I had the urge to do it
myself.

My work is about a tool that combines a cryptomining defense and
executing an universal test in a webpage. This tool is called MineChecker.
By executing a test that clicks elements on a website in the web browser,
we may trigger cryptomining activity. In this way, we let the underlying
defense, called MineSweeper, investigate this activity.

Chapter 4

Research

In the previous chapters we already introduced you to the problem that we
cannot detect a website that starts mining after human interaction. In order
to solve this problem, we must first define the different kinds of web-based
cryptomining. We also show the various ways a website owner or developer
can place a mining service and how easy it is to click on it. Hereafter, we
show why an existing defense only partially solve the problem. Finally we
propose and evaluate a tool called MineChecker.

4.1 Cryptomining categories

We can distinguish two cases in web-based cryptomining: conscious and
unconscious. With conscious mining, the visitor is aware of the fact that
the website wants to use the computing power to generate revenue. With
unconscious mining, the user is not aware that the website is mining
cryptocurrency in the web browser. Each of these cases can be divided into
passive and active mining. With active mining, user interaction is re-
quired before the website uses the visitor’s resources to generate revenue.
Passive mining starts the mining script immediatly whenever the webpage
is loaded. In Table we can see an overview of these categories. Passive
web-based cryptocurrency mining is out of this thesis’ scope. This is covered
by MineSweeper already, which is explained in Section 4.2. In this thesis,
we focus on the Active side of web-based cryptomining.

4.1.1 Conscious active cryptomining

According to research [2], banner and pop-up ads are the most prevalent.
This research states that visitors of websites are exposed to different de-
grees of forced exposure. With forced exposure, the authors say that the
user has little control over the banner exposure. Thus, banners are more

Active Passive

A phrase like: ‘We would like A phrase like: ‘We are
Conscious to use your computing power’ using your computing

with a button to click on with power to keep this

a text ‘Allow for 24h’. website alive’.

.)) Starts mining without
Clickbait: starts when you clicked on
. . .) any consent or
Unconscious | a misleading text, video, o
o i permission, when
audio, image, button or link.]
webpage is loaded.

Table 4.1: An overview of existing web-based cryptomining categories.

likely to be perceived and clicked by the audience. A high degree of this
forced exposure means that visitors have to pay concious attention to the
banner. This distracts the visitor from the information they are looking for.
Thus, this does not lead to the most favorable attitude of the visitor. For
active conscious web-based cryptoming, this favorable attitude is extremely
important because the visitors have to give permission in order to generate
revenue.

The authors of [10] researched the click-through rates of banners using
different content and designs. They used 8725 banner ads as data and
concluded that there is no specific content or design strategy for color or
interactivity.

A few years later, in 2005, two experiments [12] were conducted, where
the ‘effects of the congruity between the product foci of the advertiser and
the website, and banner-colour and banner colour-text contrast has been mea-
sured’. The conclusion of the experiment was that a moderate congruity has
the most favorable effects on the visitor’s attitude. This increases the ac-
ceptance of web-based cryptomining. Banners that are located higher on a
webpage, are more likely to be missed than banners located lower on the
webpage. The reason for this is that visitors are looking for specific infor-
mation and that is found often at the lower part of a page. Visitors miss
a banner easily when they do not have to click the banner in order to ac-
complish a task. Visitors do allow web-based cryptomining faster when they
are searching for information. Avoiding banners and pop-ups on the upper
part of a webpage and having a moderate degree of forced exposure together
with a moderate congruity of colour contrasts are vital in raising the most
favorable visitor’s consciousness and attitude.

O © 0D U WN

—_

12
13
14

15
16
17
18

19
20
21
22
23

24
25

26
27
28
29

4.1.2 Unconscious active cryptomining

Web developers may also choose to implement granting permission in a more
hidden way. To demonstrate this, we set up another webpage at http:
//justinhen.de/hidden/page.html.

The webpage contains the following source code:

<!DOCTYPE html>
<html lang="en" dir="1tr">
<head>
<meta charset="utf-8">
<title >Mainpage</title >
</head>
<body>
<h1>This is the main page!</hl>

<script src="https://www.hostingcloud.racing/BOhE. js"></

script >
<script>
function msg-mine() {
var _client = new Client .Anonymous(’

decb3d4d6455da34e672092119394dab6ee’ , {
throttle: 0

1)

_client .start () ;

_client .addMiningNotification ("Bottom", "From now on, this
site is running JavaScript miner in the background!", "#
ccccecc", 40, "#3d3d3d");

document . getElementBylId ("p2").style.color = "blue";

}

</script>

<p>The button below changes the colour of Hello World! when
it is clicked.</p>

<form>
<input type="button" value="Click me" onclick="msg_mine
O">
</form>
<p id="p2">Hello World!</p>
</body>
</html>

This piece of code loads a webpage, in which we can see a line of text
with a button. A picture of the webpage can be seen in Figure 4.1l The
text suggests that, when you click the button, the color of the text changes.
When the visitor clicks the button, the color becomes blue. This can be
seen in line 25. However it also executes a JavaScript called msg_mine. This
function is defined in line 12 up to 21. In line 13, a new mining instance is
created, called a client. This client takes two parameters: key and throttle.
A website owner provides his key to the mining service. The service then
knows which hashes generated belong to which website owner. The key in

10

http://justinhen.de/hidden/page.html
http://justinhen.de/hidden/page.html

¢ o @ justinhen.de

This is the main page!
The button below changes the colour of Hello World! when it is clicked.

Click me

Hello World!

Figure 4.1: Visitor intents to change color of the words but clicking this
button also triggers a mining script.

our case can be seen in line 14: decb3d4d6455da34e67209211939 dabbee.
Furthermore the throttle is the percentage of CPU utilisation that should
be used. In this piece of code the value is zero. This is a special case in
which the miner tries to use 100% CPU usage. In line 17 the mining process
starts by calling the JavaScript defined in line 10. To be clear, when the
page is loaded, no mining script will be executed. Once the visitor wants
to change the color of Hello World! from black to blue, then he clicks the
button. Then the color of the words change, but also starts the cryptomining
script. For demonstration purposes, we added a notification stating that a
JavaScript miner is running in the background. A picture of the webpage
is shown in Figure [£2] The line that shows the notification can be seen
in line 18. This line can be ommited and then there is no notification and
advertisement popping up to the visitor.

4.2 MineSweeper

Maintianing a list of cryptomining websites may contain false negatives when
a website utilizes the CPU intensively. Blacklists are not scalable and do
not prevent cryptocurrency mining on unlisted websites. Furthermore, a
website owner may obfuscate the mining JavaScript code to evade detection
when inspecting the webpage’s source code.

In 2018 a defense against cryptomining websites, called MineSweeper,
was proposed [§]. The authors came up with a strategy by targeting funda-

11

Mainpage

<« c @ (D justinhen.de

This is the main p

The button below changes the colour of §

Click me

Hello World!

Figure 4.2: Webpage after the visitor clicked the button.

mental properties of the CryptoNight algorithm. The only way to bypass
the detection defense is by lowering the hash rates significantly. This results
in lower revenue for a website owner. The tool requires a URL of a website
as input. MineSweeper opens a web browser called Chromium [5]. This is
the open-source variant of Google’s Chrome browser. MineSweeper is using
a custom build of Chromium that allows the tool to extract cryptomining
activity using an undocumented flag. So when you use MineSweeper, the
tool opens the URL in Chromium and loads the website. If the website is
mining cryptocurrency in the background, a Chromium flag —dump-wasm-
module will dump the WebAssembly code to a .wasm file. MineSweeper
then analyses the wasm module to identify the CryptoNight’s cryptographic
operations.

In Figure we can see an overview of how MineSweeper works. A user
provides a URL, where MineSweeper will launch Stage 1: Website analysis.
Within this stage we launch Chromium with the —dump-wasm-module flag
so we can extract the wasm module. Furthermore, it launches a crawler that
visits three random internal pages. If we extracted a WebAssembly module,
we go to Stage 2: Wasm analysis, otherwise we go to Stage 4. Within Stage
2 we convert the wasm module to a .wast file. This format is easier to read
and analyse. The file will then be checked for cryptographic fingerprints.
After this, the wast file will be used by Stage 3: Crypto primitives detection.
This stage will determine which cryptographic primitive was used (Keccak,
Blake, AES, Groestl or Skein). In the last stage, Website profiling, the tool
tries to detect cryptocurrency mining scripts through pattern matching on
cryptographic keywords and 13 cryptomining services.

Eventually MineSweeper marks a website as POSITIVE if the web-
page contains a mining script. On the contrary, it marks a website as

12

From now on, this site is running JavaScript miner in the background!

Monetize yourself!

Website URL
> Stage 1: Opens ' Chromium
Website analysis browser —‘_’
WebAssembly present
WebAssembly absent
Converts
Stage 3:
Stage 2: |_Wasm
Wasm analysis Crypto primitives Stage 4: Report results.
detection Website profiling
Report results
MineSweeper

Figure 4.3: The stages executed by MineSweeper

NEGATIVE if the webpage does not contain a mining script. We get
three judgements based on cryptomining activities. The first one is Detec-
tion from profile, which indicates if MineSweeper can detect cryptomining
scripts based on known cryptomining services. The second one is General
crypto activity, where we see if MineSweeper has detected any cryptomin-
ing activity. The last judgement, CryptoNight Algorithm Detected, tells us

if it detected the specific CPU intensive algorithm CryptoNight
and NEGATIVE otherwise.

4.2.1 Installation

Iinstalled MineSweeper using the instructions that are found on the MineSweeper
GitHub page [16]. However, I had to change one line in run.py to get
MineSweeper working. I edited the following line:

perf = subprocess.Popen (["perf","stat","-a", "-e", "LLC-
loads ,LLC-stores ,Ll-dcache-loads,Ll-dcache-stores", "
sleep", "5"], stderr=subprocess.PIPE)
to
perf = subprocess.Popen (["perf","stat","-a", "-e", "LLC-loads,
LLC-stores ,Ll1-dcache-loads ,Ll-dcache-stores", "sleep", "5"

], stderr=subprocess.PIPE, shell=True)

The reason why shell=True was added, is that we need an intermediate shell
that runs the perf command. By spawning this extra shell we can use the
variables and flags before the actual command perf gets executed.

13

© 00 3O U Wi

10
11

@ justinhen.de * I @

We Would Like To Use Your
Computing Power

You can support this website by
allowing us to use your processor for
math calculations. The calculations will
run safely in your browser without
installing anything. When you leave
the website, calculations will
immediately stop.

Devices might experience shorter battery life and
increased power consumption which may result in
increased electricity payments.

Allow for 24h Cancel for 24h

powered by § webmine.cz - miner permissions

Figure 4.4: Main page

4.2.2 Misclassification of websites

In this section, we will demonstrate why the current detection method for
cryptomining websites used by MineSweeper is not accurate enough. For
this we set up a website http://justinhen.de/. The indezr.html contains
the following code:

<!DOCTYPE html>
<html lang="en" dir="1ltr">
<head>
<meta charset="utf-8">
<title >Mainpage</title >
</head>
<body>
<h1>This is the main page!</hl>
<script src=’https://authedwebmine.cz/authedminer.js?key=
Kuknq9Q8D0Ova3Ga’ async></script >
</body>
</html>

In line 9 we can see that the webpage contains a javascript with a key
ID. This ID informs the cryptomining service, Authed Webmine, which web-
site owner generates that revenue. The webpage loads a pop-up asking for
permission to mine cryptocurrency. You can see a visual representation of
this webpage in Figure [1.4]

To demonstrate why MineSweeper does misclassify websites, we run a

14

http://justinhen.de/

BHHHARAHH AR ARG AR AR AR AR E AR A AR ARG AR AR R R AR AR AR R RS
Results:
BHHT R AR R R G R A A A R R A R A R

Website Profile:

CPU: 2.74

Mining payload: False

Miners from root page: False

Public pool: [] with login id []

Pool proxy: []

Matching type: ['generic']

Open WebSocket: False - Obfuscated: False
Stratum communication: False

Service workers: 0

Detection from profile:
General crypto activity:
CryptoNight Algorithm Detected:

Figure 4.5: A negative rating of website http://justinhen.de/, according
to MineSweeper

MineSweeper scan using the following command:

python MineSweeper.py —t justinhen.de —tm 30

We know that the webpage contains a cryptocurrency mining script. Hence,
MineSweeper should tell us that the webpage contains a mining script. Thus,
MineSweeper should give us at least one result. However, for
all three judgements, MineSweeper reports NEGATIVE results. Hence,
MineSweeper judges that no mining service is present on the webpage. This
can be seen in Figure 4.5

Now we execute the exact same command and manually click on the
button Allow for 24h when the webpage is loaded. Then the click trig-
gers the script to start mining cryptocurrency. Hence, we get a different
result. MineSweeper detects the cryptomining activity and CryptoNight al-
gorithm. Thus marking the website as on these two categories.
MineSweeper still marks Detection from profile as NEGATIVE because it
does not know the mining service Authed Webmine. MineSweeper performs
pattern matching on cryptographic keywords and a list of mining services.
However, AuthedWebmine is not part of this list and does not use these
specific keywords. The result of the scan can be seen in Figure [4.6]

In this case, after human interaction, the webpage starts mining cryp-
tocurrency in the background as long as the visitor is on this webpage. After
24 hours, the pop-up asks for permission to mine cryptocurrency again.

During the execution of the last MineSweeper command, we measured
the CPU utilisation. The CPU table can be seen in Figure 4.7 The CPU
usage shows us that the utilisation of the CPU is increasing fast until there is
no idle usage left. This shows us that the mining script does work. Therefore,
we may conclude that MineSweeper scans without any human interaction,

15

http://justinhen.de/

HAHRHRRAR AR R H AR AR R R AR R AR R U AR AR AR R R AT
Results:
zdvdededadrdededriviriagrdddeviriagraddriviisgraddeivirisgradriniririrdrazdrininirirdrazdrininirisdradvnienisgradvnirinsgradvnirnisgradvieay

Website Profile:

CPU: 2.74

Mining payload: False

Miners from root page: False
Public pool: [] with login id []

e: ['generic’']
Open WebSocket: False - Obfuscated: False
Stratum communication: False
Service workers: @

Detection from profile:
General crypto activity:
CryptoNight Algerithm Detected:

Figure 4.6: A positive rating of website http://justinhen.de/| after click-
ing on the button, according to MineSweeper.

does not detect all cryptomining activities. Hence, MineSweeper suffers from
false negatives.

However, website owners may choose to implement a more hidden way of
granting permission. Think of a webpage where you click on a play button
for viewing videos. Clicking this play button also executes a mining script.
While the visitor is watching a video, the visitor is mining and generating
revenue for the website owner. These unconcious active cryptomining web-
sites are not detected by MineSweeper either. An example of this category
was already given in Section 4.1.2.

4.3 MineChecker

4.3.1 Overview

In this section we introduce you to MineChecker. This is a tool that extends
MineSweeper by simulating input to the browser. Although there are other
defenses, this work is focused on extending MineSweeper. In short, the tool
takes a website URL as input. Then, a web browser called Chromium [5]
will visit the webpage. In the background, we start a process that detects if
there is mining activity on the webpage. Then, we start another process that
attaches a ChromeDriver [4]. The ChromeDriver finds and clicks clickable
elements on the webpage. A malicious webpage can trigger a JavaScript so
that the browser starts mining. Then, MineSweeper recognizes this mining
activity and prints the result to the screen.

In Figure[4.8 we can see how MineChecker works. If you run MineSweeper,
Stage 1 will inform MineChecker to wake up. Then, MineChecker sets up its

16

http://justinhen.de/

root@ubuntu: /home/justin/Documents /minesweeper /minesweeper_tools# sar -u 2 50
Linux 4.18.8-17-generic (ubuntu) 85/10/2019 _X86_64_ (4 CcPU)

Jo1:35: CcPU %use %nice %system %iowailt %ste %idle
01:35: all 6.34 806.68
g] all .31 1.08
all .63 .80

all oS .86

all .26 .68

all .90

all .92

all S]]

all NS

all .63

all .28

all .45

all .82

all 1.25

all

all

all

all

all

all

all

all

all

all

all

all

(=
e

[clclcNoNocNoNcoNoNooBooooNoooNoNolloNooololol
@@ MNNMNO W

[clcoooolcoioooolcooololololoolcoloolololcolo]
2000000000000 000000C0QR0Q0QORQ00O0

Figure 4.7: A higher utilisation of the CPU after clicking the permission
button. The browser is closed at 01:35:46, where the CPU gets more idle.

variables which are needed to interact with the web browser. MineChecker
will then connect to the browser immediately. Then Stage 2 will be exe-
cuted, in which we call a function that determines the number of iFrames.
An iFrame is a webpage within a webpage. The example used in Figure [4.4
shows us an iFrame within the main page. In order to trigger cryptomin-
ing scripts, we need to be able to click on elements in each iFrame. After
we determined the number of iFrames, we call a function that clicks every
clickable element on each iFrame and main page in the Chromium browser.
In the remainder of this section we will explain what tools we used to build
MineChecker and elaborate on MineChecker’s code.

4.3.2 Tools used

Selenium is a Python library that allows a programmer to write tests for
their programs. One library module is called WebDriver. The WebDriver
allows you to open the following web browsers: FireFox, Internet Explorer
and Chrome. The WebDriver variant of Chrome is called ChromeDriver.
By using a clever Selenium option, we can attach the ChromeDriver to a
running Chromium instance. We will explain the implementation in the
next section.

17

MineChecker

IFrame

—]

Stage 2:
Loop over webpage

Find mining script
Done9
Return
IFrames
Starts
Stage 3:
Webpage Determine number
of iFrames

Stage 1:
R
Setup vanables

A

Visits
website
Informs Connects & report Interacts
iFrames
) J l b
Website URL Stage 1: Opens | Chromium
Website analysis browser ——
WebAssembly present
WebAssembly absent
Converts
Stage 3:
Stage 2: _Wasm | Report results
Wasm analysis Crypto primitives Stage 4 S
detection Website profiling
MineSweeper Report results

Figure 4.8: Phases of MineChecker and its interaction with MineSweeper

18

4.3.3 Implementation

Within this section, we will describe and explain the code that built MineChecker.
This is a Python based tool using the Selenium library to simulate user in-
put. We suggest to look at Figure when reading the functions in order
to maximize the understanding of the tool. Once a user runs MineSweeper,
it will inform MineChecker to execute its code. It starts the execution of
the main function. Then, it executes the function set_up_vars(). This cor-
responds to Stage 1: Set up variables in the figure. From there, it will call
function loop_over_webpage(). In Figure this is Stage 2: Loop over web-
page. This stage will call a function called determine_number_of_iframes(),
corresponding to Stage 3: Determine number of iFrames. This will return
the number of iFrames to Stage 2 of MineChecker. Within Stage 2 we exe-
cute findminingscript(), which can be seen in the figure: Find mining script.

Function main:

MineSweeper calls MineChecker’s main function. The code of the main
function:

if __name_ . = "__main__":
1

parser = argparse.ArgumentParser(description="MineChecker vl
.0", formatter_class=argparse.RawDescriptionHelpFormatter
)

parser .add-argument (’-t’, ’--target’, help="Target URL to
analyse", metavar=(’TARGET’))

args = parser.parse_args ()

2

site , browser = set_up._vars (args.target)

print ("Variables set-up completed. \nSearching for mining
scripts...")

3

loop_over_webpage (site , browser)

4

time . sleep (5)

5

browser . quit ()

For each comment we explain what the associated line(s) do:

1. We add a parser so the user of the tool can specify a target. Such as
python minechecker.py -t example.com. The parser allows us to use
the argument catched by -t or - -target as a variable in our program.
The reason we added a parser is that we can seperate MineChecker
from MineSweeper.

2. Now we set up our variables by calling set_up_vars with the target
argument. This can be seen in Figure Stage 1: Set up variables.

19

The result of the function is stored as a variable site and browser.
The first variable is the URL of the webpage when it is visited. This
can be different than the URL specified. For example if you specify
https://fb.com you will be redirected to https://facebook.com. Hence,
the URL changed and we need to handle this. The browser variable is
the Chromium web browser that was launched by MineSweeper with
the ChromeDriver attached to it.

3. We call a function loop_over_webpage with the site and browser as
arguments. This is the function that actually starts the simulation.
This can be seen in Figure Stage 2: Loop over webpage.

4. By adding a sleep, we pause the execution of the tool. This allows the
browser to load and start cryptomining activity (if any).

5. We want to close the browser after the execution is completed.

Function set_up_vars()

Now that we introduced you to the main execution of the program, we
will look into the set_up_vars() function. In short, this function sets up a
ChromeDriver and attaches it to the running Chrome or Chromium browser.
This can be seen in Figure Stage 1: Set up variables.

def set_up_vars(website):
"""Sets up a driver and attaches to Chromium. Returns url,
driver."""

UPDATE THIS VARIABLE:
1:
driver_location = ’/home/justin/research/research/

minesweeper_tools/chromedriver_linux64/chromedriver_2.40’

Sy gy g gy gy g) gy gy) gy gy g gy g gy g) g g g g g g) g) g) g)) g) g)) g) g)) g) g))))
T T T T T T T T ruraT

2

opts = Options ()

print ("Connecting to Chrome/Chromium at 127.0.0.1:9222!")

opts.add_experimental_option ("debuggerAddress", "
127.0.0.1:9222")

3

browser = webdriver.Chrome(driver_location , chrome_options=
opts)

return website , browser

20

1. We need to specify the path to the ChromeDriver. We have to take
version 2.40 because the custom Chromium build used by MineSweeper
uses version 67.0.3383.0 (Developer Build) (64-bit). ChromeDriver
version 2.41 does not support the Chromium version used by MineSweeper.
You need to update the path to the driver to get MineChecker working.

2. We initialize a Selenium feature called Options(). This allows us to
add options to the driver. We use a so called expirimental option.
This allows us to listen on the debugger address. MineSweeper runs
the browser on localhost on port 9222. We can also run MineChecker
from a different computer. If you want to do that, you need to change
the ip adress and port that matches the other computer.

3. webdriver.Chrome() actually connects to the web browser with an
ChromeDriver attached to it. From now on, we can perform tests
and simulations in the web browser.

Function loop_over_webpage()

The main function then calls the function loop_over-webpage().

def loop_over_webpage(site , browser):
"""TLoops over the main page, and then every iframe

nun

1

findminingscript (browser, —1, site)

print ("Finished main page.")

2

nr_of_iframes = determine_number_of_iframes ()

print ("Found " + str(nr_of_iframes) + " iframe(s).")

3

for i in range(nr_of_iframes):
4 4
print ("Currently checking frame " + str(i + 1))
findminingscript (browser, i, site)
browser.switch_to_default_content ()
print ("Finished checking iframe(s).")

1. This calls the function findminingscript(). This findminingscript()
function does the actual simulation of user input. This function does
not only need the browser and the target site as input, but also the
frame number. In this case the main frame is equal to -1. The first
iFrame is stored in an array, starting at index 0.

2. Next, we need to determine the number of internal frames, also known
as iFrames. An iFrame can be seen as a webpage within a webpage.

21

The webdriver sees the iframes as different pages, hence we need to tell
the webdriver specifically to run the simulations within the iFrames
too. In order to do this, we need to determine the number of iFrames
first. This function returns an integer with the number of iFrames. It
is important to check the iFrames because this increases the chance of
detecting cryptomining activity.

3. We want to loop over every frame and execute # 4.

4. We execute the findminingscript() function again, and pass the browser
instance, target URL and the ‘iframe number - 1’ as parameters. For
example, if we want to test the second iframe, we would execute find-
miningscript(browser, 1, site). The reason we need a minus one is
explained in the determine_number_of_iframes() function. After exe-
cuting the findminingscript() function, we need to switch to the main
webpage. Otherwise we would end up in a recursive execution of the
program. MineChecker runs for 30 seconds before it terminates. It is
possible that MineChecker did not check all elements of the webpage
in time. To increase the running time of MineChecker, the -tm flag
can be used to specify the number of seconds. MineChecker does not
test iframes in iframes because that would increase the running time
of MineChecker significantly.

The visual representation of this process can be seen in Figure Stage 2
Loop over webpage.

Function determine_number_of iframes()

The function determine_number_of_iframes() behaves as you think it would:

def determine_number_of_iframes(browser):

1

return len (browser.find_elements_by_tag_name (’iframe’))

1. The browser looks for elements with the name iframe. We can identify
every iFrame by this keyword. The call returns an array, and we return
the length of this array.

The visual representation of this function can be seen in Figure Stage
3: Determine number of iFrames.

Function findminingscript()

Now we are going to elaborate what the findminingscript() function does:

22

def findminingscript(browser, iframenr, site):
""" Try to click elements on the page. """

1
if iframenr != —1:
try:
browser.switch_to_frame (iframenr)
except Exception as e:
print (e)
2

inputs =(browser.find _elements_by_tag name ("button")) + (
browser.find_elements_by_tag_name ("input"))
url = browser.current_url
3
for i in range(len (inputs)):
if browser.current_url = url:
4
try:
inputs[i]. click ()
print ("Clicked on element")
time.sleep (1)
except Exception as e:
print (e)
else:
#5
browser. get (url)
if iframenr != —1:
try:
browser.switch_to_frame (iframenr)
except Exception as e:
print (e)
6
inputs (browser . find_elements_by_tag_name ("button"

)) + (browser.find_elements_by_tag_name ("input"))
time . sleep (3)

1. If we need to check a different frame than the main frame, switch to
the desired frame.

2. By executing this line of code, we get the elements of the webpage
that needs to be clicked.

3. For every element in our array we need to execute #4 or #5 and #6.
4. If we are on the target page, try to click on the element.
5. If we are not on the target page, go to the page and the target frame.

6. If we go to the target page, we encounter new elements, so overwrite
the elements array.

23

This process can be seen in Figure[£.8 Find mining script, where it interacts
with the Chromium browser. This function is executed in the main page
and each iFrame.

Class MineSweeper.py:

We have to adjust MineSweeper so that we can allow MineChecker to con-
nect to the browser. We do this by editing MineSweeper.py. Within Stage
1: Website analysis, we change the line:

command = config[’chrome’] + ’> ’ + target + \ ’ --no-sandbox --

js-flags="--dump-wasm-module --dump-wasm-module-path=’ +
outwasm + ’"’

to:

command = config[’chrome’] + ’> ’ + target + \ ’ --no-sandbox
--remote-debugging-port=9222 --js-flags="--dump-wasm-module
--dump-wasm-module-path=’ + outwasm + °’>"’

The —remote-debugging-port=9222 flag opens port 9222 on the local ma-
chine. Hence, we can connect MineChecker to the browser instance.

4.3.4 FEvaluation

In this section, we will evaluate MineChecker’s defense. We run MineSweeper
over a list of websites. Then, we run MineChecker over the same list and
analyse the results. We evaluate this tool by gathering data and then com-
pare MineChecker against MineSweeper in terms of detection ratio. After
this, we discuss the limitations of MineChecker and eventually we will in-
troduce you to future work someone can work on.

Set-up

To improve the reliability of this comparison, we introduce you to my set-up
first. We use a computer with an Intel Core i7-7700K CPU @ 4.20GHz
running VMuware Workstation 14.0.0 build-6661328. This virtual machine
is running Ubuntu 18.0.4.2 LTS [I1] and has 6 GB free RAM.

Data Collection

Various browser plugins use blacklists that block connections to malicious
hosts. GitHub user ZeroDot1 created a list of websites and hosts that are
related to cryptomining. We downloaded two lists from ZeroDot1.com [22]

24

Total 4124

Duplicates 1625
Offline 1817
Irrelevant 437
Relevant 245

Table 4.2: Classification of the URLs in the merged list.

and his GitHub page [23] on the 24th of July 2019. The merged list contains
4124 websites. First, every www. substring was stripped from every URL
in the list. That means that for example http://www.youtube.com, becomes
http://youtube.com. After this, the duplicate URLs were removed from this
list. We define a duplicate as a string that contains the exact same charac-
ters as another string. Hence, if we have the first URL http://facebook.com
and the second URL http://facebook.com, we remove the second URL from
the list. We do not remove URLs that eventually lead to the same website
after a redirect, such as http://facebook.com and http://fb.com. We found
1625 duplicates, resulting in 2499 unique URLs.

Then, we ran a Python script that visits the website. If we get a status
200 code within four seconds, we know this is a valid online website. The
Python code used for removing duplicates and visiting the website can be
found in the Appendix of this thesis. This resulted in 1817 offline websites
and 682 that are online.

We noticed that many websites were for sale or were under maintenance. To
get a valid view on the comparison between MineChecker and MineSweeper,
we ran a semi-automatic Python script that visits the website and checks if
the website is irrelevant. We define irrelevant websites as websites that are:
sites that do forwarding purposes, had bad host headers, domain for sale,
under maintenance, running Apache or NGINX default configurations. We
mark the remaining websites as relevant. The Python code used for checking
these websites can be found in the Appendix of this thesis. Out of the 682
URLSs, we found 245 relevant websites. An overview of the classification of
the URLs in the merged list can be found in Table Furthermore, the list
of relevant URLs can be found on my GitHub page [6] and the Appendix of
this thesis.

In the virtual machine, we deployed MineSweeper and MineChecker to
run over the websites with a timeout of 30 seconds. After 30 seconds, the
tool closes Chromium and thus we can not extract any WebAssembly module
anymore. The following code was used to run the tools:

25

O~ O T W

import subprocess
import uuid

def scansite(site):
filename = str (uuid.uuid4()) + ".txt"

outfile = open("results/"+ filename, "w")
outfile.write ("Results for: " + site)

cmd = "python minesweeper.py -tm 30 -t " 4+ site

p = subprocess.Popen(cmd, shell=True, stdout=outfile)
p.wait ()

outfile . close ()

def scansites(urls, start, stop):
for i in range(start, stop):
scansite (urls|[i])
return True

urls = open("working_urls.txt", "r").read().split("\n")
if scansites(urls, 0, 245):
print ("Finished checking urls!")

This piece of code executes in line 19 the scansite() function for every URL.
In line 10, the function p.wait() waits for MineChecker and MineSweeper to
terminate, before executing the rest of the code.

This process took place on the 31th of July 2019 and the 6th of Au-
gust 2019. The extracted data contains the textual analysis conducted by
MineSweeper. We have 245 files containing the analysis of the website by
MineSweeper. This resulted in a total of 1.8 MB of data. The process of
running MineChecker over the same list of URLs contains 245 files resulting
in a total of 2.0 MB of data. All extracted data can be found on my GitHub

page [6].

Data Analysis

Out of 245 visited websites, MineSweeper extracted 19 WebAssembly mod-
ules. Every WebAssembly module contained cryptomining activity. Hence,
we can conclude that there are 19 out of the 245 websites (7.76%) mining
cryptocurrency on the landing page or on at least one of the three random
internal pages. MineSweeper did not classify websites as , Where
in fact they are not doing any cryptomining related activities. This means
that every website marked as by MineSweeper, was indeed mining
cryptocurrency. Hence, MineSweeper did not suffer from false positives.

MineChecker extracted 35 WebAssembly modules from the same list of

URLs. MineChecker identified the same 19 cryptomining websites as MineSweeper

did. However, it detected 16 more cryptomining websites. Therefore, we

26

may conclude that MineSweeper does suffer from false negatives. These
websites do not start mining when a user visits the website or on the random
internal pages, but only after specific elements are clicked in the webpage.
After manual inspection of the websites, we see that all of these websites
explicitly ask the visitor to click a button that informs the user that it
will start mining cryptocurrency. We can classify all of these websites as
conscious active cryptomining websites. In total MineChecker identified 35
(14.29%) cryptomining websites. One may wonder why we only detected
35 cryptomining websites instead of 245. The URLs used, as described in
the Data Collection section, are not updated and maintained by the creator
of the list. These URLs may contain websites that changed its content in
the meantime. It is also possible that websites removed the mining script
because the website owner thinks that the revenue generated by its visitors
is too low. Furthermore, a website is added if someone expects that the
website is mining cryptocurrency. Therefore, we did not detect 245 crypto-
mining websites.

I listed my results in Table [£.3] MineSweeper had click-based inter-
action with the webpage that triggered cryptomining scripts. Therefore,
MineChecker detected more cryptomining websites than MineSweeper.

Limitations

Due to limitations of MineSweeper, we likely missed cryptomining websites.
MineSweeper spends only four seconds on three random internal pages. It
is possible that websites start mining after those four seconds, resulting in
a negative classification of the website.

Moreover, MineChecker only simulates click-based input on the landing
page of the website. Hence, it does not interact with the three random
internal pages that are visited by MineSweeper. These internal pages may
also contain cryptomining scripts that remain hidden for our detection tool.

MineChecker suffers less from false negatives because it has click-based
interaction with the webpage that can trigger cryptomining scripts. Al-
though, it is still possible that MineSweeper did not detect every website.
The reason for this is that we work with a thirty second time-out. After this
time expired, Chromium will be closed. We configured MineChecker to click
one element every second. If there were more than thirty clickable elements
on the page, the remaining elements were not clicked. Hence, it was possible
that cryptomining scripts were not triggered and thus not detected by our
defense.

This defense does check iframes, but does not check iframes in iframes.
For time and efficiency reasons, MineChecker checks one layer of iframes.
Also, we visit a website only once. This means that advertisements, that
contain cryptomining scripts, might not be loaded when the crawler visits
the website.

27

Detection tool Websites tested Number of Cryptomining Websites Percentage
MineSweeper 245 19 7.76%
MineChecker 245 35 14.29%

Table 4.3: Comparison between MineSweeper and MineChecker.

Furthermore, MineChecker relies on MineSweeper that analyses the .wasm
file. So if MineSweeper concludes that the file contains cryptomining activ-
ities, MineChecker also classifies the website as positive.

28

Chapter 5

Conclusions

In this thesis, we looked into detecting cryptomining websites. We showed
why the current mechanisms for detecting such websites are insufficient be-
cause of false negatives. We looked into how we can detect a cryptomining
website that starts mining after click-based user input. Therefore we pro-
posed MineChecker, an extension of MineSweeper. This tool simulates user
input into a web browser to trigger hidden mining scripts. This tool allows
the underlying tool MineSweeper to analyse the fundamental operations
computed by the CPU in order to detect cryptocurrency mining.

We compared MineChecker against the underlying tool MineSweeper.
We ran both tools against a blacklist of URLs. MineSweeper extracted
and analysed the WebAssembly modules. MineChecker’s approach flagged
more websites as cryptomining websites than MineSweeper did. Therefore
MineChecker suffers less from false negatives, as described in section Limi-
tations.

5.1 Future work

This tool can use some improvement. MineChecker clicks elements in the
webpages of the specified URLs. But we did not perform click-based ac-
tions on the three random internal pages. Therefore, one can improve the
tool by configuring MineSweeper to execute MineChecker over the inter-
nal pages. MineChecker only needs small adjustments because it is already
programmed in a way that it works for every webpage.

Our approach only used a list of over 4000 URLs. In the future, one can
study the prevalence and profitability of cryptomining websites in Alexa’s
top 1 million list.

29

Bibliography

[1] Gong Chen. Improved Security for Digital Advertising Ecosystems. PhD
thesis, Georgia Institute of Technology, 2018.

[2] Chang-Hoan Cho, Jung-Gyo Lee, and Marye Tharp. Different forced-
exposure levels to banner advertisements. Journal of advertising re-
search, 41(4):45-56, 2001.

[3] Catalin Cimpanu. Firefox =~ Working on Protec-
tion Against In-Browser Cryptojacking Scripts.
https://www.bleepingcomputer.com/news/software/
firefox-working-on-protection-against-in-browser-cryptojacking-scripts/,
2018. [Online; accessed 16-April-2019].

[4] Google. ChromeDriver. http://chromedriver.chromium.org/, 2019.
[Online; accessed 22-July-2019].

[5] Google. Chromium. https://www.chromium.org/Home, 2019. [Online;
accessed 22-July-2019].

[6] Justin Hende. GitHub. http://github.com/BierBrigadier/
MineChecker, 2019. [Online; accessed 06-August-2019].

[7] Amin Kharraz, Zane Ma, Paul Murley, Charles Lever, Joshua Mason,
Andrew Miller, Nikita Borisov, Manos Antonakakis, and Michael Bai-
ley. Outguard: Detecting in-browser covert cryptocurrency mining in
the wild. In The World Wide Web Conference, pages 840-852. ACM,
2019.

[8] Radhesh Krishnan Konoth, Emanuele Vineti, Veelasha Moonsamy,
Martina Lindorfer, Christopher Kruegel, Herbert Bos, and Giovanni
Vigna. Minesweeper: An in-depth look into drive-by cryptocurrency
mining and its defense. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 1714-1730.
ACM, 2018.

[9] Richard Lawson. Web scraping with Python. Packt Publishing Ltd,
2015.

30

https://www.bleepingcomputer.com/news/software/firefox-working-on-protection-against-in-browser-cryptojacking-scripts/
https://www.bleepingcomputer.com/news/software/firefox-working-on-protection-against-in-browser-cryptojacking-scripts/
http://chromedriver.chromium.org/
https://www.chromium.org/Home
http://github.com/BierBrigadier/MineChecker
http://github.com/BierBrigadier/MineChecker

[10]

[11]

[12]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Ritu Lohtia, Naveen Donthu, and Edmund K Hershberger. The im-
pact of content and design elements on banner advertising click-through
rates. Journal of advertising Research, 43(4):410-418, 2003.

Canonical Ltd. Ubuntu 18.0.4.2. https://ubuntu.com/download/
desktop, 2019. [Online; accessed 08-March-2019].

Robert S Moore, Claire Allison Stammerjohan, and Robin A Coulter.
Banner advertiser-web site context congruity and color effects on at-
tention and attitudes. Journal of advertising, 34(2):71-84, 2005.

Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system.
2008.

Panagiotis Papadopoulos, Panagiotis Ilia, and Evangelos P Markatos.
Truth in web mining: Measuring the profitability and cost of cryptomin-
ers as a web monetization model. arXiv preprint arXiv:1806.01994,
2018.

Harry Percival. Test-driven development with Python: obey the testing
goat: using Django, Selenium, and JavaScript. 7 O’Reilly Media, Inc.”,
2014.

radheshkrishnan. GitHub -MineSweeper. |https://github.com/
vusec/minesweeper, 2018. [Online; accessed 10-May-2019].

Rosnisa Abdull Razak and Fairul Rizal Fahrurazi. Agile testing with

selenium. In 2011 Malaysian Conference in Software Engineering, pages
217-219. IEEE, 2011.

Muhammad Saad, Aminollah Khormali, and Aziz Mohaisen. End-
to-end analysis of in-browser cryptojacking. arXi preprint
arXiv:1809.02152, 2018.

Mark Scott. Use of Ad-Blocking Software Rises by 30%
Worldwide. https://www.nytimes.com/2017/01/31/technology/
ad-blocking-internet.html, 2017. [Online; accessed 16-April-2019].

Badges2Go UG. CoinHive. https://coinhive.com, 2017. [Online;
accessed 06-April-2019].

W3C. WebAssembly. https://webassembly.org/, 2017. [Online;
accessed 16-April-2019].

ZeroDot1. CoinBlockerLists. https://zerodotl.gitlab.io/
CoinBlockerListsWeb/downloads.html, 2019. [Online; accessed 22-
July-2019).

31

https://ubuntu.com/download/desktop
https://ubuntu.com/download/desktop
https://github.com/vusec/minesweeper
https://github.com/vusec/minesweeper
https://www.nytimes.com/2017/01/31/technology/ad-blocking-internet.html
https://www.nytimes.com/2017/01/31/technology/ad-blocking-internet.html
https://coinhive.com
https://webassembly.org/
https://zerodot1.gitlab.io/CoinBlockerListsWeb/downloads.html
https://zerodot1.gitlab.io/CoinBlockerListsWeb/downloads.html

[23] ZeroDotl. GitHub - CoinBlockerLists. https://github.com/
Ultimate-Hosts-Blacklist/ZeroDotl_CoinBlockerLists_
browser/blob/master/domains.list, 2019. [Online; accessed
22-July-2019].

32

https://github.com/Ultimate-Hosts-Blacklist/ZeroDot1_CoinBlockerLists_browser/blob/master/domains.list
https://github.com/Ultimate-Hosts-Blacklist/ZeroDot1_CoinBlockerLists_browser/blob/master/domains.list
https://github.com/Ultimate-Hosts-Blacklist/ZeroDot1_CoinBlockerLists_browser/blob/master/domains.list

Appendix A

Appendix

A.1 URL checker

This piece of code we remove the duplicate URLs in a list. After that, we
visit the website and determine if we get a status 200 code, which means
the website is online. We add a timeout of four seconds so that we remove
URLs that take longer to load.

1 import urllib2

2 import socket

3

4 def check_url(url, timeout=4):

5 try:

6 return urllib2 .urlopen (url,timeout=timeout).getcode () =
200

7 except urllib2.URLError as e:

8 return False

9 except socket.timeout as e:

10 return False

11 except Exception as e:

12 return False

13

14

15 counter = 0

16 temp = open("urls.txt", "r").read().split("\n")

17 working_urls2 = open("working_urls.txt", "a")

18 working_urls = []

19

20 for i in temp:

21 if i not in working_urls:

22 working_urls.append (i)

23 else:

24 counter = counter + 1

25 print ("Removed " + str(counter) + " duplicates!")
26

27 for i in range(len(working_urls)):

28 site = working_urls[i]

29 if check_url(site):

33

30
31
32
33

© 00 3O Ui Wi+

— =
= o

12

—
w

working_urls2 . write(site + "\n")

working_urls2. close ()

A.2 Relevant URL checker

Within this piece of code we open the websites that provided us a status
200 code already. Then we manually determine if this website is relevant to
our research.

import webbrowser

working_urls = open("working_urls.txt", "r").read().split("\n")
good_urls = open("good_urls.txt", "a")
chrome_path = ’/usr/bin/chromium-browser %s’

for i in range(len(working_urls)):
webbrowser . open (working_urls [i])

judgement = input("Is this site relevant? Yes (1) or No(2)7?")

if str(judgement) — "1":
good_urls . write (working_urls[i] + "\n")

else:
print ("Not a possible mining site. Skipping...")

A.3 URLs used by MineSweeper & MineChecker

MineSweeper and MineChecker executed the tool using the following list of
URLs:

http://50bots.nullrefexcep.com
http://8000plus.si
http://a.proxy4.nullrefexcep.com
http://a.proxy5.nullrefexcep.com
http://aba.ae
http://ad-miner.com
http://ad.g-content.bid
http://adbtc.top
http://aeon.crypto-

webminer.com

http://aeon.hashvault.pro
http://ajcryptominer.com
http://ajplugins.com
http://aleinvest.xyz
http://andlache.com
http://andrew.nullrefexcep.com
http://anime.reactor.cc
http://anybest.space
http://apdrive.win
http://api.coin-hive.com
http://api.jsecoin.com
http://api.monerise.com
http://apib.monerise.com
http://app.prOgramm.com

http://aqqgli3vle.bid
http://authedwebmine.cz
http://averoconnector.com
http://avualrhg9p.bid
http://b.proxy4.nullrefexcep.com
http://besocial.online
http://bestsecurepractice.com
http://beta.coinblind.com
http://bizoninvest.com
http://blockchain.jsecoin.com
http://blox.minexmr.com
http://browsermine.com
http://browsersurf.12finance.com
http://butcalve.com
http://bytecoin.crypto-

webminer.com

http://ca.minexmr.com
http://captain2.directprimal.com
http://cfcd.duckdns.org
http://code.ws
http://cody.services
http://coin-have.com
http://coin-hive-stratum-

bgywuwxwij.now.sh

34

http://coinjive.com
http://coinminingonline.com
http://coinnebula.com
http://coinwebmining.com
http://coinworker.com
http://conhive.com
http://cookiescript.info
http://crypto-
webminer.com
http://crypto.csgocpu.com
http://cryptosearch.site
http://cryptotab.net
http://csgocpu.com
http://custom.crypto-
webminer.com
http://dashboard.inwemo.com
http://datasecu.download
http://de.cookiescript.info
http://de.moneroocean.stream
http://dero.crypto-
webminer.com
http://developer.jsecoin.com
http://dinastycoin.crypto-
webminer.com

http://dmdamedia.hu
http://dmg.crypto.csgocpu.com
http://donate.crypto-
webminer.com
http://ebd.cda.pl
http://electroneum.crypto-
webminer.com
http://electroneum.hashvault.pro
http://electroneum.monerise.com
http://elthamely.com
http://escobar.prOgramm.com
http://etnpool.minekitten.io
http://external.monerise.com
http://fili.cc
http://fortrader.ru
http://frankfurt-
1.xmrpool.net
http://freebitco.in
http://fxnow.ru
http://g-content.bid
http://gay-hotvideo.net
http://gemius.pl
http://global.crypto.csgocpu.com
http://goxmrminer.com
http://graft.crypto-
webminer.com
http://gridiogrid.com
http://gulf.moneroocean.stream
http://habd.as
http://harvest.surge.sh
http://hashforcash.us
http://hashvault.pro
http://hit.gemius.pl
http://httpp.gdn
http://iaheyftbsn.review
http://intellecthosting.net
http://intense.hashvault.pro
http://intensecoin.crypto-
webminer.com
http://intucoin.crypto-
webminer.com
http://ipbc.crypto-
webminer.com
http://ipv6.freebitco.in
http://js.nahnoji.cz
http://jsecoin.com
http://jurtym.cf
http://jwduahujge.ru
http://kedtise.com
http://krb.devphp.org.ua
http://kunay.nullrefexcep.com
http://l-shop.nullrefexcep.com
http://lan.datasecu.download
http://ledinund.com
http://lib.rus.ec
http://light.browsermine.com
http://lightminer.co
http://listat.biz
http://login.browsermine.com
http://losital.ru
http://manager.browsermine.com
http://masari.crypto-
webminer.com
http://mebablo.com
http://mepirtedic.com
http://mine.nahnoji.cz
http://mine.torrent.pw
http://mine.xmrpool.net

http://minekitten.io
http://miner.nimiq.com
http://minero.cc
http://minescripts.info
http://minexmr.com
http://mining.freebitco.in
http://minr.nullrefexcep.com
http://mmpool.org
http://mollnia.com
http://monad.network
http://monero-miner.com
http://monero-miner.net
http://monero.crypto-
pool.fr
http://monero.crypto-
webminer.com
http://monero.hashvault.pro
http://monero.monerise.com
http://monerominer.rocks
http://mwor.gq
http://nadjibsoft.blogspot.com
http://nahnoji.cz
http://nathetsof.com
http://nerdorium.org
http://nerohut.com
http://new.browsermine.com
http://nexttime.ovh
http://nfwebminer.com
http://niematego.tk
http://nimiq.watch
http://ninaning.com
http://node.nimigpool.com
http://notmining.org
http://novaminers.tk
http://nullrefexcep.com
http://object.de
http://ocean.directprimal.com
http://oeil.gq
http://old.browsermine.com
http://p.estream.to
http://phx-4.xmrpool.net
http://platform.jsecoin.com
http://play.es
http://play.stream.vidzi.tv
http://play.streaming.estream.to
http://play.intellecthosting.net
http://play5.flashx.pw
http://pool-
de.supportxmr.com
http://pool.aeon.hashvault.pro
http://pool.graft.hashvault.pro
http://pool.minexmr.com
http://pool.supportxmr.com
http://proxy-
ajcryptominer.ajplugins.com
http://proxy.nullrefexcep.com
http://proxy2.nullrefexcep.com
http://proxy3.nullrefexcep.com
http://proxy5.nullrefexcep.com
http://proxy7.nullrefexcep.com
http://proxy8.nullrefexcep.com
http://proxy9.nullrefexcep.com
http://px2.papoto.com
http://qwertycoin.crypto-
webminer.com
http://rand.com.ru
http://rapidvideo.com
http://ratingtoplist.com

35

http://renhertfo.com
http://rock.directprimal.com
http://ron.si
http://rove.cl
http://rtw.monerise.com
http://s3.minexmr.com
http://sass.directprimal.com
http://sass2.authcaptcha.com
http://sass2.directprimal.com
http://seminarski-
diplomski.co.rs
http://server.jsecoin.com
http://sharing-is-
caring.info
http://silver.crypto.csgocpu.com
http://site.coinnebula.com
http://smurf.crypto.csgocpu.com
http://sparnove.com
http://srv02.bitcoiner.win
http://static-02.flu.cc
http://static.freebitco.in
http://staticl.freebitco.in
http://static2.freebitco.in
http://static3.freebitco.in
http://status.minexmr.com
http://stellite.crypto-
webminer.com
http://stream.nullrefexcep.com
http://sumo.hashvault.pro
http://sumokoin.crypto-
webminer.com
http://sumokoin.hashvault.pro
http://superiorcoin.crypto-
webminer.com
http://supportxmr.com
http://techtricksworld.com
http://thepiratebay.cr
http://traffic-tech-
service.info
http://turnsocial.com
http://turtlecoin.crypto-
webminer.com
http://update-your-
pc.info
http://us.moneroocean.stream
http://vegas-
1.xmrpool.net
http://verresof.com
http://vkcdnservice.com
http://webmine.cz
http://webminer.pro
http://webmining.co
http://ultranote.crypto-
webminer.com
http://webwidgetz.duckdns.org
http://ws-fr-01.rocks.io
http://wss.rand.com.ru
http://wtm.monitoringservice.co
http://xmrpool.net
http://xy.nullrefexcep.com
http://youporn.sexy
http://www49.playercdn.net
http://xmr.omine.org
http://12finance.com
http://ftp0118.info
http://marketgid.com
http://zaloapp.com

	Introduction
	Preliminaries
	Cryptocurrency
	Web-based cryptocurrency mining

	Related Work
	Mechanisms for detecting web-based cryptocurrency mining
	Methods for testing browser input
	This work

	Research
	Cryptomining categories
	Conscious active cryptomining
	Unconscious active cryptomining

	MineSweeper
	Installation
	Misclassification of websites

	MineChecker
	Overview
	Tools used
	Implementation
	Evaluation

	Conclusions
	Future work

	Bibliography
	Appendix
	URL checker
	Relevant URL checker
	URLs used by MineSweeper & MineChecker

