
Bachelor thesis
Computing Science

Radboud University

Human-in-the-loop Strategy
Synthesis: PAC-MAN verified

Author:
Manuela Bergau
s4543645

First supervisor/assessor:
Dr. Nils Jansen

n.jansen@science.ru.nl

Second assessor:
Prof. Dr. Mariëlle Stoelinga

m.stoelinga@cs.ru.nl

July 8, 2019

Abstract

Machine learning algorithms lack human intuition when exploring an envi-
ronment. The aim of these algorithms is, that an autonomously acting agent
learns desired behavior. During the initial exploration phase the agent can
show useless or even harmful behavior.
In this thesis we show a method to compute a strategy by observing humans
playing the arcade game PAC-MAN. A strategy is a collection of states to-
gether with actions that were chosen by the human player. We focus on the
reduction of possible states because the available game data is limited.
Furthermore we present various agents that handle the previously computed
strategies differently. In a last step, we compare the computed strategies to
a randomly choosing strategy to rate the strategies and agents. Thereby
we are able to observe a significant difference in terms of won games and
length of the games between random choice and using a strategy derived
from recorded human behavior.

Contents

1 Introduction 3
1.1 Contribution . 4
1.2 Structure of the thesis . 5

2 Preliminaries 6
2.1 Environment . 6
2.2 State . 7
2.3 Agent . 7
2.4 Reinforcement Learning . 8
2.5 Important Definitions . 8

3 Strategy 9
3.1 Terminology . 9
3.2 Test Environment . 9
3.3 Strategy Optimization . 10

3.3.1 Smart Data Saving . 10
3.3.2 During The Game . 13
3.3.3 Postprocessing Of The Data 13

4 Agents 15
4.1 Simple Agents . 15

4.1.1 Greedy Agent . 15
4.1.2 Ghost Agent . 16
4.1.3 Food Agent . 16

4.2 Combined Agents . 16
4.2.1 Mixed Agent . 16
4.2.2 Safe Agent . 16

5 Verification 18
5.1 Experimental Setup . 19
5.2 Experimental Results . 19

5.2.1 Test Runs . 20
5.2.2 Environments . 23

1

6 Related Work 29

7 Conclusions And Future Work 30

A Test Environments 33

B Test Data 35

2

Chapter 1

Introduction

“Computers are programmed, so are the humans, but the computers can’t
act outside their programming, whereas the humans can.”1 In this thesis
we use this statement as an inspiration to implement a new method for com-
puters to learn from human behavior.
Commonly, machine learning algorithms are used to let a computer learn
a given task. Depending on the complexity of the problem, it might be
difficult to establish an optimal learning algorithm. Take for instance the
well-known machine learning technique reinforcement learning. RL obtains
an optimal strategy in an agent-based setting via episodic exploration of an
environment [10]. However, depending on the complexity [9] of the task, the
exploration may require multiple (or even infinitely many) attempts. Due
to initial absence of information about the environment (exploration phase),
the agent may display – in the beginning – useless or even harmful behav-
ior. An agent determines its next move (action) either randomly or using a
learned policy. Most of the time the agent makes choices in a random way
during the exploration phase.

Due to human’s ability to intuitively identify actions as unreasonable, some
of these problems can be mitigated by learning from human behavior. There
are many possible ways to integrate human skills into the learning cycle, e.g.,
using human feedback to guide the agents behavior during learning. An ex-
ample is modular inverse reinforcement leaning [1]. It is a method to use
observed human visuomotor behavior for a navigation task in a reinforce-
ment leaning setting [1]. [11] provides an algorithm learning simple tasks by
imitation.
To integrate human feedback in our setting we make use of strategies. A
so-called strategy determines all possible action choices an agent can make.
Specifically, a strategy in our setting provides probability distributions over
such actions, i.e., how likely the agent chooses which action. A human strat-

1Abhijit Naskar, The Constitution of The United Peoples of Earth

3

egy is then a strategy imitating typical choices a human would make for the
agent.

The central research questions in this paper are:

• fully determine such a human strategy from a (potentially low) number
of observations of human behavior.

• verify the quality of these strategies.

More specifically, in order to construct a full human strategy, we need to
observe human input for all potential states of certain scenario. A state here
represents a specific configuration of the environment at hand. As such a
number of observations is infeasible, the goal is to build good strategies using
as little human input data as possible. We want to asses if the imitation of
human behavior will improve the purely random exploration of the environ-
ment. Verification techniques, implemented in the model checker storm [5],
provide methods to rigorously assess the quality of a strategy and a model.
We use such a technique to compare the strategies against random choosing.
We focus on the famous arcade game PAC-MAN [3] to demonstrate our ap-
proach.
In order to solve the task at hand the human must be able to understand
the environment. To achieve this aim, the concept of gamification can be
helpful, which uses elements of game design to achieve desired behavior [6].
The principle of gamification supports the human in understanding the task
intuitively and in playfully finding a solution. Moreover, it keeps the test
persons motivated [6].
PAC-MAN is a complex task for an agent to solve as there are multiple tasks
(avoid ghosts, collect food). We have the capability to observe humans solv-
ing that (or sufficiently similar) tasks (multiple times). With the recorded
behavioral data we can build a strategy. We let different test persons solve
our problem (playing the game) using different environments. For each test
person we build an individual strategy.
After the computation of a strategy we augment the data to achieve better
results, i.e., we aggregate action data of similar states.
Using model checking code from [7] we verify the performance of our strate-
gies.

1.1 Contribution

The thesis provides the following main contributions:

• a version of the PAC-MAN game environment [3] for data collection

• a procedure for state data augmentation to compute a strategy

4

• a definition of different agents that use the computed strategies

• a verification framework for the strategies

1.2 Structure of the thesis

Our research is divided into three phases: first obtaining the strategy data,
second optimizing the strategy, and finally verifying the obtained strategy.
We programmed a number of agents to test our strategy visually as well.
We will provide the necessary background in chapter 2. After that we will
describe all steps we undertook to obtain and optimize the strategy in chap-
ter 3. In chapter 4 we will give information on the different agents we
programmed to use our strategies. Finally, we will explain how we verified
the strategies and show the results in chapter 5.

5

Chapter 2

Preliminaries

In the following chapter we will explain all relevant background material
and give all definitions that are necessary to understand the research.

2.1 Environment

The environment we are using is a grid of size x× y ∈ N× N. n agents are
operating in this environment. The position of each agent is given as a tuple
(xn, yn) where n is the agent’s number. One agent is pacman which can be
operated by a human player. n − 1 agents are ghosts. Pacman must avoid
the ghosts in order to win the game.
Every position of the field is either a wall or a passage. Passages can contain
food. Pacman must collect all the food pieces to end the game successfully.

Figure 2.1: An example environment

6

2.2 State

A state is a configuration of the given environment at a given time. It
contains all information about the changing elements of the game which are
all position tuples of the n agents as well as which passage contains food.
For example the state of picture 2.1 is:

• pacman position: (2,0)

• pacman direction: West

• ghost position: (0,2)

• ghost direction: East

• walls: (1,1)

• food: (0,0), (1,0), (0,1), (1,2), (2,2), (2,1)

The number of possible states (excluding losing states) can be determined
by:

(

n−1∏
i=0

(x · y)− |walls| − i) · n · directions · |food| · 2

If we store the state information using this style there are 5376 states possible
for the environment from picture 2.1.
We use a different format to store the state information which is described
in section 3.3.1.

2.3 Agent

As Michael Wooldridge states in [12], there are multiple definitions of the
term agent. In this paper we will make use of his definition that an agent
is a computer program that is situated in an environment and is capable of
autonomous actions.

Figure 2.2: different agents of PAC-MAN

7

2.4 Reinforcement Learning

Reinforcement learning is a method to let an agent learn desired behavior.
The agent does not know the goal but learns through rewards and punish-
ment (negative rewards). Its goal is to maximize the reward. The reward
function R : S → R, where S is the set of states, with R(s) = r is not known
to the agent in many cases. With each action taken the agent receives im-
mediate (negative) reward as a grading for his action. Examples of different
algorithms can be found in [8]. Mostly there is an explore and an exploit
part of the algorithm. Exploit is using the currently best action according
to the strategy learned so far. Exploration is choosing a new action to see
if it is better.

2.5 Important Definitions

Definition 1 (Markov Decision Process). An MDP M is defined as M =
(S,A, P,R), where S is a finite set of all possible states, A is a finite set
of all possible actions, P : S × A → Distr(S) is a probability function that
determines a state and an action to a probability distribution over the next
state. R is a reward function R : s → r ∈ R with R(s) = r. A(s) = {α ∈
A|P (s, α) 6= ∅}

Definition 2 (Markov Chain). A discrete-time Markov chain is an MDP
if ∀s ∈ S : |A(s)| = 1

A Markov chain describes that the probability of a event happening in the
next state only depends on the current state and not on the path to the
current state. That implies that if we know the current state we have enough
information to make estimates about the future.

Definition 3 (Strategy). A strategy σ for an MDP M is a function σ : S →
Dist(A).

We use strategies that are memoryless and randomized. A given strategy σ
for a MDP will remove the non-determinism resulting in an induced Markov
chain.

Definition 4 (Induced Markov Chain). Given an MDP M with initial state
sI ∈ S and a strategy σ ∈

∑M , the induced Markov chain is given by
Mσ = (S,A, P σ, R) where P σ(s, s′) =

∑
σ(s)(a) · P (s, a)(s′)

8

Chapter 3

Strategy

In this chapter we will give all the technical details of the test setup and
how the data is processed.

3.1 Terminology

State: We differentiate between state (as explained in chapter 2) and rela-
tive state. A relative state contains information about the distance between
pacman and other elements in the environment, such as ghosts and food.
More information can be found in section 3.3.1. If not explicitly stated, in
the following sections, “state” refers to relative state. We call the full game
configutarion game state.

Strategy : A strategy is a collection of relative states together with actions
and their probability weight. A strategy file is a strategy of one test person.
It is computed by letting the test person play multiple games and collect
the data in the strategy file.

Agent : Agents, in our setting, are computer programs that are able to use a
given strategy to determine its next actions for pacman. Therefore an agent
determines its state and utilizes the probability weights in the strategy to
find a fitting action.

3.2 Test Environment

To find good strategies we experimented with different designs. We want
to ensure the occurrence of common situations. Intuitively, in a small envi-
ronment, dangerous situations with multiple ghosts coming close will occur
more often than on a large field. Data of those dangerous situations are
the most valuable ones as these are the ones we want to prevent with our
strategies.

9

The number of ghost agents in the environments varies. The different num-
ber is necessary due to the different size of the game fields to keep the game
difficult enough for the test person to remain interesting but not too difficult
to get too frustrating. For example a small field may already be difficult
enough with one ghost due to the limited movement space.
Apart from the size, most of the standard pacman fields do not contain
every possible field piece (see picture 3.1) equally often. Instead of using
positions we categorize each position in one of the “field pieces” that are
shown in picture 3.1. For a good strategy it is important to have a lot of
information about these field pieces. Consider for example crossings, here
the agent has all four possible actions at its disposal. Consequently, more
data is needed to cover all possibilities. Our solution to this problem was to
build an environment with many crossings. We do the same for t-crossings,
corners and long straight corridors as well.
Each environment will be played by the test player multiple times in random
order. The variation ensures that our test person will stay focused on the
game without getting bored.
We have 7 different layouts for our tests. All layouts can be found in the
appendix.

3.3 Strategy Optimization

As we discussed previously, we do not have a lot of data as the information
collected for each game is limited. This leads us to a problem: in order to
obtain a good strategy we either need information about all possible states
or we need to save the available data in an efficient way and make use of
(post)processing. In order to gain the information we need, we use various
optimizations and tricks turning our initial data into good strategies. We
do not change the strategy itself by removing bad decisions as we want to
faithfully imitate the behavior of the human. By optimizing we refer to
smart data storage or to the merging of similar states. “Merging” refers to
adding up action counts of two or more states. A more detailed explanation
can be found in section 4.1.2.
The following subsections describe the steps we used to get meaningful data
to be handed to the different agents that we describe in chapter 4. First we
need to save the game data in a convenient way then we prepare the data
to be given to an agent.

3.3.1 Smart Data Saving

We store the states in a way so that we do not need to save positions on
the field. Instead we save distance measures between the changing elements
on the field (ghosts, pacman, food). This makes the strategy independent
from the field we are playing on, thus the same strategy may be used on a

10

field that was not used for the strategy computation. We call these states
relative states.
A relative state looks like this: Way: Corner Food: [(’Go’, 7), (’Reverse’,
20)] Ghosts: [(’Reverse’, 5), (’Go’, 6)]. Where “Way” contains the infor-
mation about the kind of “field piece” pacman is located. This informa-
tion is used to determine the possible actions. All possible kinds of “field
pieces” are shown in picture 3.1. The types are “Corner” (a), “Crossing” (b),
“Straight” (c), “T-Crossing-Straight-Left” (d), “T-Crossing-Straight-Right”
(e), “T-Crossing-Left-Right” (f), “Dead end” (g).

(a) Corner (b) Crossing (c) Straight (d) T-Crossing
Straight-Left

(e) T-Crossing Straight-
Right

(f) T-Crossing
Left-Right

(g) Dead
end

Figure 3.1: Different field pieces of a PAC-MAN environment

“Food” and “Ghosts” give information how far away the closest food piece or
ghost are in each possible direction. The relative directions are “Go”, “Re-
verse”, “Left” and “Right”. The directions are determined from the point of
view of pacman and shown in picture 3.2. Using these directions we achieve
independence of the orientation of the environment. “Go” is the direction in
which pacman is traveling at the moment, Reverse is the opposite direction.
The numbers next to each direction refer to how many steps are between
pacman and the ghosts or food pieces. As distance measure we take the
number of steps pacman needs to travel to reach the position.
The agent uses the “field piece” information to speed up the search for a
fitting state in the strategy and to transfer the relative directions to actual
directions. Considering corners, the label information gets necessary as we
want to store information independent from the orientation of the environ-
ment. If we do that using the relative directions from 3.2 we have two kinds
of corners (going Left or going Right). We decided to use the label “Go”

11

instead as there are only two choices of actions. However, when the agent
now wants to translate the relative direction it needs to know if it is a corner
or a straight passage.
For a similar reason, we differentiate between three kinds of t-crossings. De-
pending on the entrance point of pacman the possible actions are different.
Using the passage labels supports easy lookup of the strategy entries as well.
Looking at our example from chapter 2 picture 2.1 the relative state looks
like this:

• Way: Corner

• Food: (Go, 1), (Reverse, 1)

• Ghost (Go, 4), (Reverse, 4)

The number of possible relative states can be roughly calculated using∏
s∈fieldpieces

(maxdistance)#possible actions · 2

Thus, we have a maximum of 7070 states but not all distance combinations
are possible. For example in field 2.1 the sum of the ghost distances must
be equal to 8. So, for our example environment 2.1 the number of states is
reduced from 5376 (from 2) to 224 possible states.
During the game we collect a statistic of relative states together with how
often the actions are taken (score) in this relative state. Later we use this
statistic to compute our strategy, where these scores represent the probabil-
ity weights we give to the actions.
Attached to each relative state there is a counter counting how often each
possible action was taken. Here we use the same relative directions “Go,
Reverse, Left, Right”.

Figure 3.2: Directions relative to pacman

12

3.3.2 During The Game

When a test person plays, each action choice that occurs is saved together
with the state in the strategy file. There is one exception: We do not
save the action choice if the next state is a failing state. The intuition
behind that is that, different to reinforcement learning, we only save the
situation and the action, not the outcome of the action. Our goal is to find
an efficient strategy, thus saving decisions that clearly lead to a failing state
would result in undesired behavior of our agents as they mirror the human
behavior. On the other hand, saving exclusively the decisions made in won
games would result in more problems gathering sufficient data. Concluding
the game with a defeat does not implicate that all decisions made in-game
were wrong. Therefore, we decided to exclude only the worst decision, i.e.
the one directly before being eaten by a ghost.
As stated earlier our test players play multiple games in different game
environments. The data of all games of each person is stored in the test
persons personal strategy file.

3.3.3 Postprocessing Of The Data

Before the strategy is handed to the agent it is processed to get better
performance results. We want to minimize the number of possible states
without loosing necessary information. Due to the test setup it is impossible
to get enough data of every possible situation.
In a first processing step we label the distances of the food and ghost with
labels for distance ranges (No, Far, Medium Far, Medium, Close, Very Close)
instead of numerical distances. Action counts of states with the same labels
are summed up. The intuition behind the labeling is that especially when
a ghost is far away the exact distance is not important for the decision.
While testing our agents we found that the labeling from 3.3 worked the
best. This labeling leaves us with 6 possibilities for each direction. The
number of possible states can be calculated with∑

s∈fieldpieces
(#Distance labels)#possible actions · 2

Resulting in a maximum of 2022 possible states, but depending on the envi-
ronment not all states are possible. Considering our small example 2.1, only
three of the distance labels are possible as the environment contains only 2
different field pieces, reducing the number of possible states to 36.

Depending on the agent we are using the data needs to be processed a second
time to remove food or ghost distance information. For example, the ghost
agent (see section 4.1.2) only uses the “Ghost” information of the state.
Again action counts of the new states are summed up if they are equal.

13

Label Distance

No None

Far > 15

Medium Far 15− 9

Medium 8− 4

Close 3− 2

Very Close 1

Figure 3.3: The labels with the distance ranges

14

Chapter 4

Agents

We programmed different agents to test the strategies. The agents use the
given information differently. There is no direct interaction between the test
persons and the agents. An agent gets a strategy file, that is a previously
computed strategy of one test person. In all cases, if no fitting state is found
in the strategy file, the action is chosen randomly from all possible actions.
As we will see in the test results, the way the strategy data is used will have
an impact on the performance of the agents. All agents have in common
that they use only one strategy file at a time. The performance difference
is based purely in the usage. How they make use of the information to
determine their choices is explained in the following sections for each agent.

4.1 Simple Agents

Simple agents make a direct choice based on the strategy they get.

4.1.1 Greedy Agent

The Greedy agent will search for an exact match of its current state in the
strategy file. Since there are 2022 possible states (see section 3.3.3), this
agent will require larger amounts of information than other agents and it
will display the worst overall performance. The lack of data will lead to
randomly choosing an action in many situations. Due to the test setup it is
hard to get enough information about every possible state.

Figure 4.1: An example how the Greedy agent chooses a strategy entry

15

4.1.2 Ghost Agent

The Ghost agent reduces its state to the kind of field piece (see picture 3.1)
and the ghost distances. It then searches for matches with the closest two
ghosts in the strategy. As there can be more states in the strategy file that
match, all action counts are combined (see Strategy Optimization). Take
the following two states as an example:

• Way: Straight Food: [(’Go’, 7), (’Reverse’, 20)] Ghosts: [(’Reverse’,
5), (’Go’, 6)]: {Go: 2, Reverse: 1}

• Way: Straight Food: [(’Go’, 6), (’Reverse’, 19)] Ghosts: [(’Reverse’,
5), (’Go’, 6)]: {Go: 5, Reverse: 2}

They will be combined to:
Way: Straight Ghosts: [(’Reverse’, 5), (’Go’, 6)]: {Go: 7, Reverse: 3}
An advantage is, that the agent will stay the longest in the game but it will
not reach a high score as it neglects the food.

4.1.3 Food Agent

The Food agent works the same way as the Ghost agent, but, as the name
suggests, searches for food pieces. The obvious disadvantage is that it does
not consider ghosts when choosing an action and therefore makes no attempt
to avoid them. This can lead to the agent failing early in the game.

4.2 Combined Agents

Combined agents are higher order agents that make use of two simple agents.
They chose between the agents to determine the next action.

4.2.1 Mixed Agent

The Mixed agent combines the Food agent and the Ghost agent. Given a
probability (e.g 20%, 80%) the agent chooses the action of the Food Agent
with a probability of 20% and the action of the Ghost agent with probability
80%. The choosing probability can be changed. A disadvantage is that the
agent could fail in critical situations because the action of the Food agent is
chosen.

4.2.2 Safe Agent

The safe Agent is also a combination of Food and Ghost agent. In contrast
to the Mixed agent, the actions of the Ghost agent is chosen if at least
one ghost in the current state has the distance label ’close’ or ’very close’.
Otherwise the actions of the Food Agent are chosen.

16

This is probably the most optimal agent as it resolves the disadvantage of
the Mixed Agent and still looks for food as often as possible to reach a high
score.

17

Chapter 5

Verification

Verifying the obtained strategies can be done using different methods. Using
purely a model checker proves to be hard to achieve. Considering that the
state depends on the distance of the agents to each other modeling the
state transitions proves to be hard to achieve. Furthermore, there is no goal
position that the agent needs to reach, but the goal is defined as reaching
all positions containing food at least once.
To circumvent direct modeling we used code from [7]. The code we are using
is calculating the risk of loosing given a direction. The model is looking ten
steps ahead using the model checker storm.
We decided to calculate for each state and each possible pacman decision one
following state. That gives us a tree of various possible game paths. As we
have limited calculating capacity we are modeling a maximum of 30 steps.
Depending on the strategy, the number of states will grow exponentially
with each step (worst case).
We use two measures to verify our strategies: death probability and death
ratio as well as test runs of all agent-strategy combinations. After every
step the two measures are calculated. The death probability is calculated as
follows: ∑

P (State) ·
∑

d ∈ directions

P (death, d) · P (d, strategy)

Nr of States

P (State) is the probability of reaching the state, calculated by multiplying
the action probabilities of the ghost agents that are needed to reach this
state. Directions is the set of all the possible directions of the given state.
P (death, d) is the likelihood, given by the model checker [7], to collide with
a ghost when taking the given direction. P (d, strategy) is the probability
we get from our strategy to choose a given direction. Nr of States is the
total number of states computed.
As a second measure we count the number of states that are generated and

18

divide the number of lost end states with the total number of generated
states, we call this number the death ratio.
Both numbers give us an estimate on how safe our strategy is, where a high
death probability together with a low death ratio can be considered safe. A
high death probability occurs when pacman is close to one or more ghost
agents. Now, when the death ratio stays low we can conclude that the
strategy is able to resolve dangerous situations.
To compare our values we calculate a baseline, which is an agent that is
randomly choosing its actions.
Our test setup does not give information about the number of random chosen
actions as well as the number of steps. Therefore we run 100 games to get
a first performance impression.
There is a difference in running test games and running the verification
procedure. Take for example the state:
Way: Straight Food: [(’Go’, 7), (’Reverse’, 20)] Ghosts: [(’Reverse’, 5),
(’Go’, 6)]
with the strategy entry: {Go: 2, Reverse: 1} we calculate one new state
for the action “Go” and one for “Reverse”. While in test games pacman
chooses one of these actions, resulting in one sequence of states. So if we
run 100 test games it can happen that two or more games have the same
sequence of states.

5.1 Experimental Setup

Four test persons played multiple games on all environments described in
section 3.2. The exact numbers of games can be found in the appendix.
The game data of each game is recorded as described in section 3.3.2. The
number of observations can be found in table 5.1.
Form all the recorded game data we compute an individual strategy for each
test person using the steps described in section 3.3.3.

Person 1 Person 2 Person 3 Person 4

1597 2397 4016 6085

Table 5.1: The number of observations made of each test person

5.2 Experimental Results

In the following subsections we show the results of our verification procedure
using different environments. We cannot show all results here. All verifica-
tion data can be found in the appendix. We used a Lenovo ThinkPad T480s
with an Intel i7 and 24 GB RAM.

19

We are using two environments: a small one with one ghost (picture 5.1)
and a larger one with four ghosts (picture 5.2). The results of the test runs
can be found in section 5.2.1. Based on this data we chose the safe agent
to calculate the death probability and death ratio for each strategy. The
resulting plots for each environment can be found in section 5.2.2.

Figure 5.1: the small environment

Figure 5.2: Big test field

5.2.1 Test Runs

We ran 100 games for every strategy-agent combination in both test envi-
ronments to get information about the average score and how many action
choices are not based on the strategy (random choosing). Furthermore we
computed the average score of the test games.

20

Strategy Agent Win
rate

average
score

Steps
random
choices

#
random
ghost
choices

Random - 0/100 -465.62 1342 1342 -

1 greedy 3/100 -389.28 1638 719 -

2 greedy 3/100 -384.82 1742 510 -

3 greedy 18/100 -227.64 1754 329 -

4 greedy 17/100 -224.3 1970 263 -

1 ghost 13/100 -259.7 2230 89 -

2 ghost 10/100 -303.87 1896 83 -

3 ghost 24/100 -153.51 2331 26 -

4 ghost 34/100 -49.06 2426 0 -

1 food 17/100 -223.45 1785 75 -

2 food 22/100 -178.73 1343 6 -

3 food 25/100 -150.68 1528 0 -

4 food 31/100 -82.05 1455 0 -

1 mixed 9/100 -310.8 1940 93 72

2 mixed 12/100 -289.58 1588 60 60

3 mixed 27/100 -119.84 2314 18 18

4 mixed 37/100 -17.49 2259 0 0

1 safe 10/100 -299.99 1799 72 8

2 safe 27/100 -126.77 1527 15 12

3 safe 31/100 -78.66 1816 3 3

4 safe 37/100 -16.72 1822 0 0

Figure 5.3: Results of test runs using the small environment

In table 5.3 we can see, that most of the time the human strategies have a
higher step number compared to random choosing. Comparing the agents
we can identify various performance differences. As expected, the greedy
agent has a far higher amount of randomly chosen steps compared to the
other human strategies. Furthermore the ghost and mixed agents have the
highest number of steps followed by the safe agent. The safe agent has also
the highest average score and the highest number of games won.

21

Strategy Agent Win
rate

average
score

Steps
random
choices

#
random
ghost
choices

Random - 0/100 -440.03 5903 5903 -

1 greedy 0/100 -196.15 7035 2943 -

2 greedy 0/100 -221.24 6623 1933 -

3 greedy 0/100 -170.01 8241 2082 -

4 greedy 0/100 -100.36 8415 1552 -

1 ghost 0/100 -199.71 6951 616 -

2 ghost 0/100 -119.62 9992 553 -

3 ghost 0/100 -89.02 10442 265 -

4 ghost 0/100 -2.11 13191 254 -

1 food 0/100 -193.4 7130 350 -

2 food 0/100 -105.46 6436 131 -

3 food 0/100 -140.39 5909 105 -

4 food 0/100 -85.41 6431 106 -

1 mixed 0/100 -197.86 6546 538 467

2 mixed 0/100 -67.77 8897 400 363

3 mixed 0/100 -71.77 10047 285 241

4 mixed 0/100 8.0 10620 181 146

1 safe 0/100 -178.87 6597 337 79

2 safe 0/100 -27.32 8592 330 169

3 safe 0/100 -78.31 7851 304 159

4 safe 0/100 60.28 10472 315 130

Figure 5.4: Results of test runs using the large environment

In table 5.4, the largest difference compared to the small environment is
that we have no games won in the large environment. Nevertheless we still
can observe performance differences. First we see that we have two positive
scores. Again we can observe that the greedy agent has a high amount of
random chosen steps as well as the worst score. The food agent has the
lowest number of random choices. If we compare the two combined agents
(mixed and safe agent) we see that the number of random choices made by
the ghost agent is smaller using the safe agent. Still, the difference between
these two agents is small.
Looking at the number of steps we can note again that the ghost agent is
the best one. The worst human score is -221.24 which is far better compared

22

to -440.03 of random choosing.

Summarizing our observations we can conclude that the agents have per-
formance differences that do not depend on the strategy used. Especially
the greedy agent can be identified as not optimal while the safe agent is the
best one looking at score and number of won games. When it comes to the
number of steps the ghost agent is the clear winner. We consider the safe
agent the best in choosing between safeness of the ghost agent and point
collection of the food agent.

5.2.2 Environments

In the following two sections we want to compare the different strategies
using the safe agent and the two measures death probability and death ratio
as described in section 5.

Small Environment

The environment 5.1 can be solved within the 30 steps that we are simulating
with our verification procedure. The minimum number of steps needed to
win the game (collect all food without being eaten by a ghost) is 21, by
moving in a spiral pattern collecting all food pieces. First we look at the
number of winning end states that were computed during the verification
(picture 5.5).

23

21 22 23 24 25 26 27 28 29

0

5

10

15

20

25

2 2 2
1

7

5

8 8

14

1 1
2

1

3
2

5

2
1

2

5

10

13

23
22

2

14

4

25

Step

N
r

o
f

S
ta

te
s

Person 1 Person 2 Person 3 Person 4 Random

Figure 5.5: Games Won

Person 1 Person 2 Person 3 Person 4 Random

2 47 15 78 45

Figure 5.6: total number of games won

Noticeably, person 1 has only 2 won games in total and person 3 and the
random strategy have won no games with maximum score. Person 4 has a
higher number of games won late in the game compared to person 2. Person
3 has the lowest number of wins after person 1.

24

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

Step

D
ea

th
R

at
io

Person 1
Person 2
Person 3
Person 4
Random

Figure 5.7: death ratio

Now we take a closer look at the “death ratio” (picture 5.7) and the “death
probability” (picture 5.8). As stated before, a high death probability to-
gether with a low ratio is optimal. All four human strategies have a death
ratio below 0.2 while random choosing is always above 0.2. We can observe
a peak within the first few steps at all strategies. This is a possible result of
the small field. The ghost agent and pacman start close together so the first
steps are crucial. Person 1 and person 4 have the highest peak in the first
few steps compared to the other human strategies. We can detect a clear dif-
ference between person 4 and the other human strategies. It is significantly
lower than the others.

25

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

0.5

0.6

Step

D
ea

th
P

ro
b

ab
il

it
y

Person 1
Person 2
Person 3
Person 4
Random

Figure 5.8: average death prop

Considering picture 5.8 we can observe that person 3 has a death probability
close to random. However, the death ratio is lower than random. Person 1
has the same similarity with random choosing in the first steps but then the
death probability drops severely as well. Possibly due to the large field the
agent is far away from the ghost agents. We can observe the opposite pattern
when looking at person 4: beginning with step 4 the death probability rises
while the death ratio is decreasing at the same time. Summarizing we can
conclude that the strategies of person 4 and person 3 are similarly good.

Large Environment

Using the larger environment with more ghost agents we can no longer com-
pare the won games and their step number with our verification framework.
Nevertheless we can compare the death ratio (picture 5.9) and death prob-
ability (picture 5.10).

26

0 5 10 15 20 25 30

0

0.1

0.2

0.3

Step

D
ea

th
R

at
io

Person 1
Person 2
Person 3
Person 4
Random

Figure 5.9: death ratio

In picture 5.9 we can see that all human strategies are again below the ran-
dom strategy. Three of the human strategies are similar while the strategy
of person 1 is low and rises step wise.

0 5 10 15 20 25 30

0

0.1

0.2

0.3

0.4

Step

D
ea

th
P

ro
b

ab
il

it
y

Person 1
Person 2
Person 3
Person 4
Random

Figure 5.10: death probability

27

If we now compare the death probabilities from picture 5.10 we see that
strategy 2 and 3 are close to the random one while strategy 4 is higher after
step 12 and person 1 has a nearly linear rising death probability. Looking
closer at person 4 we see that the death ratio rises equally to the death
probability. While with person 4 we have the highest death probability but
the death ratio is similar to person 2 and 3. Summarizing we can see a
clearer difference between person 3 and person 4, so we can conclude that
person 4 has the best strategy.

28

Chapter 6

Related Work

Learning from human behavior is an idea that is attracting more and more
attention. There are two general approaches on how to use human input for
computational learning. The passive approach is that the human observer
approves or disapproves the computer generated behavior. The OpenAI
blog [2] published an example on how this approach works. The AI tries to
build a reward function that fits the human input. At each iteration, two
outcomes of behavior are presented for the human to decide which option is
the best. The AI then makes a number of iterations to adapt its behavior.
Closest to our work is [4], which explores the active approach that we used
as well. Using a gridworld environment with fixed and moving obstacles and
a goal area, the paper explores the quality of human strategies. Strategies
need to be specified for all possible feature combinations.
The paper of [1] developed a way to divide visiomotor tasks in the estimated
contributions to the reward, using inverse reinforcement learning. In this
paper human walk through a parkour while solving different tasks. To the
agent the reward is known but it is not known which aspect of the movement
is rewarded how much.

29

Chapter 7

Conclusions And Future
Work

Summarizing we showed that behavior imitation is possible. By closely ana-
lyzing the behavior data there is a clear improvement over random choosing.
Also the different handling of the strategy data has an impact on the per-
formance of the agents. Surprisingly, with a fairly small number of input
data-items we could achieve an improvement over random choosing of ac-
tions. One reason for this result is our system of storing the states in a
relative form. We showed that we can reduce the number of possible states
significantly.
For future work we would like to test the actual difference when using strate-
gies for reinforcement learning in terms of attempts needed to learn a policy.

30

Bibliography

[1] Constantin A. Rothkopf and Dana H. Ballard. Modular inverse rein-
forcement learning for visumotor behavior. Biological Cybernetics, 2013.

[2] Dario Amodei, Paul Christiano, and Alex Ray. Learning from
human preferences. https://openai.com/blog/deep-reinforcement-
learning-from-human-preferences/, 2017. Online, accessed 1-June-2019.

[3] UC Berkeley. http://ai.berkeley.edu/project overview.html, 2019.

[4] Steven Carr, Nils Jansen, Ralf Wimmer, Jie Fu, and Ufuk Topcu.
Human-in-the-loop synthesis for partially observable markov decision
processes. CoRR, abs/1802.09810, 2018.

[5] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and
Matthias Volk. A storm is coming: A modern probabilistic model
checker. CoRR, abs/1702.04311, 2017.

[6] Sebastian Deterding. Gamification: Designing for motivation. Interac-
tions, 19(4), 2012.

[7] Nils Jansen, Bettina Könighofer, Sebastian Junges, and Roderick
Bloem. Shielded decision-making in mdps. CoRR, abs/1807.06096,
2018.

[8] Andrej Karpathy. Reinforcejs. https://cs-stanford-
edu.ru.idm.oclc.org/people/karpathy/reinforcejs/index.html. Online,
accessed 8-June-2019.

[9] Sham Machandranath Kakade. On the Sample Complexity of Reinforce-
ment Learning. PhD thesis, University College London, 2003.

[10] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 2015.

[11] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning
from observation. CoRR, abs/1805.01954, 2018.

31

[12] Michael Wooldridge. Intelligent agents: The key concepts. In Vladimı́r
Mař́ık, Olga Štěpánková, Hana Krautwurmová, and Michael Luck, edi-
tors, Multi-Agent Systems and Applications II, pages 3–43, Berlin, Hei-
delberg, 2002. Springer Berlin Heidelberg.

32

Appendix A

Test Environments

The following test environments where used to collect game data.

(a) (b)

(c)

33

(d) (e)

(f) (g)

34

Appendix B

Test Data

The following tables contain the complete test data for each test person and
a table about the number of games in each test environment.

Test Person Environment

(a) (b) (c) (d) (e) (f) (g)

1 4 3 3 3 6 3 3

2 3 3 3 3 7 3 3

3 3 6 3 7 11 6 3

4 6 10 5 14 12 7 5

Table B.1: Number of games

35

Step # States
in Step

Total
States

Death
Proba-
bility

Death
States

Death
Ratio

win
States
per Step

1 2 2 0.2722 0 0 0

2 3 5 0.5089 0 0 0

3 3 8 0.5681 0 0 0

4 3 11 0.5049 2 0.1818 0

5 1 12 0.4544 2 0.1667 0

6 1 13 0.4582 2 0.1538 0

7 3 16 0.36 2 0.125 0

8 3 19 0.2965 2 0.1053 0

9 3 22 0.252 2 0.0909 0

10 3 25 0.2191 2 0.08 0

11 3 28 0.2078 2 0.0714 0

12 5 33 0.1743 2 0.0606 0

13 5 38 0.1501 2 0.0526 0

14 5 43 0.1318 2 0.0465 0

15 5 48 0.1436 2 0.0417 0

16 9 57 0.1843 3 0.0526 0

17 8 66 0.2124 5 0.0758 0

18 6 73 0.2114 7 0.0959 0

19 4 77 0.1994 7 0.0909 0

20 4 81 0.2151 7 0.0864 0

21 8 89 0.2331 7 0.0787 0

22 8 99 0.2568 7 0.0707 2

23 6 107 0.2809 9 0.0841 0

24 4 112 0.2825 11 0.0982 0

25 2 114 0.2805 11 0.0965 0

26 4 118 0.2698 11 0.0932 0

27 4 122 0.2677 11 0.0902 0

28 4 126 0.2626 11 0.0873 0

29 4 131 0.2736 12 0.0916 0

30 5 137 0.2788 13 0.0949 0

Table B.2: Test Person 1: Small Environment

36

Step # States
in Step

Total
States

Death
Proba-
bility

Death
States

Death
Ratio

win
States
per Step

1 2 2 0.2722 0 0 0

2 3 5 0.5089 0 0 0

3 3 8 0.5681 0 0 0

4 3 11 0.5049 2 0.1818 0

5 1 12 0.4544 2 0.1667 0

6 1 13 0.4582 2 0.1538 0

7 3 16 0.36 2 0.125 0

8 3 19 0.2965 2 0.1053 0

9 3 22 0.252 2 0.0909 0

10 3 25 0.2191 2 0.08 0

11 3 28 0.2078 2 0.0714 0

12 5 33 0.1743 2 0.0606 0

13 5 38 0.1501 2 0.0526 0

14 5 43 0.1318 2 0.0465 0

15 5 48 0.1436 2 0.0417 0

16 9 57 0.1843 3 0.0526 0

17 8 66 0.2124 5 0.0758 0

18 6 73 0.2114 7 0.0959 0

19 4 77 0.1994 7 0.0909 0

20 4 81 0.2151 7 0.0864 0

21 8 89 0.2331 7 0.0787 0

22 8 99 0.2568 7 0.0707 2

23 6 107 0.2809 9 0.0841 0

24 4 112 0.2825 11 0.0982 0

25 2 114 0.2805 11 0.0965 0

26 4 118 0.2698 11 0.0932 0

27 4 122 0.2677 11 0.0902 0

28 4 126 0.2626 11 0.0873 0

29 4 131 0.2736 12 0.0916 0

30 5 137 0.2788 13 0.0949 0

Table B.3: Test Person 1: Large Environment

37

Step # States
in Step

Total
States

Death
Proba-
bility

Death
States

Death
Ratio

win
States
per Step

1 2 2 0.0403 0 0 0

2 4 6 0.1787 0 0 0

3 8 14 0.2239 0 0 0

4 13 28 0.197 3 0.1071 0

5 15 45 0.2341 6 0.1333 0

6 20 65 0.2258 8 0.1231 0

7 24 89 0.2197 9 0.1011 0

8 30 119 0.2516 10 0.084 0

9 37 156 0.2306 12 0.0769 0

10 49 207 0.2568 18 0.087 0

11 62 268 0.2595 22 0.0821 0

12 86 354 0.2645 32 0.0904 0

13 105 458 0.2817 37 0.0808 0

14 151 604 0.2753 47 0.0778 0

15 198 815 0.2844 76 0.0933 0

16 276 1,084 0.2786 119 0.1098 0

17 330 1,416 0.2752 164 0.1158 0

18 402 1,801 0.2816 217 0.1205 0

19 484 2,245 0.2638 264 0.1176 0

20 554 2,768 0.2685 312 0.1127 0

21 689 3,423 0.2671 365 0.1066 0

22 899 4,280 0.2751 442 0.1033 2

23 1,135 5,384 0.289 530 0.0984 0

24 1,574 6,908 0.2888 673 0.0974 2

25 2,013 8,948 0.2935 913 0.102 1

26 2,718 11,480 0.2847 1,195 0.1041 7

27 3,299 14,663 0.2799 1,600 0.1091 5

28 4,020 18,324 0.2781 2,014 0.1099 8

29 4,718 22,771 0.2717 2,522 0.1108 8

30 5,644 28,031 0.2768 3,086 0.1101 14

Table B.4: Test Person 2: Small Environment

38

Step # States
in Step

Total
States

Death
Proba-
bility

Death
States

Death
Ratio

win
States
per Step

1 2 2 0.2722 0 0 0

2 3 5 0.5089 0 0 0

3 3 8 0.5681 0 0 0

4 3 11 0.5049 2 0.1818 0

5 1 12 0.4544 2 0.1667 0

6 1 13 0.4582 2 0.1538 0

7 3 16 0.36 2 0.125 0

8 3 19 0.2965 2 0.1053 0

9 3 22 0.252 2 0.0909 0

10 3 25 0.2191 2 0.08 0

11 3 28 0.2078 2 0.0714 0

12 5 33 0.1743 2 0.0606 0

13 5 38 0.1501 2 0.0526 0

14 5 43 0.1318 2 0.0465 0

15 5 48 0.1436 2 0.0417 0

16 9 57 0.1843 3 0.0526 0

17 8 66 0.2124 5 0.0758 0

18 6 73 0.2114 7 0.0959 0

19 4 77 0.1994 7 0.0909 0

20 4 81 0.2151 7 0.0864 0

21 8 89 0.2331 7 0.0787 0

22 8 99 0.2568 7 0.0707 2

23 6 107 0.2809 9 0.0841 0

24 4 112 0.2825 11 0.0982 0

25 2 114 0.2805 11 0.0965 0

26 4 118 0.2698 11 0.0932 0

Table B.5: Test Person 2: Large Environment

39

Step # States
in Step

Total
States

Death
Proba-
bility

Death
States

Death
Ratio

win
States
per Step

1 2 2 0.2646 0 0 0

2 5 7 0.3407 0 0 0

3 10 19 0.4724 2 0.1053 0

4 19 40 0.3359 7 0.175 0

5 25 67 0.3846 13 0.194 0

6 28 96 0.3496 19 0.1979 0

7 27 123 0.3362 23 0.187 0

8 26 151 0.3749 25 0.1656 0

9 36 186 0.3552 27 0.1452 0

10 48 238 0.3626 34 0.1429 0

11 70 302 0.3437 40 0.1325 0

12 92 389 0.3276 50 0.1285 0

13 122 505 0.3459 65 0.1287 0

14 160 655 0.3224 87 0.1328 0

15 192 842 0.3387 125 0.1485 0

16 213 1,040 0.3292 151 0.1452 0

17 253 1,280 0.3243 180 0.1406 0

18 322 1,589 0.3289 213 0.134 0

19 429 1,991 0.3224 262 0.1316 0

20 561 2,522 0.3327 319 0.1265 0

21 763 3,236 0.3363 401 0.1239 0

22 1,023 4,189 0.3262 525 0.1253 0

23 1,315 5,398 0.3255 695 0.1288 0

24 1,618 6,847 0.3151 886 0.1294 1

25 1,943 8,629 0.3185 1,137 0.1318 1

26 2,341 10,730 0.3167 1,387 0.1293 2

27 2,898 13,338 0.314 1,717 0.1287 1

28 3,555 16,567 0.3161 2,084 0.1258 3

29 4,600 20,653 0.3122 2,529 0.1225 2

30 5,923 25,964 0.3104 3,131 0.1206 5

Table B.6: Test Person 3: Small Environment

40

Step # States
in Step

Total
States

Death
Proba-
bility

Death
States

Death
Ratio

win
States
per Step

1 2 2 0.2646 0 0 0

2 5 7 0.3407 0 0 0

3 10 19 0.4724 2 0.1053 0

4 19 40 0.3359 7 0.175 0

5 25 67 0.3846 13 0.194 0

6 28 96 0.3496 19 0.1979 0

7 27 123 0.3362 23 0.187 0

8 26 151 0.3749 25 0.1656 0

9 36 186 0.3552 27 0.1452 0

10 48 238 0.3626 34 0.1429 0

11 70 302 0.3437 40 0.1325 0

12 92 389 0.3276 50 0.1285 0

13 122 505 0.3459 65 0.1287 0

14 160 655 0.3224 87 0.1328 0

15 192 842 0.3387 125 0.1485 0

16 213 1,040 0.3292 151 0.1452 0

17 253 1,280 0.3243 180 0.1406 0

18 322 1,589 0.3289 213 0.134 0

19 429 1,991 0.3224 262 0.1316 0

20 561 2,522 0.3327 319 0.1265 0

21 763 3,236 0.3363 401 0.1239 0

Table B.7: Test Person 3: Large Environment

41

Step # States
in Step

Total
States

Death
Proba-
bility

Death
States

Death
Ratio

win
States
per Step

1 2 2 0 0 0 0

2 3 5 0 0 0 0

3 5 10 0 0 0 0

4 8 18 0 1 0.0556 0

5 9 27 0.0981 1 0.037 0

6 12 39 0.1461 1 0.0256 0

7 20 59 0.157 2 0.0339 0

8 32 89 0.1373 2 0.0225 0

9 52 136 0.1317 4 0.0294 0

10 80 212 0.126 7 0.033 0

11 131 338 0.162 16 0.0473 0

12 212 536 0.1636 34 0.0634 0

13 290 810 0.2062 67 0.0827 0

14 388 1,156 0.2193 109 0.0943 0

15 442 1,557 0.2529 148 0.0951 0

16 538 2,024 0.2645 200 0.0988 0

17 603 2,559 0.2681 245 0.0957 0

18 726 3,197 0.2711 293 0.0916 0

19 919 4,019 0.2665 343 0.0853 0

20 1,226 5,142 0.2648 424 0.0825 0

21 1,691 6,713 0.2683 538 0.0801 0

22 2,359 8,847 0.2704 735 0.0831 2

23 3,038 11,586 0.2833 977 0.0843 0

24 3,996 15,043 0.2793 1,316 0.0875 1

25 4,801 19,335 0.2843 1,757 0.0909 2

26 6,091 24,599 0.2797 2,268 0.0922 5

27 7,430 30,994 0.2749 2,855 0.0921 10

28 9,257 38,942 0.2718 3,531 0.0907 13

29 11,686 48,915 0.2648 4,347 0.0889 23

30 14,846 61,700 0.2635 5,454 0.0884 22

Table B.8: Test Person 4: Small Environment

42

Step # States
in Step

Total
States

Death
Proba-
bility

Death
States

Death
Ratio

win
States
per Step

1 2 2 0 0 0 0

2 3 5 0 0 0 0

3 5 10 0 0 0 0

4 8 18 0 1 0.0556 0

5 9 27 0.0981 1 0.037 0

6 12 39 0.1461 1 0.0256 0

7 20 59 0.157 2 0.0339 0

8 32 89 0.1373 2 0.0225 0

9 52 136 0.1317 4 0.0294 0

10 80 212 0.126 7 0.033 0

11 131 338 0.162 16 0.0473 0

12 212 536 0.1636 34 0.0634 0

13 290 810 0.2062 67 0.0827 0

14 388 1,156 0.2193 109 0.0943 0

15 442 1,557 0.2529 148 0.0951 0

16 538 2,024 0.2645 200 0.0988 0

17 603 2,559 0.2681 245 0.0957 0

18 726 3,197 0.2711 293 0.0916 0

19 919 4,019 0.2665 343 0.0853 0

20 1,226 5,142 0.2648 424 0.0825 0

21 1,691 6,713 0.2683 538 0.0801 0

22 2,359 8,847 0.2704 735 0.0831 2

23 3,038 11,586 0.2833 977 0.0843 0

24 3,996 15,043 0.2793 1,316 0.0875 1

25 4,801 19,335 0.2843 1,757 0.0909 2

Table B.9: Test Person 4: Large Environment

43

Step # States
in Step

Total
States

Death
Proba-
bility

Death
States

Death
Ratio

win
States
per Step

1 2 2 0.3583 0 0 0

2 5 10 0.4595 3 0.3 0

3 7 18 0.5167 5 0.2778 0

4 12 33 0.4812 10 0.303 0

5 16 56 0.463 23 0.4107 0

6 17 77 0.3832 28 0.3636 0

7 27 105 0.3445 33 0.3143 0

8 46 150 0.2977 37 0.2467 0

9 79 231 0.3292 51 0.2208 0

10 139 397 0.3447 106 0.267 0

11 184 610 0.371 194 0.318 0

12 224 845 0.3453 280 0.3314 0

13 244 1,120 0.3391 381 0.3402 0

14 308 1,451 0.3339 484 0.3336 0

15 403 1,852 0.3179 573 0.3094 0

16 583 2,415 0.3133 657 0.272 0

17 982 3,389 0.2932 856 0.2526 0

18 1,504 4,876 0.2967 1,222 0.2506 0

19 2,160 6,971 0.3135 1,768 0.2536 0

20 3,002 9,979 0.3137 2,689 0.2695 0

21 3,811 13,732 0.312 3,936 0.2866 0

22 4,615 18,147 0.2988 5,276 0.2907 0

23 5,783 23,476 0.2736 6,410 0.273 0

24 8,002 30,807 0.2747 7,708 0.2502 0

25 12,381 41,764 0.2631 9,740 0.2332 0

26 17,070 57,685 0.2753 13,261 0.2299 2

27 24,896 79,381 0.2774 18,369 0.2314 0

28 31,213 108,066 0.2846 26,178 0.2422 14

29 40,125 142,570 0.2816 35,336 0.2479 4

30 47,334 184,579 0.2806 46,898 0.2541 25

Table B.10: Random: Small Environment

44

Step # States
in Step

Total
States

Death
Proba-
bility

Death
States

Death
Ratio

win
States
per Step

1 2 2 0.3583 0 0 0

2 5 10 0.4595 3 0.3 0

3 7 18 0.5167 5 0.2778 0

4 12 33 0.4812 10 0.303 0

5 16 56 0.463 23 0.4107 0

6 17 77 0.3832 28 0.3636 0

7 27 105 0.3445 33 0.3143 0

8 46 150 0.2977 37 0.2467 0

9 79 231 0.3292 51 0.2208 0

10 139 397 0.3447 106 0.267 0

11 184 610 0.371 194 0.318 0

12 224 845 0.3453 280 0.3314 0

13 244 1,120 0.3391 381 0.3402 0

14 308 1,451 0.3339 484 0.3336 0

15 403 1,852 0.3179 573 0.3094 0

16 583 2,415 0.3133 657 0.272 0

17 982 3,389 0.2932 856 0.2526 0

18 1,504 4,876 0.2967 1,222 0.2506 0

19 2,160 6,971 0.3135 1,768 0.2536 0

20 3,002 9,979 0.3137 2,689 0.2695 0

21 3,811 13,732 0.312 3,936 0.2866 0

Table B.11: Random: Large Environment

45

	Introduction
	Contribution
	Structure of the thesis

	Preliminaries
	Environment
	State
	Agent
	Reinforcement Learning
	Important Definitions

	Strategy
	Terminology
	Test Environment
	Strategy Optimization
	Smart Data Saving
	During The Game
	Postprocessing Of The Data

	Agents
	Simple Agents
	Greedy Agent
	Ghost Agent
	Food Agent

	Combined Agents
	Mixed Agent
	Safe Agent

	Verification
	Experimental Setup
	Experimental Results
	Test Runs
	Environments

	Related Work
	Conclusions And Future Work
	Test Environments
	Test Data

