
Bachelor thesis
Computing Science

Radboud University

Comparing Correlation Coefficient
and Difference of Means in a

Differential Power Analysis Attack

Author:
Maaike van Leuken
s4641493

First supervisor/assessor:
prof. dr. L. Batina
lejla@cs.ru.nl

Second assessor:
MSc N. Samwel

nsamwel@science.ru.nl

July 6, 2019



Abstract

The Advanced Encryption Standard is the most important symmetric-
key algorithm for bulk data at the moment. This thesis focuses on revealing
the secret key of the Advanced Encryption Standard algorithm on a micro-
controller, by using differential power analysis. Differential power analysis
requires power measurements, a power model and a statistical model. First,
we make a test vector leakage assessment to see whether the system leaks
power information. Then, we show that Correlation Power Analysis (power
model: Hamming weight, statistical model: correlation coefficient) is more
efficient than standard DPA (power model: least significant bit, statistical
model: difference of means). The first attack requires around at least 400
traces, whereas the second one needs at least 2150 traces.



Contents

1 Introduction 2

2 Preliminaries 4
2.1 The Advanced Encryption Standard . . . . . . . . . . . . . . 4
2.2 Differential Power Analysis . . . . . . . . . . . . . . . . . . . 5

3 Research 9
3.1 Test Vector Leakage Assessment . . . . . . . . . . . . . . . . 11
3.2 Power Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Hamming Weight . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Least Significant Bit . . . . . . . . . . . . . . . . . . . 12

3.3 Statistical Analysis Models . . . . . . . . . . . . . . . . . . . 12
3.3.1 Correlation Coefficient . . . . . . . . . . . . . . . . . . 13
3.3.2 Difference of Means . . . . . . . . . . . . . . . . . . . 14

4 Related Work 16

5 Conclusions 17

A Differential Curves for Key Hypotheses 20
A.1 Hamming Weight with Correlation Coefficient . . . . . . . . . 20
A.2 Least Significant Bit with Difference of Means . . . . . . . . . 22

B Results of the Programs 24
B.1 Results for the Correlation Coefficient with Hamming Weight 24
B.2 Results for the Difference of Means with Least Significant Bit 25

C Code 26
C.1 Code for HW and CC . . . . . . . . . . . . . . . . . . . . . . 26
C.2 Code for LSB and DoM . . . . . . . . . . . . . . . . . . . . . 29

1



Chapter 1

Introduction

In 1998, Joan Daemen and Vincent Rijmen proposed the block cipher Rijn-
dael, which in 2001 was established as the Advanced Encryption Standard
(AES) by the National Institute of Standards and Technology (NIST). AES
is the most widely used symmetric-key algorithm for encrypting and de-
crypting large amounts of data. Over the years, AES has proven itself as
a reliable algorithm for bulk encryption and decryption. AES resists differ-
ential and linear cryptanalysis [2] due to the usage of rounds and nonlinear
transformations. So far, the only attacks feasible with current technology
are side-channel attacks. Side-channel attacks (SCAs) are based on ex-
ploiting the implementation of an algorithm, by looking at the power con-
sumption, temperature, radiation of electromagnetic waves and so on. The
CMOS circuits used to implement the logic gates in the microcontroller leak
power consumption information. CMOS stands for complementary metal-
oxide-semiconductor and its circuits use transistors (MOSFETs) [11]. “Elec-
trons flow across the silicon substrate when charge is applied to (or removed
from) a transistor’s gate, consuming power and producing electromagnetic
radiation.”[5] We can measure this power consumption by connecting an
oscilloscope to the microcontroller. This thesis will focus on using differen-
tial power analysis (DPA) to recover the key used in the AES encryption
on a ARM Cortex-M4 microcontroller. Exploiting the vulnerabilities of the
implementation of encryption standards has been done before, Kocher et al.
already did this in 1999 on DES [5] and Mangard et al. researched DPA on
AES thoroughly in 2007 [7]. However, papers about this topic do not always
provide a concrete implementation of their attacks.

When implementing a DPA attack, we need to choose two models: a
power model and a statistical analysis model. In this thesis, we draw a com-
parison between two different combinations of models, namely the Hamming
weight model with the correlation coefficient (also called correlation power
analysis, CPA) versus the least significant bit with the difference of means
as distinguisher. We compare these two DPA attacks based on the minimum

2



amount of traces they require for resolving the correct key. We contribute
to the following matters:

• An application of a test vector leakage assessment to show that the
set of traces used leaks power consumption information;

• A detailed description on how to perform both the DPA attacks and
their Python code;

• A comparison between the two attacks, showing that CPA requires
less traces than a difference of means based attack.

The fact that CPA is more efficient in the amount of traces can be used in
further research and attacks and should be kept in mind when assessing the
security of a system. Also, since we provide the code of the implementations
of the attacks, further research can be picked up where we left off.

In real-life settings, the subject of a differential power analysis attack
is often a smart card. A smart card has a microcontroller running a cryp-
tographic algorithm such as AES. Differential power analysis attacks are
sometimes not feasible because they require a large amount of power traces
and a way to acquire those power traces, such as an oscilloscope. DPA at-
tacks also require the collection of the plaintexts associated to the power
traces. However, we can get access to the smart card’s embedded micro-
controller, allowing us to measure the power consumption [7]. Then, DPA
attacks can be conducted very easily and quickly. Power analysis attacks
are easy to implement and are hard to detect, due to the non-invasiveness
of the attack. “Because DPA automatically locates correlated regions in a
device’s power consumption, the attack can be automated and little or no
information about the target implementation is required.”[5]. This means
that DPA attacks are not specific to a certain microcontroller.

We start this thesis with background information on AES and DPA. In
Chapter 3 we discuss the technical details on the attacks to show that our
claim holds. Chapter 4 presents related work, containing both countermea-
sures to or improvements to DPA attacks. The conclusions are be discussed
in Chapter 5.

3



Chapter 2

Preliminaries

To substantiate the claims made in Chapter 1, we first need some background
knowledge on the Advanced Encryption Standard and differential power
analysis attacks.

2.1 The Advanced Encryption Standard

AES is a symmetric-key algorithm, which means the same key is used for
both encryption and decryption. There are multiple versions of AES, which
differ in the key length. In our research we used AES-128. This is a version
of AES with a key length of 128 bits, which is 16 bytes. The plaintext and
ciphertext length are also 128 bits. AES-128 consists of 10 rounds. Before
the rounds are performed, the secret key is XORed with the plaintext. The
first nine rounds consist of four stages: SubBytes, ShiftRows, MixColumns
and AddRoundKey. In the tenth round the MixColumns operation is not
performed as can be seen in figure 2.1. For a detailed description see [3].

We are particularly interested in the SubBytes step. In this step, a S-box
lookup table is used to substitute each byte for another one. The SubBytes
step is the only nonlinear transformation in AES, used to minimize the
correlation between the input and the output of the function. This protects
AES from linear cryptanalysis. We will use this information in section 2.2.

4



Figure 2.1: Schematic of the AES rounds based on [3]. The plaintext P is
XORed with the key K. AES uses a key schedule to define different keys
for each of the rounds. However, the key that we XOR with the plaintext
before the first round is just the secret key. The output of the first SubBytes
operation is Sbox(plaintext ⊕ key). The output of the tenth round is the
ciphertext C.

2.2 Differential Power Analysis

DPA attacks exploit the correlation between the power consumption and the
data that is being processed. These attacks use a general strategy consisting
of five steps [7]. In these steps certain design choices are made, such as which
power model and statistical model are used. These steps can be used for
any DPA attack and require little knowledge on the technical details of the
microcontroller. The attacks we describe are thus not specific to a certain
microcontroller.

5



1. Choosing an intermediate result of AES.
As an intermediate value, we can choose any intermediate result as
long as it can be described as a function of a plaintext byte and a key
byte. We will use the output of the first SubBytes operation as our
intermediate result. Before the first round, the secret key is XORed
with the plaintext. After that, the SubBytes function is applied. Like
we have seen in section 2.1, the intermediate value is a function

S(plaintext⊕ key) (2.1)

2. Collecting traces.
We will measure the power consumption of D = 10, 000 encryptions
and collect the plaintexts (and ciphertexts) associated with each of
the encryption runs. These plaintexts are randomly generated by the
software implementation of AES that runs on the microcontroller. We
measure the power consumption by connecting an oscilloscope to the
microcontroller. Each power trace has T = 110, 000 samples, where
each sample is a data point in time with an associated power consump-
tion.

3. Calculating the hypothetical intermediate values.
Since we chose the output from the first SubBytes operation as our
intermediate result, we can compute the hypothetical intermediate
values as in 2.1. If we would do this for all possible keys for a 16-byte
key, this would be a brute-force attack and these are infeasible with
current technology (2128 computations). Hence we try to recover each
key byte separately, thus doing steps 3 through 5 for each of 16 bytes.
We compute all possible keys for a byte, yielding K = 256 keys from
integer values 0 to 255 (security strength then transforms from 2128

to 16 · 28 = 212). The hypothetical intermediate value matrix V is a
D by K matrix with S(plaintext⊕ key) for every plaintext byte and
every key byte possibility.

4. Calculating the hypothetical power consumption values.
Power models are used to map the hypothetical intermediate values to
hypothetical power consumption values. We compute a D by K matrix
H by running the power model over V. These models are described in
sections 3.2.1 and 3.2.2.

5. Finding the correlation between the hypothetical power consumption
values and the traces.
The columns hi (column i of H) and tj (column j of T) are compared
with a statistical model. The comparison is ri,j and we store this value
in the matrix R of size K×T . We use two different statistical models
in this paper, which will both be explained in 3.3. The entry ri,j in

6



R with the highest value reveals the correct key i for a byte and the
sample j at which the SubBytes operation was performed.

7



Figure 2.2: A visualisation of the steps described above. This figure is based
on the block diagram shown on page 122 of [7].

8



Chapter 3

Research

In this Chapter, the details on both attacks are described, as well as the
application of the test vector leakage assessment.
We measure the power traces with the setup displayed in figure 3.1 and store
them in a matrix T ∈MD×T .

Figure 3.1: The setup used to collect the power traces. The ARM Cortex-
M4 microcontroller is connected to a power supply and to an oscilloscope via
a Riscure current probe. This current probe is used to measure the power
consumption with high accuracy.

9



The power consumption is measured relatively, the values are between −128
and 127. As we will see later on in 3.3, we do not need the absolute power
values. We just need the relation between consecutive samples.

Figure 3.2: The power trace of a single AES encryption. The ten vertical
lines represent the end of a round. We only concern ourselves with the first
round, which roughly ends at sample j = 20, 000.

In figure 3.2 the power trace of the first AES encryption can be seen.
This power trace is associated to a certain plaintext, as is true for all 10, 000
collected traces. The trace contains a pattern, which allows us to distinguish
ten rounds. This already gives us an indication on where the first SubBytes
operation is, sample-wise. We know that the first round ends roughly at
sample j = 20, 000, so we do not necessarily have to include the samples
beyond that point in our attack. We will first have a look at whether a DPA
attack indeed is possible, by making a test vector leakage assessment. Then
we perform the two attacks and look at their results.

10



3.1 Test Vector Leakage Assessment

A test vector leakage assessment (TVLA) determines whether a set of traces
verifies the presence of leakage. It is a simple, quick test assessing whether
we can perform the DPA attack or not.[10] When doing the TVLA, Welch’s
t-test is computed for every point in time, thus for every sample. We need
two traces sets: one with all random plaintexts (such as the one we use for
the attacks) and one with a certain fixed plaintext. Welch’s t-test can be
computes as follows:

t =
X̄1 − X̄2√

s21
N1

+
s22
N2

(3.1)

Where X̄i is the mean, si the standard deviation and Ni the sample size of
set i. The result is shown in figure 3.3. If the t-test value is higher than 4.5,
there is sufficient leakage to perform a DPA attack. This means that in our
setup, there is enough leakage present, so we can distinguish the two sets of
traces from each other.

Figure 3.3: The test vector leakage assessment for the setup shown in figure
3.1.

3.2 Power Models

We will first have a look at the different power models. Power models are
used to map the hypothetical intermediate values to the hypothetical power
consumption values (as in step 4 in 2.2).

11



3.2.1 Hamming Weight

For the first attack, we use the Hamming Weight model. The Hamming
Weight (HW) model maps a byte to an integer, which is the number of
logical ones in the bit representation of the intermediate value. There are
nine possible values for the HW of one byte, 0 through 8. The first one
corresponds to a byte consisting solely of zeros, the latter one to a byte
containing only ones. For every value in V, we look at the bit representation
of that byte and count the logical ones resulting in a D by K matrix H.
Every entry in this matrix is calculated as HW (Sbox(plaintext⊕key)) (see
Appendix C.1, lines 89 - 95).

3.2.2 Least Significant Bit

The Least Significant Bit (LSB) model takes that bit of the byte that has
the lowest corresponding integer value. Since we are using a big-endian
ordering, the LSB is the last bit. The LSB can have either of two values, 0
or 1. Hence, the LSB is a binary power model. We compute the LSB of every
entry in V, resulting in the matrix H, which has dimensions D by K like
V. Every entry in this matrix is calculated as LSB(Sbox(plaintext⊕ key))
(see Appendix C.2, lines 77 - 79).

3.3 Statistical Analysis Models

Now we can apply statistics to compare the hypothetical power consumption
values with the actual power traces (as in step 5 in 2.2).

Note that the statistical methods indeed can be applied, since the plain-
texts that are used are randomly generated such that the bits are normally
distributed. After having used the power model to calculate H, we calculate
the result matrix R, which is a K by T matrix. Every element in this matrix
is a comparison between a column of H and a column of T. The relative
power consumption suffices, since we only concern ourselves with how good
the columns match. We need a statistical model to find this match.

12



3.3.1 Correlation Coefficient

When attacking a software implementation of AES, the combination of the
HW model and the correlation coefficient is generally used [7]. The cor-
relation coefficient is used to calculate the linear relationship between the
columns of the two matrices H and T. The correlation coefficient for i and
j is computed by equation 3.3 (see Appendix C.1, lines 107 - 114).

R =
Cov(H,T)

σH · σT
=

Cov(H,T)√
V ar(H) · V ar(T)

(3.2)

ri,j =

∑D
d=1(hd,i − h̄i) · (td,j − t̄j)√∑D

d=1(hd,i − h̄i)2 ·
∑D

d=1(td,j − t̄j)2
(3.3)

The matrix R has for every i ∈ K and for every j ∈ T an entry containing
the correlation between key i and sample j. As seen before, we only need the
first 20, 000 samples, which saves us quite some computations. We find the
key i and the sample j by finding the highest absolute value in R. The indices
of that value reveal the correct key and the ‘time’ (the sample) at which the
SubBytes round of that byte was computed (see Appendix C.1, lines 119 -
131). For the first byte, the correlation for four key possibilities are plotted
in figure A.1. In plots A.1a, A.1b and A.1d we do not see such high peaks as
in plot A.1c. In fact, the first peak in A.1c is the highest correlation in R.
This reveals that the first byte of the key is 0xca. We then repeat this for the
other 15 bytes and reveal the key: cafebabedeadbeef01020304050607 in
hexadecimal notation. The results can be be found in more detail in section
B.1. Since we have gathered the plaintexts and ciphertext for each trace,
we can check this key by encrypting the plaintext with AES and check the
result with the ciphertext.

In figure 3.4 the column j = 4, 935 of the result matrix R is shown
for different amounts of traces for the first byte. The red line represents
the correct key for the first byte, namely 0xCA. The correlation coefficient
graph for other key bytes in general also have peaks, just much smaller ones
than the correct key as can be seen in figure A.1. This is due to the fact
that columns in H can be dependent of each other. When we have less than
400 traces, we see that other keys have a higher correlation than the correct
key byte. So we need at least 400 traces to get the correct key byte with
certainty.

13



Figure 3.4: The column j = 4, 935 of the result matrix R for the CPA
attack is shown for different amounts of traces for the first byte. The red
line represents the correct key for the first byte, namely 0xCA.

3.3.2 Difference of Means

In section 3.2.1 we saw that the HW model has 9 possible values for the
hypothetical intermediate value. The difference-of-means method (DoM)
requires a binary power model, so we cannot longer use the HW to compute
the power consumption values. This is why we use the LSB model.

To compute the DoM, we need to divide the matrix T in two matrices,
T 0 and T 1. For every key possibility i, we look at the column Hi. This is a
column of D elements, which are all 0 or 1 (LSB(Sbox(plaintext⊕ key))).
T 0,i contains all rows d ∈ D of T, for which Hd,i = 0. T 1,i contains all
rows d ∈ D of T, for which Hd,i = 1. Now we can calculate the result R as
follows:

R = M1 −M0 (3.4)

where M1 is the mean of T 1 and M0 is the mean of T 0. The means can be
calculated for every key possibility (thus for a different split) and for every
sample as:

m1i,j =
1

#T 1,i

D∑
d=1

Hd,i · T d,j (3.5)

m0i,j =
1

#T 0,i

D∑
d=1

(1−Hd,i) · T d,j (3.6)

where #T 0,i and #T 1,i are the amount of traces in T 0 and T 1 for key
possibility i, respectively, both containing about D

2 ≈ 5, 000 traces (see
Appendix C.2, lines 101 - 116).

14



For the first byte, the correlation for four key possibilities are plotted in
figure A.2. In plots A.2a, A.2b and A.2d we again see much smaller peaks
than in plot A.2c. This reveals that the first byte of the key is 0xca, which
was the same conclusion as in section 3.3.1. We perform the attack for the
other 15 bytes and reveal the key: cafebabedeadbeef01020304050607
in hexadecimal notation. For the full results, see B.2.

In figure 3.5 we see that if we have less than 2,150 traces that other keys
have a higher difference of means than the correct key byte. The difference
of means for other key bytes in general also have peaks, as can be seen in
figure A.2. For less than 2,150 traces, the correct key cannot be found with
certainty.

Figure 3.5: The column j = 8, 424 of the result matrix R for the difference
of means attack is shown for different amounts of traces for the first byte.
The red line represents the correct key for the first byte, namely 0xCA.

15



Chapter 4

Related Work

Differential power analysis attacks can also be performed on other cryp-
tosystems, such as RSA [12] and ECC [8][1].

Lomné et al. came up with a method for preprocessing the order of
the traces that are attacked. The idea is that bigger peaks in the power
consumption curve (PCC, we call it a trace) require less traces for the DPA
attack to be successful. The traces set is order in decreasing order of data
disclosure. “A classical DPA or CPA discloses the full round-key 16 in a bit
less than 400 PCCs in average, whereas our preprocessing techniques allow
to reach an average success rate of 1 with about 250 PCCs.”[6] The paper
focuses on DPA on DES, but it should also be applicable to AES, since the
principles of DPA are independent of the cryptographic algorithm.

In [4] a countermeasure to all differential power analysis attacks is pre-
sented by using an integrated voltage regulator (IVR). “An inductive IVR
is shown to transform the current signatures generated by an encryption
engine. Furthermore, an all-digital circuit block, referred to as the loop-
randomizer, is introduced to randomize the IVR transformations.”[4] Kar et
al. propose a circuit that eliminates power information leakage with a low
overhead, using a IVR that is already present on the microcontroller.

In [9], Popp et al. divided the countermeasures against DPA into 3
categories:

1. Protocol. Changing the key frequently makes DPA impossible, since
many traces are required. However, changing the key frequently enough
is impractical or even impossible sometimes.

2. Hiding. The dependency between the power consumption and the
processed data or operation used is minimized. The countermeasure
described in [4] falls into this category.

3. Masking, “masking allows making the power consumption independent
of the intermediate values, even if the device has a data-dependent
power consumption.”[7]

16



Chapter 5

Conclusions

In section 3.1, we have seen that the implementation of AES that we used
showed leakage of power consumption information. If there was no leakage,
the differential power analysis attack would not have worked. The absence
of leakage of power consumption information could be due to one of the
countermeasures described in Chapter 4.

For both attacks, we succeeded in revealing the secret key of AES. A
noticeable difference between the two attacks is that the CPA attack finds
the correct key at sample j = 4, 935, whereas the difference-of-means attack
found it at j = 8, 424. The peak at j = 8, 424 is actually a ghost peak,
but the difference of means is for that place the highest. A ghost peak oc-
curs when the same intermediate value is used in a different place in the
algorithm. In this case, the highest value is not found at the SubBytes oper-
ation, but somewhere else. In section 3.3 we have seen that the correlation
power analysis attack required at least 400 traces, whereas the difference
of means attack required at least 2,150. We can conclude that the corre-
lation coefficient as distinguisher is indeed more efficient in the amount of
traces than the difference of means. The explanation for this result can be
deduced from the formulas for the two statistical methods. The correlation
coefficient (equation (3.2)) takes both the differences as the variances of the
variables into account. The difference of means (equation (3.4)) only takes
the differences into account. The correlation coefficient considers more as-
pects of statistics, which leads to a better comparison between the columns
of the matrices. Besides that, there is another explanation for the fact that
the difference of means attack is less efficient and finds the correct key at
the wrong sample. Namely the fact that the difference of means attack uses
the least significant bit as power model. This model only considers the last
bit of a byte and ignores all other bits. The Hamming weight model which
is used for the CPA attack does include all bits, which makes CPA more
efficient and more accurate.

17



Bibliography

[1] Sven Bauer. Attacking exponent blinding in RSA without CRT. In
Constructive Side-Channel Analysis and Secure Design, pages 82–88.
Springer Berlin Heidelberg, 2012.

[2] Joan Daemen and Vincent Rijmen. Design of Rijndael : AES - The
Advanced Encryption Standard. Springer Berlin Heidelberg, 2002.

[3] Michael T. Goodrich and Roberto Tamassia. Introduction to Computer
Security. Pearson, 2011.

[4] Monodeep Kar, Arvind Singh, Sanu K. Mathew, Anand Rajan, Vivek
De, and Saibal Mukhopadhyay. Reducing power side-channel informa-
tion leakage of AES engines using fully integrated inductive voltage
regulator. IEEE Journal of Solid-State Circuits, 53(8):2399–2414, Au-
gust 2018.

[5] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. Advances in Cryptology — CRYPTO’ 99 Lecture Notes in Com-
puter Science, page 388–397, 1999.

[6] Victor Lomné, Amine Dehbaoui, Philippe Maurine, Lionel Torres, and
Michel Robert. Differential power analysis enhancement with statistical
preprocessing. In 2010 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE 2010). IEEE, March 2010.

[7] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis
attacks: revealing the secrets of smart cards. Springer, 2007.

[8] Cédric Murdica, Sylvain Guilley, Jean-Luc Danger, Philippe Hoogvorst,
and David Naccache. Same values power analysis using special points
on elliptic curves. In Constructive Side-Channel Analysis and Secure
Design, pages 183–198. Springer Berlin Heidelberg, 2012.

[9] Thomas Popp, Stefan Mangard, and Elisabeth Oswald. Power analy-
sis attacks and countermeasures. IEEE Design & Test of Computers,
24(6):535–543, November 2007.

18



[10] Tobias Schneider and Amir Moradi. Leakage assessment methodology.
Journal of Cryptographic Engineering, 6(2):85–99, Jun 2016.

[11] John P. Uyemura. Physics and Modelling of MOSFETs, pages 1–60.
Springer US, Boston, MA, 2001.

[12] Yiwei Zhang, Xinjian Zheng, and Bo Peng. A side-channel attack coun-
termeasure based on segmented modular exponent randomizing in RSA
cryptosystem. In 2008 11th IEEE Singapore International Conference
on Communication Systems. IEEE, November 2008.

19



Appendix A

Differential Curves for Key
Hypotheses

A.1 Hamming Weight with Correlation Coefficient

(a) The correlation per time point for key hypothesis 0xbe.

(b) The correlation per time point for key hypothesis 0xbf.

20



(c) The correlation per time point for key hypothesis 0xca. Two peaks
can be clearly distinguished. The first occurs when the SubBytes oper-
ation in the first round is executed. The second one is a ‘ghost’ peak, it
occurs when the same byte is also in another operation.

(d) The correlation per time point for key hypothesis 0xcb.

Figure A.1: The graphs corresponding to rows 200, 201, 202 and 203 (0xbe,
0xbf, 0xca, 0xcb). In figure A.1c peaks can be distinguished. The corre-
lation value at sample j = 4935 is in fact the highest of the entire matrix.
All other values, and the values in the other figures, are significantly lower.
We can thus conclude that i = 202 = 0xca is the correct key for byte 0.

21



A.2 Least Significant Bit with Difference of Means

(a) The correlation per time point for key hypothesis 0xbe.

(b) The correlation per time point for key hypothesis 0xbf.

22



(c) The correlation per time point for key hypothesis 0xca. Two peaks
can be clearly distinguished. The first occurs when the SubBytes oper-
ation in the first round is executed. The second one is a ‘ghost’ peak, it
occurs when the same byte is also used in another operation later in the
algorithm.

(d) The correlation per time point for key hypothesis 0xcb.

Figure A.2: The graphs corresponding to rows 200, 201, 202 and 203 (0xbe,
0xbf, 0xca, 0xcb). In figure A.2c, high peaks can be distinguished. The
correlation value at sample j = 8, 424 for key possibility 0xCA is the highest
of the entire matrix. We can thus conclude that i = 202 = 0xca is the
correct key for byte 0.

23



Appendix B

Results of the Programs

B.1 Results for the Correlation Coefficient with
Hamming Weight

byte number key byte sample point correlation

0 0xca 4935 0.17

1 0xfe 5747 0.15

2 0xba 6503 0.38

3 0xbe 7270 0.41

4 0xde 9530 0.09

5 0xad 5934 0.22

6 0xbe 6691 0.41

7 0xef 7445 0.41

8 0x0 3565 0.13

9 0x1 6111 0.31

10 0x2 6866 0.40

11 0x3 7622 0.39

12 0x4 11813 0.16

13 0x5 6288 0.42

14 0x6 7041 0.37

15 0x7 7763 0.18

24



B.2 Results for the Difference of Means with Least
Significant Bit

byte number key byte sample point correlation

0 0xca 8424 2.93

1 0xfe 7983 3.07

2 0xba 8078 2.56

3 0xbe 8215 2.19

4 0xde 5157 2.09

5 0xad 5934 2.23

6 0xbe 8142 3.84

7 0xef 7447 2.21

8 0x0 5348 2.32

9 0x1 8006 2.48

10 0x2 6868 2.19

11 0x3 8214 1.96

12 0x4 5522 2.34

13 0x5 6286 2.17

14 0x6 8138 2.15

15 0x7 7820 2.33

25



Appendix C

Code

C.1 Code for HW and CC

1 """

2 CPA attack on AES.

3 The correlation coefficient is used as distinguisher,

4 with the Hamming weight as power model.

5 """

6

7 from __future__ import division

8 import itertools

9 import numpy as np

10

11 """

12 TRACES

13

14 The class trs2npz parses a .trs file into a .npz file.

15 We only need to parse the traces set once.

16 Include import trs2npz.

17 """

18

19 # trs2npz.main("traces")

20

21

22 # The byte substitution look-up table in hexadecimal notation for the SubBytes round.

23 Sbox = (

24 ['63', '7C', '77', '7B', 'F2', '6B', '6F', 'C5', '30', '01', '67', '2B', 'FE', 'D7', 'AB', '76'],

25 ['CA', '82', 'C9', '7D', 'FA', '59', '47', 'F0', 'AD', 'D4', 'A2', 'AF', '9C', 'A4', '72', 'C0'],

26 ['B7', 'FD', '93', '26', '36', '3F', 'F7', 'CC', '34', 'A5', 'E5', 'F1', '71', 'D8', '31', '15'],

27 ['04', 'C7', '23', 'C3', '18', '96', '05', '9A', '07', '12', '80', 'E2', 'EB', '27', 'B2', '75'],

28 ['09', '83', '2C', '1A', '1B', '6E', '5A', 'A0', '52', '3B', 'D6', 'B3', '29', 'E3', '2F', '84'],

29 ['53', 'D1', '00', 'ED', '20', 'FC', 'B1', '5B', '6A', 'CB', 'BE', '39', '4A', '4C', '58', 'CF'],

30 ['D0', 'EF', 'AA', 'FB', '43', '4D', '33', '85', '45', 'F9', '02', '7F', '50', '3C', '9F', 'A8'],

31 ['51', 'A3', '40', '8F', '92', '9D', '38', 'F5', 'BC', 'B6', 'DA', '21', '10', 'FF', 'F3', 'D2'],

32 ['CD', '0C', '13', 'EC', '5F', '97', '44', '17', 'C4', 'A7', '7E', '3D', '64', '5D', '19', '73'],

33 ['60', '81', '4F', 'DC', '22', '2A', '90', '88', '46', 'EE', 'B8', '14', 'DE', '5E', '0B', 'DB'],

34 ['E0', '32', '3A', '0A', '49', '06', '24', '5C', 'C2', 'D3', 'AC', '62', '91', '95', 'E4', '79'],

35 ['E7', 'C8', '37', '6D', '8D', 'D5', '4E', 'A9', '6C', '56', 'F4', 'EA', '65', '7A', 'AE', '08'],

36 ['BA', '78', '25', '2E', '1C', 'A6', 'B4', 'C6', 'E8', 'DD', '74', '1F', '4B', 'BD', '8B', '8A'],

26



37 ['70', '3E', 'B5', '66', '48', '03', 'F6', '0E', '61', '35', '57', 'B9', '86', 'C1', '1D', '9E'],

38 ['E1', 'F8', '98', '11', '69', 'D9', '8E', '94', '9B', '1E', '87', 'E9', 'CE', '55', '28', 'DF'],

39 ['8C', 'A1', '89', '0D', 'BF', 'E6', '42', '68', '41', '99', '2D', '0F', 'B0', '54', 'BB', '16'],

40 )

41

42

43 # Compute all key hypotheses. There are K = 256 possibilities for a key byte.

44 def init_keys():

45 keys = list(itertools.product([0, 1], repeat=8))

46 for poss in range(K):

47 keys[poss] = hex(int(''.join(map(str, keys[poss])), 2)) # Rewrite to hexadecimal.

48 return keys

49

50

51 """

52 HYPOTHETICAL INTERMEDIATE VALUES

53

54 Step 3 of the DPA attack.

55 Result: D by K matrix V.

56 """

57

58

59 # Calculate the hypothetical intermediate values, a D x K matrix V.

60 # For all plaintexts and key possibilities, compute Sbox(plaintext XOR key).

61 def hypo_inter_values(byte):

62 v = []

63 for i in range(D):

64 a = data[i][byte]

65 x = ["0x" + Sbox[(a ^ int(keys[k], 16)) // 16][(a ^ int(keys[k], 16)) % 16] for k in range(K)]

66 v.append(x)

67 return v

68

69

70 """

71 HYPOTHETICAL POWER CONSUMPTION VALUES

72

73 Step 4 of the DPA attack, using the Hamming weight model.

74 Result: D by K matrix H.

75 """

76

77

78 # Counts the amount of logical ones in a byte in binary.

79 def counter(b):

80 count = 0

81 for i in range(len(b)):

82 if b[i] == "1":

83 count += 1

84 return count

85

86

87 # Calculate the hypothetical power consumption values, a D x K matrix H.

88 # For all plaintexts and key possibilities, compute HW(Sbox(plaintext XOR key)).

27



89 def hw_hypo_power():

90 h = []

91 for pt in range(D):

92 x = [counter("{0:b}".format(int(v[pt][k], 16))) for k in range(K)]

93 h.append(x)

94 h = np.array(h)

95 return h

96

97

98 """

99 RESULTS

100

101 Step 5 of the DPA attack.

102 Result: K by T matrix R.

103 """

104

105

106 # Compute the K x T result matrix R using the correlation coefficient.

107 def correlation():

108 diff_t = traces - (np.einsum("dt->t", traces, optimize='optimal') / np.double(D))

109 diff_h = h - (np.einsum("dk->k", h, optimize='optimal') / np.double(D))

110 cov = np.einsum("dk,dt->kt", diff_h, diff_t, optimize='optimal') # Covariant.

111 std_h = np.einsum("dk,dk->k", diff_h, diff_h, optimize='optimal') # Standard deviation of h.

112 std_t = np.einsum("dt,dt->t", diff_t, diff_t, optimize='optimal') # Standard deviation of t.

113 temp = np.einsum("k,t->kt", std_h, std_t, optimize='optimal')

114 return cov / np.sqrt(temp)

115

116

117 # Find the highest correlation in R. The indices correspond to the correct key

118 # and the time at which the SubBytes round was processed.

119 def max_absolute(result):

120 highest_cor = 0

121 i = -1

122 j = -1

123 for row in range(256):

124 x = max(map(abs, result[row]))

125 if x > highest_cor:

126 highest_cor = x

127 i = row

128 for column in range(T_used):

129 if abs(result[i][column]) == highest_cor:

130 j = column

131 return i, j, highest_cor

132

133

134 def main():

135 help = ""

136 for byte in range(16):

137 help += key[byte][0]

138 print help

139

140

28



141 if __name__ == "__main__":

142 D = 10000

143 T_used = 20000

144 T = 110000

145 K = 256

146 key = []

147 dic = np.load('traces.npz', mmap_mode='r')

148 data = dic['data']

149 traces = dic['traces'][:, :T_used]

150 keys = init_keys()

151 for byte in range(16): # For every byte, find the key, time and correlation.

152 v = hypo_inter_values(byte)

153 print "Hypothetical intermediate values computed."

154 h = hw_hypo_power()

155 print "Hypothetical power consumptions computed."

156 result = correlation()

157 print "Correlation computed."

158 (i, j, highest_cor) = max_absolute(result)

159 print "Byte " + str(byte) + " has been processed."

160 key.append((keys[i], j, highest_cor))

161 main()

C.2 Code for LSB and DoM

1 """

2 DPA attack on AES.

3 The difference of means is used as distinguisher,

4 with the least significant bit as power model.

5 """

6

7 from __future__ import division

8 import itertools

9 import numpy as np

10

11 """

12 TRACES

13

14 The class trs2npz parses a .trs file into a .npz file.

15 We only need to parse the traces set once.

16 Include import trs2npz.

17 """

18

19 # The byte substitution look-up table in hexadecimal notation for the SubBytes round.

20 Sbox = (

21 ['63', '7C', '77', '7B', 'F2', '6B', '6F', 'C5', '30', '01', '67', '2B', 'FE', 'D7', 'AB', '76'],

22 ['CA', '82', 'C9', '7D', 'FA', '59', '47', 'F0', 'AD', 'D4', 'A2', 'AF', '9C', 'A4', '72', 'C0'],

23 ['B7', 'FD', '93', '26', '36', '3F', 'F7', 'CC', '34', 'A5', 'E5', 'F1', '71', 'D8', '31', '15'],

24 ['04', 'C7', '23', 'C3', '18', '96', '05', '9A', '07', '12', '80', 'E2', 'EB', '27', 'B2', '75'],

25 ['09', '83', '2C', '1A', '1B', '6E', '5A', 'A0', '52', '3B', 'D6', 'B3', '29', 'E3', '2F', '84'],

26 ['53', 'D1', '00', 'ED', '20', 'FC', 'B1', '5B', '6A', 'CB', 'BE', '39', '4A', '4C', '58', 'CF'],

27 ['D0', 'EF', 'AA', 'FB', '43', '4D', '33', '85', '45', 'F9', '02', '7F', '50', '3C', '9F', 'A8'],

29



28 ['51', 'A3', '40', '8F', '92', '9D', '38', 'F5', 'BC', 'B6', 'DA', '21', '10', 'FF', 'F3', 'D2'],

29 ['CD', '0C', '13', 'EC', '5F', '97', '44', '17', 'C4', 'A7', '7E', '3D', '64', '5D', '19', '73'],

30 ['60', '81', '4F', 'DC', '22', '2A', '90', '88', '46', 'EE', 'B8', '14', 'DE', '5E', '0B', 'DB'],

31 ['E0', '32', '3A', '0A', '49', '06', '24', '5C', 'C2', 'D3', 'AC', '62', '91', '95', 'E4', '79'],

32 ['E7', 'C8', '37', '6D', '8D', 'D5', '4E', 'A9', '6C', '56', 'F4', 'EA', '65', '7A', 'AE', '08'],

33 ['BA', '78', '25', '2E', '1C', 'A6', 'B4', 'C6', 'E8', 'DD', '74', '1F', '4B', 'BD', '8B', '8A'],

34 ['70', '3E', 'B5', '66', '48', '03', 'F6', '0E', '61', '35', '57', 'B9', '86', 'C1', '1D', '9E'],

35 ['E1', 'F8', '98', '11', '69', 'D9', '8E', '94', '9B', '1E', '87', 'E9', 'CE', '55', '28', 'DF'],

36 ['8C', 'A1', '89', '0D', 'BF', 'E6', '42', '68', '41', '99', '2D', '0F', 'B0', '54', 'BB', '16'],

37 )

38

39

40 # Compute all key hypotheses. There are K = 256 possibilities for a key byte.

41 def init_keys():

42 keys = list(itertools.product([0, 1], repeat=8))

43 for poss in range(K):

44 keys[poss] = hex(int(''.join(map(str, keys[poss])), 2)) # Rewrite to hexadecimal.

45 return keys

46

47

48 """

49 HYPOTHETICAL INTERMEDIATE VALUES

50

51 Step 3 of the DPA attack.

52 Result: D by K matrix V.

53 """

54

55

56 # Calculate the hypothetical intermediate values, a D x K matrix V.

57 # For all plaintexts and key possibilities, compute Sbox(plaintext XOR key).

58 def hypo_inter_values(byte):

59 v = []

60 for i in range(D):

61 a = data[i][byte]

62 x = ["0x" + Sbox[(a ^ int(keys[k], 16)) // 16][(a ^ int(keys[k], 16)) % 16] for k in range(K)]

63 v.append(x)

64 return v

65

66

67 """

68 HYPOTHETICAL POWER CONSUMPTION VALUES

69

70 Step 4 of the DPA attack, using the least significant bit as power model.

71 Result: D by K matrix H.

72 """

73

74

75 # Calculate the hypothetical power consumption values, a D x K matrix H.

76 # For all plaintexts and key possibilities, compute LSB(Sbox(plaintext XOR key)).

77 def LSB_hypo_power():

78 h = [[int("{0:08b}".format(int(v[d][k], 16))[7]) for k in range(K)] for d in range(D)]

79 return h

30



80

81

82 # Computes the ith column of a given array.

83 def column(array, i):

84 return [row[i] for row in array]

85

86

87 # Subtracts 1 by the ith column of a given array.

88 def neg_column(array, i):

89 return [1 - row[i] for row in array]

90

91

92 """

93 RESULTS

94

95 Step 5 of the DPA attack.

96 Result: K by T matrix R.

97 """

98

99

100 # Compute the K x T result matrix R using the difference of means.

101 def dom():

102 R = []

103 T0 = []

104 T1 = []

105 for k in range(K):

106 for d in range(D):

107 if h[d][k] == 0:

108 T0.append(traces[d])

109 else:

110 T1.append(traces[d])

111 M1 = np.einsum("d,dt->t", column(h, k), traces, optimize='optimal') / np.double(len(T1))

112 M0 = np.einsum("d,dt->t", neg_column(h, k), traces, optimize='optimal') / np.double(len(T0))

113 R.append(M1 - M0)

114 T1 = []

115 T0 = []

116 return R

117

118

119 # Find the highest correlation in R. The indices correspond to the correct key

120 # and the time at which the SubBytes round was processed.

121 def max_absolute(result):

122 highest_cor = 0

123 a = -1

124 b = -1

125 for row in range(K):

126 x = max(map(abs, result[row]))

127 if x > highest_cor:

128 highest_cor = x

129 a = row

130 for column in range(T_used):

131 if abs(result[a][column]) == highest_cor:

31



132 b = column

133 return a, b, highest_cor

134

135

136 def main():

137 help = ""

138 for byte in range(16):

139 help += key[byte][0]

140 print help

141

142

143 if __name__ == "__main__":

144 D = 10000

145 T_used = 20000

146 T = 110000

147 K = 256

148 key = []

149 dic = np.load('traces.npz', mmap_mode='r')

150 data = dic['data']

151 traces = dic['traces'][:, :T_used]

152 keys = init_keys()

153 for byte in range(16):

154 v = hypo_inter_values(byte)

155 print "Hypothetical intermediate values computed."

156 h = LSB_hypo_power()

157 print "Hypothetical power consumptions computed."

158 result = dom()

159 print "Difference of Means computed."

160 (i, j, highest_cor) = max_absolute(result)

161 print "Byte " + str(byte) + " has been processed."

162 key.append((keys[i], j, highest_cor))

163 main()

32


