
Bachelor thesis
Computer Science

Radboud University

Implementing Xoodoo with
protection against single fault

attacks on Cortex-M4

Author:
Raka Schipperheijn
S4582721

First supervisor/assessor:
Prof. J.J.C. Daemen

joan@cs.ru.nl

Second supervisor:
MSc. P.M.C. Massolino
P.Massolino@cs.ru.nl

Second assessor:
dr. P. Schwabe

peter@cryptojedi.org

July 7, 2019

Abstract

This thesis proposes a solution to single fault attacks in Xoodoo, a 48-byte
cryptographic permutation that allows very efficient symmetric crypto on
a wide range of platforms. Protection against fault attacks is important as
fault attacks aim to provoke an error to force the algorithm into an unin-
tended state and this allows for a Differential Fault attack. This can be
prevented by applying parity bits to check the integrity during certain crit-
ical stages of the algorithm. The practical solution will be provided in a
generic non platform related implementation and also a representation of
an implementation designed for an ARMv7 micro controller. The last im-
plementation shows a representation that contains the appropriate register
management to run on a Cortex-M4. Unlike the code of the Xoodoo with-
out redundancy, it is impossible to run an implementation with parity bits
completely on the registers without any swapping to the RAM. Thus one of
the goals is to reduce the performance cost as much as possible.

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Xoodoo . 4
2.2 Protection against fault attacks using Parity bits 7

2.2.1 Implementing parity bits against fault attacks on Xoodoo 7
2.3 Fault attacks . 7
2.4 Cortex-M4 . 8

3 Research 9
3.1 Parity bits implementation 9
3.2 Formal Notation . 10

3.2.1 Algorithm . 10
3.2.2 High level implementation optimization of mixing layer

θ . 12
3.3 Informal proof of pseudo code 12

3.3.1 Mixing layer θ . 12
3.3.2 Plane shifting ρwest . 14
3.3.3 Non-linear layer χ . 15
3.3.4 Plane shifting ρeast . 17

3.4 Low level scheduling . 19
3.4.1 Cortex-M4 specific modifications 19
3.4.2 Mixing layer θ . 20
3.4.3 Plane shifting ρwest . 21
3.4.4 Addition round constant ι 22
3.4.5 Non-linear layer χ . 22
3.4.6 Plane shifting ρeast . 23

3.5 Representation of an optimized Cortex-M4 implementation . 24
3.6 Validity . 25

3.6.1 Equivalence . 25
3.6.2 Protection against single-fault attacks 25

3.7 Computing the performance loss 25
3.7.1 Method . 25

1

4 Related Work 27

5 Conclusions 28
5.1 Future work . 28

Bibliography 31

2

Chapter 1

Introduction

Xoodoo [1] is a cryptographic permutation that is meant to work on a wide
range of platforms whilst keeping a good trade off between security and
performance. On a low-end target, the computation is done serially with a
small footprint, and the high-end processor can fully exploit its capabilities
with the evaluation of multiple instances of the building block in parallel
[2]. However, Xoodoo currently lacks protection against fault attacks. Fault
attacks allow a potential Differential Fault attack [3], where an attacker
is able to recover the secret key by injecting a fault and comparing the
differences in the ciphertext. This thesis focusses on single-fault attacks.
These are limited to one modification per function per round, since executing
multiple fault attacks is a lot more difficult and the solution is too complex
for this thesis. The question of this thesis is if it is possible to provide a
solution against single fault attacks whilst keeping the cost reasonable.

The importance of providing protection lies within the fact that the
platform is unreliable. It should execute everything safely, but it does not,
as an attacker can influence the platform. So we try to compensate this by
adding countermeasures to at least detect any modifications. The solution
provides protection with the use of parity bits to verify if any bits have been
modified during execution. This is a very fast way to verify the integrity of
the state of the algorithm. The solution is designed for ARMv7-M processors
as these are on the low-end side of microprocessors, meaning that it cannot
exploit the capabilities of Xoodoo with the evaluation of multiple instances
of the building block in parallel. The solution will be tested on a Cortex-
M4. One of the difficulties of providing an implementation on a Cortex-M4
is that there are only fourteen usable registers. The addition of parity bits
whilst maintaining a good performance means it is not possible to execute
Xoodoo purely on the fourteen provided registers. This means a part of the
solution focuses on efficient scheduling and keeping swapping between the
registers and RAM as low as possible.

3

Chapter 2

Preliminaries

To understand this thesis properly, some knowledge is required about the
cryptographic algorithm Xoodoo and fault attacks. Furthermore it is also
important to understand what the reasoning and implications are behind
implementing the protected version of Xoodoo on a Cortex-M4 processor.

2.1 Xoodoo

Xoodoo takes as input a state A. The structure of state A is as follows:
A consists of three horizontal planes of 4x32 bits. These planes lie on top
of each other and are called a0, a1, a2. Each plane contains four lanes, for
example: plane a0 contains lanes a00, a01, a02, a03. Three lanes that lie on
top of each other are called sheets, for example: a00, a10, a30. All bits have
coordinates (x, y, z) where x represents the lane, z represents the place on
the lane and y represents the plane. When three bits lie on top of each
other (so the same x, z but different y, then we call that a column. A
representation is shown in Figure 2.1.

Figure 2.1: Structure of the state A [1]

Furthermore Xoodoo generates roundconstants rci for the desired amount
of rounds. Then it applies a round function on the state nr times. Each
round consists of five functions:

4

Mixing layer θ

In this function, the sum of bits of the columns gets computed and this new
plane gets shifted in the x, z coordinates. Finally each plane gets XORed
with this new plane.

+ =

column parity θ-effect

fold

Figure 2.2: Effect of θ on a plane [1]

Addition of the round constant ι

In this function, the first plane gets XORed with the round constant.

Plane shifting ρwest & ρeast

In these functions, the second and third plane gets shifted in the x, y coor-
dinates.

5

Figure 2.3: Effect of ρwest(left) and ρeast(right) on a state [1]

Non-linear layer χ

In this function each plane gets modified by using an XOR on the comple-
ment of another plane and by applying an AND with the remaining plane.
This can be done sequentially thus allowing it to use less memory.

This structure allows Xoodoo to be able to only require twelve 32-bit regis-
ters to store all values and to do the computations with just two additional
32-bit registers.
However, the straightforward implementation of Xoodoo is weak against
fault attacks as there is no way to detect a modified bit. This means that if
a bit gets modified during a certain round the integrity of the ciphertext is
void.

0

1

2

complement

Figure 2.4: Effect of χ on a plane [1]

6

2.2 Protection against fault attacks using Parity
bits

Using parity bits is a method of detecting errors. This is accomplished by
taking the sum of the bits of the entity that has to be protected and append
a parity bit. There are two methods of parity:

• Even parity: sum of bits + parity bit has to be even. So if the sum of
the bits is odd, then the parity bit is 1 and if it is even then the parity
bit is 0.

• Odd parity: sum of bits + parity bit has to be odd. So if the sum of
the bits is odd, then the parity bit is 0 and if it is even then the parity
bit is 1.

If a bit gets modified the parity check will fail as the sum of the bits + parity
bit is, depending on the type of parity, either odd or even. However, this
only works when an odd number of bits are modified as for an even number
of modifications the parity check will still be satisfied. An example would
be the bit string 10110 with an even parity type. The sum of the bits is odd,
thus the parity bit is 1 and we get 101101. Now two bits gets flipped and
the new value is 001001, which still satisfies the parity check as the sum of
these bits is still even.

2.2.1 Implementing parity bits against fault attacks on Xoodoo

Because we only protect against single fault attacks, the problem with parity
bits not working when there is an even amount of errors stated above is not
relevant.
A new parity plane gets created by using even parity. After each function
we can check if parity still holds by computing the XOR of the columns
and comparing this to the parity plane. During the execution, of a function
every modification to the original bits also has to be done on the parity bit.
Therefore, if there are no improvements or shortcuts used, the computation
takes at least twice as long. Improvements are thus required.

2.3 Fault attacks

Fault attacks[4] are active attacks against cryptographic implementations
on a hardware level. In an active fault attack, the attacker has to be able
to interact with the target device by interfering the calculation. There are
different ways to interfere with the calculation [5] and a few examples are:

• Clock glitches, such as temporary overclocking of the CPU

• Sudden quick voltage spikes

7

• Overheating [6]

• Electromagnetic interference

These methods can bring the algorithm in an unintended intermediate state
where certain values are modified. What this means is that the output of
the execution is not equal to the output of a regular execution with no fault
attacks.

2.4 Cortex-M4

The Cortex-M4 [7] is a low cost RISC ARM processor designed for mircro
controllers. The reason for using this particular processor is that it has
enough registers to be able to run the original Xoodoo version fully on the
registers. It has sixteen registers [8]:

• r0 − r7 are general-purpose registers accessible for both 16-bit and
32-bit instructions.

• r8−r12 are general-purpose registers accessible for only 32-bit instruc-
tions.

• r13 stores the stack pointer and is thus reserved at all times.

• r14 is the Link Register and is able to be used as a general-purpose
register as long as the Branch with Link instruction is not used.

• r15 stores the program counter and is always reserved.

If the Branch with Link instruction is not used, then the available amount
of registers is 14 which is the required amount to execute a Xoodoo round
in the registers exclusively. Because the Cortex-M4 is a lower end device
the impact of adding more instructions to support the use of parity bits is
more noticeable, and thus easier to measure.

8

Chapter 3

Research

The implementation was constructed by the following process:

1) Designing the implementation of the parity bits

2) Creating a formal notation based on 1)

3) Writing an informal proof to show that the parity bits provide protec-
tion

4) Creating a non optimized and non platform based pseudo code imple-
mentation that computes one round

5) Creating a non optimized and non platform C++ code implementation

6) Creating a C++ representation of an optimized Cortex-M4 processor
implementation

7) Testing the representation of the Cortex-M4 implementation

The actual C++ code of 5) and 6) can be found in the corresponding
git repository of this thesis [9], as well as some tests.

3.1 Parity bits implementation

The implementation has to have the following security claim: For each
function in each round, any modifications on a single plane will
be detected. It is assumed that the input state of the first round and
any operation outside the round are valid, thus this thesis only focuses on
attacks within the round function. Every function in the round has to be
modified to support the addition of the parity plane and every function will
have to check if the parity is still satisfied.
To implement the use of parity bits, ideally four additional registers are
required compared to the original implementation of Xoodoo to store the

9

parity bits themselves. However, when using a Cortex-M4, swapping is
required as the fourteen usable registers are insufficient. However, this step
has to be minimized, because it is very slow.

3.2 Formal Notation

In this section the formal notation of the implementation of Xoodoo with
protection against single fault attacks will be shown. Note that the parity
bits are denoted by S and to increase the readability of the formal notation,
an apostrophe gets added every time a variable is modified. Furthermore
because Xoodoo uses planes, two dimensional rotations are possible. These
are denoted by ≪ (x, z).

3.2.1 Algorithm

Algorithm 1 Definition of Xoodoo[r] with r the number of rounds

Require: Number of rounds r > 0

S = a0 + a1 + a2
rc[r] = generateRoundConstants(r)
for Round index i from 1− r to 0 do

(a′0, a
′
1, a
′
2, S
′) = Ri(a0, a1, a2, S, rc[i])

Here Ri is specified by the following sequence of steps:
function Round function Ri(a0, a1, a2, S):

Mixing layer θ(a0, a1, a2, S)
Plane shifting ρwest(a1, a2, S)
Addition round constant ι(a0, rc[i], S)
Non-linear layer χ(a0, a1, a2, S)
Plane shifting ρeast(a1, a2, S)

10

Algorithm 2 Definition of the round function Ri

function Mixing layer θ(a0, a1, a2, S):
for j ∈ 0, 1, 2 do

Ea ← S ≪ (1, 5) + S ≪ (1, 14)
a′j ← aj + Ea

Es ← S ≪ (1, 5) + S ≪ (1, 14)
S′ ← S + Es

verifyEquals(S′, a0, a
′
1, a

′
2)

function Plane shifting ρwest(a1, a2, S):
S′ ← S + a1 ≪ (1, 0) + a2 ≪ (0, 11) + a1 + a2
a′1 ← a1 ≪ (1, 0)
a′2 ← a2 ≪ (0, 11)
verifyEquals(S′, a0, a

′
1, a

′
2)

function Addition round constant ι(a0, rc, S):
S′ ← S + rc
a′0 ← a0 + rc
verifyEquals(S′, a′0, a1, a2)

function Non-linear layer χ(a0, a1, a2, S):
a′0 ← a0 + a1 · a2
S′ ← S + a1 · a2
a′1 ← a1 + a2 · a′0
S′′ ← S′ + a2 · a′0
a′2 ← a2 + a′0 · a′1
S′′′ ← S′′ + a′0 · a′1
VerifyEquals(S′′′, a′0, a

′
1, a

′
2)

function Plane shifting ρeast(a1, a2, S):
S′ ← S + a1 ≪ (0, 1) + a2 ≪ (2, 8) + a1 + a2
a′1 ← a1 ≪ (0, 1)
a′2 ← a2 ≪ (2, 8)
VerifyEquals(S′, a0, a

′
1, a

′
2)

function VerifyEquals(S, a0, a1, a2) =

True for S = a0 + a1 + a2

False for S 6= a0 + a1 + a2

11

3.2.2 High level implementation optimization of mixing layer
θ

During mixing layer θ, the sum of the sheets is computed. This is equal to
the new parity plane and thus it can be used for this computation. However,
this can lead to a potential fault attack where the rotation of the parity plane
gets modified. This will result in both the parity plane and the state being
modified. To prevent this, the computation of the rotation gets redone for
every lane of the state and the parity plane.

3.3 Informal proof of pseudo code

In this section, the algorithm will be verified with the use of an informal
proof. For every line of code it will be checked that the algorithm will
detect whether we execute a fault attack on that specific line. The invalid
variable will be highlighted with an ∗.

3.3.1 Mixing layer θ

1: function Mixing layer θ(a0, a1, a2, S):
2: for j ∈ 0, 1, 2 do
3: Ea ← S ≪ (1, 5) + S ≪ (1, 14)
4: a′j ← aj + Ea

5: Es ← S ≪ (1, 5) + S ≪ (1, 14)
6: S′ ← S + Es

7: verifyEquals(S′, a0, a
′
1, a

′
2)

line 2: Modified variable Es:

a0 + a1 + a2 → S

S ≪ (1, 5) + S ≪ (1, 14)→ E∗s

S ≪ (1, 5) + S ≪ (1, 14)→ Ea

a0 + Ea → a
′
0

S ≪ (1, 5) + S ≪ (1, 14)→ Ea

a1 + Ea → a
′
1

S ≪ (1, 5) + S ≪ (1, 14)→ Ea

a2 + Ea → a
′
2

E∗s + S → S′∗

12

The verification in line 7 will fail because:

a′0 + a′1 + a′2 6= S′∗

line 4: Modfied variable: Ea is very similar to Es

line 5: Modified variable: a′0:

a0 + a1 + a2 → S

S ≪ (1, 5) + S ≪ (1, 14)→ Es

S ≪ (1, 5) + S ≪ (1, 14)→ Ea

a0 + Ea → a
′∗
0

S ≪ (1, 5) + S ≪ (1, 14)→ Ea

a1 + Ea → a
′
1

S ≪ (1, 5) + S ≪ (1, 14)→ Ea

a2 + Ea → a
′
2

S ≪ (1, 5) + S ≪ (1, 14)→ Ea

Es + S → S′

The verification in line 7 will fail because:

a
′∗
0 + a′1 + a′2 6= a′0 + a′1 + a′2 = S′

a
′∗
0 6= a′0

Modifying a′1 and a′2 have similar proofs

line 6: Modified variable: S′:

a0 + a1 + a2 → S

S ≪ (1, 5) + S ≪ (1, 14)→ Es

S ≪ (1, 5) + S ≪ (1, 14)→ Ea

a0 + Ea → a
′
0

S ≪ (1, 5) + S ≪ (1, 14)→ Ea

a1 + Ea → a
′
1

S ≪ (1, 5) + S ≪ (1, 14)→ Ea

a2 + Ea → a
′
2

Es + S → S′∗

The verification in line 7 will fail because:

a′0 + a′1 + a′2 = S′ 6= S′∗

line 7: If one of the inputs of VerifyEquals gets changed whilst the original
input was equal to each other, this will result in a termination of the
program.

13

3.3.2 Plane shifting ρwest

1: function Plane shifting ρwest(a1, a2, S):
2: S′ ← S + a1 ≪ (1, 0) + a2 ≪ (0, 11) + a1 + a2
3: a′1 ← a1 ≪ (1, 0)
4: a′2 ← a2 ≪ (0, 11)
5: verifyEquals(S′, a0, a

′
1, a

′
2)

line 2: Modified variable S′:

S + a1 + a2 + a1 ≪ (1, 0) + a2 ≪ (0, 11) = S′∗

a1 ≪ (1, 0) = a′1

a2 ≪ (0, 11) = a′2

The verification in line 5 will fail as:

a0 + a′1 + a′2 = a0 + a1 ≪ (1, 0) + a2 ≪ (0, 11) = S′ 6= S′∗

line 3: Modified variable a′1:

S + a1 + a2 + a1 ≪ (1, 0) + a2 ≪ (0, 11) = S′

a1 ≪ (1, 0) = a
′∗
1

a2 ≪ (0, 11) = a′2

The verification in line 5 will fail as:

6 a0 + a
′∗
1 + 6 a′2

?
=6 a0 + a1 ≪ (1, 0)+ 6 a2 ≪ (0, 11) = S′

a
′∗
1 6= a′1 = a1 ≪ (1, 0)

line 4: Modified variable a′2 is very similar to a′1

line 5: If one of the inputs of VerifyEquals gets changed whilst the original
input was equal to each other, this will result in a termination of the
program.

14

3.3.3 Non-linear layer χ

1: function Non-linear layer χ(a0, a1, a2, S):
2: a′0 ← a0 + a1 · a2
3: S′ ← S + a1 · a2
4: a′1 ← a1 + a2 · a′0
5: S′′ ← S′ + a2 · a′0
6: a′2 ← a2 + a′0 · a′1
7: S′′′ ← S′′ + a′0 · a′1
8: VerifyEquals(S′′′, a′0, a

′
1, a

′
2)

line 2: Modified variable: a0:

a∗0 + a1 · a2 → a
′∗
0

S + a1 · a2 → S′

a1 + a2 · a
′∗
0 → a

′∗
1

S′ + a2 · a
′∗
0 → S′′

′∗

a2 + a
′∗
0 · a

′∗
1 → a

′∗
2

S′′ + a
′∗
0 · a

′∗
1 → S′′′

′∗

The verification in line 8 will fail because:

a
′∗
0 + a

′∗
1 + a

′∗
2 = a∗0 + a1 · a2 + a1 + a2 · a

′∗
0 + a2 + a

′∗
0 · a

′∗
1

S′′′ = a0 + a1 + a2 + a1 · a2 + a2 · a0′∗+ a
′∗
0 · a

′∗
1

a∗0+ 6 a1· 6 a2+ 6 a1+ 6 a2· 6 a
′∗
0 + 6 a2+ 6 a

′∗
0 · 6 a1

′∗ ?
= a0+ 6 a1· 6 a2+ 6 a1+ 6 a2 · a

′∗
0 + 6 a2+ 6 a

′∗
0 6 ·a

′∗
1

a∗0 6= a0

Modifying a1 and a2 have similar proofs.

line 3: Modified variable: S:

a0 + a1 · a2 → a′0

S∗ + a1 · a2 → S′∗

a1 + a2 · a′0 → a′1

S′∗ + a2 · a′0 → S′′∗

a2 + a′0 · a1 → a′2

S′′∗ + a′0 · a′1 → S′′′∗

15

The verification in line 8 will fail because:

a′0 + a′1 + a′2 = a0 + a1 · a2 + a1 + a2 · a′0 + a2 + a′0 · a1
S′′′∗ = S∗ + a1 · a2 + a2 · a′0 + a′0 · a1

a0+ 6 a1· 6 a2 + a1+ 6 a2· 6 a′0 + a2+ 6 a′0· 6 a1
?
= S∗+ 6 a1· 6 a2+ 6 a2· 6 a′0+ 6 a′0· 6 a

′
1

a0 + a1 + a2 = S 6= S∗

line 4: Modified variable: a′0:

a0 + a1 · a2 → a
′∗
0

S + a1 · a2 → S′

a1 + a2 · a
′∗
0 → a

′∗
1

S′ + a2 · a0′∗ → S′′
′∗

a2 + a
′∗
0 · a

′
1 → a

′∗
2

S′′ + a
′∗
0 · a

′
1 → S′′′

′∗

The verification in line 8 will fail because:

a
′∗
0 + a

′∗
1 + a

′∗
2 = a

′∗
0 + a1 + a2 · a

′∗
0 + a2 + a

′∗
0 · a

′
1

S′′′ = a0 + a1 + a2 + a1 · a2 + a2 · a
′∗
0 + a

′∗
0 · a

′
1

a
′∗
0 + 6 a1+ 6 a2· 6 a

′∗
0 + 6 a2+ 6 a

′∗
0 · 6 a

′∗
1

?
= a0+ 6 a1+ 6 a2 + a1 · a2+ 6 a2· 6 a

′∗
0 + 6 a′∗

0 6 ·a
′∗
1

a
′∗
0 6= a′0 = a0 + a1 · a2

line 5: Modified variable S′:

a0 + a1 · a2 → a′0

S + a1 · a2 → S′∗

a1 + a2 · a′0 → a′1

S′∗ + a2 · a′0 → S′′∗

a2 + a′0 · a1 → a′2

S′′∗ + a′0 · a
′
1 → S′′′∗

The verification in line 8 will fail because:

a′0 + a′1 + a′2 = a0 + a1 · a2 + a1 + a2 · a′0 + a2 + a′0 · a1
S′′′∗ = S′∗ + a2 · a′0 + a′0 · a

′
1

a0 + a1 · a2 + a1+ 6 a2· 6 a′0 + a2+ 6 a′0· 6 a1
?
= S′∗+ 6 a2· 6 a′0+ 6 a′0· 6 a

′
1

a0 + a1 · a2 + a1 + a2 = S + a1 · a2 = S′ 6= S′∗

line 6: Modified variable: a′1 has a similar proof as a′0.

16

line 7: Modified variable: S′′ has a similar proof as S′.

line 8: Modified variable: a′2 has a similar proof as a′0.

line 9: Modified variable: S′′′:

a0 + a1 · a2 → a′0

S + a1 · a2 → S′

a1 + a2 · a′0 → a′1

S′ + a2 · a′0 → S′′

a2 + a′0 · a1 → a′2

S′′ + a′0 · a
′
1 → S′′′∗

The verification in line 8 will fail because:

a′0 + a′1 + a′2 = a0 + a1 · a2 + a1 + a2 · a0 + a2 + a′0 · a1
S′′′∗ 6= S′′′

a0 + a1 · a2 + a1 + a2 · a0 + a2 + a′0 · a1 = S′′′ 6= S′′′∗

line 10: If one of the inputs of VerifyEquals gets changed whilst the original
input was equal to each other, this will result in a termination of the
program.

3.3.4 Plane shifting ρeast

1: function Plane shifting ρeast(a1, a2, S):
2: S′ ← S + a1 ≪ (0, 1) + a2 ≪ (2, 8) + a1 + a2
3: a′1 ← a1 ≪ (0, 1)
4: a′2 ← a2 ≪ (2, 8)
5: VerifyEquals(S′, a0, a

′
1, a

′
2)

line 2: Modified variable S′:

S + a1 + a2 + a1 ≪ (0, 1) + a2 ≪ (2, 8) = S′∗

a1 ≪ (0, 1) = a′1

a2 ≪ (2, 8) = a′2

The verification in line 5 will fail as:

a0 + a′1 + a′2 = a0 + a1 ≪ (0, 1) + a2 ≪ (2, 8) = S′ 6= S′∗

17

line 3: Modified variable a′1:

S + a1 + a2 + a1 ≪ (0, 1) + a2 ≪ (2, 8) = S′

a1 ≪ (0, 1) = a
′∗
1

a2 ≪ (2, 8) = a′2

The verification in line 5 will fail as:

6 a0 + a
′∗
1 + 6 a′2

?
=6 a0 + a1 ≪ (0, 1)+ 6 a2 ≪ (2, 8) = S′

a
′∗
1 6= a′1 = a1 ≪ (0, 1)

line 4: Modified variable a′2 proof is similar to a′1:

line 5: If one of the inputs of VerifyEquals gets changed whilst the original
input was equal to each other, this will result in a termination of the
program.

18

3.4 Low level scheduling

In this section the code will be explained together with the scheduling of
the swaps between the RAM and registers. The variables notation is bound
to the formal notation of the algorithm. There are fourteen usable registers
which are denoted by: r0...r11, v0, v1 and each register can contain one lane.
To show that a variable has already been modified, we add an apostrophe
to the variable. However, these will be dropped when the algorithm enters
the next function. This means that the output of mixing layer θ is regarded
as a′00, but this variable is regarded as a00 in ρwest.

3.4.1 Cortex-M4 specific modifications

This implementation is designed to be used on a Cortex-M4, thus mean-
ing that the low level scheduling has to adhere to the specifications of the
Cortex-M4 and to the ARMv7 assembly language. Thirteen registers can be
used out of the box, with an optional fourteenth register. This register can
store values during the execution of a single function as it normally contains
the linkpointer. This also means it is required to store the linkpointer to
the RAM to use that register.

The process of swapping in ARMv7 consists of two steps: loading the ad-
dress of the variable into a register and read or write a value to/from the
address to another register. For loading a value, it is possible to just use
one register. An example would be to load value x into r0:

1 . global x set global variable x
2 ldr r0, =x load address of x to r0
3 ldr r0, [r0] load the value of the address of x inside r0 into r0

However, to store a value into a variable in the RAM, we need two different
registers. One to hold the address of the variable and one to hold the desired
value of the variable. To write the value 7 into variable x:

1 . global x set global variable x
2 ldr r0, =x load address of x to r0
3 mov r1, #7 load the value 7 into r1
4 str r1, [r0] store the value from r1 into the address of r0

So for storing a value to the RAM, register r0 will be used, because a00 is
the least modified lane as it does not get used in ρwest or ρeast. When a
register contains the address of value x, the following notation will be used:
&[x].

19

3.4.2 Mixing layer θ

At the start of the function, the state of the registers consists of:
r0 = a00, r1 = a01, r2 = a02, r3 = a03

r4 = a10, r5 = a11, r6 = a12, r7 = a13

r8 = a20, r9 = a21, r10 = a22, r11 = a23

v0 = S3, v1 = Linkpointer

First we have to store the value of the Linkpointer to the RAM as this value
is used to for the return address of the round. Mixing layer θ starts off
with calculating the first sheet, thus we first have to calculate Ea in v1 with
the use of S3. With Ea we can now calculate the new values of the first
sheet, but we recompute Ea after each value to prevent the potential fault
attack mentioned in 3.2.2. To calculate the new value of S0 we first store
the original value in v1 as this is needed later on. Then S′0 is calculated and
stored in v0 with the use of S3 which is still in v0. After writing v0 to S0 we
now have:

r0 = a′00, r1 = a01, r2 = a02, r3 = a03

r4 = a′10, r5 = a11, r6 = a12, r7 = a13

r8 = a′20, r9 = a21, r10 = a22, r11 = a23

v0 = S′0, v1 = S0

Before S′0 can be stored in the RAM, a00 has to be stored first as it has been
modified resulting in the following:

r0 = a′00, r1 = a01, r2 = a02, r3 = a03

r4 = a′10, r5 = a11, r6 = a12, r7 = a13

r8 = a′20, r9 = a21, r10 = a22, r11 = a23

v0 = S′0, v1 = &[a00]

Now S0 is loaded back into v1 and r0 contains the address of S0:

r0 = &[S0], r1 = a01, r2 = a02, r3 = a03

r4 = a′10, r5 = a11, r6 = a12, r7 = a13

r8 = a′20, r9 = a21, r10 = a22, r11 = a23

v0 = S′0, v1 = S0

For the second sheet we do the same but now with S0 to compute S1.
Because S0 is stored in v1 instead of v0 we switch the operations around, so
this means all things that were stored v0 in the first sheet is now stored in
v1 and vice versa. This results in the following state:

r0 = &[S1], r1 = a′01, r2 = a02, r3 = a03

r4 = a′10, r5 = a′11, r6 = a12, r7 = a13

r8 = a′20, r9 = a′21, r10 = a22, r11 = a23

v0 = S1, v1 = S′1

20

Now we also do this for the third sheet but now with S1 to compute S2.
The use of v0 and v1 is equal to the computation of the first sheet. For the
final sheet we use S2 to compute S3 and the use of v0 and v1 is equal to the
second sheet:

r0 = &[S3], r1 = a′01, r2 = a′02, r3 = a′03

r4 = a′10, r5 = a′11, r6 = a′12, r7 = a′13

r8 = a′20, r9 = a′21, r10 = a′22, r11 = a′23

v0 = S3, v1 = S′3

Now to reduce the amount of swaps in the verification of the state, we first
check if the third and fourth sheet of the state is equal to the third and
fourth lane of the parity. Thus, we have to load S′2 to v0. This gives us
v0 = S′2, v1 = S′3. Now we do the verification and if this passes, we load
a′00, S

′
0 and S′1 to r0, v0 and v1 respectively and then verify the first and

second lanes.

3.4.3 Plane shifting ρwest

After mixing layer θ, the state of the registers is:

r0 = a00, r1 = a01, r2 = a02, r3 = a03

r4 = a10, r5 = a11, r6 = a12, r7 = a13

r8 = a20, r9 = a21, r10 = a22, r11 = a23

v0 = S0, v1 = S1

The problem in ρwest is that the values required to calculate the new value
of the parity bits are modified in ρwest, thus we first have to calculate the
S′ before calculating a0, a

′
1, a
′
2.

First, the value of S′0 is calculated and stored in v0 followed by the compu-
tation of S′1 which is stored in v1. Then these get stored in the RAM and
S2 and S3 are stored in v0 and v1 respectively. Then we calculate S′2 and
S′3 and store them to v0 and v1. Now all the lanes of the parity have been
computed and we have the following state:

r0 = &[S3], r1 = a01, r2 = a02, r3 = a03

r4 = a10, r5 = a11, r6 = a12, r7 = a13

r8 = a20, r9 = a21, r10 = a22, r11 = a23

v0 = S′2, v1 = S′3

We first compute a′1, but this requires the use of an empty register, thus
we store v1 to S3 in the RAM and use v1 for the computation of a′1. This
is followed by computing a′2. ρwest does not change a0 so we now have the

21

state:
r0 = &[S3], r1 = a01, r2 = a02, r3 = a03

r4 = a′10, r5 = a′11, r6 = a′12, r7 = a′13

r8 = a′20, r9 = a′21, r10 = a′22, r′11 = a′23

v0 = S′2, v1 = a10

We want to verify the state and as S′2 is already in register v0, we load S′3
into v1 and then verify the third and fourth lane. If S2 = a02 + a12 + a22
and S3 = a03 + a13 + a23 we load S′0 and S′1 into v0 and v1 respectively and
verify the first and second lane.

3.4.4 Addition round constant ι

As a00 is required for this function, it is loaded back into r0 :

r0 = a00, r1 = a01, r2 = a02, r3 = a03

r4 = a10, r5 = a11, r6 = a12, r7 = a13

r8 = a20, r9 = a21, r10 = a22, r11 = a23

v0 = S0, v1 = S1

We load the round constant into v1 and then compute S′0 in v0 and a′00 in
r0. Because ι only affects the first lane of a0 we only have to verify the first
lane, which means we only have to check if r0 + r4 + r8 = v0.

3.4.5 Non-linear layer χ

After ι, the state of the registers is:

r0 = a00, r1 = a01, r2 = a02, r3 = a03

r4 = a10, r5 = a11, r6 = a12, r7 = a13

r8 = a20, r9 = a21, r10 = a22, r11 = a23

v0 = S0, v1 = rc

The execution is split up into row halves, which means the first part is
affecting the first and second lane of a0, the second part is affecting the first
and second lane of a1 and so on. We do this, because the order of execution
is important as this affects the result. Because we do not have S1 in the
registers, we load S1 into v1. Now, we compute the first lane of a0, then
we store the value of a00 by using v0 to store the address. Then we load S0
back into v0 and compute S′0 and we do the same with the second lane, but
we add this value to S1. This leaves us with:

r0 = a′00, r1 = a′01, r2 = a02, r3 = a03

r4 = a10, r5 = a11, r6 = a12, r7 = a13

r8 = a20, r9 = a21, r10 = a22, r11 = a23

v0 = S′0, v1 = S′1

22

Now we do the same with the first and second lane of a1 and a2 which results
in:

r0 = a′00, r1 = a′01, r2 = a02, r3 = a03

r4 = a′10, r5 = a′11, r6 = a12, r7 = a13

r8 = a′20, r9 = a′21, r10 = a22, r11 = a23

v0 = S′′′0 , v1 = S′′′1

Now that we have calculated the first and second sheets completely and the
sheet do not affect each other, we can now verify the first and second lane
of the state, which saves us some swaps compared to doing this at the end.
After this, we store S0 and S1 to the RAM and load S2 and S3 into v0 and
v1. Now we do the exact same thing as before but now applying it to the
third and fourth sheet, so computing the third and fourth lane of a0 gives:

r0 = &[S1], r1 = a′01, r2 = a′02, r3 = a′03

r4 = a′10, r5 = a′11, r6 = a12, r7 = a13

r8 = a′20, r9 = a′21, r10 = a22, r11 = a23

v0 = S′2, v1 = S′3

Computing the third and fourth lane of a1 and a2 gives:

r0 = &[S1], r1 = a′01, r2 = a′02, r3 = a′03

r4 = a′10, r5 = a′11, r6 = a′12, r7 = a′13

r8 = a′20, r9 = a′21, r10 = a′22, r11 = a′23

v0 = S′′′2 , v1 = S′′′3

We now load a00 back into the r0 and verify the second half of the state.

3.4.6 Plane shifting ρeast

After non-linear layer χ, the state of the registers is:

r0 = a00, r1 = a01, r2 = a02, r3 = a03

r4 = a10, r5 = a11, r6 = a12, r7 = a13

r8 = a20, r9 = a21, r10 = a22, r11 = a23

v0 = S2, v1 = S3

For each sheet the parity is based on the original values of the sheet, but
the sheets do not interact with each other. The algorithm takes the same
approach as with Chi where it is done by row halves. First S′2 and S′3 are
computed as this value is still loaded in v0 and v1 respectively. This is then
followed by the computation of the third and fourth lane of a′1 which gives

23

the following state:

r0 = a00, r1 = a01, r2 = a02, r3 = a03

r4 = a10, r5 = a11, r6 = a′12, r7 = a′13

r8 = a20, r9 = a21, r10 = a22, r11 = a23

v0 = S′2, v1 = S′3

Then the third and fourth lane a′2 are computed which gives:

r0 = a00, r1 = a01, r2 = a02, r3 = a03

r4 = a10, r5 = a11, r6 = a′12, r7 = a′13

r8 = a20, r9 = a21, r10 = a′22, r11 = a′23

v0 = S′2, v1 = S′3

Because ρeast does not affect a0, we are finished with the second half of the
state. This means we can directly verify the third and fourth lane of the
state. If this passes S′2 and S′3 are stored in the RAM and S0 and S1 are
loaded in v0 and v1 respectively. Now we do the same as with the third and
fourth lane.
We first compute S′0 and S′1 followed by the computation of the first and
second lane of a′1 and a′2 which gives the final state:

r0 = &[S3], r1 = a01, r2 = a02, r3 = a03

r4 = a′10, r5 = a′11, r6 = a′12, r7 = a′13

r8 = a′20, r9 = a′21, r10 = a′22, r11 = a′23

v0 = S′0, v1 = S′1

Now we verify the first and second lane of the state with the use of a00, S
′
0

and S′1 inside r0, v0 and v1 respectively.
And finally the Linkpointer gets loaded back into v0 giving:

r0 = a00, r1 = a01, r2 = a02, r3 = a03

r4 = a′10, r5 = a′11, r6 = a′12, r7 = a′13

r8 = a′20, r9 = a′21, r10 = a′22, r11 = a′23

v0 = S′0, v1 = Linkpointer

3.5 Representation of an optimized Cortex-M4 im-
plementation

This version shows a representation of what the registry and swapping man-
agement of the code should be when running the algorithm on a Cortex-M4.
It acts like it uses registers denoted by the variables r0 . . . r12 and v0, v1 and
shows the swaps that are required. Because the register r14 is required, the
Linkpointer has to be stored as this contains the return address of the cur-
rent function. So to minimize the amount of swapping of the Linkpointer

24

itself, the whole round subsides into one big function. This representation
is written in C and we can run tests on it to check its validity and its
performance. It can be found in the repository of this project.

An attempt has been made to write the actual optimized ARM assembly
implementation, but due to time constraints and the priority being on having
an implementation that provides the protection, this is unfinished.

3.6 Validity

It has to be verified for the new implementation that the output is equivalent
and that it actually provides protection against single-fault attacks. In this
section, the methods to verify these statements are explained.

3.6.1 Equivalence

The first will be achieved by generating one state and perform a permuta-
tion from both versions of Xoodoo code on the same state. If the outputs
are equal, then for that input the functions are equivalent. We attempt per-
mutations of one, six and twelve rounds. It is assumed these functions are
equivalent if there is a sufficient amount of inputs where the outputs are the
same. The test ran for six hours without finding any non-equivalent outputs.
Thus we assume that the two versions are equivalent. The implementation
can be found in the repository [9].

3.6.2 Protection against single-fault attacks

The implementation follows the formal notation closely and thus it is as-
sumed that by informally proving the formal notation, we can assume the
implementation is protected against fault attacks.

3.7 Computing the performance loss

In this section the computation of the performance loss will be explained
and the results will be revealed. Firstly keep in mind that there is only a
representation of the swapping and register management and not an actual
implementation. This means the test will only show the cost of comput-
ing the parity plane and does not account for swapping. This means the
performance loss is probably higher.

3.7.1 Method

To be able to compare the performance, boundaries first have to be set:

25

• Only the performance of the functions inside the round are compared
as those are the only functions that are modified. Functions like gen-
erating the round constant and any other preparation work that has
to be done will not be accounted for. These should have the same
performance between the two functions.

• Only the performance of a single round will be computed as the per-
formance should be consistent between iterations and it can only just
make the results more blurry as measuring longer functions has more
risk of being inaccurate.

With these boundaries, the following method is proposed:
The idea is to first compute generate an initial state which is used for both
versions. Then any preparation work before the round gets done. Now we
use a high resolution clock to store the current time and we run a few rounds
of the new implementation, as this means a longer run time and thus the
impact of overhead on the actual time is lower. Then again use the high
resolution clock to get the current time and subtract those times from each
other. The same thing happens for the Xoodoo code without the protection
and then the run times get compared. We compared the time difference ten
thousand times and the result of it was that the new implementation runs
around 2.8 times slower. These functions will create some overhead that
will increase the value com-pared to the actual run time, but this should be
consistent between the two versions and as the goal is to find the performance
difference between the two versions, this should not give any problems. This
test can also be found in the repository[9].

26

Chapter 4

Related Work

This paper proposes an implementation of fault protection to a specific al-
gorithm. To my best knowledge there has not been any related work about
providing this protection specifically for Xoodoo. There are studies that
propose countermeasures against fault attacks in general. Simon et al.[10]
proposes a novel approach for designing symmetric ciphers to resist fault
injection. This approach consists of partitioning the state into equally sized
limbs, adding an additional limb and computing an extended round func-
tion. When this method is run on a Cortex-M4 (which is also used in this
research), it yields an overhead of 83% on the performance.

Other studies are by Schneider et al.[11] which introduces a countermeasure
ParTI for cryptographic hardware implementations that combines the con-
cept of a provably-secure masking scheme with an error detecting approach
against fault injection. The work of Reparaz et al.[12] proposes a counter-
measure CAPA that claims security against higher-order SCA, multiple-shot
DFA and combined attacks.

27

Chapter 5

Conclusions

The goal of the research was to implement protection against single-fault
attacks to Xoodoo with a reasonable performance loss. The total perfor-
mance loss in run time is atleast 2.8 times more than the original Xoodoo
code. When measuring this on a Cortex-M4 with optimized code this will
be higher. This is mainly because of the requirement to swap between the
registers and memory which was not necessary in the original Xoodoo. As
shown in the informal proof in section 3.4, the algorithm is protected against
an attack where one of the planes is modified during a round.

5.1 Future work

There are some improvements that can be done on the suggested implemen-
tation:

• On a design level one can look at incorporating ρwest into θ as this will
remove the required swaps that are done in ρwest. The same could be
said about incorporating ρeast into χ.

• On an implementation level, one can look at using different ARM in-
structions to reduce the amount of required instructions. For instance,
ARM assembly has support for performing a rotation together with
an AND, XOR or MOV in a single instruction.

Another interesting thing to look at, is to use a platform that supports
enough registers to omit the requirement of swapping and then compare the
performance between the proposed implementation and the original Xoodoo.
This is the place where the proposed implementation loses the most perfor-
mance as these instructions are slow and expensive.
One can also look at alternative implementations that are not based on the
parity of the planes and find out if those provide a better performance with
the same protection.

28

Finally one thing that this implementation does lack is a full implementa-
tion of Xoodoo. The implementation proposed in this paper only covers the
functions inside a round. Parts like generating the round constant are still
vulnerable to possible single fault attacks.

29

Bibliography

[1] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer.
Xoodoo cookbook. IACR Cryptology ePrint Archive, 2018:767, 2018.

[2] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer.
The design of xoodoo and xoofff. IACR Transactions on Symmetric
Cryptology, 2018(4):1–38, Dec. 2018.

[3] Eli Biham and Adi Shamir. Differential fault analysis of secret key
cryptosystems. In Burton S. Kaliski, editor, Advances in Cryptology —
CRYPTO ’97, pages 513–525, Berlin, Heidelberg, 1997. Springer Berlin
Heidelberg.

[4] Olivier Benot. Fault Attack, pages 452–453. Springer US, Boston, MA,
2011.

[5] Martin Otto. Fault attacks and countermeasures. PhD thesis, Citeseer,
2005.

[6] Michael Hutter and Jörn-Marc Schmidt. The temperature side channel
and heating fault attacks. In International Conference on Smart Card
Research and Advanced Applications, pages 219–235. Springer, 2013.

[7] Arm Ltd. ARM Cortex-M4 Processor Technical Reference Manual.
ARM. https://developer.arm.com/docs/100166/0001.

[8] Arm Ltd. ARM Compiler toolchain. ARM. http://infocenter.

arm.com/help/topic/com.arm.doc.dui0489f/DUI0489F_arm_

assembler_reference.pdf.

[9] Git repository of this thesis, June. https://github.com/RakaPKS/

Implementing-Xoodoo-with-protection-against-single-fault-attacks.

[10] Thierry Simon, Lejla Batina, Joan Daemen, Vincent Grosso, Pedro
Maat Costa Massolino, Kostas Papagiannopoulos, Francesco Regaz-
zoni, and Niels Samwel. Towards lightweight cryptographic primi-
tives with built-in fault-detection. Cryptology ePrint Archive, Report
2018/729, 2018. https://eprint.iacr.org/2018/729.

30

[11] Tobias Schneider, Amir Moradi, and Tim Güneysu. Parti–towards
combined hardware countermeasures against side-channel and fault-
injection attacks. In Annual International Cryptology Conference, pages
302–332. Springer, 2016.

[12] Oscar Reparaz, Lauren De Meyer, Begül Bilgin, Victor Arribas, Svetla
Nikova, Ventzislav Nikov, and Nigel Smart. Capa: The spirit of beaver
against physical attacks. Cryptology ePrint Archive, Report 2017/1195,
2017. https://eprint.iacr.org/2017/1195.

31

