
Bachelor thesis
Computing Science

Radboud University

Comparing privacy plugins

Author:
Nick Nibbeling
s4616146

First supervisor/assessor:
Dr. Veelasha Moonsamy
v.moonsamy@cs.ru.nl

Second supervisor:
Dr. Ir. Hugo (H.L.)

Jonker
hugo.jonker@ou.nl

June 25, 2019

mailto:v.moonsamy@cs.ru.nl
mailto:hugo.jonker@ou.nl

This page intentionally left blank

Abstract

In today’s society, be tracked on the internet is no longer a particular case.
Web tracking techniques keep tabs on the user’s internet activity while the
user is probably not aware of it. In recent years, many new tracking tech-
niques have been added, and this will only become more. Privacy plugins
such as Ghostery and Privacy Badger protect you against third-party track-
ers on the internet. In this study, we analyze privacy plugins by making
a two-part comparison. First, we collect general information about every
plugin and compare them with each other. Second, we test the performance
of the privacy plugins on a large scale of 25,000 popular websites. We do
this by retrieving the number of blocked domains/request directly from the
privacy plugin itself. We have not seen this in any other study so far. The
goal of this two-part comparison is to provide advice to the end-user, so
he or she knows which plugin to pick. We have concluded that algorithm-
based plugins have an advantage compared to blacklists-based plugins in
theory. We also have statistics on the performances of the privacy plugins
in practice. These results are used for the recommendation.

Contents

1 Introduction 3

2 What is Privacy? 6
2.1 Laws affecting privacy . 6
2.2 Privacy . 7
2.3 Attacker model . 7
2.4 What makes a tracker? . 7
2.5 First and third-party trackers 8
2.6 How do privacy plugins provide privacy? 9
2.7 Private browsing and Tor Browser 9

3 Related Work 11

4 Privacy Plugins 14
4.1 Justification for selection of plugins 14
4.2 Anti-tracking techniques . 16
4.3 Methodology . 17
4.4 Privacy plugins . 17

4.4.1 Ghostery . 18
4.4.2 Privacy Badger . 19
4.4.3 Disconnect . 21
4.4.4 uBlock Origin . 23
4.4.5 Privacy Possum . 25

4.5 Firefox Content Blocking . 26

5 Theoretical comparison of privacy plugins 28
5.1 Blacklist vs. Algorithm . 28
5.2 Ghostery, Disconnect and uBlock Origin 29
5.3 Privacy Badger vs. Privacy Possum 30
5.4 Changes in the last two years 31

6 Experimental comparison of privacy plugins 32
6.1 Methodology . 33
6.2 Implementation . 35

1

6.2.1 Modifying plugins . 36
6.2.2 Python scripts . 37

6.3 Setup . 39
6.4 Results . 40

7 Conclusions 45

8 Future Work 48

Appendices 52

A Privacy Plugins 52
A.1 Firefox Add-ons Store . 52
A.2 Interfaces . 54

A.2.1 Ghostery . 54
A.2.2 Privacy Badger . 54
A.2.3 Disconnect . 55
A.2.4 uBlock Origin . 55
A.2.5 Privacy Possum . 56

B Scripts 57
B.1 Main python script . 57
B.2 Proxy script . 59
B.3 Gecko driver log parser . 61
B.4 JavaScript code . 62

2

Chapter 1

Introduction

Nowadays, it is not uncommon to be tracked on the internet. Companies
have adapted their business model to the collection of user data. This data
can be used to create profiles of users. A clear identification of the user can
be leveraged to generate money, for example, by placing targeted advertise-
ments. Companies use a tracking mechanism, or merely a tracker, to collect
user data. One of the best-known trackers is the cookie. Website owners
can use a cookie to store a session identifier or save language preferences.
In this context, the cookie is used for session management by a first-party:
the website currently visiting.

A cookie can also be used by third parties to track the user. In that case,
we speak of third-party tracking: tracking is done by a different website than
the one you are visiting. Third-party tracking, in particular, infringes the
privacy and it is therefore wise that the user arm against this.

Fortunately, this can be done by privacy plugins. Plugins serve as an
extension of the web browser. By privacy plugins, we mean plugins that pro-
tect against tracking. When researching privacy plugins, we encounter three
different types of privacy plugins: plugins that are specialized in blocking
advertisements, plugins that completely isolate each tab of a browser (con-
tainers), and plugins that blocks trackers. The last mentioned category is
investigated in this study. For convenience, we continue to call them privacy
plugins. The other categories are not further discussed, as they serve differ-
ent purposes which are not relevant to this study. Blocking advertisement is
not the same as blocking trackers. A tracker may be an advertisement, but
not every advertisement is a tracker. The second category isolates tabs, so
tracking between tabs should be harder. However, a user can still be tracked
in an individual tab, regardless of the isolation.

In April 2017, Boumans published his bachelor thesis [6] ’Web tracking
and current countermeasures’. He discusses the tracking techniques of that
time, privacy measures in web browsers, and browser extensions for privacy.
In the end, Boumans makes a recommendation to the end user what would

3

be a good configuration for users to minimize web tracking, but not lose
usability. Not only Boumans has performed a comparison of plugins. There
are many studies [2, 18, 15, 17, 5, 26, 19, 23, 18] that compare privacy plugins
and provides recommendations.

Methodology
However, the internet has not been idle and changed over time. For example,
more privacy plugins were added, privacy plugins were updated, and new
tracking techniques were discovered. In this thesis, we dive into the world
of online tracking. This is a specific part of online privacy. We look for
privacy plugins that protect the user against tracking. There exist many
privacy plugins that differ widely in performance and usability. That is
why it is essential that internet users get a good recommendation of which
plugins they should use. In particular, we make a recommendation of which
plugin offers the best privacy protection by the number of blocked trackers
according to plugins themselves. So the data comes directly from the plugin.
To our knowledge, this is the first study that uses this method. We compare
the claims of several plugins that Boumans and many other studies also
compared and see if they produce differences. Boumans study is theoretical
[6], while the others are more practical [15, 17, 5, 26, 19, 23, 18]. We do both
theoretical and practical comparisons, which sets us apart from many other
studies. We examine the plugins and also provide a clear description of how
these plugins offer privacy. Besides, we use a combination of Firefox and
Selenium to run the plugins over 25,000 websites for practical comparison.
We can validate our theoretical conclusions by performing experiments with
privacy plugins in practice. The methodology will be described in more
detail in Chapter 4 and 6.

Contributions & limitations
A complete list of contributions can found below:

• Insight in the different types of definitions for privacy

• Analysis of privacy plugins from a privacy perspective

• Theoretical and practical comparison of privacy plugins and their anti-
tracking methods

• Providing a method to extract data from privacy plugins

• Large scale analysis of the performance of privacy plugins

• Firefox Content Blocking performance tests

• Number of trackers compared on popular and less popular websites

• Recent recommendation of privacy plugins

4

Before we go further, it is important to clarify the limitations and scope of
this thesis:

1. Not all privacy plugins have taken into account, only those who meet
the selection criteria discussed in Section 4.1.

2. No scientific tools/plugins were used in this thesis. This has to do with
usability. Experience shows that scientific tools/plugins are harder to
use.

3. We assume that privacy plugins show the correct results.

4. We only use Firefox as a web browser. Firefox is easy to configure,
offers a large collection of plugins, works stable in combination with
Selenium, is focused on privacy, and is used for many plugin compar-
ison studies [15, 17, 5, 26, 19, 23, 18].

5. Regarding the definition of a tracker, we use the same as Englehardt
and Narayanan (2016) [8]. We do not determine for ourselves if a
domain/URL is a tracker but assume that a domain/URL is a tracker
if a privacy plugin blocks it.

6. Ad-blockers are not covered in this thesis because they serve a different
purpose: blocking advertisements and not necessarily trackers.

Overview
This thesis discusses essential privacy subjects in Chapter 2. We discuss
some related work in Chapter 3. General information about the investigated
privacy plugins is given in Chapter 4. The plugins are theoretically examined
in Chapter 5 and practically examined in Chapter 6. In Chapter 7, we give
a conclusion and recommendation of privacy plugins. Eventually, we discuss
some future work in Chapter 8.

5

Chapter 2

What is Privacy?

In this chapter, we try to approach the question ’What is privacy?’ from
different angles to finally come to a suitable standard for testing the privacy
plugins.

2.1 Laws affecting privacy

In most countries, the right to privacy is a human right. However, what is
privacy according to a judicial approach? First of all, we decided to reduce
our scope to European Law since this will cover multiple countries. The Eu-
ropean Convention on Human Rights (ECHR) [20] is an international treaty
to protect human rights and political freedoms in Europe. It was founded in
1950. According to Art. 8(1) of the ECHR, ’everyone has the right to respect
for his private and family life, his home, and his correspondence’. At that
time, there was no use of the internet, so ’correspondence’ mainly concerned
written communications like letters and telegrams. Many years later, rights
for EU citizens were established, which are called Charter of Fundamental
Rights of the European Union (CFREU). The latest version was published
on October 26, 2012. Pursuant to Art. 7 of the CFREU [25], privacy means
that ’everyone has the right to respect for his or her private and family life,
home, and communications’. Now, ’correspondence’ has been replaced by
’communications’, we assume this is a result of which internet communi-
cation is now also covered. This means that within the EU, citizens have
the right to respect for their communications on the internet. Before going
further, it is wise to have a look at the General Data Protection Regulation
(GDPR)[9]. The GDPR is a regulation in EU law that was adopted in 2016.
It has the purpose to guarantee protection of personal data and privacy
within the European Union. This regulation applies also to the European
Economic Area. The GDPR provides some definitions that can be useful in
the following sections.

6

2.2 Privacy

In this section, we discuss the term privacy. Thanks to the articles [13, 28, 9],
we can formulate a clear definition of privacy:

Privacy: an action or communication M of a subject S that
cannot be traced back to S by observer O

Subject S is a user of a browser. Observer O is an attacker and is discussed
further in Section 2.3. Furthermore, privacy is about content, maintaining
confidentiality, and keeping secrets. For example, you are private in your
own home, as no one knows what you do in your own home. You are not
anonymous as everyone knows that you live there. This is an important
observation, which must be kept in mind. The purpose of a privacy plugin
that must guarantee privacy is to keep the actions and activities secret, but
not necessarily your identity. This can be established by blocking trackers.

2.3 Attacker model

Someone who tries to infringe somebodies privacy can be defined as an
attacker. We define two types of attackers relevant to this study. The local
attacker and the remote attacker. Asaka, Onabura, Inoue, and Goto (2010)
provide definitions for local and remote attacks that we can use as starting
point[3].

• Local attacker has direct access to a machine. This can be a family
member of the owner of the machine.

• Remote attacker has no no direct access to a machine. This is
someone who tries to access the machine from a remote location.

Web tracking can be seen as a variant of remote tracking, and for this reason,
the focus in this research lies on the remote attacker. The remote attacker
can also be divided into subcategories. A remote attacker can, for example,
be a first party tracker, a third party tracker, a combination of both or an
ISP (Internet Service Provider). We discuss this further in Section 2.5.

2.4 What makes a tracker?

We already mentioned the term tracker a few times, but we have not ex-
plained what it means? A tracker can have multiple meanings. It can be

7

considered as a party, mechanism, or domain. Within the scope of this
research, it is important to distinguish what we mean by a tracker.

We start with parties. Among parties, we principally mean companies
that are focused on collecting user data. Parties make use of mechanisms
to track a user across the internet; for that reason, we call them trackers
or tracking parties. The most important parties are first and third parties;
they are discussed in Section 2.5.

In addition to parties, the mechanisms they used can also be considered
as trackers. A tracking mechanism makes it possible to collect user data.
Some examples of tracking mechanisms are cookies, tracking pixels, and
fingerprinting. It is basically a piece of code.

Domains and URLs are often also regarded as trackers. Blacklists or
blocklists used by plugins and browsers contain domains and/or URLs. A
URL is a specific path to the location of a resource on the internet, while a
domain usually maps to some web space. Tracking parties need a domain
to communicate over the internet. If you block a domain, then there is no
more data traffic possible between the domain and the tracking mechanism.
For this reason, blocking a domain is seen as blocking a tracker.

However, we need the definition even more clearly for this study. En-
glehardt and Narayanan made the same decision in their research: Online
Tracking: A 1-million-site Measurement and Analysis [8]. They not simply
classifying domains as trackers or non-trackers, but assume a domain is a
tracker when the plugin has blocked this domain. We make the same as-
sumption in this study. We do not determine for ourselves whether a domain
is a tracker but assume that a domain is a tracker if a privacy plugin blocks
it.

2.5 First and third-party trackers

In Section 2.3, we already mentioned that there are first and third-party
trackers on the internet. First-party tracking is done by the website you
are currently visiting. It has, in general, a functional purpose, such as
maintaining your shopping cart or remembering your preferences. A third-
party tracker instead is a tracker set by a different webpage than the one
you are currently visiting. It has the purpose to track you across multiple
websites en monitor your behavior. Third-party trackers are often used to
create an image of the user, after which advertisements can be tailored to
the user. Within the scope of this research, we assume that the attacker is
almost always a third-party tracker. We have to keep in mind it can also be
a first and third-party tracker at the same time. For example, Facebook is
a first party tracker when visiting the Facebook website, but a third party
tracker when a Facebook button is embedded in a non-Facebook webpage.

8

2.6 How do privacy plugins provide privacy?

In this section, we answer the question of how privacy plugins can provide
privacy. We do not discuss privacy for each plugin but want to show precisely
how privacy plugins can add something together to protect privacy. First,
we repeat the definition of privacy: an action or communication M of a
subject S that cannot be traced back to S by observer O.

A privacy plugin meets the requirement of privacy by simply blocking the
tracker. In this way, it is no longer possible for a tracker to see what the user
is doing because the communication between the tracker and the third party
is interrupted. However, a privacy plugin has to establish privacy without
breaking a website, so there is a trade-off between privacy and usability [27].
It is essential to minimize websites breaks to not only satisfy the user but
also prevent the user from solving problems themselves. When a user notices
that there is something wrong with the functionality of a website, he might
whitelist the website, which causes gaps in security protection.

2.7 Private browsing and Tor Browser

Private browsing
Privacy plugins are not the only method that protects your privacy. There
is also something called private browsing. According to Firefox, private
browsing means using Firefox without saving history1. It works the same
as normal browsing, but your data will be erased after you end the session.
For Firefox, the data that will erased is limited to Visited pages, Form
and Search Bar entries, Passwords, Download List entries, Cook-
ies, Cached Web Content, Offline Web Content, and User Data.
Deleting all this data decrease the change of being tracked across the in-
ternet. Especially cookies are a common tracking method used by third
parties.

It is wise to keep in mind that private browsing does not protect against
all forms of tracking. For example, browser fingerprinting is still possible.

Private browsing is especially effective against a local attacker. Someone
who has direct access to your device cannot retrieve your browsing history
when you use private tabs.

Not only Firefox provides private browsing. Almost every modern browser
provide private browsing or something similar to it.

Tor Browser
Besides private browsing, there is another method you can use to protect

1https://support.mozilla.org/en-US/kb/private-browsing-use-firefox-without-history

accessed on June 8, 2019

9

https://support.mozilla.org/en-US/kb/private-browsing-use-firefox-without-history

your privacy. The Tor Browser2 makes use of onion routing. This means
that it routes traffic through multiple servers. At every server, the traffic is
encrypted. The goal of Tor is to provide privacy for everyone on the internet.

The Tor Browser is very effective against trackers since they cannot
follow you through the servers. Even fingerprinting will be harder since all
users look the same when using Tor. It also prevents against monitoring
your connection. This becomes very handy in countries with censorship.

The Tor Browser is a useful tool when it concerning your privacy. Since
it is not a privacy plugin, it will not be compared with the plugins. However,
it is certainly worth mentioning the existence of the Tor Browser.

2https://www.torproject.org/ accessed on June 8, 2019

10

https://www.torproject.org/

Chapter 3

Related Work

In the past few years, many research has been done in the area of online
tracking. A large number of these studies rely on OpenWPM1, 31 to be
precise2. OpenWPM is an open-source web privacy measurement framework
based on Firefox and Selenium. The studies vary from detecting web trackers
to comparing anti-tracking techniques.

Altaweel, Good, and Hoofnagle (2015) survey online tracking mecha-
nisms used by top 25,000 most popular websites[2]. They use OpenWPM to
simulate browsing behavior. They also performed a Web Privacy Census in
2011 and 2012. One of the results is that cookies are one of the most used
tracking methods. In 2015, they collected twice as many cookies on the
top 100 most popular websites as detected in 2012. Eighty-three percent of
the cookies they found, consist of third party cookies. They also discovered
that Google has the biggest tracking infrastructure based on the top 1000
most popular websites. The infrastructure is so large that the surveillance
of Google only can be compared with the surveillance of an Internet Service
Provider. This shows that trackers can be a major threat to privacy.

A year later, Englehardt and Narayanan (2016) perform a large en de-
tailed measurement of online tracking [8]. Therefore, they use the Alexa
top 1 million websites. The goal was to detect tracking techniques that are
active on each website. They took advantage of OpenWPM and encounter
several new fingerprinting techniques. Besides that, they show that tracking
protection works. Ghostery, for example, seems very effective in blocking
trackers. It reduces the average number of third-parties from 17.7 to 3.3.
This is important for our research because if tracking protection does not
work, comparing privacy plugins is useless.

According to Yu, Macbeth, Modi and Pujol [27] there are two main
anti-tracking techniques. The most common approach is to use a blocklist
of trackers, also called blacklist. Blacklists contain mainly domains and/or

1https://github.com/mozilla/OpenWPM
2https://webtransparency.cs.princeton.edu/webcensus/

11

https://github.com/mozilla/OpenWPM
https://webtransparency.cs.princeton.edu/webcensus/

URLs of third-party trackers. If a third party that is on the blacklist tries to
communicate with the user’s browser, the communication is blocked. This
is usually limited to cookies or the complete HTTP request.

The other anti-tracking technique they mention is the use of an algo-
rithm for identifying trackers. This technique relies on heuristics and is not
dependent on a blacklist. It determines based on behavior whether a domain
is a tracker.

Yu et al. [27] implemented their own algorithmic solution. They decide
which data is safe or unsafe to send to third-parties, rather than identifying
and blocking trackers.

Studies we are also interested in are privacy plugin comparison studies.
Mazel, Garnier, and Fukuda (2017) provide an overview of previous privacy
plugin comparison studies [18]. Between two and seven plugins were used
for these studies [15, 17, 5, 26, 19, 23, 18]. All studies have a unique method
for collecting data. A summary of the methods used by each study is given
below:

• Krishnamurthy et al. [15] use the Firefox Pagestats plugin and a proxy
to collect HTTP request and responses.

• Mayer et al. [17] use FourthParty3 to collect HTTP requests, responses
and cookies. FourthParty is a dynamic web content measuring plat-
form build on Firefox.

• Balebako et al. [5] capture text advertisements on a page with browser
history. Then they compare them with text advertisements captured
without browser history.

• Wills et al. [26] use Firefox in combination with Selenium. They use a
Firefox plugin called HTTP LiveHeaders to collect all HTTP requests.

• Merzdovnik et al. [19] developed a framework called CRAWLIUM.
This framework can run multiple browser configurations in parallel. It
is based on Firefox in combination with Selenium and mitmproxy. It
loads web pages and collects HTTP requests and responses.

• Traverso et al. [23] use Firefox in combination with Selenium and
dump statistics via HAR files. These files contain HTTP tracing in-
formation.

• Mazel et al. [18] use OpenWPM. They collect HTTP requests, the
number of third-party domains, the number of profile cookies, and the
total amount of data transferred.

3http://fourthparty.info/

12

http://fourthparty.info/

Remarkable is that most of these studies collect requests, responses, do-
mains, and cookies. What makes this study unique is that we collect data
from the plugins themselves. We have not seen this in any other study so
far. In comparison to the other studies, our method is much more efficient.
We only have to extract a number from the plugins and do not have to
determine if something is a tracker since the plugin already does that.

Mazel et al. (2017) also provide a table stating which privacy plugin
is used in which study. AdBlock Plus, uBlockOrigin, Ghostery, Privacy
Badger, and Disconnect are commonly used plugins. Boumans also use
them in his bachelor thesis [6]. This thesis was published in early 2017,
and over the past, new techniques and countermeasures are developed. He
compares the plugins based on blocking techniques, user-friendliness, and
data integrity. In comparison to earlier mentioned studies, Boumans did
not measure plugins in practice.

According to Boumans, almost all privacy plugins he looked into in his
thesis, make use of a blacklist. He also mentioned that using an algorithm to
block trackers has more potential. An algorithm does not rely on a blacklist
that has to be updated. Boumans also makes a recommendation. Firefox is
recommended since a commercial party does not own it, has many plugins
and many configuration options.

As for the plugins, Privacy Badger and uBlock Origin are recommended.
He advises to use them together. uBlock Origin will block most trackers
thanks to its blacklists. Privacy Badger’s algorithm can block the remaining
trackers.

13

Chapter 4

Privacy Plugins

This chapter will cover general information about the investigated privacy
plugins. First, we justify our selection of privacy plugins in Section 4.1.
Next, we discuss anti-tracking techniques of privacy plugins in Section 4.2.
This is followed by Section 4.3 where we discuss the methodology. In Section
4.4 we theoretically examine the selected plugins. In the end, we focus briefly
on the Firefox built-in privacy plugin in Section 4.5.

4.1 Justification for selection of plugins

Before we can perform a comparison, we must have a selection of privacy
plugins. There are several options for selecting plugins. An easy way is to
select them randomly or by popularity. However, that is not how we are
going to do it. We have established several criteria that a plugin has to
meet:

• A privacy plugin must be focused on blocking trackers. From Section
2.6 follows that a privacy plugin meets the requirement of privacy by
simply blocking the tracker.

• The plugin has to keep rid of the number of blocked trackers. This
number is the data we use to compare the plugins in practice.

• The plugin has to be available for multiple browsers, but Firefox in
particular. Firefox is used for the practical experiment. Availability
for multiple does not provide restrictions on choosing a browser for the
end-users. They have the freedom to choose a browser they prefer.

We collect the plugins from two places. The first place is Bits of Freedom1.
This is an independent Dutch foundation that stands up for digital civil

1https://toolbox.bitsoffreedom.nl/overzicht/categorie/add-ons/ accessed on
21 November 2018

14

https://toolbox.bitsoffreedom.nl/overzicht/categorie/add-ons/

rights. Bits of Freedom provides a toolbox that contains recommended pri-
vacy plugins. It consists of tracker blockers, container plugins, password
managers, and some other types of privacy plugins. Since we are interested
in blocking trackers, we filter the plugins on blocking trackers. This results
in the following plugins: Privacy Badger, uBlock Origin, Better, Disconnect,
and Ghostery. Better is only available for Safari, so this plugin is excluded.
The other plugins meet all requirements.

The next list we use is from the Firefox add-ons store2. Firefox features
these plugins. We apply the criteria in the same way we do for Bits of Free-
dom. The following plugins will remain: uBlock Origin, Ghostery, Privacy
Badger, Disconnect, and Privacy Possum. Plugins featured by Firefox will
probably change over time, so a tutorial on how they get to this list has
been added to Appendix A.1.

Remarkably, these privacy plugins are often used in comparison studies.
From Chapter 3 follows that AdBlock Plus, uBlock Origin, Ghostery, Pri-
vacy Badger, and Disconnect are commonly used plugins for these studies.
Some of the studies add AdBlock Plus to their set of privacy plugins. In
this research, we do not. The reason for this is that AdBlock Plus is more
known as an AdBlocker rather than a universal blocker. On the other hand,
uBlock Origin is also known as an adblocker, but offers, in comparison to
AdBlock Plus, more protection options against third-party tracking. Be-
sides that, uBlock Origin does not label itself as an AdBlocker but as a
’wide-spectrum’ blocker.

Privacy Possum is not used in other privacy plugin comparison studies
and has no recommendation by Bits of Freedom. Nevertheless, we add it
to the selection of privacy plugins since it should be an improved version of
Privacy Badger. This is due to the fact that an old Privacy Badger developer
has developed the plugin. The ex-developer created his own plugin since it
was not possible to make major changes to Privacy Badger due to its policy.
Therefore, it is worthwhile to compare these two plugins with each other. We
examine Privacy Possum only theoretical since the way of counting blocked
trackers cannot be compared to any other plugin.

Furthermore, all plugins from Table 4.1 are examined in Firefox. In-
stalling a plugin in Firefox is a straightforward action which takes less than
a second; this holds for all plugins in this research. In the next section, com-
mon features and anti-tracking techniques will be discussed. The selected
plugins are listed in Table 4.1.

2https://addons.mozilla.org/en-US/firefox/search/?category=

privacy-security&featured=true&sort=recommended%2Cusers&type=extension ac-
cessed on November 21, 2018

15

https://addons.mozilla.org/en-US/firefox/search/?category=privacy-security&featured=true&sort=recommended%2Cusers&type=extension
https://addons.mozilla.org/en-US/firefox/search/?category=privacy-security&featured=true&sort=recommended%2Cusers&type=extension

Privacy plugins

Ghostery

Privacy Badger

Disconnect

uBlock Origin

Privacy Possum (only theoretical)

Table 4.1: Privacy plugins

4.2 Anti-tracking techniques

How the plugins determine what should be blocked depends on the imple-
mentation of the plugin. The anti-tracking techniques are limited to the pri-
vacy plugins in Table 4.1. During the investigation of the plugins, we came
across three anti-tracking techniques: Blocking trackers with a blacklist,
blocking trackers with an algorithm, and anonymizing personal information
in a request. The first two techniques have already been briefly discussed in
Chapter 3. The last technique is only used by Ghostery. It anonymizes all
personal information in a request. Since it does not block trackers, we do
not further discuss this technique. For clarity, a summary of the two main
anti-tracking techniques is given below:

1. Blocking trackers using a blacklist. A blacklist is a list of third-party
trackers. If a domain or URL occurs on this list, it will be blocked by
the plugin.

2. Blocking trackers using an algorithm. This technique relies on heuris-
tics and is not dependent on a blacklist. It determines based on be-
havior whether a domain is a tracker. So if the plugin determines you
are being tracked, it blocks the domain or URL.

Advantages and disadvantages of these two anti-tracking techniques are dis-
cussed in Chapter 5.

You can determine if something is a tracker on different levels. The
privacy plugins in this study do this at the domain or URL level. Since a
URL provides more detailed information of a specific location than a domain,
blocking trackers on URL level lead to fewer false positives and less site
breakage in comparison with blocking trackers on a domain level. This is
because there is a chance some useful resources cannot be loaded if the
domain is blocked. Blocking on URL level only blocks the resources you do
not want.

16

4.3 Methodology

In Chapter 3, we have become acquainted with some privacy plugin com-
parison studies. Most of them are practical [15, 17, 5, 26, 19, 23, 18]. Only
Boumans study was theoretical [6]. In this thesis, we make both theoreti-
cal and practical comparison, which sets us apart from many other studies.
We can validate our theoretical conclusions by performing experiments with
privacy plugins in practice.

Before we can make a practical comparison in the next chapter, we had
to gather information about the privacy plugins. Section 4.1 announced
which plugins are being investigated, namely: Ghostery, Privacy Badger,
Disconnect, uBlock Origin, and Privacy Possum. These five plugins have
several common features but differ in some aspects. We evaluated the plu-
gins briefly by discussing the following aspects:

• General information: Some noteworthy information, such as who is
the developer and what is the reputation of the plugin. Furthermore,
is the plugin itself a risk for the user?

• Anti-tracking technique: Which anti-tracking techniques are used
by the plugin?

• Openness: Is the source code open source or not?

• Usability: Is the plugin user-friendly, and what are the options/fea-
tures for consumers?

The criteria are applied to privacy plugins in Section 4.4. The actual theo-
retical comparison of the privacy plugins takes place in Chapter 5.

Remark
Boumans had also evaluated a number of these plugins two years ago. This
can result in an overlap of information when plugins were not updated.
However, our information is gathered independently of Boumans, and
we use the latest information. So we do not use his study for gathering
information about privacy plugins. The only purpose is to find differences
between plugins now and two years ago.

4.4 Privacy plugins

We start by discussing Ghostery in Section 4.4.1. This plugin has broader
general information compared to the other third part blockers since Ghostery
has a negative past when it comes to the use of user data. Privacy Badger,
Disconnect, uBlock Origin and Privacy Possum are discussed respectively
in Section 4.4.2, Section 4.4.3, Section 4.4.4 and Section 4.4.5.

17

4.4.1 Ghostery

The information sources for this plugin are the Firefox add-ons store [10]
and the official Ghostery FAQ page [11] both accessed on December 6, 2018.

General information
Ghostery has a remarkable history concerning other privacy plugins. In the
past few years, Ghostery was not as reliable when it comes to the use of user
data [16]. Before privacy-oriented web browser Cliqz in 2017 acquired it,
Ghostery was owned by Evidon and used a skeptical business model. Users
can choose the opt-in program to share their data on tracking technologies
that they encounter. This data then sold to third-parties. Also, Ghostery
was not open source at this time.

After Ghostery has become part of Cliqz3, it seems like they have become
more reliable. In March 2018, Ghostery went open source by posting all
its code on GitHub4. Besides that, Ghostery has moved to the German
jurisdiction, where it must comply with the regulation of the GDPR [9].
The company is now owned and funded by Cliqz and makes no money from
the free extension. Since Ghostery was taken over by Cliqz, it will evaluate
different business models. Ghostery now offers Ghostery Plus, a paid version
of its browser extension. Furthermore, users can still participate in the opt-
in program, but Ghostery claims that it did not share any user data with
other companies, including Evidon.

It seems that Ghostery has made significant changes since the acquisition
in 2017. That they have gone open source shows that they do not want to
hide anything anymore. Unfortunately, the past will not be forgotten, and
it remains the question of whether Ghostery can be trusted entirely.

Anti-tracking technique
As the primary technique, Ghostery makes use of a blacklist, a widely used
technique by privacy plugins. At January 22, 2019, it has a library of over
4500 trackers from over 2600 companies. This library will update contin-
ually. However, the Ghostery blacklist is not open source. It purposely
remains proprietary to Ghostery. Therefore, we can only trust Ghostery on
their word. The trackers are blocked on a URL level. Besides a blacklist,
Ghostery also has a feature called Enhanced Anti-Tracking. This feature
keeps your browser anonymous to protect your privacy. It supplements
Ghostery’s blacklist by anonymizing all personal information in a request.
A tracker may be allowed to execute, but your privacy is still protected.

Openness
As previously discussed, Ghostery has been open source since March 2018.

3https://cliqz.com/en/magazine/press-release-cliqz-acquires-ghostery
4https://github.com/ghostery/ghostery-extension

18

https://cliqz.com/en/magazine/press-release-cliqz-acquires-ghostery
https://github.com/ghostery/ghostery-extension

The code can be found on their GitHub5.

Usability
While using Ghostery, the user can choose between a simple or a detailed
interface. The user can easily switch between the two interfaces. The simple
interface can be found on the left in Figure 4.1. It shows how many trackers
are detected and which of them are blocked. In addition, it also shows which
category the tracker belongs to. From this interface, it is possible to trust
or not trust a website or pause Ghostery for a certain time. The detailed
interface shows the same as the simple interface with the addition that it
also provides information about the trackers. The detailed interface can
be seen on the right of figure 4.1. It is possible to block a specific tracker
from here. When you start Ghostery for the first time, it uses the default
settings. This means that it blocks trackers that match a tracker from the
blacklist, allows trackers created by site owners (first party trackers) and
blocked a Ghostery icon will replace social media buttons. These are the
defaults settings and are easy to modify in the Ghostery menu. You can
also indicate which notifications you want to get, add trackers by your own
and much more.

Figure 4.1: Ghostery interface

4.4.2 Privacy Badger

The information source for this addon is the official Privacy Badger FAQ
page [4] accessed on January 30, 2019.

5https://github.com/ghostery

19

https://github.com/ghostery

General information
Privacy Badger is developed by the Electronic Frontier Foundation (EFF).
The EFF is an American non-profit foundation that deals with civil rights
in cyberspace, like self-determination rights of internet users and freedom
of expression. Privacy Badger also does not have a business model, which
some other plugins have. For this reason, Privacy Badger seems a reliable
plugin when it comes to the privacy of the user.

Anti-tracking technique
In contrast with Ghostery, Privacy Badger is algorithm-based and blocks
trackers on the domain level. This means that Privacy Badger uses an algo-
rithm to determine when to block a domain. Even though Privacy Badger
does not use a blacklist, it does use a yellowlist. A yellowlist contains web-
sites that are known for providing essential third party resources6. Instead
of the entire website, only cookies are blocked from these websites. Pri-
vacy Badger shows such websites with a yellow slider in Figure 4.2. Their
yellowlist contain 645 domains7. It is the intention that in the long term,
the yellowlist will disappear if the parties on the list respect Do Not Track
signal.

Openness
Privacy Badger has always been open source. The code can be found on
GitHub8.

Usability
When you start Privacy Badger for the first time, it uses the default settings.
This means it replaces social widgets, send websites a ”Do Not Track” signal
and check if third-party domains comply with EFF’s Do Not Track policy9.
Privacy Badger has a straightforward interface where you can easily adjust
the sliders to allow a domain, block a domain, or only block the cookies of a
domain (see Figure 4.2). Privacy Badger also has some useful options, such
as providing access to the detected tracking domains and filter them. You
also have the option to add domains. Altogether Privacy Badger provides a
very suitable plugin for all kinds of users.

6https://github.com/EFForg/privacybadger/blob/master/doc/

yellowlist-criteria.md
7https://github.com/EFForg/privacybadger/blob/08b61e85e5c361fe8b535ec9e33950431e28632a/

src/data/yellowlist.txt accessed on January 23, 2019
8https://github.com/EFForg/privacybadger
9https://www.eff.org/dnt-policy

20

https://github.com/EFForg/privacybadger/blob/master/doc/yellowlist-criteria.md
https://github.com/EFForg/privacybadger/blob/master/doc/yellowlist-criteria.md
https://github.com/EFForg/privacybadger/blob/08b61e85e5c361fe8b535ec9e33950431e28632a/src/data/yellowlist.txt
https://github.com/EFForg/privacybadger/blob/08b61e85e5c361fe8b535ec9e33950431e28632a/src/data/yellowlist.txt
https://github.com/EFForg/privacybadger
https://www.eff.org/dnt-policy

Figure 4.2: Privacy Badger interface

4.4.3 Disconnect

The information source for this addon is the Disconnect website[7] and their
GitHub page10 accessed on January 30, 2019.

General information
Disconnect was founded in 2011 by Brian Kennish and Casey Oppenheim11.
Kennish is a former Google and DoubleClick engineer. DoubleClick is a
company that developed and provided internet ad serving services. Oppen-
heim is a consumer- and privacy-rights advocate and attorney. Together
they form a solid mix of technology and rights. Disconnect uses a business
model by selling paid versions of their application.

Anti-tracking technique
Disconnect makes use of several blacklists12. The open source list can be

10https://github.com/disconnectme/disconnect
11https://www.crunchbase.com/organization/disconnect#section-overview
12https://disconnect.me/trackerprotection

21

https://github.com/disconnectme/disconnect
https://www.crunchbase.com/organization/disconnect#section-overview
https://disconnect.me/trackerprotection

found on their GitHub13 and is also used by Firefox and many other popular
privacy tools. Currently, it contains 1183 domains. Another open source
list14 contains 2568 domains. Together they contain 3194 unique domains.
It is not known whether Disconnect uses even more blacklists. Disconnect
does not block parties that deliver content by default. This is because these
parties may track you, but blocking can lead to break pages. Disconnect
blocks trackers on the domain level.

Openness
Disconnect is open source and the code can be found on their GitHub page
15.

Usability
Disconnect uses a clear interface. The main interface is shown on the left
in Figure 4.3. For a clear overview of the meaning of the buttons of the
Disconnect interface, it is recommended to check out the help page16. The
help page briefly explains every piece of the interface. In short, Disconnect
shows in the upper right corner, the total number of tracking requests on
the current visiting page. Furthermore, it shows the number of tracking
requests per company. Facebook, Google, and Twitter are separately shown
so they can easily be blocked and unblocked. Green means blocked, and
grey means unblocked. There is an option to graph the request on the
page you are visiting, an example on the right in Figure 4.3. During the
use of Disconnect, we hardly experienced any delays in loading a website.
Disconnect feels very fast and has a simple, straightforward interface which
makes it ideal for all types of users.

13https://github.com/disconnectme/disconnect-tracking-protection accessed
on January 23, 2019

14https://disconnect.me/trackerprotection/blocked used by Disconnect accessed
on January 23, 2019

15https://github.com/disconnectme/disconnect
16https://disconnect.me/disconnect/help

22

https://github.com/disconnectme/disconnect-tracking-protection
https://disconnect.me/trackerprotection/blocked
https://github.com/disconnectme/disconnect
https://disconnect.me/disconnect/help

Figure 4.3: Disconnect interface

4.4.4 uBlock Origin

The information source for this addon is the official uBlock Origin GitHub
page [24] accessed on May 2, 2019.

General information
uBlock Origin was founded in 2014 by Raymond Hill. The project started as
uBlock. However, since Chris Aljoudi forked it in 2015, founder Raymond
Hill decided to go further under the name uBlock Origin. uBlock Origin is
entirely free and is not looking for donations. It does not have a business
model and clearly states that this plugin is nothing without the lists of
filters. They appreciate the people who contribute to the filter lists.

The plugin does not see itself as an adblocker, but as a ’wide-spectrum’
blocker. It enables EasyList, Peter Lowe’s Adservers, EasyPrivacy and Mal-
ware domains by default. uBlock Origin tries to distinguish itself in terms
of memory usage and speed. We do not test this.

Anti-tracking technique
uBlock Origin makes use of several blacklists. This includes the lists men-
tioned above. uBlock Origin also provides their own lists. These contribute
to the protection of privacy, resource abuse, and malicious actions. On June
5, 2019, the default lists contain together 99.950 network filters and 47.009
cosmetic filters (element hiding). The lists are updated very regularly, which

23

is important since uBlock Origin is almost entirely dependent on the lists.
It does not use an algorithm for blocking trackers. uBlock Origin blocks
trackers on the URL level.

Openness
uBlock Origin is open source. The code can be found on GitHub17.

Usability
After installing uBlock Origin, you are protected by the default settings right
away. The interface contains a prominent I/O symbol (power symbol) which
the plugin can be switched on and off. Furthermore, uBlock Origin shows
how many requests are blocked and how many domains are connected. By
clicking on them, a screen is opened which contain all the current domains.
A very detailed description of uBlock Origins interface can be found on their
GitHub page18.

uBlock Origin offers many options. It is possible to enable a color-blind
friendly mode for people with colorblindness. Besides, there are several
options to block different types of media on websites. Most important is
that you can easily add new filter lists to uBlock Origin. Alternatively,
disable lists.

Although we have not tested uBlock Origin for speed and memory usage,
it still feels very smooth to use. uBlock Origin looks very simple but offers
many options, and has a straightforward interface. It is ideal for all types
of users, whether it comes to computer amateurs or experts.

17https://github.com/gorhill/uBlock
18https://github.com/gorhill/uBlock/wiki/Quick-guide:

-popup-user-interface

24

https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock/wiki/Quick-guide:-popup-user-interface
https://github.com/gorhill/uBlock/wiki/Quick-guide:-popup-user-interface

Figure 4.4: uBlock Origin interface

4.4.5 Privacy Possum

The information for this plugin comes from the official GitHub [21] page
visited on December 4, 2018.

General information
Privacy Possum was developed by Blake Griffith, one of the developers of
Privacy Badger. Since adding new features was difficult with the current
architecture of Privacy Badger, Griffith decides to develop his own privacy
plugin. Privacy Possum clearly states in its privacy policy that it does not
collect or send data to any server.

What makes Privacy Possum unique compared to the other privacy plu-
gins is that it does not have a threat model. Privacy Possum looks at
the tracking problem from an economic perspective. Instead of wondering
whether a tracking company can circumvent an anti-tracking measure, they
decide how much money it would cost for a company to implement this. If
the costs are higher then the effects, a company may pay no attention to it.

Anti-tracking technique
Privacy Possum is algorithm-based, just like Privacy Badger. Currently, it
blocks the following tracking techniques:

25

• Browser Fingerprinting

• Cookie Tracking

• Etag Tracking

• Referer headers

Openness
Privacy Possum is open source. The code can be found on GitHub19.

Usability
Once installed, Privacy Possum immediately starts with blocking trackers.
Figure 4.5 shows what the interface looks like. As you can see, the interface is
very straightforward and shows which sorts of tracking are blocked and how
many of them. Unfortunately, it does not display the sources of the tracking
headers. On the other hand, the source of the browser fingerprinting script
is displayed. There is also no possibility to set additional options. Besides
that, Privacy Possum is a plugin that is easy to use. The only things you can
do are enable or disable the plugin and show or not show blocked tracking
in the interface. Typically, a plugin for the non-demanding user.

Figure 4.5: Privacy Possum interface

4.5 Firefox Content Blocking

Firefox has its built-in anti-tracking tool. In older versions of Firefox, this
feature was called Tracking Protection. Since Firefox 63, Tracking Protec-
tion becomes part of a new set of features called Content Blocking [1]. It

19https://github.com/cowlicks/privacypossum

26

https://github.com/cowlicks/privacypossum

offers the same tracking protection but gives the user more options what
they want to block.

Firefox Content Blocking is blacklist-based, and you can choose which
blacklist Firefox uses to block trackers. There are two options you can choose
from, namely basic protection and strict protection. Basic protection allows
some trackers so websites function properly while strict protection blocks all
known trackers, which may cause in websites function not correctly. What is
remarkable is that Disconnect [14] supplies both lists. Therefore we would
expect the results of Disconnect to match the results of Firefox Content
Blocking.

Firefox Content Blocking contains three modes: Standard, Strict, and
Custom. Standard blocks third-party tracking cookies in every window, but
known trackers only in Private Windows. Strict blocks all trackers Firefox
detects. The custom mode gives you the possibility to decide what Firefox
should block. Firefox Content Blocking gives you also the possibility to send
a ”Do Not Track” signal to websites. This tells websites that you do not
want them to track your browsing behavior.

When Firefox is blocking a tracker, it shows a shield icon. The user can
click on this icon, after which Firefox shows what is blocked. Figure 4.6
shows an example of Firefox Content Blocking interface.

Figure 4.6: Firefox Content Blocking interface

27

Chapter 5

Theoretical comparison of
privacy plugins

Now we have discussed different privacy plugins; it is time to compare them.
It is important to keep in mind that most information from Section 4.4 comes
from the plugins itself, so we have no evidence if their claims are valid.
Boumans also provided a theoretical comparison between privacy plugins in
his thesis [6] and came to some same advantages and disadvantages of black-
lists and algorithms. However, this comparison was made independently of
Boumans information. An overview of properties for each plugin is given in
Table 5.1.

Ghostery Privacy Badger Disconnect uBlock Origin Privacy Possum Firefox Content Blocking

Uses a blacklist Yes No, but uses a Yellowlist Yes Yes No Yes

Uses an algorithm Yes Yes No No Yes No

Open source Yes Yes Yes Yes Yes Yes

Collects user data No No No No No No

Recommended by BOF Yes Yes Yes Yes No N/A

Block level URLs Domains Domains URLs Domains Domains

Business model Sells plus version / funded by Cliqz Non-profit Sells premium version Non-profit Non-profit Non-profit

Options offered Many Many Some Many Few Some

Firefox users (June 10, 2019) 1.160.504 535.427 176.400 4.664.435 95.895 N/A

Table 5.1: Overview of plugin properties

5.1 Blacklist vs. Algorithm

In Section 4.2, it becomes clear that blacklist-based and algorithm-based are
the two main anti-tracking techniques used by privacy plugins. Blacklist-
based plugins use a list of third-party trackers. If a domain or URL occurs on
this list, it will be blocked. Algorithm-based plugins determine on behavior
whether a domain/URL is a tracker.

Both have their advantages and disadvantages [27]. A drawback of the
use of a blacklist is that it must always keep up-to-date, while an algorithm
can recognize a new tracker by its behavior. A blacklist can also contain
false positives since it operates most of the time on the domain level. This
means that it blocks possibly more than necessary. The classification of a

28

tracker by a blacklist is often not accurate enough. Another side effect is
that blocking false positives rather leads to website breaks, which does not
benefit the functionality of a website.

An advantage of blacklist-based over algorithm-based blocking is that
a blacklist is more consistent in contrast to algorithm-based. When the
behavior of a tracker is modified to bypass the security, it is possible that
an algorithm-based plugin no longer sees the tracker as a threat, while a
blacklist-based plugin will block the tracker as long as it occurs on the
blacklist. However, if a tracking party decides to change their URLs or
domains, the blacklist will possibly miss these trackers while an algorithm-
based blocker would possibly detect these trackers. So it is not quite an
advantage.

Besides, it is also the question of how to determine whether a tracker
should include in a blacklist. Trackers can now have a mixed tracking behav-
ior which makes it even more difficult classify the tracker [27]. This means
that at one time a tracker behaves like a tracker and the other time it does
not. An algorithm-based is possible in the advantage because it checks the
behavior of a tracker each time.

Algorithm-based plugins also have a disadvantage. In the past, it turns
out that the approach of Privacy Badger leads in practice to a significant
amount of website breakage [12, 14, 22].

Taking every advantage and disadvantage into account, an algorithm-
based plugin seems to perform better in theory, because it does not depend
on a blacklist that needs to be kept up-to-date. In addition, it probably
leads to fewer false positives since it determines on the behavior of a tracker,
whether it should be blocked or not.

However, a combination of blacklists and an algorithm that complement
each other would seem an ideal setup. This combines the best of both worlds.

5.2 Ghostery, Disconnect and uBlock Origin

It is obvious to compare Ghostery, Disconnect, and uBlock since all use a
blacklist. The easiest way to do this is to compare the blacklists. Unfortu-
nately, Ghostery did not make its blacklist public. Ghostery claims it has
a library of over 4500 trackers, while Disconnect has a list of 3194 trackers
currently. If we have to believe Ghostery, then it offers protection against
more trackers than Disconnect. It is possible to reconstruct the Ghostery
blacklist. However, this costs much work and could, therefore, better be
covered by future work.

We must treat uBlock Origin differently. This plugin uses (besides their
own blacklists) blacklists supplied by third parties. It is therefore not fair to
compare this with Ghostery and Disconnect. The EasyPrivacy list is such
a list and currently contains 17,177 trackers. So uBlock Origin has larger

29

blacklists than the other two plugins, but are not created by uBlock Origin.
Moreover, these lists can also be used by several other privacy plugins.

Ghostery and Disconnect have both invented techniques to prevent site
breaks. Ghostery has a feature called ’Smart Blocking’ which automati-
cally block trackers that slow down webpages and unblock trackers if they
are breaking the functionality of the website. According to Section 4.4.3,
Disconnect does not block parties that deliver content by default. uBlock
Origin takes a different approach. It offers an option that disables cosmetic
filtering.

Bits of Freedom recommends all three plugins. Ghostery has in the past
been negative in the news due to their handling of user data. Now, Ghostery
offering a paid version of the plugin and is funded by Cliqz. Disconnect is
financed by offering paid versions of the plugin. It says that it does not
collect user data or sell it to third parties. uBlock Origin has no business
model.

Which plugin performs better in theory? That is difficult to say without
performance results. Ghostery, Disconnect, and uBlock Origin all provide
a well-organized interface. Ghostery and uBlock Origin offer more options
to the user. The plugins also use methods to prevent site breaks, are open
source, and it seems that they respect the privacy of the user. If we then
purely look at the largest tracker database then uBlock Origin is, in the-
ory, the better plugin of the three. However, Ghostery implemented an
algorithm to supplement their blacklist by anonymizing all personal data in
a request from a tracker. So Ghostery is a combination of blacklist-based
and algorithm-based, which also has its advantages. As a remark, Ghostery
uses the blacklist as the primary blocking mechanism supplemented by an
algorithm to block trackers that slip through. This can still result in false
positives due to the blacklist.

5.3 Privacy Badger vs. Privacy Possum

Privacy Possum is developed because adding new privacy protections was
difficult with the current architecture of Privacy Badger. An example of this
is fingerprinting. When Privacy Badger detects fingerprinting, it blocks the
domain instead of the URL. Everything from that domain is now blocked,
which can lead to site breakage. Privacy Badger knows this and therefore
adds the domain to the yellowlist. The problem is that this only prevents
cookies from being sent to the domain, so the fingerprinting script is not
blocked1.

A big difference between these two plugins is the interface. While Pri-
vacy Badger offers the user many options, Privacy Possum offers almost no
options. For the non-demanding user, this is probably not a problem, but

1https://github.com/cowlicks/privacypossum page visited on December 4, 2018.

30

https://github.com/cowlicks/privacypossum

it is in our eyes a loss. Privacy Badger shows which trackers are blocked,
while Privacy Possum only shows how many sources they have blocked.

Bits of Freedom recommends privacy Badger, but Privacy Possum not.
Privacy Badger is founded by the EFF, which has the purpose of protecting
the digital rights of the people on the internet.

If we have to decide between these two plugins, we choose for Privacy
Badger. Privacy Badger has more extensive interface compared to Privacy
Possum. Besides, it is developed by the EFF that has a good reputation.
Eventually, practical tests will have to show which plugin performs better
in practice.

5.4 Changes in the last two years

As we mentioned earlier, we use Boumans [6] to find differences between plu-
gins now and two years ago. We start with Ghostery who went from closed
source to open source in March 2018. It also blocks now trackers by default.
Two years ago, this needed a configuration step. Besides that, Ghostery
has implemented several new features2. They use a feature called ’Smart
Blocking’ which automatically blocks trackers that slow down webpages and
unblock trackers if they are breaking the functionality of the website. Fur-
thermore, they have also features called Enhanced Ad Blocking and En-
hanced Anti-Tracking. Enhanced Ad Blocking blocks ads while Enhanced
Anti-Tracking keeps your browser anonymous to protect your privacy. It
supplements Ghostery’s blacklist by anonymizing all personal information
in a request. A tracker may be allowed to execute, but your privacy is still
protected.

Privacy Badger did not implement any significant changes in the last
two years. Apart from the growth of the blacklists, Disconnect and uBlock
Origin also have not made any major changes.

Firefox Tracking Protection turns into Firefox Content Blocking. Whereas
it was only possible to use tracking protection in private browsing two years
ago, it is now always possible. It also offers more options, such as standard,
strict, and custom protection.

2https://www.ghostery.com/faqs/what-are-the-new-ghostery-8-features/

31

Chapter 6

Experimental comparison of
privacy plugins

In Chapter 4 we made a comparison of privacy plugins based on theory.
In this chapter, we make an experimental comparison of privacy plugins to
validate our findings. The purpose of this research is to figure out which plu-
gin blocks most trackers using default settings. We do this on a large scale
of 25,000 websites. The privacy plugin that blocks most trackers without
harming the functionality of the websites contributes the most to privacy.
We also try to answer the question of whether a third party blocker is needed
or if a good Firefox privacy configuration is sufficient enough. Therefore we
compare the selected privacy plugins with two configurations of Firefox Con-
tent Blocking. These configurations, together with the plugins, are listed in
Table 6.1.

First, we discuss the methodology in Section 6.1. After this, the details
of our implementation are discussed in Section 6.2. After that, we explain
the research setup in Section 6.3. The analysis and the results are discussed
in Section 6.4.

1 Ghostery

2 Privacy Badger

3 Disconnect

4 uBlockOrigin

5 Firefox standard mode

6 Firefox strict mode

7 No tracking protection

Table 6.1: Privacy plugins and Firefox Content Blocking configurations

32

6.1 Methodology

We are doing experimental research since we want to figure out how privacy
plugins and Firefox Content Blocking configurations of Table 6.1 perform in
practice. We use 25,000 websites to experiment. The idea is to visit 25,000
websites and log the number of blocked trackers by a plugin to the browser
console so that we can collect the data. The measurement is based on the
number of trackers that a plugin blocks on a website. We assume a privacy
plugin offers more privacy when it blocks more trackers. The research took
place in April and May 2019. The entire data collection took approximately
1.5 months.

Every plugin is tested with default settings. The reason for this is that
we want to simulate the experience of the end user as similar as possible.
Therefore, we assume that most users of a privacy plugin do not make any
changes to the settings.

Alexa Top 1 Million
We use the Alexa Top 1 Million in all of our measurements. Alexa1 is an
amazon.com company, which ranks sites. According to Alexa itself, the
ranking is based on their global traffic panel (millions of people who use
Alexa products, such as the Alexa toolbar2) and traffic data from direct
sources. These direct sources run Alexa script and therefore can easily
exchange traffic data directly with Alexa.

We downloaded the Alexa Top 1 Million once, on March 29, 20193. By
downloading the list once and not updating, we know for sure that every
measurement uses the same websites. The list comes in CSV-format, which
means comma-separated values and is easy to implement. In this study, we
do not use all 1 million sites. Therefore we truncate the list to the desired
format. In our case, we select the top 15,000 sites and a random selection
of 10,000 sites from the Alexa Top 1 Million minus the top 15,000 sites.
Ten thousand websites were randomly chosen to investigate whether there
is a difference between the number of trackers on the most popular and less
popular websites.

Remarks
Privacy Badger and Ghostery define blocked domains as the trackers, while
Disconnect and uBlock Origin define blocked requests as the trackers. Un-
fortunately, we were unable to change the code of Disconnect and uBlock
Origin so that we could log the number of blocked domains to the browser
console without breaking the plugin. The result of this is that we cannot

1https://www.alexa.com/
2https://www.alexa.com/toolbar
3http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

33

https://www.alexa.com/toolbar
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

directly compare these two groups of plugins. As a solution, we investigate
how many requests a third party domain sends on average. We do this by
running a proxy when visiting the 25,000 websites with no tracking protec-
tion and collect all the requests. Then we look at how many third-party
domains we can extract from this.

We assume all domains other than the host domain are third-party do-
mains, but not necessarily third-party trackers. Every unique domain is
managed by an administrative authority. However, the same administrative
authority can manage multiple domains. This is not uncommon, take, for ex-
ample, Facebook. Facebook manage multiple domains like: facebook.com,
fbcdn.com, fbsbx.com, and many more. We only exclude facebook.com

from our third-party domain list when visiting facebook.com. Although it
is quite possible that other domains of Facebook provide additional non-
tracking services to the user (e.g. static content).

We could reduce our list of gathered third-party domains by using Mozilla’s
Public Suffix List4 and blacklists like EasyList. However, in this study, we
do not determine for ourselves whether a domain is a tracker but assume
that a domain is a tracker if a privacy plugin blocks it.

When visiting the websites, we have almost no interaction. In fact, we
only visit the homepage. A real user might log in, scroll down or click on
some links during their visit. This is something to keep in mind. We stay on
the homepage until the 10 seconds timeout is reached. 10 seconds is more
than enough time for a website to fully load. Also, the time interval gives
enough time for plugins to collect necessary tracker data. Some websites
load infinitely long and will, therefore, be interrupted after 10 seconds to
ensure a good flow of the program.

In the next paragraph, we discuss the instruments we use and explain
why we use them.

Instruments
We mentioned earlier that we do not determine if a domain is a tracker or
not. Instead, if a privacy plugin blocks a domain, we assume the domain
is a tracker. Luckily almost every privacy plugin we investigated, keeps rid
of the number of trackers they block. Usually, they display the number of
blocked trackers on their plugin icon at the browser menu. So we need a way
to extract this number from the privacy plugins. The most obvious solution
would be logging the number of blocked trackers to the browser console. To
establish this, we modify the source code of the plugins. How we are doing
this is explained in Section 6.2.1.

Visiting 25,000 websites can be done in multiple ways. Of course, we
do not want to do it manually, so we rely on a script. A script makes this
experiment scalable since we can easily adjust the number of websites. Using

4https://publicsuffix.org/

34

https://publicsuffix.org/

many websites promotes the reliability of the results because false positives
can be compensated. There are roughly three methods we can choose. The
first method is by injecting JavaScript code directly in the Firefox browser
console. This opens a URL in a new window. After x seconds it closes the
window and opens the following URL in a new window. It is by far the
easiest method since it is easy to implement and requires less programming.
However, this method has also some drawbacks. Due to safety reasons, it
is not possible to read files on your local machine from the browser console.
Therefore, you have to hard code a list of 25,000 URLs. This is not a
convenient way. Besides that, if the browser for some reason shuts down, we
lose all gathered browser logs. Firefox also is not very stable when we make
use of time intervals. An example of how the code would look like can be
found in Appendix B.4.

A more convenient method is to make use of Firefox in combination with
Selenium5. Selenium is a browser automation tool. It offers APIs for a se-
lection of popular programming languages including Java and Python. The
idea is basically the same a the previous method, but now we let Selenium
open and close windows. Advantages are that Selenium is more stable than
executing JavaScript directly from the browser console. It also lets you pro-
gram in a language you prefer. Besides that, we can read local files like
we normally do by using a specific programming language. But most im-
portant, Selenium can run Firefox in headless mode. This is more efficient
compared to Firefox with a head. Therefore, this would be a better method
concerning the first method.

A tool we mentioned earlier (Chapter 3) is OpenWPM. This is a web
privacy measurement framework and is used in many privacy studies to
collect data6. It is built on top of Firefox in combination with Selenium.
OpenWPM contains many instruments for data collection. However, the
only data we want to collect is the data produced by plugins. Unfortunately,
OpenWPM offers no instrument for this.

Since we do not need all the extra options offered by OpenWPM, we
choose the second method. This means we build our program based on
Selenium. Everything we need can be implemented in a couple of lines of
Python code. Some details about the script are explained in Section 6.2.2.

6.2 Implementation

There are several steps that we must implement before we can experiment.
We have to modify the plugins, write a script that visits websites and
write a geckodriver log parser. In the following sections, we discuss the
implementation of the various components of this experiment.

5https://www.seleniumhq.org/
6https://webtransparency.cs.princeton.edu/webcensus/

35

https://www.seleniumhq.org/
https://webtransparency.cs.princeton.edu/webcensus/

6.2.1 Modifying plugins

First, we describe how we modify the plugins. The plugins can be down-
loaded from the official Firefox Add-ons page7. After we download a plugin,
it is stored in the Firefox profile directory on your computer. The storage
location can easily be found by typing in the following string in the Firefox
search bar: about:support. The extension is saved as an XPI file, which
is a ZIP file used by Mozilla applications. It contains an install script or
manifest at the root of the file8. We can extract this file by simply renaming
XPI to ZIP. Firefox plugins have their own structure9. To keep it brief, we
only mention the files we had to modify.

Every Firefox plugin must contain a manifest.json file. It contains im-
portant information about the name, version, permissions, and files. When
Firefox installs a plugin, it expects some ’id’ belonging to the plugin. The ex-
pected ’id’ can be found in the browser console as an error when trying to in-
stall a modified plugin. This ’id’ must match the ’id’ in the manifest.json.
Therefore, we have to change the ’id’ in manifest.json, to the ’id’ Fire-
fox expects. If we do not, Firefox will regard the plugin as corrupt, and it
will not be usable. Below you can find an example of what manifest.json
should look like for Disconnect:

1 "browser_specific_settings" : {
2 "gecko" : {
3 "id" : "Disconnect@5 .18.27" ,
4 "strict_min_version" : "42.0"

5 }
6 } ,

Background scripts are another type of files we modify to be able to log data
from the plugin to the browser console. These scripts are loaded after the
plugin is loaded and stay loaded. The plugins we investigate contain mostly
one background script which is often called background.js. This file should
provide a function where the number of blocked trackers are count. If we
found the right variable, we log it to the console by adding the following
JavaScript code:

conso l e . l og ("BBBB: [" + va r i ab l e + "]") ;

We use BBBB as an identifier so we can easily parse the log file and only
collect the data we need. Sometimes it is hard to find the right variable,
which is representing the number of blocked trackers. Therefore, for every
plugin we investigate in this research, we add the location where to add the
above JavaScript code. Now, we compress all files to a ZIP file. Rename
ZIP to XPI, and the plugin is ready to use.

7https://addons.mozilla.org/en-US/firefox/
8https://developer.mozilla.org/en-US/docs/Archive/Mozilla/XPInstall
9https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/

Anatomy_of_a_WebExtension

36

https://addons.mozilla.org/en-US/firefox/
https://developer.mozilla.org/en-US/docs/Archive/Mozilla/XPInstall
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Anatomy_of_a_WebExtension
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Anatomy_of_a_WebExtension

6.2.2 Python scripts

The idea of this experiment is to visit 25,000 websites while the plugins log
the number of blocked trackers to the browser log. Therefore, we need a
script that visits the websites and a script that parses the browser log. We
start by discussing the script that visits the websites, our main script. The
full code is documented and can be found in Appendix B.1. We only discuss
some important decision in the next paragraph.

Main script
The main script starts with reading the CSV file. This file contains all
the websites that will be used. Reading in a CSV file is a small step and
therefore not special enough to discuss further here. A more interesting part
is configuring Firefox. The first thing we do is creating a new Firefox profile.

p r o f i l e = webdriver . F i r e f o xP r o f i l e ()

Next, we add an plugin (extension) to the profile. This plugin will automat-
ically be installed and enabled.

p r o f i l e . add extens ion (ex tens i on)

We also need to make some changes to the Firefox settings. This can be done
by the set preference method. The first thing we change is routing every
console API call to stdout. The output will end up in the geckodriver.log
file.

p r o f i l e . s e t p r e f e r e n c e ("devtools.console.stdout.content" , True)

Firefox tracking protection needs to be disabled to make sure that the pri-
vacy plugins block trackers instead of Firefox itself.

p r o f i l e . s e t p r e f e r e n c e ("privacy.trackingprotection.pbmode.
enabled" , Fa l se)

We also have to disable private browsing mode. Otherwise, the plugin will
not work.

p r o f i l e . s e t p r e f e r e n c e ("network.cookie.cookieBehavior" , 0)

cookieBehavior is set to 0, this means that Firefox will not block any
cookies. Now its time to create the webdriver with the desired preferences.

d r i v e r = webdriver . F i r e f ox (p r o f i l e)

Proxy
We have already said that we test not only plugins but also Firefox configu-

rations. Unfortunately, it is not possible to use the same script for this. This
is because the Firefox Content Blocking is built into Firefox. Since it is not
possible to log the number of blocked trackers by Firefox Content Blocking,
we need a different method to measure. Therefore, we use a proxy server

37

to collect requests from websites. BrowserMob proxy10 is a proxy based on
Selenium. This is ideal for us because we already use Selenium to automate
the browser. With the BrowserMob proxy, it is possible to monitor traffic
and therefore collects all requests that are made for loading a specific web-
site. We also use this method for creating a baseline of third-party requests
and domains by using Firefox with no tracking protection. The code is very
similar to the main script. The difference lies in the way we collect the
data. The script can be found in Appendix B.2.

Geckodriver log parser
When we run our main script, the gecko driver produces a log file. Listing
6.1 shows a part of the log file.

JavaScr ipt e r r o r : chrome :// browser / content / parent / ext−browser . j s
, l i n e 655 : TypeError : browser . ownerGlobal i s nu l l

c on so l e . l og : ”UUUU: [e v e r i s . com]”
conso l e . l og : ”BBBB: [0] ”
JavaScr ipt warning : https : //www. e v e r i s . com/ s3 f s−j s / j s /

js UxzRxogeeGHS7uzD6S−L4x1T1KcJmuHLcTjPSADLrxM . j s , l i n e 2 :
Using //@ to i nd i c a t e sourceMappingURL pragmas i s deprecated .
Use //# ins t ead

conso l e . l og : ”BBBB: [1] ”
conso l e . l og : ”BBBB: [2] ”
conso l e . l og : ”UUUU: [p h i l l i p j e f f r i e s . com]”
conso l e . l og : ”BBBB: [0] ”
conso l e . l og : ”BBBB: [1] ”
conso l e . l og : ” f on t s loaded ! ”
conso l e . l og : ”BBBB: [2] ”
conso l e . l og : ”UUUU: [f aber spa . com]”
conso l e . l og : ”BBBB: [0] ”
conso l e . l og : ”BBBB: [2] ”
conso l e . l og : ”BBBB: [2] ”
conso l e . l og : ”BBBB: [3] ”
conso l e . l og : ”BBBB: [4] ”

Listing 6.1: Part of Gecko driver log file

Since the Gecko driver log contains more than just log information from
the privacy plugin, it is necessary to filter out only the information that
we need. We do this on the basis of identifier ’UUUU:’ and ’BBBB:’. The
line that contains ’UUUU:’ provides the current URL, while the line with
’BBBB:’ in it, provides the number of blocked trackers for the current URL.
We store the maximum number of blocked trackers. As soon as the parser
encounters a new line with ’UUUU:’, the combination of the previous URL
with the corresponding number of blocked trackers is saved, and the max
blocked counter is reset to 0. The script can be found in Appendix B.3.

10https://bmp.lightbody.net/

38

https://bmp.lightbody.net/

6.3 Setup

We only need a few things for this experiment. First, we need a computer
that can run for a long time. Preferably a Linux server. We used Ubuntu
18.04 LTS on an BladeVPS PureSSD X4 from Transip11. The VPS makes
use of 2 Intel Xeon CPU’s and has 4GB ram. This is enough to run the
program serially, but not in parallel. Furthermore, we use the latest version
of Firefox. As the time of writing, version 67.0 (64-bit) is the latest version.
Besides, we use Selenium 3.14.0 with Python bindings, Gecko driver 0.24.0,
and browsermob-proxy 2.1.4. Selenium requires geckodriver12 to interface
with Firefox. Every plugins runs with default settings.

Execution
The experiment is easy to implement. For the plugins, we use the script in
Appendix B.1 The only thing we have to change is the path to the location
of the edited plugin.

For the Firefox Content Blocking configurations and measuring the total
number of third-party requests, we use the script in Appendix B.2. Here we
only need to adjust the Firefox settings to the desired result.

The 25000 websites can be visited in one go for each plugin/Firefox
configuration. We have to merge the top 15000 sites with 10000 random
sites to one CSV file. In the end, we run the gecko driver log parser over
the gecko driver log file to get the desired results.

Error handling
Different types of errors may occur while running the program. By adjusting
the python program, we try to catch as many errors as possible. Unfortu-
nately, there are some issues for which this is not possible. Therefore, we
discuss several main problems and explain how to solve them.

One problem is that it is possible for the program to terminate randomly.
In that case, we check how websites the program has visited and restart it
from where it left off.

Another problem has to do with the system on which the program runs.
If there is not enough memory available, the program may terminate. To
prevent this, the program restarts automatically after every 500 websites.
Depending on the system on which the program runs, the restart value can
be adjusted down or up. In practice, it appeared that restarting after 500
websites have a positive effect on the stability of the program.

The biggest problem is that some sites ensure that the program ends up
in an infinite loop. Of the 25,000 sites that we have used, two have caused

11https://www.transip.nl/
12https://github.com/mozilla/geckodriver/releases

39

https://www.transip.nl/
https://github.com/mozilla/geckodriver/releases

this. The only solution is to exclude these websites and replace them with
other websites.

6.4 Results

Before we go to the results, we want to emphasize again that
the data from the privacy plugins and Firefox Content Blocking
were not obtained in the same way. The privacy plugins provide
the number of blocked requests/domains themselves. For Firefox
Content Blocking, we use a proxy server. A direct comparison
between these two groups is therefore not entirely fair.

Blocking

Figure 6.1: Number of blocked domains over 25,000 websites

We do not directly compare Privacy Badger and Ghostery with Discon-
nect and uBlock Origin, since the first group counts domains, while the
other count’s requests. Therefore we have separated them into two differ-
ent graphs. Figure 6.1 shows the number of domains blocked over 25,000
websites. The red line represents the third-party domains collected with the
proxy server (with no tracking protection).

Firefox strict protection performs best, followed by Privacy Badger and
Ghostery. The difference between these last two plugins is minimal. Firefox
standard protection blocks almost no tracking domains.

40

Remarkable is that many third-party domains have been found. About
a half or less are considered as trackers by the plugins. On average, 35.7%
of third-party domains are considered as trackers.

Figure 6.2: Number of blocked requests over 25,000 websites

Figure 6.2 shows the number of blocked request over 25,000 websites.
The red line represents the third-party requests collected with the proxy
server (with no tracking protection).

Also here, Firefox strict protection performs best. Followed by uBlock
Origin and Disconnect. Firefox standard protection only blocks 0.33% of
the third-party requests. On average, 17.0% of third-party domains are
considered as trackers.

With the proxy server (without tracking protection) we have collected
a total of 1,158,572 third-party requests. The requests can be reduced to
271,562 third-party domains. This would mean that a third-party domain
has an average of 4.27 requests. If we apply this number on Disconnect and
uBlock Origin, the results will look as in Figure 6.3.

41

Figure 6.3: Number of blocked domains over 25,000 websites (modified)

However, Figure 6.3 seems to be incorrect. Disconnect and Firefox Con-
tent Blocking use the same blacklists. Therefore you would expect the results
to be somewhat the same. It is therefore quite possible that the number of
requests per third-party domain is lower. The administrative authority may
be the cause.

An administrative authority manages the domain you visit. This au-
thority can manage multiple domains that work together (deliver resources
to each other). We assume the domain we currently visiting is the only
first-party domain. The investigation revealed that a first-party make sig-
nificantly more requests than third-parties for the current domain. However,
if the first-party domain administrative authority has multiple domains, it
is possible that these other domains make many requests in order to de-
liver content to the currently visiting website. Since we did not exclude
these other domains, the average number of requests per third-party will be
higher.

If we compare Figure 6.1 with Figure 6.2, we see that the results of Dis-
connect and uBlock Origin are close to the results in Figure 6.1. Therefore
we combine all results in Figure 6.4. Keep in mind that this cannot be com-
pared with each other since uBlock Origin and Disconnect count requests
as a tracker. Therefore, they are marked in yellow.

42

Figure 6.4: Number of blocked trackers over 25,000 websites

Detecting

Figure 6.5: Percentage (%) of websites where trackers have been detected

Fortunately, it is possible to compare the number of websites where track-
ers are found. For this, it does not matter whether the plugin counts domains
or requests.

From Figure 6.5, it follows that uBlock Origin detected trackers on most

43

websites. Furthermore, the result of all privacy plugins lies close to each
other. Only Firefox standard protection has a big difference compared to
the rest.

Alexa Top 15,000 vs. Alexa Random 10,000

Figure 6.6: Percentage (%) of websites where trackers have been detected

Figure 6.6 shows us the percentage of websites where trackers have been
detected. We mentioned earlier that we want to figure out if the Alexa
top 15,000 differs from 10,000 random selected sites from the Alexa top 1
million when it comes down on tracking. From Figure 6.6, we can conclude
that every plugin and Firefox configuration detects more websites containing
trackers on the Alexa top 15,000 than the Alexa random 10,000.

The differences are not particularly significant, but large enough to con-
clude that the Alexa random 10,000 contains fewer websites with trackers.

Besides that, we also found more third-party domains on the Alexa top
15,000 relatives to Alexa random 10,000. On the Alexa top 15,000, we found
a total of 188651 third-party domains. While, the Alexa random 10,000,
contains a total of 82,911 third-party domains. This means that the Alexa
top 15,000 contains 151.7% more third-party domains relative to the Alexa
random 10,000.

There is a chance that the 10,000 randomly selected websites contain
fewer trackers by accident. However, we estimate this chance to be very
low.

44

Chapter 7

Conclusions

In this thesis, we performed a practical and theoretical comparison of privacy
plugins. We were able to draw several conclusions during the process.

There are many definitions of privacy. Within the scope of this research,
we have formulated a definition of privacy. Privacy: an action or communi-
cation M of a subject S that cannot be traced back to S by observer O. We use
this definition to examine privacy plugins. A plugin provides more privacy
when it blocks more third-party trackers. There are many privacy plugins.
Each type of plugin has a different purpose and guarantees a different form
of privacy. In this study, we have focused on plugins that are specialized in
protecting against third-party tracking.

The two main anti-tracking techniques used by privacy plugins are black-
lists and algorithms. A blacklist-based plugin uses a list of trackers to de-
termine what is a tracker and what not. It must always keep up-to-date
to guarantee protection against most trackers. Algorithm-based plugin use
heuristics to determine whether something is a tracker. It analyzes the be-
havior of a tracker. The most important advantage of an algorithm-based
plugin over a blacklist-based plugin is that you are not dependent on a
blacklist that has to be kept up-to-date. You are therefore better protected
against new trackers. An algorithm also leads to fewer false positives, since
each tracker is analyzed over and over again.

We provide a method to extract data directly from privacy plugins. By
modifying the source-code of the plugin, we let the plugin log the desired
data to the browser console. From here, the data can be collected. We have
not seen this in any other study so far.

Every plugin visited 25,000 websites. Every website stayed open for 10
seconds. This was long enough to load a website and gave the plugin time
to do its job.

The selection of websites contains the Alexa top 15,000 and 10,000 ran-
domly chosen websites from the Alexa top 1 million (top 15,000 excluded).
We found a total of 1,158,572 third-party requests. 271,562 third-party do-

45

mains can be extracted from this. The 10,000 random selected websites from
the Alexa top 1 million contain relatively fewer trackers than the Alexa top
15,000. The chance that this is based on coincidence is small.

The number of trackers on a website depends on the time. The results
show that sometimes even more trackers are blocked than the total number
of trackers measured on a website. This is only possible if the number of
trackers changes over time. Disconnect and Firefox Content Blocking use
the same blacklists. Therefore you would expect the number of blocked
requests to be somewhat the same. We compute an average of 4.27 requests
per third-party domain.

Although we cannot compare uBlock Origin and Disconnect with Pri-
vacy Badger and Ghostery, we can conclude that in uBlock Origin blocks
more trackers than Disconnect. Privacy Badger blocks more trackers than
Ghostery. Besides that, Firefox strict protection is the overall winner when
it comes to blocking trackers.

For some plugins, the information of Boumans [6] was outdated. Ghostery
went from closed source to open source. It also implemented an algorithm
that supplements their blacklist. Firefox has also changed in the meantime.
It now offers more extensive options for blocking trackers.

Recommendation
One of the goals of this research is to make a recommendation to the end
user, which plugin should be used. Results provide a basis for a ranking
of which plugin blocks most trackers. Firefox strict protection performs
best when it comes to blocking trackers. It offers comprehensive protection
without the need for a plugin. However, Firefox already indicates that strict
protection may cause some sites to break. We did not test this. On the other
hand, Firefox standard protection hardly does anything to increase privacy.

All plugins are open source, have a well-arranged interface, and are user-
friendly. If we have to recommend a privacy plugin, then two plugins get our
attention. First of all, uBlock Origin. This plugin has the biggest blacklist
of all plugins we examined. The blacklists are frequently updated. The
present findings confirm that uBlock Origin detects trackers on most of the
websites we visited. Besides that, we can conclude that uBlock Origin at
least blocks more trackers than Disconnect and Firefox standard protection.

The next plugin we recommend is Privacy Badger. Privacy Badger is the
only plugin we examined that relies on an algorithm as primary anti-tracking
technique. Algorithm-based plugins are more robust against new trackers
than blacklist-based plugins. A combination of uBlock Origin supplemented
with the Privacy Badger algorithm should work best against blocking track-
ers. This means that together, they can contribute most to privacy. Besides,
both plugins have a good reputation and no business model.

This does not mean that Ghostery and Disconnect are bad. These two

46

plugins also offer privacy. However, they perform less on both theoretical
and practical level, in comparison to uBlock Origin and Privacy Badger.

Are you looking for something else than a privacy plugin? The Tor
Browser is a good alternative against tracking. Not only tracking but also
against censorship and enhancing privacy.

47

Chapter 8

Future Work

While there already exist many studies related to comparing privacy plugins,
there are still some interesting topics that can be done.

In this thesis, we did not investigate ad-blockers because they serve a
different purpose. However, it can be beneficial to compare ad-blockers to
other privacy plugins and check if they perform better. Also, it is possible
to test less popular plugins instead of popular plugins. Alternatively, using
scientific privacy tools instead of plugins.

In this study, we assumed that we do not determine whether a domain
is a tracker. However, assume that a domain is a tracker if a privacy plugin
blocks it. The third-party domains found using the proxy server are therefore
not compared to different blacklists (e.g. EasyList). In a follow-up study, it
would be nice to determine how many of the domains found are trackers.

Even better, run a proxy server next to a privacy plugin and compare
the data from the proxy server with that of the plugin. In this way, it is
possible to demonstrate how reliable the data of a privacy plugin is.

This immediately brings us to another potential study. Ghostery keeps
its blacklist secret. Running a proxy server next to Ghostery could be a
method to reconstruct the blacklist. For this, you will have to visit many
websites, a very time-consuming process. By making use of the scripts in
this research, this is already a lot easier to achieve.

Unfortunately, we were unable to change the code of Disconnect and
uBlock Origin in such a way that we can get the number of blocked domains
out. It was only possible to collect the number of blocked requests. In a
new study, this could be looked at extensively.

Another topic is to investigate Privacy Possum extensively. Privacy Pos-
sum differs from the other third party blockers by not showing the number
of blocked trackers, but the number of sources for which it blocks differ-
ent headers. It would be interesting to investigate whether the number of
blocked sources can be linked to the number of blocked trackers.

48

Bibliography

[1] Joni. AliceWyman, Michele Rodaro. Content blocking. https:

//support.mozilla.org/en-US/kb/content-blocking accessed on
February 20, 2019, no date.

[2] Hoofnagle C. Altaweel I, Good N. Web privacy census. Technology
Science. 2015121502. december 15, 2015. https://techscience.org/
a/2015121502.

[3] M. Asaka, T. Onabura, T. Inoue, and S. Goto. Remote attack detection
method in ida: Mlsi-based intrusion detection using discriminant anal-
ysis. In Proceedings 2002 Symposium on Applications and the Internet
(SAINT 2002), pages 64–73, Jan 2002.

[4] Privacy Badger. Frequently asked questions. Accessed on January 30,
2019. Available: https://www.eff.org/privacybadger/faq.

[5] Rebecca Balebako, Pedro Giovanni Leon, Richard Shay, Blase Ur, and
Yang Wang. Measuring the effectiveness of privacy tools for limiting
behavioral advertising. 2012.

[6] W. Boumans. Web Tracking And Current Countermeasures. Bachelor’s
thesis, Radboud University Nijmegen, 2017.

[7] Disconnect. Accessed on January 30, 2019. Available: https://

disconnect.me/.

[8] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-
million-site measurement and analysis. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS
’16, pages 1388–1401, New York, NY, USA, 2016. ACM.

[9] Council of the European Union European Parliament. Directive (EU)
2016/680 of the European Parliament and of the Council of 27 April
2016 on the protection of natural persons with regard to the processing
of personal data by competent authorities for the purposes of the pre-
vention, investigation, detection or prosecution of criminal offences or
the execution of criminal penalties, and on the free movement of such

49

https://support.mozilla.org/en-US/kb/content-blocking
https://support.mozilla.org/en-US/kb/content-blocking
https://techscience.org/a/2015121502
https://techscience.org/a/2015121502
https://www.cs.ru.nl/bachelors-theses/2017/Willem_Boumans___4337166___Web_tracking_and_current_countermeasures.pdf
https://disconnect.me/
https://disconnect.me/

data, and repealing Council Framework Decision 2008/977/JHA”. 4
May 2016. available at: https://gdpr-info.eu/, 4 May 2016.

[10] Mozilla Foundation. Firefox add-ons. Accessed on November 21, 2018.
Available: https://addons.mozilla.org/en-US/firefox/.

[11] Ghostery. Frequently asked questions. Accessed on December 6, 2018.
Available: https://www.ghostery.com/faqs/.

[12] Jonathan Mayer H. P. Jason Bau and J. C. Mitchell. A promising
direction for web tracking countermeasures. In Proceedings of Web 2.0
Security and Privacy (W2SP). IEEE Computer Society, 2013.

[13] Mikael Berglund Jacob Palme. Anonymity on the internet, december
2004. available at: https://people.dsv.su.se/~jpalme/society/

anonymity.pdf.

[14] Georgios Kontaxis and Monica Chew. Tracking protection in firefox
for privacy and performance. In Proceedings of Web 2.0 Security and
Privacy (W2SP). IEEE Computer Society, 2015.

[15] Balachander Krishnamurthy, Delfina Malandrino, and Craig E. Wills.
Measuring privacy loss and the impact of privacy protection in web
browsing. In SOUPS, 2007.

[16] Louise Matsakis. Ad-blocker ghostery just went open source—and has
a new business model. Wired, 2018.

[17] Jonathan R. Mayer and John C. Mitchell. Third-party web tracking:
Policy and technology. 2012 IEEE Symposium on Security and Privacy,
pages 413–427, 2012.

[18] Johan Mazel, Richard Garnier, and Kensuke Fukuda. A comparison of
web privacy protection techniques. CoRR, abs/1712.06850, 2017.

[19] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis,
Sebastian Neuner, Martin Schmiedecker, and Edgar R. Weippl. Block
me if you can: A large-scale study of tracker-blocking tools. 2017 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 319–
333, 2017.

[20] Council of Europe. European Convention for the Protection of Human
Rights and Fundamental Freedoms, as amended by Protocols Nos. 11
and 14. ETS 5. available at: https://www.echr.coe.int/Documents/
Convention_ENG.pdf [accessed 31 October 2018], 4 November 1950.

[21] Privacy Possum. Accessed on December 4, 2018. Available: https:

//github.com/cowlicks/privacypossum.

50

https://gdpr-info.eu/
https://addons.mozilla.org/en-US/firefox/
https://www.ghostery.com/faqs/
https://people.dsv.su.se/~jpalme/society/anonymity.pdf
https://people.dsv.su.se/~jpalme/society/anonymity.pdf
https://www.echr.coe.int/Documents/Convention_ENG.pdf
https://www.echr.coe.int/Documents/Convention_ENG.pdf
https://www.echr.coe.int/Documents/Convention_ENG.pdf
https://www.echr.coe.int/Documents/Convention_ENG.pdf
https://www.echr.coe.int/Documents/Convention_ENG.pdf
https://github.com/cowlicks/privacypossum
https://github.com/cowlicks/privacypossum

[22] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. Detecting
and defending against third-party tracking on the web. In Presented
as part of the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 155–168, San Jose, CA, 2012.
USENIX.

[23] Stefano Traverso, Martino Trevisan, Leonardo Giannantoni, Marco
Mellia, and Hassan Metwalley. Benchmark and comparison of tracker-
blockers: Should you trust them? 2017 Network Traffic Measurement
and Analysis Conference (TMA), pages 1–9, 2017.

[24] uBlock Origin. Accessed on May 2, 2019. Available: https://github.
com/gorhill/uBlock.

[25] European Union. Charter of Fundamental Rights of the European
Union. 2012/C 326/02. available at: https://eur-lex.europa.eu/

legal-content/EN/TXT/HTML/?uri=CELEX:12012P/TXT&from=EN [ac-
cessed 30 October 2018], 26 October 2012.

[26] Craig E. Wills and Doruk C. Uzunoglu. What ad blockers are (and
are not) doing. 2016 Fourth IEEE Workshop on Hot Topics in Web
Systems and Technologies (HotWeb), pages 72–77, 2016.

[27] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M. Pujol. Track-
ing the trackers. In Proceedings of the 25th International Conference on
World Wide Web, WWW ’16, pages 121–132, Republic and Canton of
Geneva, Switzerland, 2016. International World Wide Web Conferences
Steering Committee.

[28] T. Z. Zarsky. Thinking outside the box: Considering transparency,
anonymity, and pseudonymity as overall solutions to the problems in
information privacy in the internet society. pages 991–1044. University
of Miami Law Review 58(4), 2004.

51

https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:12012P/TXT&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:12012P/TXT&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:12012P/TXT&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:12012P/TXT&from=EN

Appendix A

Privacy Plugins

A.1 Firefox Add-ons Store

1. Go to the Firefox Add-ons store1 and click on ’Privacy & Security’

2. Click on ’See more featured extensions’

1https://addons.mozilla.org/en-US/firefox/extensions/

52

https://addons.mozilla.org/en-US/firefox/extensions/

3. You will get a list of Privacy & Security plugins featured by Firefox

53

A.2 Interfaces

A.2.1 Ghostery

A.2.2 Privacy Badger

54

A.2.3 Disconnect

A.2.4 uBlock Origin

55

A.2.5 Privacy Possum

56

Appendix B

Scripts

B.1 Main python script

1 from se lenium import webdriver
2 from se lenium . common . except i on s import

UnexpectedAlertPresentExcept ion
3 import csv
4 import time
5 import l o gg ing
6
7 f i l e = ’top -1m.csv’ # choose which csv file has to be loaded

8 extens i on = "/home/nick/Desktop/Ghostery edit/firefox@ghostery.

com.xpi_FILES/firefox@ghostery.com.xpi" # path to extension

9 numberOfWebsites = 25000 # total number of websites to be

scanned

10 res tar tNeeded = 500 # number of websites after restart is needed

11
12 def l oadCsvFi l e () :
13 # read URLs from csv file

14 with open(f i l e) as c s v f i l e :
15 readCSV = csv . reader (c s v f i l e , d e l im i t e r=’,’)
16 webs i t e s = []
17 for row in readCSV :
18 webs i te = row [1]
19 webs i t e s . append (webs i te)
20 print ("Csv file loaded")
21 return webs i t e s
22
23 def c r e a t eF i r e f o xP r o f i l e () :
24 # create new Firefox profile

25 p r o f i l e = webdriver . F i r e f o xP r o f i l e ()
26 # add plugin to the browser

27 p r o f i l e . add extens ion (ex tens i on)
28 # route every Console API call to stdout. The output will end-

up in geckodriver.log

29 p r o f i l e . s e t p r e f e r e n c e ("devtools.console.stdout.content" , True
)

30 # disable firefox private browsing

57

31 p r o f i l e . s e t p r e f e r e n c e ("privacy.trackingprotection.pbmode.
enabled" , Fa l se)

32 # disable firefox cookieblocking

33 p r o f i l e . s e t p r e f e r e n c e ("network.cookie.cookieBehavior" , 0)
34 # prevent firefox from automatic downloading

35 p r o f i l e . s e t p r e f e r e n c e ("browser.safebrowsing.downloads.enabled
" , True)

36 # create driver instance

37 d r i v e r = webdriver . F i r e f ox (p r o f i l e)
38 return (d r i v e r)
39
40 # close all other tabs

41 def closeOtherWindows (d r i v e r) :
42 while len (d r i v e r . window handles) > 1 :
43 d r i v e r . sw i t ch to . window(d r i v e r . window handles [−1])
44 d r i v e r . c l o s e ()
45 # switch back to main tab

46 d r i v e r . sw i t ch to . window(d r i v e r . window handles [0])
47 time . s l e e p (1)
48
49
50
51 def executeProgram (dr iver , webs i t e s) :
52 re s ta r tCounte r = 1
53 for x in range (numberOfWebsites) :
54 u r l = webs i t e s [x]
55 i f r e s ta r tCounte r == (restartNeeded + 1) : # check if restart

is needed

56 d r i v e r . qu i t () # quit the current driver instance

57 time . s l e e p (10)
58 d r i v e r = c r e a t eF i r e f o xP r o f i l e () # create a new driver

instance

59 time . s l e e p (10)
60 closeOtherWindows (d r i v e r)
61 re s ta r tCounte r = 1
62 re s ta r tCounte r += 1
63 try :
64 c u r r e n t u r l = "console.log(’UUUU: [" + ur l + "]’);" #

create javascript string

65 d r i v e r . e x e c u t e s c r i p t (c u r r e n t u r l) # print current url to

console

66 u r l s t r i n g = "window.open(’http://" + ur l + "’,’_blank ’);"

create javascript string

67 d r i v e r . e x e c u t e s c r i p t (u r l s t r i n g) # open url in a new

window

68 time . s l e e p (10) # stay 10 seconds on the current page

69 closeOtherWindows (d r i v e r) # close every window except the

main window

70 except UnexpectedAlertPresentExcept ion :
71 print ("UnexpectedAlertPresentException")
72 closeOtherWindows (d r i v e r)
73 d r i v e r . qu i t ()
74
75

58

76 webs i t e s = loadCsvFi l e ()
77 d r i v e r = c r e a t eF i r e f o xP r o f i l e ()
78 time . s l e e p (10)
79 closeOtherWindows (d r i v e r)
80 executeProgram (dr ive r , webs i t e s)

Listing B.1: Main script

B.2 Proxy script

1 from browsermobproxy import Server
2 from se lenium import webdriver
3 from c o l l e c t i o n s import OrderedDict
4 from se lenium . common . except i on s import

UnexpectedAlertPresentExcept ion
5 import j s on
6 import csv
7 import time
8 import c o l l e c t i o n s
9

10 # Purpose of this script: collect all HTTP requests

11
12 f i l e = ’top -1m.csv’ # choose which csv file has to be loaded

13 numberOfWebsites = 25000 # total number of websites to be

scanned

14 res tar tNeeded = 500 # number of websites after restart is needed

15 w r i t i n gF i l e = open("alldata.txt" ,"a")
16
17 def l oadCsvFi l e () :
18 # read URLs from csv file

19 with open(f i l e) as c s v f i l e :
20 readCSV = csv . reader (c s v f i l e , d e l im i t e r=’,’)
21 webs i t e s = []
22 for row in readCSV :
23 webs i te = row [1]
24 webs i t e s . append (webs i te)
25 print ("Csv file loaded")
26 return webs i t e s
27
28 def c on f i gu r eS e rv e r () :
29 dict = {’port’ : 8090} # port options

30 browsermobproxy locat ion = "/home/nick/Documents/browsermob -

proxy -2.1.4-bin/browsermob -proxy -2.1.4/bin/browsermob -proxy

" # path to browsermob -proxy

31 # Start browsermob proxy

32 s e r v e r = Server (path=browsermobproxy locat ion , opt ions=dict)
33 return (s e r v e r)
34
35 def c r e a t eF i r e f o xP r o f i l e (s e r v e r) :
36 s e r v e r . s t a r t ()
37 proxy = se rv e r . c r ea t e proxy ()
38 # create new Firefox profile

59

39 p r o f i l e = webdriver . F i r e f o xP r o f i l e ()
40 # Setup proxy to point to our browsermob so that it can track

requests

41 p r o f i l e . s e t p roxy (proxy . se len ium proxy ())
42 # enable firefox tracking protection

43 p r o f i l e . s e t p r e f e r e n c e ("privacy.trackingprotection.enabled" ,
True)

44 # enable firefox cookieblocking

45 p r o f i l e . s e t p r e f e r e n c e ("network.cookie.cookieBehavior" , 4)
46 # prevent firefox from automatic downloading

47 p r o f i l e . s e t p r e f e r e n c e ("browser.safebrowsing.downloads.enabled
" , True)

48 # firefox content blocking configuration

49 p r o f i l e . s e t p r e f e r e n c e ("browser.contentblocking.category" , "

strict")
50 # create driver instance

51 d r i v e r = webdriver . F i r e f ox (p r o f i l e)
52 return (dr ive r , proxy)
53
54 # close all other tabs

55 def closeOtherWindows (d r i v e r) :
56 while len (d r i v e r . window handles) > 1 :
57 d r i v e r . sw i t ch to . window(d r i v e r . window handles [−1])
58 d r i v e r . c l o s e ()
59 # switch back to main tab

60 d r i v e r . sw i t ch to . window(d r i v e r . window handles [0])
61 time . s l e e p (1)
62
63 def executeProgram (dr iver , webs i tes , proxy) :
64 re s ta r tCounte r = 1
65 for x in range (numberOfWebsites) :
66 u r l = webs i t e s [x]
67 proxy . new har ("req" , opt i ons={’captureHeaders’ : True })
68 print (str (x) + " | " + ur l)
69 w r i t i n gF i l e . wr i t e ("CURRENT URL: " + ur l + "\n")
70 i f r e s ta r tCounte r == (restartNeeded + 1) : # check if restart

is needed

71 d r i v e r . qu i t () # quit the current driver instance

72 time . s l e e p (10)
73 d r i v e r = c r e a t eF i r e f o xP r o f i l e () # create a new driver

instance

74 time . s l e e p (10)
75 closeOtherWindows (d r i v e r)
76 re s ta r tCounte r = 1
77 re s ta r tCounte r += 1
78 try :
79 u r l s t r i n g = "window.open(’http://" + ur l + "’,’_blank ’);"

create javascript string

80 d r i v e r . e x e c u t e s c r i p t (u r l s t r i n g) # open url in a new

window

81 time . s l e e p (10) # stay 10 seconds on the current page

82 closeOtherWindows (d r i v e r) # close every window except the

main window

83 except UnexpectedAlertPresentExcept ion :

60

84 print ("UnexpectedAlertPresentException")
85 closeOtherWindows (d r i v e r)
86 # Print all URLs that were requested to a file

87 e n t r i e s = proxy . har [’log’] ["entries"]
88 for entry in e n t r i e s :
89 i f ’request’ in entry . keys () :
90 i f entry [’request’] [’headers’] :
91 y = entry [’request’] [’headers’] [0] [’value’]
92 w r i t i n gF i l e . wr i t e (str (y) + "\n")
93 # The string below is printed as divider between each

measurements

94 w r i t i n gF i l e . wr i t e ("#########################\n")
95 d r i v e r . qu i t ()
96
97
98 webs i t e s = loadCsvFi l e ()
99 s e r v e r = con f i gu r eS e rv e r ()

100 dr ive r , proxy = c r e a t eF i r e f o xP r o f i l e (s e r v e r)
101 time . s l e e p (10)
102 closeOtherWindows (d r i v e r)
103 executeProgram (dr ive r , webs i tes , proxy)

Listing B.2: Proxy script

B.3 Gecko driver log parser

1 import time , os
2 import re
3 import csv
4
5 # This program keeps reading lines without terminating. It

parses a gecko driver log file and converts it into a CSV

file.

6
7 # Set the filename and open the file

8 f i l ename = ’geckodriver.log’

9 f i l e = open(f i l ename , ’r’)
10
11 c u r r e n t u r l = ""

12 maxBlocked = 0
13 counter = 1
14 f i r s tRun = False
15
16 while True :
17 nextLine = f i l e . r e ad l i n e ()
18 i f not nextLine :
19 time . s l e e p (1)
20 f i l e . seek (f i l e . t e l l ())
21 else :
22 i f nextLine . s t a r t sw i t h (’console.log: "UUUU: [’) :
23 i f f i r s tRun :
24 row = [counter , cu r r en t u r l , maxBlocked]

61

25 print (str (counter) + ’ | ’ + cu r r e n t u r l + ’ | ’ +
str (maxBlocked))

26 with open(’results.csv’ , ’a’) as c s vF i l e :
27 wr i t e r = csv . wr i t e r (c s vF i l e)
28 wr i t e r . writerow (row)
29 f i r s tRun = True
30 counter += 1
31 maxBlocked = 0
32 cu r r e n t u r l = re . s earch (’UUUU: \[(.*)\]’ , nextLine) .

group (1)
33 e l i f nextLine . s t a r t sw i t h (’console.log: "BBBB: [’) :
34 blocked = int (re . s earch (’BBBB: \[(.*)\]’ , nextLine) .

group (1))
35 maxBlocked = max(blocked , maxBlocked)

Listing B.3: Gecko driver log parser

B.4 JavaScript code

1 var webs i t e s = [//Websites have to be added manually

2 ’http://google.com’ ,
3 ’http://youtube.com’ ,
4 ’http://facebook.com’ ,
5 ’http://baidu.com’ ,
6 ’http://wikipedia.org’ ,
7 ’http://qq.com’ ,
8 ’http://yahoo.com’ ,
9 ’http://tmall.com’ ,

10 ’http://taobao.com’ ,
11 ’http://amazon.com’ ,
12 ’http://twitter.com’ ,
13 ’http://sohu.com’ ,
14 ’http://live.com’ ,
15] ;
16
17 var index ;
18 var myVar ;
19 var t imer ;
20
21 function nextWebsite () {
22 window . open (webs i t e s [index]) ;
23 i f (++index >= webs i t e s . l ength) {
24 c l e a r I n t e r v a l (myVar) ;
25 conso l e . l og ("All websites are loaded") ;
26 }
27 }
28
29 function s t a r t () {
30 t imer = s e t I n t e r v a l (timeIsOver , 120000) ; //time interval

here 120000 = 120 Sec

31 index = 0 ;
32 nextWebsite () ;

62

33 myVar = s e t I n t e r v a l (nextWebsite , 3000) ; //time interval

here 3000 = 3 Sec

34 }
35
36 function t imeIsOver () {
37 conso l e . l og ("Time is over") ;
38 c l e a r I n t e r v a l (t imer) ;
39 }

Listing B.4: Example code if you want to inject JavaScript code directly
into the browser console

63

	Introduction
	What is Privacy?
	Laws affecting privacy
	Privacy
	Attacker model
	What makes a tracker?
	First and third-party trackers
	How do privacy plugins provide privacy?
	Private browsing and Tor Browser

	Related Work
	Privacy Plugins
	Justification for selection of plugins
	Anti-tracking techniques
	Methodology
	Privacy plugins
	Ghostery
	Privacy Badger
	Disconnect
	uBlock Origin
	Privacy Possum

	Firefox Content Blocking

	Theoretical comparison of privacy plugins
	Blacklist vs. Algorithm
	Ghostery, Disconnect and uBlock Origin
	Privacy Badger vs. Privacy Possum
	Changes in the last two years

	Experimental comparison of privacy plugins
	Methodology
	Implementation
	Modifying plugins
	Python scripts

	Setup
	Results

	Conclusions
	Future Work
	Appendices
	Privacy Plugins
	Firefox Add-ons Store
	Interfaces
	Ghostery
	Privacy Badger
	Disconnect
	uBlock Origin
	Privacy Possum

	Scripts
	Main python script
	Proxy script
	Gecko driver log parser
	JavaScript code

