
Bachelor Thesis
Computing Science

Radboud University

The Semantics of Ownership and
Borrowing in the Rust

Programming Language

Author:
Nienke Wessel
s4598350

First supervisor:
Dr. Freek Wiedijk

freek@cs.ru.nl

Second supervisor:
Marc Schoolderman

m.schoolderman@cs.ru.nl

July 10, 2019

mailto:freek@cs.ru.nl
mailto:m.schoolderman@cs.ru.nl

Abstract

In order to prove properties of programming languages, we need to have a
mathematical representation of the language. This thesis formalizes a subset of
the Rust Programming Language. The focus is on ownership and borrowing,
properties that are paramount to the memory safety that Rust claims to have.
Besides our semantic rules, we have a compile time check system to model that
Rust checks programs compile time. We explain our semantic rules and prove
some properties of these rules, such as progress and preservation in combination
with the compile time checker.

Preface

This document contains the Bachelor Thesis I wrote for the Computing Science
Bachelor at Radboud University, Nijmegen.

The topic of this thesis originates from the bachelor courses “Semantics and
Correctness” and “Computation Models”. For the latter, Sander Hendrix and
I did a project on the natural semantics of Rust, mostly concerning memory
safety aspects that Rust claims to have. This project sparked my interests
for describing the semantics of programming languages and looking into how
mathematics and computing science can be combined in this field. The report
that we then made formed the basis for this thesis.

There are a lot of people that helped me along the way, and I would like
to thank them, so here we go; thanks mom and dad for not getting angry at
me that I was not finishing my bachelor’s quicker. Thanks friends for accepting
that I had to cancel some chillings in order to finally finish the thing. I would
like to thank Sander Hendrix for doing the project on Rust together. I want to
thank Engelbert Hubbers and Erik Barendsen for their feedback on our project.

Most importantly, I want to thank Freek Wiedijk and Marc Schoolderman
for being my supervisors and helping me turn this vague idea (‘something with
Rust and semantics’) into this thesis. And for all the feedback and time, of
course!

Anyways, dear reader, have fun reading!

2

Contents

Preface 2

1 Introduction 5
1.1 Previous work . 6
1.2 The current work . 6
1.3 Scope of this thesis . 7

1.3.1 On safety and memory safety 7
1.4 Why formal semantics . 8
1.5 The next chapters . 8

2 Rust 9
2.1 Ownership . 9
2.2 Borrowing . 10

2.2.1 Mutability . 11
2.2.2 Rules for borrowing . 12

2.3 Lifetimes . 13
2.3.1 Lifetime elision . 16
2.3.2 Lifetimes of statements 17

3 Moving 20
3.1 Introduction . 20

3.1.1 A note on types . 20
3.2 Syntax . 20
3.3 Semantics: Framework . 22
3.4 Semantics: Big step . 24

3.4.1 Natural semantics rules 24
3.4.2 Properties of our natural semantics rules 25
3.4.3 Conclusion . 27

3.5 Semantics: Small step . 27
3.5.1 Operational semantics rules 28
3.5.2 Properties of our semantic rules 29
3.5.3 Conclusion . 34

3.6 Compile time check . 34
3.6.1 Definitions . 34

3

CONTENTS CONTENTS

3.6.2 Properties . 35
3.6.3 Equivalence with our small step semantics 36
3.6.4 Safety . 41

4 Borrowing 43
4.1 Introduction . 43
4.2 Syntax . 43
4.3 Examples . 44

4.3.1 Mutability . 44
4.3.2 Nonmutable borrow . 44
4.3.3 Mutable borrow . 46
4.3.4 Another example of mutable borrowing 48

4.4 Semantics: Framework . 49
4.5 Semantics: Small step . 51

4.5.1 Compile time check . 53

5 Conclusion and discussion 56
5.1 discussion . 56

5.1.1 On safety and memory safety: revisited 56
5.1.2 Other Rust features . 56
5.1.3 Formalization . 59
5.1.4 Correctness of translation 60

5.2 Conclusion . 60

Bibliography 61

4

Chapter 1

Introduction

As computers are found almost everywhere nowadays, we would hope these
computers would always do as we expect them to do. However, so far very
few programs and programming languages have actually been proven correct.
Intensive testing is the best software developers can do. Luckily, much work is
being done on the more rigorous proving that a computer program does what
it is designed to do. This thesis aims to join in those efforts.

The thesis is about the Rust programming language (Matsakis and Klock II,
2014). The makers of this programming language have made several claims
about the safety, and specifically memory safety, of their language. Among
other things, it should be impossible to get data races or dangling pointers in
your programs. All safety aspects are guaranteed at compile time; if your Rust
program contains hazards, the compiler will reject the program. Besides that,
all checks should finish, even if the actual program contains an infinite loop or
does not finish for some other reason. Due to executing these checks compile
time, no run time penalty should exist. This makes the language different from,
for example, C or Java. In C, no memory safety is guaranteed because arbitrary
pointer arithmetic is allowed1. In Java, memory safety is guaranteed by run
time checks instead of compile time checks.

The combination of memory safety and guaranteeing it compile time is the
reason it has been argued that Rust is a good language to use for making a kernel
(Levy et al., 2017) or to use in combination with other security measures such as
Software Guard Extensions (Ding et al., 2017). Other benefits beyond memory
safety have also been attributed to Rust and its features (Balasubramanian
et al., 2017).

1However, there have been proposals to make extensions or versions of C that are memory
safe, even some that rely on compile time/static checks. See for example Dhurjati et al. (2003)

5

1.1. PREVIOUS WORK CHAPTER 1. INTRODUCTION

1.1 Previous work

However, little has been done to actually verify all the claims made by the
developers of Rust. Much of the previous work concerning Rust has been done
on improving the language itself and making it more versatile. See for example
Jespersen et al. (2015). Little has been done to actually confirm that it all
works.

The most notable project that does look into the actual memory safety of
Rust, is the Rustbelt project (Jung et al., 2017). In this project, researchers
have formalized a subset of Rust and proved some libraries to be safe in Coq.
They use separation logic in order to model the memory of the computer during
computation.

Benitez (2016) has also made a formalization of a very small subset of Rust.
He modeled references and ownership as capabilities on different value locations.
For example, a variable x could have the capabilities read or write on a location
to indicate that it could be read or modified respectively. He separated memory
locations from computation. In Reed (2015) something similar is done, and
some memory safety claims are proven.

1.2 The current work

The current work aims to differentiate from the above work by showing how we
can model the memory safety aspects of Rust, whilst using simple semantic rules,
instead of more advanced mechanisms such as separation logic. The proofs here
should be readable for anyone with only basic background in semantics theory,
and gives the reader insight into what is happening in Rust both in practice and
on a formal level.

The research question that is central in this thesis is How does one formally
describe ownership in Rust in a simple way?

In order to answer this question, we looked at several sub-questions:

• What is ownership in Rust?

– What is it used for?
– What syntax is relevant to denote ownership?
– What is borrowing?
– What are lifetimes?

• What subset of Rust is necessary to describe ownership?
• What type of semantics is the most useful to describe ownership?
• How can we model the compile time checker best?
• Can we prove safety from a set of semantic rules and a compile time

checker?

6

1.3. SCOPE OF THIS THESIS CHAPTER 1. INTRODUCTION

1.3 Scope of this thesis

As for Rust, we will only be focusing on two major aspects of the language; the
concepts of ownership and borrowing. All you need to know and a little bit more
is explained in Chapter 2. The version of Rust compiler used for this thesis was
1.22.1.

We will mainly leave the types for what they are and focus on the memory
safety aspect. The specific types are not particularly interesting. First of all,
the focus of this thesis is on memory safety. Types are not particularly relevant
for that. Also, the type system is not very different from other programming
languages, which makes that adding them would also not be interesting from a
research point of view. Therefore, types are ignored to keep the scope of this
thesis limited. We will only look at whether an item is mutable or not, a concept
explained in Chapter 2.

Rust also offers the possibility to surpass some of its memory safety guards
by giving the user the option to write unsafe code. Many of Rust’s standard
libraries depend on unsafe code. However, the developers of Rust claim that if
users just make use of the interfaces and do not write unsafe code themselves,
their code should be safe. In this thesis, we will not look at unsafe code. Jung
et al. (2017) have developed a set of semantic rules to incorporate both safe and
unsafe code.

The compiler finishes almost always, even if the program contains an infinite
loop. The actual Rust compiler is Turing Complete (Leffler, 2017), but there
are no known ‘normal’ cases where it does not finish. When checking a program
compile time, we cannot simply run the program in the check if the program
loops infinitely, because the checker should not loop. The compiler needs to
have a level of abstraction from the program. We will show how we did that
in a later chapter. On the other hand, we will not follow the Rust compiler
completely. The compiler often gives warnings if there is something of which it
suspects that you did not mean to write it down that way. We will ignore these
warnings. Our goal here is to accept the same programs as the Rust compiler
accepts, so we only take actual errors into account.

1.3.1 On safety and memory safety

Before moving on, we will quickly walk through our definitions of safety and
memory safety. In this thesis, memory safety of a program will be used to
indicate that a program is protected from either bugs or vulnerabilities that
have to do with memory access, such as buffer overflows or dangling pointers.

When talking about semantics, this translates to having no problems in
our model of the memory. For example, that we cannot have an uninitialized
variable in an expression or that we cannot assign a variable a value twice, unless
it is mutable (see Chapter 2 for an explanation of the term).

Safety means that a program cannot get in trouble in general. For example,
we do not want any errors. When talking about semantics, an unsafe program
can either have explicit crashes, or can get stuck in the semantics and there is

7

1.4. WHY FORMAL SEMANTICS CHAPTER 1. INTRODUCTION

no ‘step’ to take in a semantic derivation system. Neither should happen in a
safe program.

1.4 Why make a formal semantics?

Before looking at the rest of the thesis, we will first briefly discuss why it is
important to formalize programming languages and why we want to make formal
semantics. Besides giving insight in what is happening in the programming
language, there are multiple goals.

First of all, a set of formal rules can help prove specific Rust programs to
be correct. In order to prove that a program does what it is supposed to do, we
first need to know what the program does exactly. Then we can prove that this
is indeed what was intended. A formal description of the language is therefore
necessary.

The second goal is to say something about programs that process Rust, such
as compilers. Once we know how syntax relates to the meaning of a program,
we can prove that the compilers behave correctly. Besides compilers, this could
also apply to static analyzers, optimization programs, etc.

1.5 The next chapters

The following chapter is concerned with Rust. We will give a brief introduction
to Rust and explain the relevant features. After that, in Chapter 3 Moving, we
will formalize the most basic form of the ownership concept. All (mathematical)
details will be explained rather thoroughly. In the chapter after that, Chapter
4 Borrowing, we will add two new features: mutability and borrowing. By
then, we have a pretty rigorous basis from Chapter 3, so we will not provide
as many details anymore. This gives us the space to actually focus on what is
happening there, instead of getting lost in the mathematics. In the final chapter,
Chapter 5 Conclusion & Discussion, we briefly discuss what we have done and
the implications for future work.

8

Chapter 2

Rust

This chapter provides an introduction to Rust, specifically to the features that
are considered interesting for this thesis.

Rust is an imperative programming language, with some functional and
object orientated aspects. The language has similarities to C and especially
C++, but is different in that it claims to provide memory safety whereas C
does not. One of the most important concepts in this RAII, which stands for
Resource Acquisition Is Initialization. This term was introduced by Stroustrup
(1994) when talking about the design of C++.

The idea behind RAII is that a resource (a piece of memory) is allocated dur-
ing the creation (initialization) of the data/variable and a resource is deallocated
during the the destruction of the data/variable. As long as the programmer does
not “lose” the data (i.e. a reference to the data), there are no memory leaks. To
help the programmer do this, there are several important terms/concepts which
will be discussed here. We start with ownership and borrowing. At the end
of this chapter, we briefly also discuss lifetimes, as this is an important aspect
of memory safety in Rust. We will not be using lifetimes explicitly, but it is
helpful for understanding Rust in general and the syntax we chose.

2.1 Ownership

Since variables are in charge of freeing their own resources, resources must have
exactly one owner. Otherwise, a resource could be freed more than once by
different owners or left to dangle if there are no owners at all. This concept is
called ownership in Rust terminology.

When programming, this can lead to problems. Sometimes it is convenient
to have a variable access the resource of another variable. However, accessing
this resource means there are two owners: the variable that is accessing the
resource and the original variable that had the resource. This is not allowed
in Rust. Luckily, Rust has some ways to deal with these kind of scenarios.
The easiest solution is moving the ownership of a resource to another variable.

9

2.2. BORROWING CHAPTER 2. RUST

In Rust terminology, this is called a move. After moving the ownership, the
previous owner can no longer use the resource.

The following example illustrates this.

1 let vector = vec![37, 42];

2 let vector2 = vector;

3 println!("vector[0] + vector[1] = {}", vector[0] + vector[1]);

This program gives the compile error use of moved value: ‘vector‘.
We will briefly walk through the program line by line. The variable vector

is initialized in line 1. That means vector owns a piece of memory to store
the values of the vector. Next, the ownership is transferred to vector2. That
means vector2 now owns the piece of memory and vector cannot access it
anymore. Then, when vector tries to access that piece of memory in line 3
to print its value, it cannot do so because the ownership has been transferred.
When compiling a Rust program such as in this example, the compiler checks
whether the ownership rules are abided. If this is not the case, it produces an
error and the program does not compile.

Besides assignments, there are also other methods to take ownership of a
piece of memory. Another frequently occurring method is passing the variable
as an argument to a function. For example:

1 fn function(v : Vec<i32>) {

2 // Do something

3 }

4

5 let vector = vec![37, 42];

6 function(vector);

7 println!("vector[0] + vector[1] = {}", vector[0] + vector[1]);

This gives the same error as before, error: use of moved value: ‘vector‘.
In this case, the ownership is moved to the variable v in the function function.

When function is finished, all local variables release their resources. So v re-
leases the memory space it had for its vector. Later on, vector wants access
to the resource, but it gave away ownership in the function call, so it can no
longer access the resource. Also, the resource was removed after the function
returned, so there is also nothing left to access. Again, this error is produced
compile time instead of run time.

Moving and ownership are the focus of the next chapter, Chapter 3. There,
we will derive semantic rules for these concepts.

2.2 Borrowing

Always moving the variable seems unpractible in many common programming
situations. Especially function calls become unpractical. Luckily, Rust also has

10

2.2. BORROWING CHAPTER 2. RUST

another way of dealing with the ownership problem.
If you want a variable to temporarily give up its access rights, you can

perform a borrow. This way, the original owner temporarily gives up its access
to the resource to have it returned later on. This ensures that only one variable
owns a resource at a time. The checks to make that happen all happen at
compile time.

The code below illustrates how borrowing is done in Rust. The code is
similar to the example above, but function only borrows the resource behind
vector, which is indicated by the & in front of vector in the function call. Also,
the function signature now contains an & to indicate that the function in the
end will return the borrowed resource.

1 fn function(v : &Vec<i32>) {

2 // Do something

3 }

4

5 let vector = vec![37, 42];

6 function(&vector);

7 println!("vector[0] + vector[1] = {}", vector[0] + vector[1]);

This code will give no error, as the piece of memory used by vector was
only borrowed by function and returned to vector when function was done.

2.2.1 Mutability

So far, we have only looked at what in Rust are called immutable variables.
That means we cannot change what these variables point to. Doing so results
in a (compile time) error. This is also not convenient when programming: we
often want to update our variables. To be able to do so, one makes the variables
mutable.

Some very simple examples can illustrate the difference.

1 let x = 0;

2 x = 1;

This is not allowed as x is immutable, but the program tries to mutate it any-
ways. It gives the error re-assignment of immutable variable ‘x‘.

1 let mut x = 0;

2 x = 1;

This program is allowed, as x is now mutable, which is shown by the mut in
front of it.

11

2.2. BORROWING CHAPTER 2. RUST

The following example shows what happens when we combine mutability
with borrowing. Here, the function tries to alter vector while it is immutable.

1 fn function(v : &Vec<i32>) {

2 v.push(1337);

3 }

4

5 let vector = vec![37, 42];

6 function(&vector);

7 println!("vector[0] + vector[1] = {}", vector[0] + vector[1]);

This gives the compile time error: cannot borrow immutable borrowed

content ‘*v’ as mutable. This means that by calling push on vector, vec-
tor is passed as if it were mutable, but vector was not passed as mutable to
function.

One can fix this by letting function borrow vector as a mutable reference.

1 fn function(v : &mut Vec<i32>) {

2 v.push(1337);

3 }

4

5 let mut vector = vec![37, 42];

6 function(&mut vector);

7 println!("vector[0] + vector[1] = {}", vector[0] + vector[1]);

This is allowed and compiles.

2.2.2 Rules for borrowing

One can wonder why one would not simply always perform a borrow instead of
a move. And if so, why does Rust even have moving and does it not do borrow
as a default (as is often done in other programming languages)?

Unlike other programming languages, it is not always possible to borrow a
resource in Rust. Borrowing is only allowed in specific cases. These rules were
introduced to eliminate data races. They are as follows:

1. The scope of the borrower cannot outlast the scope of the original owner
2. Only one of the following can be true at any moment:

(a) there are one or more references to a non-mutable resource
(b) there is exactly one reference to a mutable resource

The first rule is to make sure that the original owner is able to clean up the
resource without problems after it is done. If the original owner does not exist
anymore when the resource is returned, it cannot clean up the resource. The
second rule exists to eliminate data races.

12

2.3. LIFETIMES CHAPTER 2. RUST

For a data race to happen, there need to be two pointers to the same piece
of memory at the same time, at least one of them needs to be writing and their
operations are not synchronized. By following the second rule for borrowing,
one makes sure a data race cannot exist. If the first part of the second rule
holds, the shared resource cannot be written to, as it is immutable. If the the
second part of the second rule holds, there are no two pointers in the first place.
For a more semantic justification of these rules/this idea, we refer to Boyland
(2003).

This means that the following piece of code is allowed (multiple borrows to
one immutable owner):

1 let y=0;

2 let x = & y;

3 let z = & y;

The next piece of code is not allowed and produces the error cannot borrow

‘y‘ as mutable more than once at a time

1 let mut y=0;

2 let x = &mut y;

3 let z = &mut y;

This concludes the section on borrowing. We will look at some more exam-
ples in Chapter 4, when we derive the semantic rules for it.

2.3 Lifetimes

The final important concept in Rust’s ownership system is that of lifetimes.
While this thesis does not use the lifetimes in the semantic rules, a description
of Rust’s system would not be complete without a section on lifetimes.

Lifetimes are often used by the compiler to keep track of what was mentioned
above, when simple scopes are not sufficient. Before we look at the theory of
lifetimes, we first take a look at what lifetimes are and what they look like in
Rust.

In all code mentioned before, we did not write down the lifetimes explicitly.
This is because the Rust compiler is able to deduce the rules in ‘trivial’ cases.
Later on, there will be a bit of an explanation on what makes a case trivial for
the compiler.

In the following piece of code, it is shown what it would have looked like if
we had written the lifetimes explicitly. You can do this for all Rust functions
that you write, so that the compiler does not have to derive the lifetimes. Note
that it is the same function as above.

13

2.3. LIFETIMES CHAPTER 2. RUST

1 fn function<'a>(v : &'a mut Vec<i32>) {

2 v.push(1337);

3 }

Strictly speaking, lifetimes are a form of generics, which is why they have
generics-like syntax. However for all lifetimes, you are required to place an
apostrophe '. Just as with generics, one can use any name for a lifetime1.
However, it is customary that you use 'a, 'b, 'c etc.

To see when lifetimes are useful, we can take a look at a more interesting
case.

1 fn function(v : &Vec<i32>, w : &Vec<i32>) -> &Vec<i32> {

2 if v[0] == 37 {

3 v

4 }

5 else {

6 w

7 }

8 }

9

10 let vector = vec![37, 42];

11 let another_vector = vec![42, 37];

12 let f = function(&vector, &another_vector);

13 println!("f[0] + f[1] = {}", f[0] + f[1]);

This program defines two vectors and passes them to a function. That
function then returns one of them. The result is used to print something. Even
though this looks like a good program, the Rust compiler will reject it. It
will give an error asking for lifetime parameters: error: missing lifetime

specifier. It is saying that the function’s return type contains a borrowed
value, but the signature doesn’t say what it was borrowed from. The problem
here is that rust does not know how the lifetimes of the input and the output
are related to each other. The borrow checker now cannot make sure that the
rules mentioned above are enforced.

It is important to realize that by adding lifetime notations you cannot actu-
ally change the lifetime of any variable. They are a way of telling the compiler
how the lifetimes of variables are related. We are basically saying to the Rust
compiler that any variables passed to a function that do not adhere to the rules
should result in an error.

In order to make the previous example work, we need to add lifetime anno-
tations to the function function in such a way that the compiler understands
how the lifetimes of the input variables and output variables relate. In this case,
it is pretty straightforward:

1Except for ’static, as that has a special meaning,

14

2.3. LIFETIMES CHAPTER 2. RUST

1 fn function<'a>(v : &'a Vec<i32>, w : &'a Vec<i32>) -> &'a Vec<i32>{

2 if v[0] == 37 {

3 v

4 }

5 else {

6 w

7 }

8 }

9

10 let vector = vec![37, 42];

11 let another_vector = vec![42, 37];

12 let f = function(&vector, &another_vector);

13 println!("f[0] + f[1] = {}", f[0] + f[1]);

We are telling the compiler that we have a lifetime 'a and that the function
gets two arguments that will live at least as long as 'a. The function also returns
a variable that will also live at least as long as 'a. If you would want to use
the function but do something different than specified here, this will result in a
compile time error.

When concrete vectors are passed to function the lifetime that will be
substituted for 'a is the part of the scopes of v and w that overlap. Since scopes
are always nested, this comes down to that 'a is the smaller of the lifetimes of
v and w. So, the returned reference will be guaranteed to be valid at least as
long as the shorter of v and w.

However, we can also manipulate the order in which variables are declared.
This will change the lifetimes. For example, the following piece of code is
allowed.

1 fn function<'a>(v : &'a Vec<i32>, w : &'a Vec<i32>) -> &'a Vec<i32>{

2 if v[0] == 37 {

3 v

4 }

5 else {

6 w

7 }

8 }

9

10 let vector = vec![37, 42];

11 {

12 let another_vector = vec![42, 37];

13 let f = function(&vector, &another_vector);

14 println!("f[0] + f[1] = {}", f[0] + f[1]);

15 }

15

2.3. LIFETIMES CHAPTER 2. RUST

The curly brackets indicate a scope here. The code will compile. The result of
function does not live longer than the input variables of function, so nothing
can go wrong. However, if we shuffle the order in which variables are declared,
we get a problem. This is shown in the following example.

1 fn function<'a>(v : &'a Vec<i32>, w : &'a Vec<i32>) -> &'a Vec<i32>{

2 if v[0] == 37 {

3 v

4 }

5 else {

6 w

7 }

8 }

9

10 let vector = vec![37, 42];

11 let f;

12 {

13 let another_vector = vec![42, 37];

14 f = function(&vector, &another_vector);

15 }

16 println!("f[0] + f[1] = {}", f[0] + f[1]);

We now declare f before the vector another_vector is declared. This means
f will live longer than another_vector. If function now returns the resource
of another_vector, f lives longer than the variable it borrowed from. As
said, before, this is a problem, because the original owner can no longer clean
up after it is returned ownership. The program gives the compile time error
error: ‘another vector‘ does not live long enough. We, as humans,
can see that there will be no problem if you do run the code, since function

will return the resource of vector and not that of another_vector. The Rust
compiler, however, still does not allow it.

2.3.1 Lifetime elision

As mentioned above, it is not necessary to explicitly state lifetimes in all cases.
The compiler can sometimes infer the lifetimes. Not explicitly stating lifetimes
is called elision. At the time of writing, there are only very few specific cases
in which the compiler can infer the lifetimes. It is certainly possible that the
amount of cases in which this can be done grows as newer versions of the lan-
guage are made available. There was no elision in earlier versions of the lan-
guage.

The compiler has a set of rules it follows to determine what the lifetimes in
a function signature should be. If, after following these rules, the compiler still
has references for which it cannot figure out the lifetimes, there will be an error.

16

2.3. LIFETIMES CHAPTER 2. RUST

These rules are the following (as taken from the website ”The Rust Pro-
gramming Language” (The Rust Project, 2017b)):

1. Each parameter that is a reference gets its own lifetime parameter. In
other words, a function with one parameter gets one lifetime parameter:
fn foo<'a>(x: &'a i32), a function with two arguments gets two sep-
arate lifetime parameters: fn foo<'a, 'b>(x: &'a i32, y: &'b i32),
and so on.

2. If there is exactly one input lifetime parameter, that lifetime is assigned to
all output lifetime parameters: fn foo<'a>(x: &'a i32) -> &'a i32.

3. If there are multiple input lifetime parameters, but one of them is &self or
&mut self because this is a method2, then the lifetime of self is assigned
to all output lifetime parameters.

All of the cases in the first two parts of this chapter had only one input
lifetime parameter and no return lifetime parameter. This means that, following
the rules, no lifetime parameters are left and the compiler has inferred the right
lifetimes.

2.3.2 Lifetimes of statements

In this section we have only looked at lifetimes of variables that are passed to
functions and how they relate. However, the compiler also keeps track of the
lifetimes of variables, even when we use no functions. In most of this thesis,
we will be looking at declarations only, so it is worthwhile to look at how the
lifetimes work there.

The example is taken from The Rustonomicon which is a piece of docu-
mentation about advanced and unsafe Rust programming (The Rust Project,
2017a).

1 let x = 0;

2 let y = &x;

3 let z = &y;

We are now going to ‘desugar’ this piece of code and write out all lifetimes
explicitly. Note that the following is not valid syntax in Rust. We only use it
to see what is going on here. Also note that the compiler will try to minimize
the extent of a lifetime. That means desugaring will result in the following:

1 // NOTE: `'a: {` and `&'b x` is not valid syntax!

2 'a: {

3 let x: i32 = 0;

4 'b: {

2In Rust, methods are functions attached to objects

17

2.3. LIFETIMES CHAPTER 2. RUST

5 // lifetime used is 'b because that's good enough.

6 let y: &'b i32 = &'b x; // this is only valid if x lives

7 // at least as long as y,

8 // which is clearly the case

9 'c: {

10 // in the following line, it is stated that y has to

11 // live at least as long as z, which is clearly

12 // the case.

13 let z: &'c &'b i32 = &'c y;

14 }

15 }

16 }

We can do the same for a small program where we pass references to an
outer scope:

1 let x = 0;

2 let z;

3 let y = &x;

4 z = y;

In this example, we first declare z before we declare y. After declaring y we
finally assign a value to z. This example desugars to:

1 'a: {

2 let x: i32 = 0;

3 'b: {

4 let z: &'b i32;

5 'c: {

6 // Must use 'b here because this reference is

7 // being passed to that scope.

8 let y: &'b i32 = &'b x;

9 z = y;

10 }

11 }

12 }

For our last example program, we alias a mutable reference. That means
the rules for borrowing are relevant.

1 let mut vector = vec![1, 2, 3];

2 let x = &vector[0];

3 vector.push(4);

4 println!("{}", x);

18

2.3. LIFETIMES CHAPTER 2. RUST

This program has a mutable vector vector and a variable x that points to a
part of vector. This means we have a problem: vector is mutable but x also
points to the same piece of memory. That means the second rule of borrowing
is broken and the program is rejected.

The compiler will reject the program, but for completely different reasons.
It does not know that x is a reference to a part of vector, because it does
not know what the vec macro does. We desugar the program to see what is
happening.

1 'a: {

2 let mut vector: Vec<i32> = vec![1, 2, 3];

3 'b: {

4 // 'b is as big as we need this borrow to be

5 // (just need to get to `println!`)

6 let x: &'b i32 = Index::index<'b>(&'b vector, 0);

7 'c: {

8 // Temporary scope because we don't need the

9 // &mut to last any longer.

10 Vec::push<'c>(&'c mut vector, 4);

11 }

12 println!("{}", x);

13 }

14 }

The compiler does know that x has to live as long as 'b to be printed.
The signature of Index::index says that vector has to live as long as 'b as
well. When push is then called, Rust sees that we try to make a mutable
reference to vector with lifetime 'c. Rust knows that 'c is contained within
'b, so &'b data must still be live. Therefore, when trying to do Vec::push,
the program is rejected.

19

Chapter 3

Moving

3.1 Introduction

In the following two chapters, we will look into two different subsets of Rust.
This first chapter is concerned with a very simple language where we will just
focus on ownership and moving. We will first look into the syntax of this small
language and then move on to the semantics.

In the next chapter, we will add some interesting features, and again look
at both the syntax and semantics of those features. This first chapter will go
into detail at every step, while the following chapter will not do so anymore and
assume that what was mentioned here is known to the reader.

The subset of Rust that interests us in this chapter will be dubbed as ‘move
only’. In this subset of Rust, you can only assign variables. If you do so, the
ownership of the resource will be moved to that variable. You cannot borrow
and nothing is mutable. That means everything is constant. While this does
not seem like a very useful language, it will provide a good basis to work from
when adding new features.

3.1.1 A note on types

In this chapter and the following chapter, we will assume that all programs
are typed correctly. We will not develop a type system here, as that is not
particularly interesting for what we are investigating now: the compile timed
check of moving, borrowing and mutability. Therefore, the assumption is that
we are only dealing with well-typed programs.

3.2 Syntax

We will first look at the syntax of our ‘move only’ language. We have the
following defintions.

20

3.2. SYNTAX CHAPTER 3. MOVING

Definition 3.2.1. A statement S is defined recursively by:

S ::= skip | S1;S2 | let x : τ in S′ | x = e

where e is an expression as defined below, τ is a type as defined below and S1,
S2 and S′ are statements themselves.

Definition 3.2.2. An expression e is defined recursively by:

e ::= x | i | e1 + e2

Definition 3.2.3. A type τ is

τ ::= Int

This syntax is very simple, but enough for us to say something useful about
ownership. We use only one data type, as more data types will add no additional
interesting facts for ownership. However, this syntax can be expanded to include
more types. The data type we use is Int to denote all integers.

Our syntax for let-statements is different from the usual Rust syntax. We
split up a statement such as let x = 5 in let x in (x = 5) (brackets added
for clarity). This can be done for every type of let-statement. It is done to show
that there are actually two steps in a statement such as let x = 5. First of all,
the variable x is declared. Then, a value is assigned to the resource x owns.

Besides splitting up a let-statement if necessary, we include a type in our
let-statements. While this is not done in Rust, it makes things more clear for
the reader, especially in the following chapter where we will include borrows.

In order to illustrate this, the following program (taken from 2.3.2) is written
in our syntax.

1 let x = 0;

2 let y = x;

3 let z = y;

1 let x: Int in (x = 0;

2 let y: Int in (y = x;

3 let z: Int in (z = y;

4 }

5)

6)

We will often put the closing bracket at the same indenting height as the
opening brackets, contrary to normal programming standards. This is done to
clearly show the scopes.

Our syntax looks like the desugaring in 2.3.2, but we removed the lifetimes
in order to simplify the syntax. We do not need the lifetimes for the very simple
features of Rust we will be looking at.

21

3.3. SEMANTICS: FRAMEWORK CHAPTER 3. MOVING

3.3 Semantics: Framework

In this chapter, we will look at two types of semantics. The first is a big
step semantics and the second a small steps semantics. Both are based on the
exposition in Nielson and Nielson (1992). We will try to use as much of the
same notation as used in Nielson and Nielson (1992) as possible.

Our big step semantics is called ‘natural semantics’. Its rules are of the form:

〈S, s〉 → s′

S is a statement as defined in the previous section. s and s′ are states, for
which an exact definition will be given shortly.

Our small step semantics is called ‘structural operational semantics’. Its
rules are of the form:

〈S,L, s〉 ⇒ 〈S′, L′, s′〉

Where S, S′ and s, s′ are again statements and states respectively. L and
L′ are lists of program parts, which will also be defined later on.

In order to work with these rules, we need some more mathematical defini-
tions for the different kinds of sets and functions we are interested in. Therefore,
we will first set up a mathematical framework in this section, and then move on
to the actual rules in the following two sections.

In this section we will need to distinguish actual definitions from pseudo-
definitions. The latter means we give an intended interpretation for a symbol
or a set in natural language. This is done to show what the symbol or set is
supposed to represent in the real world. However, the actual meaning of the
symbol or set will depend on how we will use it in other definitions later on.
The pseudo-definitions are added to help the reader navigate through the many
difficult notations introduced in the chapter and to give them some intuition to
what is happening. To distinguish between actual definitions and these pseudo-
definitions, the latter is preceded by ‘Informal’, as below.

Variable values

The symbols in this subsection will be defined informally.

Informal definition 3.3.1. We will need the following symbols

i) − will be used to indicate that a variable has not been declared at all.
ii) ⊥ will be used to indicate that a variable has been declared using let,

but has not been assigned a value.

Intuitively, these are some special kind of values a variable can have.
As is conventional, the set Z will be used to denote the set of integers. We

extend Z with two new symbols mentioned in the previous section, to get Zext.
Therefore:

Definition 3.3.1. Zext := Z ∪ {⊥,−}.

22

3.3. SEMANTICS: FRAMEWORK CHAPTER 3. MOVING

Expressions

Definition 3.3.2. We have the following sets:

i) Var denotes the set of all variables in Rust.
ii) Num denotes the set of all numbers in the form of how they are repre-

sented in Rust.
iii) Add denotes the set of all tuples from Exp, i.e. Add = Exp×Exp .
iv) Exp = Num ∪Var ∪Add

Notice that we have a recursive definition of Exp. Exp should be interpreted
as a representation for all possible syntactic expressions. Note that elements
from Add will usually be denoted as “e1 + e2” instead of “(e1, e2)”.

As Exp is a inductive set, it will turn out to be useful to also be able to
gather all the variables that are in an expression e. We do this by defining a
new function V.

Definition 3.3.3. We define the function V : Exp→ P(Var) recursively by:

V(i) = ∅
V(x) = {x}

V(e1 + e2) = V(e1) ∪ V(e2)

We see that this definition recursively walks through the expression to gather
all variables mentioned and join them together into a single set.

We also need a way to transform a Rust representation of a number into an
actual number.

Informal definition 3.3.2. N : Num → Z translates a Rust representation
for a number to the actual number

We leave the details of this function out, as it is cumbersome and not relevant
for the remainder of this thesis. We will simply assume that we have such a
function and that it behaves as we would expect. For a detailed exposition on
how one could make such a function, we refer the reader to Nielson and Nielson
(1992).

State and evaluation

The state is a function that maps a variable to a value. Therefore, we can define
the set State which contains all possible states.

Definition 3.3.4. State is the set of all functions s : Var→ Zext

We also have an evaluation function A, which takes an element from Exp
and a state s and returns the corresponding value. The value is an element of
Zext.

23

3.4. SEMANTICS: BIG STEP CHAPTER 3. MOVING

Definition 3.3.5. The evaluation function A : Exp× State→ Zext is defined
by:

AJiKs = N JiK i ∈ Z
AJxKs = s(x) x a variable

AJe1 + e2Ks = AJe1Ks+AJe2Ks if AJe1Ks ∈ Z and AJe2Ks ∈ Z
AJe1 + e2Ks = − otherwise

We now have sufficient apparatus to continue with the actual semantic rules.

3.4 Semantics: Big step

As mentioned earlier on, our big step semantics are called natural semantics
with rules of the form

〈S, s〉 → s′

Where S is a statement and s, s′ are states. As we have defined both
statements and states in the previous section, we can now start defining the
actual rules.

3.4.1 Natural semantics rules

Definition 3.4.1. We define the following natural semantics rules. The names
on the left are used to later refer to the specific rules.

[skipns] 〈skip, s〉 → s

[compns]
〈S1, s〉 → s′ 〈S2, s

′〉 → s′′

〈S1;S2, s〉 → s′′

[letns]
〈S, s[x 7→⊥]〉 → s′

〈let x : τ in S, s〉 → s′[x 7→ s(x)]

[assns] 〈x = e, s〉 → s[x 7→ AJeKs][V(e) 7→ −] if AJxKs =⊥, AJeKs
6=⊥ and AJeKs 6= −

V(e) 7→ − is an abbreviation for ‘for all x ∈ V(e), x 7→ −’.

The rules for skip and composition are assumed to be self-explanatory (see
also Nielson and Nielson (1992)). The rule for let is derived from the idea that
a let-statement should put the variable x at ⊥ (declared but not assigned).
When the body of a let-statement is finished, x should be put at whatever it
was before it encountered the let-statement.

As for the assignment rule, there are several conditions that need to apply
before we can consider the rule. If one of these conditions does not apply,
we cannot apply this rule and that means we cannot make a derivation of the
program. The program is incorrect, then. The first rule states that x must
have been declared, but not assigned. The second and third rules state that the
expression must result in a value. In practice that means that every variable in

24

3.4. SEMANTICS: BIG STEP CHAPTER 3. MOVING

the expression must be assigned some value. For example, take a look at the
following program:

let x : τ in x = y

y has not been given a value (it has not even been declared), so we cannot
rightly assign y’s value to x.

Note that these rules are important to model Rust in the best possible way.
It is not possible to assign to a value that has not been declared and it is also not
possible to assign a value to a non-mutable variable that already has a value.

3.4.2 Properties of our natural semantics rules

In this subsection, we will look at, and prove some interesting properties of our
natural semantics.

Determinism

The first property that interests us is determinism. This means that if we run
a program multiple times (even infinitely many times) with the same starting
state, the end state will always be the same. This is, of course, a desirable
property in most programming languages.

Theorem 3.4.1. For every statement S, every state s, s′, s′′, if 〈S, s〉 → s′ and
〈S, s〉 → s′′, then s′ = s′′.

Proof. The proof proceeds by induction on the structure of S. We distinguish
the following cases:

• S = skip: if 〈skip, s〉 → s′ and 〈skip, s〉 → s′′, then this can only be
achieved by [skipns], which means s = s′ and s = s′′, so s′ = s′′.

• S = x = e : if 〈x = e, s〉 → s′ and 〈x = e, s〉 → s′′, then the rule that must
have been applied is [assns]. This means s′ = s[x 7→ AJeKs][V(e) 7→ −]
and s′′ = s[x 7→ AJeKs][V(e) 7→ −], so s′ = s′′.

• S = S1;S2 : if 〈S1;S2, s〉 → s′ and 〈S1;S2, s〉 → s′′, the rule that must
have been applied is [compns]. This gives us

〈S1, s〉 → s′′′ 〈S2, s
′′′〉 → s′

〈S1;S2, s〉 → s′
and

〈S1, s〉 → s′′′′ 〈S2, s
′′′′〉 → s′′

〈S1;S2, s〉 → s′′

We can now apply the induction hypothesis to 〈S1, s〉 → s′′′ and 〈S1, s〉 →
s′′′′, so we have s′′′ = s′′′′. We can also apply the induction hypothesis to
〈S2, s

′′′〉 → s′ and 〈S2, s
′′′′〉 → s′′, so we have s′ = s′′.

• S = let x : τ in S′ : if 〈let x : τ in S′, s〉 → s′ and 〈let x :
τ in S′, s〉 → s′′, then it must be the case that the rule [letns] has been
applied. That gives us

〈S′, s[x 7→⊥]〉 → s′′′

〈let x : τ in S′, s〉 → s′′′[x 7→ s(x)]

25

3.4. SEMANTICS: BIG STEP CHAPTER 3. MOVING

where s′′′[x 7→ s(x)] = s′ and

〈S′, s[x 7→⊥]〉 → s′′′′

〈let x : τ in S′, s〉 → s′′′′[x 7→ s(x)]

where s′′′′[x 7→ s(x)] = s′′. We can apply the induction hypothesis to
〈S′, s[x 7→⊥]〉 → s′′′ and 〈S′, s[x 7→⊥]〉 → s′′′′, so we have s′′′ = s′′′′. This
must also mean that s′ = s′′′[x 7→ s(x)] = s′′′′[x 7→ s(x)] = s′′, so s′ = s′′.

This exhausts all possible cases and hence proves our theorem. ♦

Variable allocation

While this first theorem is one that is generally considered useful to prove, the
next is very specific to Rust and the way we defined our semantics. It states
that a program no longer has any variables in memory after it terminates.

Theorem 3.4.2. For every statement S, every state s, s′, if 〈S, s〉 → s′, then
for all variables y, if AJyKs = − then AJyKs′ = −.

Proof. The proof proceeds by induction on the structure of S. We distinguish
the following cases:

• S = skip : if 〈skip, s〉 → s′, then this can only be achieved by [skipns],
which means s = s′. Therefore if AJyKs = − then AJyKs′ = −.
• S = x = e : assume 〈x = e, s〉 → s′. Then the only rule that could

have been applied is [assns], so s′ must be s[x 7→ AJeKs][V(e) 7→ −] and
AJxKs =⊥, AJeKs 6=⊥ and AJeKs 6= −. If one of these things had not
been the case, we could not have applied any rules, and therefore our
assumption ‘〈S, s〉 → s′’ would be false. So we can assume these things to
be true. Now we look at a variable y, chosen arbitrarily. We distinguish
two cases:

– y = x : if AJxKs 6= − there is nothing to prove. So assume AJxKs =
−. However, this is contradictory to our assumption AJxKs =⊥. So
this is not possible.

– y 6= x : we again assume AJyKs = −, as otherwise there is nothing
to prove. Then we can again distinguish two cases:

∗ y ∈ V(e) 1 : in s′, we have V(e) 7→ −, so y 7→ −, which means
AJyKs = −.

∗ y 6∈ V(e) : as x 6= y and y 6∈ V(e), the value of y is not any
different from s in s′ = s[x 7→ AJeKs][V(e) 7→ −], so AJyKs′ = −

This exhausts all possible cases and therefore proves the case where S is
of the form x = e.

1Note: in practice, it will not be possible for y to be both an element of V(e) andAJyKs = −,
as one of the assumptions of the rule [assns] assumes AJeKs 6= −. However, we would need to
prove this with induction on the shape of an expression and it turns out not to be necessary
as the proof is rather simple anyways.

26

3.5. SEMANTICS: SMALL STEP CHAPTER 3. MOVING

• S = let x : τ in S : assume 〈let x : τ in S, s〉 → s′. Then the rule
that has been aplied last must be [letns]. This has the following derivation
tree

〈S, s[x 7→⊥]〉 → s′′

〈let x : τ in S, s〉 → s′′[x 7→ s(x)]

This means s′ = s′′[x 7→ s(x)]. We look at an arbitrary variable y and
assume AJyKs′ = − (otherwise we have nothing to prove). We again
distinguish two cases:

– y = x : as AJxKs = − and x in s′′ maps to s(x), we can conclude
AJxKs′′ = −

– y 6= x : we are now interested in AJyKs′′. We can apply the induction
hypothesis to 〈S, s[x 7→⊥]〉 → s′′ as AJyKs[x 7→⊥] = AJyKs = −. So
AJyKs′′ = −. As s′ = s′′[x 7→ s(x)], the value of y is not changed and
we can conclude AJyKs′ = −

• S = S1; S2 : assume 〈S1;S2, s〉 → s′ (NB: the accents ′ are different than
in the definition of the natural semantics). Then the last rule that has
been applied must be [compns], which gives the following derivation tree

〈S1, s〉 → s′′ 〈S2, s
′′〉 → s′

〈S1;S2, s〉 → s′

Now assume y to be an arbitrary variable and AJyKs = −. We can apply
the induction hypothesis to 〈S1, s〉 → s′′, so we know AJyKs′′ = −. We
can then again apply the induction hypothesis to 〈S2, s

′′〉 → s′. So we
know AJyKs′ = −, which was what was to be proven.

This exhausts all possible shapes of our statement S, and hence proves the
theorem. ♦

Note that this means that after a program terminates, none of the results
are available anymore. To make use of the data, you would have to write it to
a file or some other IO device. This is a significant break from the exposition
of Nielson and Nielson (1992) where the state of a terminated program shows
the values of the variables at the end and you can thus ‘access’ the results of
the calculations. However, this is not how a computer normally works: after a
program terminates, all memory will have to be freed.

3.4.3 Conclusion

This concludes our section of the big step semantics. As these semantics are
rather coarse-grained, we will shift our focus to the small step semantics from
now on. In the end, we will prove that the two are equivalent.

3.5 Semantics: Small step

We now move on to a small step semantics. We mostly use the same mathemat-
ical framework as in the big step semantics, unless stated otherwise. Our small

27

3.5. SEMANTICS: SMALL STEP CHAPTER 3. MOVING

step semantics, as stated above, has rules of the form 〈S,L, s〉 ⇒ 〈S′, L′, s′〉,
where S, S′ are statements and s, s′ are states as defined above. To properly
define what L and L′ are, we first need to define what is meant by ‘a program
instruction’.

Definition 3.5.1. A program instruction I has the following form:

I ::= S | (x, v)

where S is a statement, x a variable from Var and v an element from Zext.

Informally, a program instruction is either a statement, or some specific
instruction that cannot be programmed by a user, but will be used by us to do
some bookkeeping along the way. In the remainder of the thesis, we will mostly
use S as a letter for both, but will explicitly state whether that is a program
instruction or statement.

We can now look at our lists:

Definition 3.5.2. A list L is of the form

• L = Nil

• L = I :: L′, where I is a program instruction and L′ is again a list.

We can now state that our L and L′ from the operational semantic rules
should be lists as defined in definition 3.5.2. We will use this list as a sort of
stack to keep track of what program parts need to be executed later on. This
idea is not new. It has also been proposed by, for example, Appel and Blazy
(2007).

3.5.1 Operational semantics rules

Definition 3.5.3. We define the following semantic derivation rules (name on
the left):

[loadsos] 〈skip, I :: L, s〉 ⇒ 〈I, L, s〉

[compsos] 〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉

[asssos] 〈x = e, L, s〉 ⇒ 〈skip, L, s[x 7→
AJeKs][V(e) 7→ −]〉

[letsos] 〈let x : τ in S,L, s〉 ⇒ 〈S, (x, s(x)) ::
L, s[x 7→⊥]〉

[setsos] 〈(x, v), L, s〉 ⇒ 〈skip, L, s[x 7→ v]〉

Where V(e) 7→ − is an abbreviation for ‘for all x ∈ V(e), x 7→ −’.

Note that we cannot take a step anymore when in 〈skip, Nil, s〉; this is the
end state.

The [loadsos] rule is used to pop an instruction from the stack. The [compsos] rule
pushes the second part of the composition to the list. The idea is that you can
then freely execute the first part and pop the second part when the first part

28

3.5. SEMANTICS: SMALL STEP CHAPTER 3. MOVING

finishes. The [asssos] rule changes the state in a similar way as was done in the
natural semantics. The [letsos] rule changes the state to reflect that x now has
been declared. It also pushes a tuple onto the list stack. After the body of
the let terminates, x should be reset to what it was before the let-statement.
Pushing this tuple to the stack is a way to make that happen. When that tuple
is popped from the list, the [setsos] rule resets the value in the state.

Informal definition 3.5.1. We will be using 〈S,L, s〉 ⇒∗ 〈S′, L′, s′〉 to indicate
we can go from 〈S,L, s〉 to 〈S′, L′, s′〉 in zero or more steps, as defined in 3.5.3.

3.5.2 Properties of our semantic rules

Concerning lists and recursive statements

In this section, we will prove some properties about the lists in combination with
the semantics. For example, we will see that it is irrelevant what is in the list
for a statement that is currently executing. In order to prove these properties,
we need some helping lemmas. These lemmas help us break down the recursive
statements: the composition and the let-statement. Proving this now will save
us some work later on, also in the following sections.

The first of these lemmas states that if we have a derivation from a compo-
sition to a skip, we must have first pushed the second part to the list and then
have executed the first part. Then you pop the second part from the list and
execute that.

Lemma 3.5.1. For every statement S1, S2, for every list L, for every state s,
s′, if 〈S1;S2, L, s〉 ⇒∗ 〈skip, L, s′〉, then it must be the case that 〈S1;S2, L, s〉 ⇒
〈S1, S2 :: L, s〉 ⇒∗ 〈skip, S2 :: L, s′′〉 ⇒ 〈S2, L, s

′′〉 ⇒∗ 〈skip, L, s′〉 for some
state s′′.

Proof. Assume 〈S1;S2, L, s〉 ⇒∗ 〈skip, L, s′〉. Now look at 〈S1;S2, L, s〉. We
know there must be a derivation. The only possible rule is [compsos], so we have
〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉. Now we see that our list has grown by one item.
However we know there is a derivation and it ends with the list L, instead of
S2 :: L. So at some point in the derivation this should be removed from the
list. The only possible rule that could have done that is [loadsos]. So we must
have 〈skip, S2 :: L, s′′〉 ⇒ 〈S2, L, s

′′〉 at some point in the derivation. Therefore
we have 〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉 ⇒∗ 〈skip, S2 :: L, s′′〉 ⇒ 〈S2, L, s

′′〉 ⇒∗
〈skip, L, s′〉, which was to be proven. ♦

We have a similar lemma to the let-statement. We will not be proving that
one as rigorously, as the proof is very similar to the one of the previous lemma.

Lemma 3.5.2. For every statement S, for every list L, for every state s, s′, if
〈let x : τ in S,L, s〉 ⇒∗ 〈skip, L, s′〉, then it must be the case that 〈let x :
τ in S,L, s〉 ⇒∗ 〈skip, (x, s(x)) :: L, s′′〉 ⇒ 〈(x, s(x)), L, s′′〉 ⇒ 〈skip, L, s′〉
for some state s′′.

29

3.5. SEMANTICS: SMALL STEP CHAPTER 3. MOVING

Proof. The proof is similar to lemma 3.5.1. Note that we can actually say some
more about the relation between s′′ and s′ because of how the rule [setsos]works.

♦

We are now ready to prove that when executing a program instruction, it is
irrelevant what is in the list.

Proposition 3.5.3. For every program instruction S, every state s, s′, if
〈S,L′, s〉 ⇒∗ 〈skip, L′, s′〉 for some list L′, then we have 〈S,L, s〉 ⇒∗ 〈skip, L, s′〉
for all lists L.

Proof. We know that there must be a derivation from 〈S,L′, s〉 to 〈skip, L′, s′〉,
so S must be of one of the forms from definition 3.5.3. We therefore prove the
proposition by induction on the form of the program instruction S.

• S = skip : we look at 〈skip, L, s〉. This is already of the correct form, as
s = s′, so we can evaluate to the desired state in zero steps, which proves
this case.

• S = x = e : assume 〈x = e, L′, s〉 ⇒∗ 〈skip, L′, s′〉. Then we know the
rule that must have been applied first is [asssos], so we have

〈x = e, L′, s〉 ⇒ 〈skip, L′, s[x 7→ AJeKs][V(e) 7→ −]〉

which is of the desired form. So it must be that s′ = s[x 7→ AJeKs][V(e) 7→
−]. Now we look at 〈x = e, L, s〉. The only rule we can apply is [asssos],
so we get

〈x = e, L, s〉 ⇒ 〈skip, L, s[x 7→ AJeKs][V(e) 7→ −]〉

which is of the desired form, and has the right s′. This proves this case.
• S = (v, e) : assume 〈(v, e), L′, s〉 ⇒∗ 〈skip, L′, s′〉. Then we know the rule

that must have been applied first was [setsos]. So we get

〈(v, e), L′, s〉 ⇒∗ 〈skip, L′, s[x 7→ v]〉

This is of the desired form, so it must be the case that s′ = s[x 7→ v]. Now
we look at 〈(v, e), L, s〉. The only rule that can be applied is [setsos], so
we get

〈(v, e), L, s〉 ⇒ 〈skip, L, s[x 7→ v]〉

which is of the desired form, and has the right s′. This proves this case.
• S = S1;S2 : assume 〈S1;S2, L

′, s〉 ⇒∗ 〈skip, L′, s′〉. Then by [compsos]and
lemma 3.5.1, we have

〈S1;S2, L
′, s〉 ⇒ 〈S1, S2 :: L′, s〉 ⇒∗ 〈skip, S2 :: L′, s′′〉

⇒ 〈S2, L
′, s′′〉 ⇒∗ 〈skip, L′, s′〉 (∗)

Now we look at 〈S1;S2, L, s〉 with L arbitrary. We can apply the rule
[compsos]to see

〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉

30

3.5. SEMANTICS: SMALL STEP CHAPTER 3. MOVING

Now we can apply the induction hypothesis to 〈S1, S2 :: L, s〉, as we have
〈S1, L

′, s〉 ⇒∗ 〈skip, L′, s′′〉 by (∗). So we get

〈S1, S2 :: L, s〉 ⇒∗ 〈skip, S2 :: L, s′′〉

Then by [loadsos],

〈skip, S2 :: L, s′′〉 ⇒ 〈S2, L, s
′′〉

Now we can apply the induction hypothesis to 〈S2, L, s
′′〉, as we have

〈S2, L
′, s′′〉 ⇒∗ 〈skip, L′, s′〉 by (∗). We get

〈S2, L, s
′′〉 ⇒∗ 〈skip, L, s′〉

That means we can form the derivation sequence

〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉 ⇒∗ 〈skip, S2 :: L, s′′〉

⇒ 〈S2, L, s
′′〉 ⇒∗ 〈skip, L, s′〉

This gives us
〈S1;S2, L, s〉 ⇒∗ 〈skip, L, s′〉

which was to be proven.
• S = let x : τ in S′ : assume 〈let x : τ in S′, L′, s〉 ⇒∗ 〈skip, L′, s′〉.

There is only one rule that could have been applied first, [letsos], which
gives us

〈let x : τ in S′, L′, s〉 ⇒ 〈S, (x, s(x)) :: L′, s[x 7→ v]〉 ⇒∗ 〈skip, L′, s′〉

By lemma 3.5.2 we get

〈let x : τ in S′, L′, s〉 ⇒ 〈S, (x, s(x)) :: L′, s[x 7→ v]〉

⇒∗ 〈skip, (x, s(x)) :: L′, s′′〉 ⇒ 〈(x, s(x)), L′, s′′〉 ⇒ 〈skip, L′, s′〉 (∗)

From this and the rule [setsos], we can conclude that s′ = s′′[x 7→ v]. Now
we look at 〈let x : τ in S′, L, s〉 for some list L. Then we can apply
[letsos]to get

〈let x : τ in S′, L, s〉 ⇒ 〈S, (x, s(x)) :: L, s[x 7→ v]〉

We can now apply the induction hypothesis to 〈S, (x, s(x)) :: L, s[x 7→ v]〉,
as we know 〈S, (x, s(x)) :: L′, s[x 7→ v]〉 ⇒∗ 〈skip, (x, s(x)) :: L′, s′′〉 by
(∗). We get

〈S, (x, s(x)) :: L, s[x 7→ v]〉 ⇒∗ 〈skip, (x, s(x)) :: L, s′′〉

By the rules [loadsos] and [setsos], we get

〈skip, (x, s(x)) :: L, s′′〉 ⇒ 〈(x, s(x)), L, s′′〉 ⇒ 〈skip, L, s′′[x 7→ v]〉

This is of the desired form and has the right s′. This proves this case.

31

3.5. SEMANTICS: SMALL STEP CHAPTER 3. MOVING

This exhausts all possible cases and hence proves the theorem. ♦

Intuitively, this makes sense. If we look at the rules, we see that we can
only move something from the list to the front if the front only contains a
skip statement, and that thus everything that had been there, must have fin-
ished evaluating.

We will now do a simple proof to show that in a composition, the execution
of S1 does not depend on what S2 entails.

Proposition 3.5.4. For every statement S1, S2, for every list L, for every
state s, s′, if 〈S1, L, s〉 ⇒∗ 〈skip, L, s〉, then 〈S1;S2, L, s〉 ⇒∗ 〈S2, L, s〉

Proof. Assume 〈S1, L, s〉 ⇒∗ 〈skip, L, s〉 and look at 〈S1;S2, L, s〉. Then by
[compsos]

〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉

Now by 3.5.3 and the fact that 〈S1, L, s〉 ⇒∗ 〈skip, L, s〉, we know 〈S1, S2 ::
L, s〉 ⇒∗ 〈skip, S2 :: L, s〉. Then from [loadsos]

〈skip, S2 :: L, s〉 ⇒ 〈S2, L, s〉

Therefore, we get
〈S1;S2, L, s〉 ⇒∗ 〈S2, L, s〉

which was to be proven. ♦

Determinism

Another major desirable property of our semantics is determinism. This means
that running the program will always have the same results. Therefore, we want
our derivation system to always return the same result. The proof is similar to
that of the natural semantics.

Theorem 3.5.5. For every program instruction S, every state s, s′, s′′, every
list L, if 〈S,L, s〉 ⇒∗ 〈skip, L, s′〉 and 〈S,L, s〉 ⇒∗ 〈skip, L, s′′〉, then s′ = s′′.

Proof. The proof proceeds by induction on the structure of S, the program
instruction. We distinguish the following cases:

• S = skip : if 〈skip, L, s〉 ⇒∗ 〈skip, L, s′〉 and 〈skip, L, s〉 ⇒∗ 〈skip, L, s′′〉,
then no steps have to be taken, or could have been taken, and we obviously
have s′ = s′′.

• S = x = e : 〈x = e, L, s〉 ⇒∗ 〈skip, L, s′〉 and 〈x = e, L, s〉 ⇒∗ 〈skip, L, s′′〉,
then the rule that must have been applied is [asssos]. This means that ex-
actly one step has been taken and that s′ = s[x 7→ AJeKs][V(e) 7→ −] and
s′′ = s[x 7→ AJeKs][V(e) 7→ −], so s′ = s′′.

• S = (x, v) : if 〈(x, v), L, s〉 ⇒∗ 〈skip, L, s′〉 and 〈(x, v), L, s〉 ⇒∗ 〈skip, L, s′′〉,
then the rule that must have been applied next is [setsos]. This means that
exactly one step has been taken and that s′ = s[x 7→ v] and s′′ = s[x 7→ v],
so s′ = s′′.

32

3.5. SEMANTICS: SMALL STEP CHAPTER 3. MOVING

• S = S1;S2 : if 〈S1;S2, L, s〉 ⇒∗ 〈skip, L, s′〉 and 〈S1;S2, L, s〉 ⇒∗ 〈skip, L, s′′〉,
then the only applicable rule is [compsos]. This means that we have

〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉 ⇒∗ 〈skip, L, s′〉

and
〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉 ⇒∗ 〈skip, L, s′′〉

By Proposition 3.5.1, we know that the latter ⇒∗ can be broken up into
smaller parts, so we have

〈S1, S2 :: L, s〉 ⇒∗ 〈skip, S2 :: L, s′′′〉 ⇒ 〈S2, L, s
′′′〉 ⇒∗ 〈skip, L, s′〉

and

〈S1, S2 :: L, s〉 ⇒∗ 〈skip, S2 :: L, s′′′′〉 ⇒ 〈S2, L, s
′′′′〉 ⇒∗ 〈skip, L, s′′〉

for some s′′′ and s′′′′. Now we can apply the induction hypothesis to
〈S1, S2 :: L, s〉 ⇒∗ 〈skip, S2 :: L, s′′′〉 and 〈S1, S2 :: L, s〉 ⇒∗ 〈skip, S2 ::
L, s′′′′〉, so we have s′′′ = s′′′′. We then get

〈S2, L, s
′′′〉 ⇒∗ 〈skip, L, s′〉

and
〈S2, L, s

′′′〉 ⇒∗ 〈skip, L, s′′〉
to which we again can apply the induction hypothesis to get s′ = s′′.

• S = let x : τ in S′ : assume 〈let x : τ in S′, L, s〉 ⇒∗ 〈skip, L, s′〉
and 〈let x : τ in S′, L, s〉 ⇒∗ 〈skip, L, s′′〉. The only rule that can be
applied is [letsos]. This gives us

〈let x : τ in S′, L, s〉 ⇒ 〈S′, (x, s(x)) :: L, s[x 7→⊥]〉 ⇒∗ 〈skip, L, s′〉

and

〈let x : τ in S′, L, s〉 ⇒ 〈S′, (x, s(x)) :: L, s[x 7→⊥]〉 ⇒∗ 〈skip, L, s′′〉

By Proposition 3.5.2, we know that the latter ⇒∗ can be broken up into
smaller parts, so we have

〈let x : τ in S,L, s〉 ⇒ 〈S′, (x, s(x)) :: L, s[x 7→⊥]〉 ⇒∗

〈skip, (x, s(x)) :: L, s′′′〉 ⇒ 〈(x, s(x)), L, s′′′〉 ⇒ 〈skip, L, s′〉
and

〈let x : τ in S,L, s〉 ⇒ 〈S′, (x, s(x)) :: L, s[x 7→⊥]〉 ⇒∗

〈skip, (x, s(x)) :: L, s′′′′〉 ⇒ 〈(x, s(x)), L, s′′′′〉 ⇒ 〈skip, L, s′′〉
Now we can apply the induction hypothesis to

〈S′, (x, s(x)) :: L, s[x 7→⊥]〉 ⇒∗ 〈skip, (x, s(x)) :: L, s′′′〉

and
〈S′, (x, s(x)) :: L, s[x 7→⊥]〉 ⇒∗ 〈skip, (x, s(x)) :: L, s′′′′〉

That gives us s′′′ = s′′′′. Then 〈(x, s(x)), L, s′′′〉 ⇒ 〈skip, L, s′′′[x 7→ v]〉,
so s′ = s′′′[x 7→ v] = s′′, which means s′ = s′′.

This exhausts all possible cases and hence proves the theorem. ♦

33

3.6. COMPILE TIME CHECK CHAPTER 3. MOVING

3.5.3 Conclusion

This concludes our section on the small step semantics. We saw that they are
similar to the big step semantics, but do not include the specific conditions in
the assignment. In order to make sure that is adhered to those conditions, we
define a second derivation system, which is the focus of the following section.

3.6 Compile time check

As mentioned before, all checks are done compile time. However, a semantic
description is a description of what is supposed to happen run time. In the nat-
ural semantics section we combined the two, but to really model Rust properly,
it is necessary to separate the two.

In this section, we look at a compile time checker derivation system to model
what happens in the Rust compiler. The checker will always result in either
true or false to indicate whether the program is correct according to Rust’s
rules. This checker will have a lot of similarities to the semantics, but will not
perform actual computations.

First, we will introduce some new definitions, then give the derivation system
and lastly prove some properties of the system and of the system in combination
with the semantics of the previous section.

3.6.1 Definitions

Because we will not be doing actual computations, but instead just bookkeeping
of whether something is a value, we do not need a state as in the previous section,
but will rather use what we will call a reduced state.

Informal definition 3.6.1. ? will be used to indicate that a variable has some
numerical value from Z, but we are not interested in what this value is.

Definition 3.6.1. RState is the set of functions r : Var→ {−,⊥, ?}

The interpretation of ? here is that the variable has a value. However, for
compile time checking, it is irrelevant what that value is, so we leave that out.
We just want to know that the variable has been assigned a certain value.

However, in proofs further on, it will prove to be desirable to be able to talk
about a state and a reduced state being related.

Definition 3.6.2. A state s ∈ State and a reduced state r ∈ RState are said
to be related if for all x ∈ Var, we have

r(x) =⊥ ⇐⇒ s(x) =⊥

and
r(x) = − ⇐⇒ s(x) = −

34

3.6. COMPILE TIME CHECK CHAPTER 3. MOVING

This means r(x) = ? ⇐⇒ s(x) ∈ Z.
We are now ready for the actual compile time checker.

Definition 3.6.3. The compile time checker is a derivation system that has
the following rules

[skip, Nil, r]→ true

[skip, P :: L, r]→ [P,L, r]

[S1;S2, L, r]→ [S1, S2 :: L, r]

[x = e, L, r]→ [skip, L, r[x 7→ ?][V(e) 7→ −]]

if r(x) =⊥ and ∀y ∈ V(e), r(y) = ?

→ false otherwise

[let x : τ in S,L, r]→ [S, (x, r(x)) :: L, r[x 7→⊥]]

[(x, v), L, r]→ [skip, L, r[x 7→ v]]

3.6.2 Properties

We will now look at some interesting properties of the compile time checker.
First of all, we will prove that the checker always finishes, independent on what
the program that needs to be checked is. While a program might run forever,
the compiler should always finish. In order to prove this, we will assign a (non-
negative) ‘length’ to every possible input of the checker and show that with
every step the checker takes, this ‘length’ decreases. This in turn gives us a
decreasing sequence of non-negative numbers. This sequence must always be
finite, since there is no infinite decreasing sequences of non-negative numbers.

Theorem 3.6.1. The compile checker from definition 3.6.3 always terminates.

Before we proof this theorem, we first define the aforementioned ‘length’.

Definition 3.6.4. The length is a function |.| : Lists×ProgInstr→ N which
is defined by |(P,L)| = |P |+ |L|.

The length on a list |L| is recursively defined by

|Nil| = 0

|B :: L| = |B|+ |L|

Futhermore, for every program instruction we have

|skip| = 1

|S1, S2| = |S1|+ |S2|+ 1

|x = e| = 2

|let x : τ in S| = |S|+ 3

|(x, v)| = 2

35

3.6. COMPILE TIME CHECK CHAPTER 3. MOVING

Lastly, we define that |false| and |true| are 0.
Together this gives us a definition of the length of a program and list com-

bined.

Proof. Of theorem 3.6.1. We will show termination by proving that with every
step from 3.6.3, the length as defined in 3.6.4 decreases. We will look at the
different possible cases.

• [skip, Nil, r]→ true gives 1→ 0
• [skip, P :: L, r]→ [P,L, r] gives 1 + |P |+ |L| → |P |+ |L|
• [S1;S2, L, r]→ [S1, S2 :: L, r] gives |S1|+ |S2|+1+ |L| → |S1|+ |S2 :: L| =
|S1|+ |S2|+ |L|

• [x = e, L, r]→ [skip, L, r[x 7→ ?][V(e) 7→ −]] gives 2 + |L| → 1 + |L|
• [x = e, L, r]→ false gives 2 + |L| → 0
• [let x : τ in S,L, r] → [S, (x, r(x)) :: L, r[x 7→⊥]] gives |S| + 3 + |L| →
|S|+ 2 + |L|

• [(x, v), L, r]→ [skip, L, r[x 7→ v]] gives 2 + |L| → 1 + |L|

As every one of these steps shows a decrease in the length, we can conclude that
the derivation must terminate (by the reasoning explained above). ♦

3.6.3 Equivalence with our small step semantics

Now we have both a big step semantics and a small step semantics, one would
hope these two to be equivalent. First of all, one should notice that the big
step semantics has the compile check rules embedded in the semantics, while
the small step semantics has them separated in the form of the compile time
check. That makes that in the proof, we will prove the big step semantics to be
equivalent to the small step semantics combined with the compile time checker.

In order to prove the equivalence, we will first prove that one implies the
other, and then prove that the other implies the first.

Lemma 3.6.2. For all statements S, S′, all states s, s′, reduced states r, r′

with r related to s, r′ related to s′, for all lists L: if 〈S, s〉 → s′ then 〈S,L, s〉 ⇒∗
〈skip, L, s′〉. Also, if [skip, L, r′]→∗ true, then [S,L, r]→∗ true.

Proof. The proof proceeds by induction on the shape of the derivation tree.

• We assume the last rule applied was [skipns]. This means 〈skip, s〉 → s.
Then for any list L, we have 〈skip, L, s〉 leading in zero steps to the
required end state.
Now assume [skip, L, r]→ true with s related to r. This is already what
needed to be proven in the second part of the lemma.

• We assume the last rule applied was [assns]. This means 〈x = e, s〉 →
s[x 7→ AJeKs][V(e) 7→ −]. The conditions state that AJxKs =⊥, AJeKs 6=⊥
and AJeKs 6= −. Then we start with 〈x = e, L, s〉 for any L. Then we can
apply [asssos]to get

〈x = e, L, s〉 ⇒ 〈skip, L, s[x 7→ AJeKs][V(e) 7→ −]〉

36

3.6. COMPILE TIME CHECK CHAPTER 3. MOVING

This is the required end state.
Now assume [skip, L, r′] →∗ true and we know from the first part that
r′ = r[x 7→ ?][V(e) 7→ −]. We know AJxKs =⊥, AJeKs 6=⊥ and AJeKs 6= −.
Then we also know that

[x = e, L, r]→ [skip, L, r[x 7→ ?][V(e) 7→ −]]→∗ true

as AJeKs 6=⊥ and AJeKs 6= − implies that ∀y ∈ V(e), r(y) = ?.
• We assume the last rule applied was [compns]. This means

〈S1, s〉 → s′′ 〈S2, s
′′〉 → s′

〈S1;S2, s〉 → s′

If we now look at 〈S1;S2, L, s〉 for some list L, we see that we can apply
[compsos]to get

〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉

We can now apply the Induction Hypothesis to 〈S1, S2 :: L, s〉 as we have
〈S1, s〉 → s′′. We get

〈S1, S2 :: L, s〉 ⇒∗ 〈skip, S2 :: L, s′′〉

Then by [loadsos], we have

〈skip, S2 :: L, s′′〉 ⇒ 〈S2, L, s
′′〉

Now we can apply the Induction Hypothesis again, as we have 〈S2, s
′′〉 →

s′. This gives us
〈S2, L, s

′′〉 ⇒∗ 〈skip, L, s′〉

This all combined gives us

〈S1;S2, L, s〉 ⇒∗ 〈skip, L, s′〉

which was to be proven.
The second part of the lemma is a bit more tricky. Assume [skip, L, r′]→∗
true (∗) for some list L in the above derivation. We are interested in the
derivation of [S1;S2, L, r]. We can immediately move a step, so

[S1;S2, L, r]→ [S1, S2 :: L, r]

This leaves us with the question on what we can say about [S1, S2 :: L, r].
It seems logical to apply the same Induction Hypothesis (IH) as was done
above the first time (on 〈S1, s〉 → s′′). This IH tells us that if [skip, S2 ::
L, r′′] →∗ true, then [S1, S2 :: L, r] →∗ true. Therefore, in order to be
able to apply the IH, we need to say something about [skip, S2 :: L, r′′].
By the loading rule, we get

[skip, S2 :: L, r′′]→ [S2, L, r
′′]

37

3.6. COMPILE TIME CHECK CHAPTER 3. MOVING

This still does not tell us whether it will derive to true. However, it seems
that we could again use the IH, in the same way it was done above the
second time (on 〈S2, s

′′〉 → s′). This IH states that if [skip, L, r′] →∗
true, then [S2, L, r

′′]→∗ true. The condition is true per assumption (∗).
Therefore, we have [S2, L, r

′′]→∗ true. So that gives us

[skip, S2 :: L, r′′]→ [S2, L, r
′′]→∗ true

and per the first application of the IH. Finally we have

[S1;S2, L, r]→ [S1, S2 :: L, r]→∗ true

which was to be proven.
• We assume the last rule applied was [letns]. This means

〈S, s[x 7→⊥]〉 → s′

〈let x : τ in S, s〉 → s′[x 7→ s(x)]

If we now look at 〈let x : τ in S,L, s〉 for some list L, we see that we
can apply [letsos] to get

〈let x : τ in S,L, s〉 ⇒ 〈S, (x, s(x)) :: L, s[x 7→⊥]〉

We can now apply the IH to 〈S, (x, s(x)) :: L, s[x 7→⊥]〉, as we have
〈S, s[x 7→⊥]〉 → s′. This gives us

〈S, (x, s(x)) :: L, s[x 7→⊥]〉 ⇒∗ 〈skip, (x, s(x)) :: L, s′〉

Then per [loadsos] and [setsos] we have

〈skip, (x, s(x)) :: L, s′〉 ⇒ 〈(x, s(x)), L, s′〉 ⇒ 〈skip, L, s′[x 7→ s(x)]〉

In total, this gives us

〈let x : τ in S,L, s〉 ⇒∗ 〈skip, L, s′[x 7→ s(x)]〉

which was to be proven.
For the second part of the lemma, we follow a reasoning similar to the
previous case. Assume [skip, L, r′[x 7→ r(x)]→∗ true (∗) for some list L
in the above derivation. We are interested in the derivation of [let x :
τ in S,L, r]. We can immediately move a step to get

[let x : τ in S,L, r]→ [S, (x, r(x)) :: L, r[x 7→⊥]]

It seems sensible to want to apply the IH (on 〈S, s[x 7→⊥]〉 → s′). The
IH in this case states that if [skip, (x, r(x)) :: L, r′] →∗ true, then
[S, (x, r(x)) :: L, r[x 7→⊥]] →∗ true. Therefore, we are interested in
[skip, (x, r(x)) :: L, r′]. By the derivation rules we have

[skip, (x, r(x)) :: L, r′]→ [(x, r(x)), L, r′]→ [skip, L, r′[x 7→ r(x)]]

38

3.6. COMPILE TIME CHECK CHAPTER 3. MOVING

Of this last one, we know it derives to true, by (∗). Therefore, we know
[skip, (x, r(x)) :: L, r′] →∗ true, and we can apply the IH as mentioned
above. Therefore, we know [S, (x, r(x)) :: L, r[x 7→⊥]] →∗ true. This
gives us

[let x : τ in S,L, r]→ [S, (x, r(x)) :: L, r[x 7→⊥]]→∗ true

which was to be proven.

The lemma now follows by induction. ♦

To prove the other way around, we first need two helping lemmas.

Lemma 3.6.3. For all program instructions S, S′, lists L, L′, statements s,
s′: if 〈S,L, s〉 ⇒ 〈S′, L′, s′〉 and [S,L, r] →∗ true, then [S,L, r] → [S′, L′, r′]
for exactly one r′ related to s′.

Proof. We will check the different possibilities for the rules ⇒.

• 〈skip, I :: L, s〉 ⇒ 〈I, L, s〉. Assume [skip, I :: L, r] →∗ true with r
related to s. We can only do [skip, I :: L, r] → [I, L, r]. Our r is of the
right form and the only such r, which proves this case.

• 〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉. Assume [S1;S2, L, r] →∗ true with r
related to s. We can only do [S1;S2, L, r] → [S1, S2 :: L, r]. Our r is of
the right form and the only such r, which proves this case.

• 〈x = e, L, s〉 ⇒ 〈skip, L, s[x 7→ AJeKs][V(e) 7→ −]〉. Assume [x =
e, L, r] →∗ true with r related to s. We can only do [x = e, L, r] →
[skip, L, r[x 7→ ?][V(e) 7→ −]], because if the conditions of the rule were
not met, the compile check could not have terminated in true, but would
have terminated in false. Our r is of the right form, because AJeKs ∈ Z
and the only such r. This proves this case.

• The other cases are similar and therefore omitted.

This proves our Lemma. ♦

Lemma 3.6.4. For all program instructions S, S′, lists L, L′, states s, s′: if
〈S,L, s〉 ⇒∗ 〈S′, L′, s′〉 and [S,L, r] →∗ true, then [S,L, r] →∗ [S′, L′, r′] for
exactly one r′ related to s′.

Proof. By induction on the result from 3.6.3. ♦

Lemma 3.6.5. For all statements S and lists L, for all states s, s′, for all
reduced states r, with r related to s: if 〈S,L, s〉 ⇒∗ 〈skip, L, s′〉 and [S,L, r]→∗
true, then 〈S, s〉 → s′. Note that S is a statement here, and not a program
instruction.

Proof. We do some form of induction. We will look at the possible forms of S.

• skip : assume 〈skip, L, s〉 ⇒∗ 〈skip, L, s′〉 and [skip, L, r] →∗ true.
Then s must be equal to s′. Then we have 〈skip, s〉 → s, which was to be
proven.

39

3.6. COMPILE TIME CHECK CHAPTER 3. MOVING

• x = e : assume 〈x = e, L, s〉 ⇒∗ 〈skip, L, s′〉 and [x = e, L, r] →∗ true.
Then [asssos] must have been applied, so

〈x = e, L, s〉 ⇒ 〈skip, L, s[x 7→ AJeKs][V(e) 7→ −]〉 ⇒∗ 〈skip, L, s′〉

This must mean s′ = s[x 7→ AJeKs][V(e) 7→ −]. We could make 〈x =
e, s〉 → s[x 7→ AJeKs][V(e) 7→ −] per [assns], if we can assure thatAJxKs =⊥,
AJeKs 6=⊥ and AJeKs 6= −. In [x = e, L, r]→∗ true, we know that

[x = e, L, r]→ [skip, L, r[x 7→ ?][V(e) 7→ −]]→∗ true

and we only could have applied that rule if if r(x) =⊥ and ∀y ∈ V(e), r(y) =
?. If r and s related, this means that the conditions are fulfilled and we
can apply [assns].

• S1;S2 : assume 〈S1;S2, L, s〉 ⇒∗ 〈skip, L, s′〉 and [S1;S2, L, r] →∗ true.
Then per 3.5.1 we have

〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉 ⇒∗ 〈skip, S2 :: L, s′′〉 ⇒ 〈S2, L, s
′′〉 ⇒∗ 〈skip, L, s′〉

Now if [S1, S2 :: L, r] →∗ true we can apply the Induction Hypothesis
(IH). As we have [S1;S2, L, r]→∗ true, we can make

[S1;S2, L, r]→ [S1, S2 :: L, r]→∗ true

so we can indeed apply the IH. This gives us 〈S1, s〉 → s′′.
Now, if also [S2, L, r

′′]→∗ true, we can again apply the IH to get 〈S2, s
′′〉 →

s′. We know [S1, S2 :: L, r] →∗ true. The last step before true must be
[skip, Nil, r′′′], as that is the only rule that leads to true. So we know
the list needs to be emptied again. Therefore, the derivation needs to be
something like the following:

[S1;S2, L, r]→ [S1, S2 :: L, r]→∗ [skip, S2 :: L, r′′′′]→ [S2, L, r
′′′′]→∗

[skip, Nil, r′′′]→ true

Because of 3.6.4 we know that r′′′′ must be related to s′′ and must be equal
to r′′. This means that we can indeed conclude that [S2, L, r

′′] →∗ true
and we therefore have 〈S2, s

′′〉 → s′.
Now we can apply [compns] to give us 〈S1;S2, s〉 → s′, which was to be
proven.

• let x : τ in S : This case is very similar to that of the composition,
but with only one application of the Induction Hypothesis. Therefore, we
leave out the details.

♦

Theorem 3.6.6. For all statements S, S′, states s, s′, reduced states r: 〈S, s〉 →
s′ if and only if for some L 〈S,L, s〉 ⇒∗ 〈skip, L, s′〉 and [S,L, r]→∗ true (with
r related to s).

Proof. This follows from the proofs for Lemmas 3.6.2 and 3.6.5. ♦

40

3.6. COMPILE TIME CHECK CHAPTER 3. MOVING

3.6.4 Safety

We now move on to the more interesting proofs where we will actually prove
safety properties. Here, we apply an idea originally introduced by Wright and
Felleisen (1994) in a slightly different context. The original idea is that when
you have a type system, you prove preservation and progress, and that this
combines to safety. However, in our case, we do not have a type system, but we
do have our compile time checker. The following pages detail these proofs.

Preservation

The first thing we will prove is preservation, where we will show that if the com-
pile time checker says a program is okay, and you take a step in the semantics,
the checker will say it is still okay. In general this means that the result of the
checker does not depend on where you are in the program and does not change
throughout running the program.

Theorem 3.6.7. For all program instructions S, S′, lists L, L′, states s, s′,
reduced states r: if [S,L, r] →∗ true and 〈S,L, s〉 ⇒ 〈S′, L′, s′〉 with r related
to s, then there is an r′ that is related to s′ and we have [S′, L′, r′]→∗ true.

Proof. We assume [S,L, r]→∗ true. We look at the different possible rules ⇒.

• 〈skip, I :: L, s〉 ⇒ 〈I, L, s〉. We assume [skip, I :: L, r] →∗ true. We
try to determine which derivation steps could have let to true. The only
possible step is [skip, I :: L, r] → [I, L, r]. Then we have our r′ = r, and
obviously we also have [I, L, r]→∗ true.

• 〈x = e, L, s〉 ⇒ 〈skip, L, s[x 7→ AJeKs][V(e) 7→ −]〉. We assume [x =
e, L, r] →∗ true. We try to determine which derivation steps could have
led to true. The only possible step is [x = e, L, r] → [skip, L, r[x 7→
?][V(e) 7→ −]]. Then we have our r′ = r[x 7→ ?][V(e) 7→ −] and obviously
we also have [skip, L, r[x 7→ ?][V(e) 7→ −]]→∗ true then.

• 〈S1;S2, L, s〉 ⇒ 〈S1, S2 :: L, s〉. We assume [S1;S2, L, r] →∗ true. We
try to determine which derivation steps could have led to true. The only
possible step is [S1;S2, L, r] → [S1, S2 :: L, r]. Then we have our r′ = r
and obviously we also have [S1, S2 :: L, r]→∗ true.

• The other cases are similar and therefore omitted.

This proves our theorem. ♦

Progress

The second property we are interested in is called progress. This means that if
the program passes through the compile time checker, we can always do a step
in the semantics (or we are already in the skip state).

Theorem 3.6.8. For all program instructions S, reduced states r, lists L: if
[S,L, r] →∗ true, then S = skip and L = Nil or we have, for all s related to
r, 〈S,L, s〉 ⇒ 〈S′, L′, s′〉 for some statement S′, list L′ and state s′.

41

3.6. COMPILE TIME CHECK CHAPTER 3. MOVING

Proof. We assume [S,L, r]→∗ true. Since it must derive to true, we know that
derivation steps must be taken. We walk through all the possible derivation
steps.

• [skip, Nil, r] →∗ true. This means S = skip and L = Nil and that
means we are done.

• [skip, P :: L, r] → true. This means we want to say something about
〈skip, P :: L, s〉 for any s related to r. We can apply the rule [loadsos].
This gives us 〈skip, P :: L, s〉 ⇒ 〈P,L, s〉, which proves this case.

• [x = e, L, r] →∗ true. This means we want to say something about
〈x = e, L, s〉 for any s related to r. We can apply [asssos]to get 〈x =
e, L, s〉 ⇒ 〈skip, L, s[x 7→ AJeKs][V(e) 7→ −]〉, which proves this case.
• The other cases are similar and therefore omitted.

This proves the theorem. ♦

42

Chapter 4

Borrowing

4.1 Introduction

In the previous chapter, we looked quite extensively at a very simple language.
In this chapter, we will add some of the more interesting features, namely bor-
rowing and mutability. Borrowing presents us with new challenges, as we need
to make sure that the variable we borrow from is not accessible during the bor-
row, but becomes accessible again after the borrow. We will need to keep track
of what variables we have borrowed from. If we do not do so, we cannot free
them afterwards.

4.2 Syntax

First, we need to update our syntax to reflect the possibility of borrowing. The
possible statements from definition 3.2.1 can remain almost the same. We just
need to make a new statement for a mutable let. We will also have to update
our expressions and types.

Definition 4.2.1. A statement S is defined recursively by:

S ::= skip | S1;S2 | let x : τ in S′ | let mut x : τ in S′ | x = e

where e is an expression as defined below, τ is a type as defined below and S1,
S2 and S′ are again statements.

Our definition of a program instruction (Definition 3.5.1) updates accord-
ingly with this new definition of a statement. Again, we will be using S to refer
to both, but will make explicit what we are talking about in another way.

Definition 4.2.2. An expression e is defined recursively by:

e ::= x | i | e1 + e2 | & x | &mut x

Definition 4.2.3. A type τ is

τ ::= Int | &τ

43

4.3. EXAMPLES CHAPTER 4. BORROWING

4.3 Examples

In order to illustrate what is happening in this chapter and therefore what
should be happening in the semantics, we will walk through some small pieces
of example code.

4.3.1 Mutability

To start of easy, we will first look at an example of mutability without borrowing.

1 let mut y = 0;

2 y = 1;

We can desugar this to our own syntax:

1 let mut y : Int in

2 y = 0;

3 y = 1;

We will walk through the example line by line and try to use the semantics
of the previous chapter as much as possible. At the let-statement, besides
initializing y to ⊥, we need to somehow save that y is mutable. We can do that
by introducing a new function besides the state, M, which tells us whether a
variable is mutable or not. For purposes that will become clear later on, we
will choose to let this function return {mut} if the variable is mutable and let it
return ∅ if the variable is not mutable.

Then in line 2, we assign a value to y, which makes that s(y) = 0. Then in
line 3, instead of rejecting the program because y already has a value and thus
is not ⊥, we see that y is mutable and accept the assignment if y is either ⊥ or
an element from Z. If y were not mutable, only ⊥ would have sufficed.

4.3.2 Nonmutable borrow

The example of this section looks at just borrowing and no mutability.

1 let x = 0;

2 let z;

3 let y = &x;

4 z = y;

If we write this in our syntax, we get:

1 let x: Int in (

2 x = 0;

44

4.3. EXAMPLES CHAPTER 4. BORROWING

3 let z: &Int in (

4 let y: &Int in (

5 y = & x;

6 z = y;

7)

8)

9)

We will again walk through this example step by step. At the start, we have
no borrows and every variable is undefined, i.e. −.

1 let x: Int in

2 x = 0;

We will again use a state to keep track of the values of the variables. After
the first line, we will say x is now ⊥: s(x) =⊥. After line 2, x will be equal to
0 ∈ Z. Now we move on to the next let-statements.

1 let x: Int in

2 x = 0;

3 let z: &Int in

4 let y: &Int in

Now z has been declared. So we have s(x) = 0 and s(z) =⊥. For all other
variables v, we have s(v) = − after line 3. After line 4, we also have s(y) =⊥.

1 let x: Int in (

2 x = 0;

3 let z: &Int in (

4 let y: &Int in (

5 y = & x;

6 z = y;

Now we have s(y) = 0 in line 5 and we have s(x) = 0. As you might
remember from the chapter about Rust, you can have multiple ‘readers’ to one
location, as long as you cannot change the content of that location (to prevent
data races). After line 6, the value that y had will be moved to z. So s(y) = −
and s(z) = 0.

1 let x: Int in (

2 x = 0;

3 let z: &Int in (

45

4.3. EXAMPLES CHAPTER 4. BORROWING

4 let y: &Int in (

5 y = & x;

6 z = y;

7)

Now z goes out of scope, so we have s(z) = −, while still having s(x) = 0.

1 let x: Int in (

2 x = 0;

3 let z: &Int in (

4 let y: &Int in (

5 y = & x;

6 z = y;

7)

8)

9)

After the second bracket, nothing happens, as s(y) already was −. After the
last bracket, x is also again set to −.

4.3.3 Mutable borrow

For the third example, we will look at some mutable borrowing. As explained
in the chapter about Rust, the following program produces an error, as it makes
two mutable references to the same piece of memory. This makes the code prone
to data races.

1 let mut x=0;

2 let y = & mut x;

3 let z = & mut x;

If we write this in our syntax, we get:

1 let mut x: Int in (

2 x = 0;

3 let y: &Int in (

4 y = & mut x;

5 let z: &Int in (

6 z = & mut x;

7)

8)

9)

46

4.3. EXAMPLES CHAPTER 4. BORROWING

So now we will walk through the code and see where the code should not be
accepted.

1 let mut x: Int in (

2 x = 0;

After the let, we have s(x) = −. Then after the x = 0, we have s(x) = 0.
This should not be surprising in the light of the previous chapter and previous
example. However, it is very important to not that our x here is mutable. So
we will say M(x) = {mut}.

1 let mut x: Int in (

2 x = 0;

3 let y: &Int in (

4 y = & mut x;

For y, the same story holds as for x above, but y is not mutable. So at
the end, s(y) = 0 and mut 6∈ M(y). However, we want x to know that it
has been borrowed, so cannot be changed directly anymore and we want y to
know where it borrowed from, so we can release the borrow after the scope of
y ends. Therefore, we need to do some additional bookkeeping. We will say
M(x) = {bor, mut} and M(y) = {x}. So our M will have a signature of the
form Var→ P({bor, mut} ∪Var).

1 let mut x: Int in (

2 x = 0;

3 let y: &Int in (

4 y = & mut x;

5 let z: &Int in (

6 z = & mut x;

An error should occur here, as this will be the second borrow to the mutable
variable x. This could be discovered by looking at M(x) and seeing that both
mut and bor are in there. No new borrow could be made.

Looking at the same program, but without the last let, we get the following
structure (where | is used to designate ⊥):

1 //s(x) = -, s(y) = -, M(x) = {}, M(y) = {}

2 let mut x: Int in (//s(x) = |, M(x) = {mut}

3 x = 0; //s(x) = 0

4 let y: &Int in (//s(y) = |

5 y = & mut x; //s(y) = 0, M(x) = {bor,mut}, M(y) = {x}

6) //s(y) = -, M(y) = {}, M(x) = {mut}

7) //s(x) = -, M(x) = {}

47

4.3. EXAMPLES CHAPTER 4. BORROWING

Here, we can see that at the end, everything is freed. After the borrow of
x ends, we remove the borrow status from our M, as x now can be borrowed
again.

4.3.4 Another example of mutable borrowing

The following piece of code is incorrect and produces the error re-assignment
of immutable variable. This is because even though y and z are mutable, x
is not, and thus cannot be reassigned to borrow from z.

1 let mut y=0;

2 let mut z=1;

3 let x = & mut y;

4 x = & mut z

As discussed above, we only accept an assignment of x if

• x is mut and has value − or some value from Z, or;
• x is not mut and has value −.

Neither is the case here, so we reject this piece of code, as does the Rust
compiler.

In order to fix this, we make x mutable, as was done in the following piece
of code. This does compile.

1 let mut y=0;

2 let mut z=1;

3 let mut x = & mut y;

4 x = & mut z

Our analysis of this piece of code is the following:

1 //s(y)=s(x)=s(z)=-,M(x)=M(y)=M(z)={}

2 let mut y : Int in (//s(y)=|, M(y)={mut}

3 y=0; //s(y)=0

4 let mut z : Int in (//s(z)=|, M(z)={mut}

5 z=1; //s(z)=1

6 let mut x : &Int in (//s(x)=|, M(x)={mut}

7 x = & mut y; //s(x)=0, M(x)={y},M(y)={mut,bor}

8 x = & mut z; //s(x)=1, M(x)={y,z},M(z)={mut,bor}

9) //s(x)=-, M(x)={},M(y)=M(z)={mut}

10) //s(z)=-, M(z)={}

11) //s(y)=-, M(y)={}

48

4.4. SEMANTICS: FRAMEWORK CHAPTER 4. BORROWING

It might be surprising to see that after the x is reassigned, the borrow of y

is not undone. However, this is the case in the Rust compiler. The compiler
(version 1.22.1) does not accept a reborrow of y even after x has gotten a new
value. So adding the line let v = & mut y after line 8 leads to a compile error.

Now we will look at one more example before moving on to the semantics.
The following piece of code passes through the compile time checker.

1 let y=0;

2 let z=1;

3 let mut x = & y;

4 x = & z

We will again analyze this piece to see what happens here.

1 //s(y)=s(x)=s(z)=-,M(x)=M(y)=M(z)={}

2 let y : Int in (//s(y)=|

3 y=0; //s(y)=0

4 let z : Int in (//s(z)=|

5 z=1; //s(z)=1

6 let mut x : &Int in (//s(x)=|,M(x)={mut}

7 x = & y; //s(x)=0

8 x = & z; //s(x)=1

9) //s(x)=-,M(x)={}

10) //s(z)=-

11) //s(y)=-

In comparison to the previous example, very little bookkeeping needed to
be done. We only need to keep track of the values of the variables, and keep
in mind that x is mutable. There is no need to remember which variables have
been borrowed or not, since we can have zero, one or multiple borrows anyways.

4.4 Semantics: Framework

Just as in the chapter about moving, we need some mathematical definitions.
This section is dedicated to updating our previous definitions and including
some new definitions.

Variables and expression

We will continue to use Zext in the same way we did in the previous chapter.

49

4.4. SEMANTICS: FRAMEWORK CHAPTER 4. BORROWING

Definition 4.4.1. We define the function V : Exp→ P(Var) recursively by:

V(i) = ∅
V(x) = {x}

V(e1 + e2) = V(e1) ∪ V(e2)

V(&x) = ∅
V(&mutx) = ∅

This function is used to collect all variables in an expression that are not
being borrowed in that expression. We used this function in the previous chapter
already.

Definition 4.4.2. We define the function B : Exp→ P(Var) recursively by:

B(i) = ∅
B(x) = ∅

B(e1 + e2) = V(e1) ∪ V(e2)

B(&x) = {x} if mut ∈M(x)

B(&mutx) = {x} if mut ∈M(x)

This function is used to collect all variables in an expression that are being
borrowed in that expression, but only if they are mutable. This is done because,
as we saw in the examples above, there can only arise problems if a mutable
variable has already been borrowed. This function thus gathers all ‘at risk’
variables in an expression.

Definition 4.4.3. We define the function C : Exp→ P(Var) recursively by:

C(i) = {x}
C(x) = ∅

C(e1 + e2) = V(e1) ∪ V(e2)

C(&x) = {x}
C(&mut x) = {x}

This function is used to collect all variables in an expression.
We also need to update the evaluation function.

Definition 4.4.4. The evaluation function A : Exp× State→ Zext is defined
by:

AJiKs = N JiK
AJxKs = s(x)

AJe1 + e2Ks = AJe1Ks+AJe2Ks if AJe1Ks ∈ Z and AJe2Ks ∈ Z
AJe1 + e2Ks = − otherwise

AJ& xKs = AJxKs
AJ&mut xKs = AJxKs

50

4.5. SEMANTICS: SMALL STEP CHAPTER 4. BORROWING

Notice it is the same as in the previous chapter, except for the added last
lines.

4.5 Semantics: Small step

In this chapter, we will move to the small step semantics right away and skip
the big step semantics. This is because the latter, as mentioned in the previous
chapter, allows for better separation in a semantic derivation system and a com-
pile time check system. The semantic rules are of similar form to the previous
chapter, except that we have rules of the form 〈S,L, s,M〉 ⇒ 〈S′, L′, s′,M′〉.

S and S′ are again statements as defined in Definition 4.2.1. L and L′

are again lists as defined in the previous chapter. s and s′ are again states
as defined in the previous chapter. M is a function with signature Var →
P({bor, mut} ∪Var).

Definition 4.5.1. We define the following semantic derivation rules (name on
the left):

[loadsosb] 〈skip, I :: L, s,M〉 ⇒ 〈I, L, s,M〉

[compsosb] 〈S1;S2, L, s,M〉 ⇒ 〈S1, S2 :: L, s,M〉

[asssosb] 〈x = e, L, s,M〉 ⇒ 〈skip, L,
s[x 7→ AJeKs][V(e) 7→

−],M[∀y ∈ B(e), y 7→ M(y) ∪ {bor}][x 7→ M(x) ∪ B(e)]〉

[letsosb] 〈let x : τ in S,L, s〉 ⇒ 〈S, (x, s(x),M(x)) ::
L, s[x 7→⊥],M〉

[letmutsosb] 〈let mut x : τ in S,L, s,M〉 ⇒
〈S, (x, s(x),M(x)) :: L, s[x 7→⊥],M[x 7→ {mut}]〉

[setsosb] 〈(x, v,m), L, s,M〉 ⇒ 〈skip, L, s[x 7→
v],M[∀y ∈M(x) ∩Var \m, y 7→ M(y) \ {bor}][x 7→ m]〉

Note that 〈skip, Nil, s,M〉 has no derivation; this is the/an end state.
The [loadsosb] rule and the [compsosb] rule are assumed to be self-explanatory.

As for the [asssosb] rule, besides updating the state like we used to, we need to
add all borrowed variables to the M of x. We do this by gathering all those
variables with the B function. For all those variables, theirM needs to include
bor from now on as they have been borrowed.

For the [letsosb] and [letmutsosb] rules, we added theM-function to the tuple,
because we also need to reset that one in the reset. Also, in the [letmutsosb] rule,
we need M to reflect that x is mutable.

For the [setsosb] rule, besides resetting s and M, we also need to let all the
variables x has borrowed from know that the borrow has stopped. This should

51

4.5. SEMANTICS: SMALL STEP CHAPTER 4. BORROWING

not happen when a similarly named variable x already borrowed the variable
in the higher scope. This is done by removing all variables in m from the set
under consideration.

Determinism

Again, we would like our semantics to be deterministic. First, we need the
following Lemma.

Lemma 4.5.1. For every statement S, for every list L, for every state s, s′, if
〈let x : τ in S,L, s〉 ⇒∗ 〈skip, L, s′〉, then it must be the case that 〈let x :
τ in S,L, s〉 ⇒∗ 〈skip, (x, s(x)) :: L, s′′〉 ⇒ 〈(x, s(x)), L, s′′〉 ⇒ 〈skip, L, s′〉
for some state s′′.

Proof. The proof is similar to lemma 3.5.1 and therefore omitted. ♦

Now we can prove that the semantics are deterministic.

Theorem 4.5.2. For every program instruction S, every state s, s′, s′′, every
list L, if 〈S,L, s,M〉 ⇒∗ 〈skip, L, s′,M′〉 and 〈S,L, s,M〉 ⇒∗ 〈skip, L, s′′,M′〉,
then s′ = s′′ and M′ =M′′.

Proof. The proof proceeds by induction on the structure of S, the program
instruction. We will only prove the case for let mut x : τ in S′. The other
cases are similar to this case and to the proof in the previous chapter.

• S = let mut x : τ in S′ : assume 〈let mut x : τ in S′, L, s,M〉 ⇒∗
〈skip, L, s′,M′〉 and 〈let mut x : τ in S′, L, s,M〉 ⇒∗ 〈skip, L, s′′,M′′〉.
The only rule that can be applied is [letmutsosb]. This gives us

〈let mut x : τ in S′, L, s,M〉 ⇒

〈S′, (x, s(x)) :: L, s[x 7→⊥],M[x 7→ {mut}]〉 ⇒∗ 〈skip, L, s′,M′〉

and
〈let mut x : τ in S′, L, s,M〉 ⇒

〈S′, (x, s(x)) :: L, s[x 7→⊥],M[x 7→ {mut}]〉 ⇒∗ 〈skip, L, s′′,M′′〉

By Proposition 4.5.1, we know that the latter ⇒∗ can be broken up into
smaller parts, so we have

〈let mut x : τ in S,L, s,M〉 ⇒

〈S′, (x, s(x)) :: L, s[x 7→⊥],M[x 7→ {mut}]〉 ⇒∗

〈skip, (x, s(x)) :: L, s′′′,M′′′〉 ⇒

〈(x, s(x)), L, s′′′,M′′′〉 ⇒ 〈skip, L, s′,M′〉

and
〈let mut x : τ in S,L, s,M〉 ⇒

52

4.5. SEMANTICS: SMALL STEP CHAPTER 4. BORROWING

〈S′, (x, s(x)) :: L, s[x 7→⊥],M[x 7→ {mut}]〉 ⇒∗

〈skip, (x, s(x)) :: L, s′′′′,M′′′′〉 ⇒

〈(x, s(x)), L, s′′′′,M′′′′〉 ⇒ 〈skip, L, s′′,M′′〉

Now we can apply the induction hypothesis to

〈S′, (x, s(x)) :: L, s[x 7→⊥],M[x 7→ {mut}]〉 ⇒∗ 〈skip, (x, s(x)) :: L, s′′′,M′′′〉

and

〈S′, (x, s(x)) :: L, s[x 7→⊥],M[x 7→ {mut}]〉 ⇒∗ 〈skip, (x, s(x)) :: L, s′′′′,M′′′′〉

That gives us s′′′ = s′′′′ andM′′′ =M′′′′. Then 〈(x, s(x)), L, s′′′,M′′′〉 ⇒
〈skip, L, s′′′[x 7→ v],M′′′[∀y ∈M(x) ∩Var \m, y 7→ M(y) \ {bor}][x 7→ m]〉,
so s′ = s′′′[x 7→ v] = s′′ and M′ = M′′′[∀y ∈ M(x) ∩ Var \ m, y 7→
M(y) \ {bor}][x 7→ m] =M′′, which means s′ = s′′ and M′ =M′′.

This proves the theorem. ♦

4.5.1 Compile time check

We can now look at the compile time checker. In the following definition we
show the actual rules. An explanation will be given below.

Definition 4.5.2. The compile time checker is a derivation system that has
the following rules

[skip, Nil, r,M]→true

[skip, P :: L, r,M]→[P,L, r,M]

[S1;S2, L, r,M]→[S1, S2 :: L, r,M]

[let x : τ in S,L, r,M]→[S, (x, r(x),M(x)) :: L, r[x 7→⊥],M]

[let mut x : τ in S,L, r,M]→[S, (x, r(x),M(x)) :: L, r[x 7→⊥],M[x 7→ {mut}]]
[(x, v,m), L, r,M]→[skip, L, r[x 7→ v],M[∀y ∈M(x) ∩Var,

y 7→ M(y) \ {bor}][x 7→ m]

Also, if mut ∈ M(x), r(x) =⊥ or r(x) = ?,∀y ∈ C(e), r(y) = ? and ∀y ∈
B(e),¬bor ∈M(e), OR if ¬mut ∈M(x), r(x) =⊥,∀y ∈ C(e), r(y) = ? and ∀y ∈
B(e),¬bor ∈M(e), we have the rule

[x = e, L, r,M]→

[skip, L, r[x 7→ ?][V(e) 7→ −],M[∀y ∈ B(e), y 7→ M(y) ∪ {bor}][x 7→ M(x) ∪ B(e)]]

If neither of these conditions hold, we have the rule

[x = e, L, r,M]→ false

53

4.5. SEMANTICS: SMALL STEP CHAPTER 4. BORROWING

Explanation

The rules are almost identical to those of the semantics. The difference here is
the set of conditions that should apply in an assignment.

First of all, we distinguish two cases: whether x is mutable or not. If x is
mutable, then r(x) should be either ⊥ or ? as that means x is at least initialized
and might or might not have a value. Also, all variables in the expression
should be ?. Otherwise the expression e has no well-defined value. Lastly, for
all variables that are being borrowed in e and are mutable (so B(e)), we check
that they have not been borrowed before. If they have, they cannot be borrowed
again after all.

The other case is that x is not mutable. Then we only accept it if x has
been initialized but has not been assigned a value yet. So r(x) =⊥. The rest is
the same as above.

Termination

We again want to prove that this compile time checker always terminates.

Theorem 4.5.3. The compile checker from definition 4.5.2 always terminates.

Proof. This proof is almost completely similar to that of 3.6.1, if we define
|let mut x : τ in S| = |S|+ 3. We therefore omit the details. ♦

Progress and preservation

Just like in the previous chapter, we will prove progress and preservation. We
start with preservation.

Theorem 4.5.4. For all program instructions S, S′, lists L, L′, states s, s′,
reduced states r, and for allM,M′: if [S,L, r,M]→∗ true and 〈S,L, s,M〉 ⇒
〈S′, L′, s′,M′〉 with r related to s, then there is an r′ that is related to s′ and
we have [S′, L′, r′,M′]→∗ true.

Proof. We assume 〈S,L, s,M〉 ⇒ 〈S′, L′, s′,M′〉. We look at the different pos-
sible rules ⇒.

• 〈skip, I :: L, s,M〉 ⇒ 〈I, L, s,M〉. We assume [skip, I :: L, r,M] →∗
true. We try to determine which derivation steps could have let to true.
The only possible step is

[skip, I :: L, r,M]→ [I, L, r,M]

Then we have our r′ = r, and obviously we also have [I, L, r,M]→∗ true.
• 〈S1;S2, L, s,M〉 ⇒ 〈S1, S2 :: L, s,M〉. We assume [S1;S2, L, r,M] →∗
true. We try to determine which derivation steps could have led to true.
The only possible step is

[S1;S2, L, r,M]→ [S1, S2 :: L, r,M]

Then we have our r′ = r and obviously we also have [S1, S2 :: L, r,M]→∗
true.

54

4.5. SEMANTICS: SMALL STEP CHAPTER 4. BORROWING

• The other cases are similar and therefore omitted.

This proves our theorem. ♦

Theorem 4.5.5. For all program instructions S, reduced states r, lists L, and
for all M’s: if [S,L, r,M] →∗ true, then S = skip and L = Nil or we have
〈S,L, s,M〉 ⇒ 〈S′, L′, s′,M′〉 for some S′, L′, s′ and M ′, and every s related
to r.

Proof. We assume [S,L, r,M] →∗ true. We look at the possible derivation
steps that could have led to this form.

• [skip, Nil, r,M] → true. This means S = skip and L = Nil and that
means we are done.

• [skip, P :: L, r,M] → [P,L, r,M]. This means we have 〈skip, P ::
L, s,M〉 with s any state related to r. We can then apply the rule [loadsos],
to get 〈skip, P :: L, s,M〉 ⇒ 〈P,L, s,M〉, which means we are done.

• The other cases are similar and therefore omitted.

This proves our theorem ♦

55

Chapter 5

Conclusion and discussion

In the previous chapters, we have seen how ownership, borrowing and mutabil-
ity work together to provide memory safety and how we write these concepts
down in relatively simple semantic rules. We have also proved preservation and
progress, to prove safety in a more classical way.

5.1 Discussion and future work

5.1.1 On safety and memory safety: revisited

In the introduction, we shortly talked about safety and memory safety. In
the previous chapters, we proven a safety aspect of our semantics: it cannot
get stuck if the programs adhere to some condition (our compile time check).
We have also looked very briefly at memory safety when we proved that all
memory should be cleaned up after a program terminates. Of course, many
other properties could be proven. For example, one could prove (in Chapter 4)
that every variable is in at most one M of another variable at all times. More
of these properties could be formulated and proved to say more about memory
safety. Of course, one should not forget that of several ideas, a more general
proof already has been given, such as for a justification of the borrow rules
(Boyland, 2003).

5.1.2 Other Rust features

While we have looked at some important concepts of Rust, there is much more
to Rust, which we did not look at extensively. In this section, we discuss some
of these features and propose some angles for investigation of these features.

While loops

We did not include loops in our very limited language, even though loops have
been kept in mind while designing the derivation rules for both the semantics

56

5.1. DISCUSSION CHAPTER 5. CONCLUSION AND DISCUSSION

and compile time checker.
It is interesting to add some form of looping, as that makes it possible for

a program to not ever finish. As said in the introduction of this thesis, we
want the compile time check to always finish, even if the program itself does not
finish.

For example, the very simple program

1 fn main() {

2 while true {

3 print!("Hello world!")

4 }

5 }

produces no error.1

During the making of the thesis, we briefly looked at how we could add while
loops to our syntax and semantics.

Definition 5.1.1. A statement S is defined recursively by:

S ::= skip | S1;S2 | let x : τ in S′ | let mut x : τ in S′ | x := e | while b {S′}

where e is an expression, τ is a type and S1, S2 and S′ are again statements.

For a formal definition of Booleans b, we refer to Nielson and Nielson (1992).
Besides this, we would have semantic rules of the following form.

Definition 5.1.2. In addition to the rules in 4.5.1, we define the following two
semantic derivation rules:

〈while b {S′}, L, s,M〉 ⇒ 〈S′, while b {S′} :: L, s,M〉
if b evaluates to true. (named [whiletos])

〈while b {S′}, L, s,M〉 ⇒ 〈skip, L, s,M〉
if b evaluates to false. (named [whilefos])

Of course, the intersting part is how we will deal with the while loop in the
compile time check. The Rust compiler simply does not accept any non-mutable
variable assignments in a while loop, even if the assignment happens only once
or not even at all, as in the following program.

1 let x;

2 while false {

3 x = 0

4 }

1It does give the warning denote infinite loops with ‘loop ... ‘, but as said in the
introduction, we will only be trying to model actual errors.

57

5.1. DISCUSSION CHAPTER 5. CONCLUSION AND DISCUSSION

This program gives the error re-assignment of immutable variable ‘x‘.
So we will have to keep track of whether we are in a while loop or not. We

can do that, for example, by adding an extra bit of information to our derivation
system, so that our derivation system has rules of the form

[S,L, s,M, c]→ [S′, L′, s′,M′, c′]

The c is a sort of counter that registers the depth of the nested loops.
We will not provide a complete definition for the whole checker, but will

sketch what this definition will have to keep track off. First of all, we need
to make sure that the compile time checker does not actually run through the
while loop, as this might result in an infinite loop, while the checker itself should
always finish. This calls for a rule of form similar to

[while b {S}, L, r,M, c]→ [S, dec :: L, r,M, c+ 1]

The dec in this rule refers to decreasing the counter after we have walked
through the body of the loop.

It is important to note that there should be no immutable assignment within
a loop, as that would make it possible for an assignment to happen multiple
times. As we saw before, the compile checker of the actual Rust Programming
Language does not keep track of whether an assignment actually will happen
multiple times, so neither do we. This simplifies the process.

As mentioned before, we add a counter to the tuple that will be incremented
once we enter a while loop and decremented once we exit the while loop. If the
compile time checker comes accross an immutable assignment when the counter
is strictly larger than zero, it should reject the program.

The compile time checker pushes a decrease operation to our stack/list to
make sure that after the while loop finishes, the counter will be reduced by one.

We need a counter and cannot simply do with for example a boolean, as
there might be multiple nested while loops. After the inner while loop, you
might naively put the boolean to false when you finish, but then this would not
be correct as you are still in the outer while loops. You could make an extra
program instruction with the value of the boolean when you enter the loop to
keep track of what it was, but this is extra bookkeeping and more difficult than
our proposed solution.

The progress and preservation proofs get more complicated when we add
while loops to our language. This is because our semantic rules no longer match
as perfect with our compile time check anymore as in the previous chapters.
This will mean we will have to do some extra work. Also the formulation of the
theorems sometimes has to be changed, as there are program instruction types
in the compile time checker that do not exist in the semantics.

Lifetimes

Due to time constraints, we did not really include lifetimes in this thesis. We
mostly used scope properties instead of the lifetimes themselves. A more ex-

58

5.1. DISCUSSION CHAPTER 5. CONCLUSION AND DISCUSSION

tensive investigation could look into how to incorporate lifetimes in the current
semantics. This would include choosing a suitable mathematical representation
for lifetimes.

A possible choice would be to make lifetimes a lattice. Not all lifetimes are
necessarily comparable, but those within one function should be. There should
be an upper bound and lower bound.

Later research could look into this possibility.

Types

In this thesis we did not look at more types than simply Int. While we could
have chosen pretty much any type to demonstrate our ideas, integers proved
to be easy for the reader, while being complex enough to allow for expressions
with more than one variable. Future research should look into providing a more
diverse typing system for Rust.

Also, the current thesis did not provide a type check at all. With the syntax
of section 4.2 we can make programs that are not typed correctly. As stated
there, we simply assumed all programs under consideration were typed correctly,
but this is obviously not very satisfactory when looking at the bigger picture. A
type checker could be incorporated in the compile check or could be a separate
check. Either way, a more complete description of Rust needs a type checker.

Functions

Functions are important to make a usable programming language. From Chap-
ter 2, it seems likely that lifetimes will be needed to make a successful semantic
implementation of this.

Other features of Rust

Rust contains many more features that are interesting to look into. Think of
vectors or other more complicated data structures, concurrency and I/O. All of
these will be interesting, because differences with other programming languages
will occur due to the ownership system.

5.1.3 Formalization

All of the work in this thesis is done on paper and lacks computer verification.
While a start was made to formalize the ‘move only’-language (Chapter 3) in
the Coq Theorem Prover (Barras et al., 1997), this was not finished due to time
constraints. The first attempt can be found on the GitHub page of the author
(Wessel, 2019).

In order to make completely sure that all proofs presented in this thesis are
correct, they should be verified in Coq or a similar program in the future.

59

5.2. CONCLUSION CHAPTER 5. CONCLUSION AND DISCUSSION

5.1.4 Correctness of translation

While we proved some minor properties of our compile time checker in the
previous chapters, this is in no way a guarantee that the translation is a 100%
correct and completely models the Rust language. We did run quite a few
experiments with the Rust compiler to see what is accepted and what is rejected.
Some of these experiments are in this thesis as examples. However, a more
thorough investigation could certainly be useful.

5.2 Conclusion

In the previous chapters we looked at a small but interesting part of Rust. After
a walkthrough of the interesting features of Rust in Chapter 2, we started out
with a big step semantics describing the moving behaviour. Later on, we moved
on to a small step semantics, where we separated the checks the Rust compiler
does from the semantic rules.

In the chapter after that, we added more features to the subset under con-
sideration: borrowing and mutability. In both chapters, we proved safety by
proving progress and preservation. We also looked at other properties of our
semantic rules and compile check, such as determinism.

60

Bibliography

Appel, A. W. and Blazy, S. (2007). Separation logic for small-step Cminor. In
International Conference on Theorem Proving in Higher Order Logics, pages
5–21. Springer.

Balasubramanian, A., Baranowski, M. S., Burtsev, A., Panda, A., Rakamari,
Z., and Ryzhyk, L. (2017). System programming in Rust: Beyond safety.
ACM SIGOPS Operating Systems Review, 51(1):94–99.

Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J.-C., Gimenez, E.,
Herbelin, H., Huet, G., Munoz, C., Murthy, C., et al. (1997). The Coq proof
assistant reference manual: Version 6.1. PhD thesis, Inria.

Benitez, S. (2016). Short paper: Rusty Types for Solid Safety. In Proceedings
of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pages 69–75. ACM.

Boyland, J. (2003). Checking interference with fractional permissions. In Inter-
national Static Analysis Symposium, pages 55–72. Springer.

Dhurjati, D., Kowshik, S., Adve, V., and Lattner, C. (2003). Memory safety
without runtime checks or garbage collection. ACM SIGPLAN Notices,
38(7):69–80.

Ding, Y., Duan, R., Li, L., Cheng, Y., Zhang, Y., Chen, T., Wei, T., and
Wang, H. (2017). Poster: Rust sgx sdk: Towards memory safety in intel sgx
enclave. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 2491–2493. ACM.

Jespersen, T. B. L., Munksgaard, P., and Larsen, K. F. (2015). Session types
for Rust. In Proceedings of the 11th ACM SIGPLAN Workshop on Generic
Programming, pages 13–22. ACM.

Jung, R., Jourdan, J.-H., Krebbers, R., and Dreyer, D. (2017). Rustbelt: Se-
curing the foundations of the Rust programming language. Proceedings of the
ACM on Programming Languages, 2(POPL):66.

Leffler, S. (2017). Rust’s Type System is Turing-Complete.
https://sdleffler.github.io/RustTypeSystemTuringComplete/.

61

BIBLIOGRAPHY BIBLIOGRAPHY

Levy, A., Campbell, B., Ghena, B., Pannuto, P., Dutta, P., and Levis, P. (2017).
The case for writing a kernel in Rust. In Proceedings of the 8th Asia-Pacific
Workshop on Systems, page 1. ACM.

Matsakis, N. D. and Klock II, F. S. (2014). The rust language. ACM SIGAda
Ada Letters, 34(3):103–104.

Nielson, H. R. and Nielson, F. (1992). Semantics with applications, volume 104.
Springer.

Reed, E. (2015). Patina: A formalization of the Rust programming language.
University of Washington, Department of Computer Science and Engineering,
Tech. Rep. UW-CSE-15-03-02.

Stroustrup, B. (1994). The design and evolution of C++. Pearson Education
India.

The Rust Project (2017a). Lifetimes. https://doc.rust-
lang.org/beta/nomicon/lifetimes.html.

The Rust Project (2017b). Validating References with Lifetimes.
https://doc.rust-lang.org/book/second-edition/ch10-03-lifetime-syntax.html.

Wessel, N. (2019). Coq Formalization of moving in Rust.
https://github.com/NienkeWessel/BachelorThesis/tree/master/coq.

Wright, A. K. and Felleisen, M. (1994). A syntactic approach to type soundness.
Information and computation, 115(1):38–94.

62

	Preface
	Introduction
	Previous work
	The current work
	Scope of this thesis
	On safety and memory safety

	Why formal semantics
	The next chapters

	Rust
	Ownership
	Borrowing
	Mutability
	Rules for borrowing

	Lifetimes
	Lifetime elision
	Lifetimes of statements

	Moving
	Introduction
	A note on types

	Syntax
	Semantics: Framework
	Semantics: Big step
	Natural semantics rules
	Properties of our natural semantics rules
	Conclusion

	Semantics: Small step
	Operational semantics rules
	Properties of our semantic rules
	Conclusion

	Compile time check
	Definitions
	Properties
	Equivalence with our small step semantics
	Safety

	Borrowing
	Introduction
	Syntax
	Examples
	Mutability
	Nonmutable borrow
	Mutable borrow
	Another example of mutable borrowing

	Semantics: Framework
	Semantics: Small step
	Compile time check

	Conclusion and discussion
	discussion
	On safety and memory safety: revisited
	Other Rust features
	Formalization
	Correctness of translation

	Conclusion

	Bibliography

