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Abstract

Predictive data mining can be used to estimate the effects of medical treatment, es-
pecially for datasets with a large number of dimensions. In this thesis, random forest
regression is utilized to predict the outcome of pelvic floor surgeries. We also apply an
adaptation of random forests, a generalized random forest to the data to estimate the
heterogenous treatment effect of the different types of surgeries involved. A dataset was
provided by the department of Obstetrics and Gynaecology of the RadboudUMC. After
processing, it contained usable pre- and post- operative data about 730 pelvic floor surg-
eries. 70 variables were used for predicting outcomes and treatment effects. The random
forest regression predictor was able to predict the difference between pre- and post- op-
eration Urinary Distress Inventory with a mean absolute error of 10.01 on a scale of -100
to 100. We provide a feature importance ranking to identify factors determining surgery
success. Finally, we discuss the average treatment effects estimated by the generalized
random forest.
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Chapter 1

Introduction

Data mining techniques are commonly applied to medical problems. This involves the
use of machine learning to understand medical data. One of the uses is for predictive
data mining, where the effect of treatments on the patient is modeled.

The department of Obstetrics and Gynaecology of the RadboudUMC provided a
dataset of 2500 pelvic floor surgeries. Of these, 730 were suitable for this research. This
dataset consisted of pre- and post operation patient questionnaire and case reports. The
main questionnaire used was the Urinary Distress Inventory (UDI) questionnaire. The
answers to this questionnaire were transformed into five scores, which were averaged.
The difference between pre- and post operational score is the variable which indicates
the success of the surgery.

The goal of this thesis is twofold: one goal is to predict the outcome of pelvic floor
surgeries. This should help to discriminate in which cases surgery will lead to improve-
ment in patient outcomes. The second goal is to increase understanding of underlying
factors which determine surgery success.

For the first goal we choose a random forest regressor. This is a suitable choice to
predict outcomes for the large number (70) of input features and for the relatively large
size of the data set. We train this regressor to predict the difference in UDI score before
and after a surgery for a patient, based on the given data of a patient before the surgery.

The second goal is partly achieved by examining the feature importances for the
random forest regressor. Additionally we let a generalized random forest estimate the
average treatment effect for different surgery types. In this case this is an estimate
of the difference in outcomes between applying and not applying a specific treatment
(here surgery) [I]. The average treatment effect estimate thus gives information about
the effectiveness of each type of treatment. It does not predict the outcome for a single
patient case. A generalized random forest uses a variation of a random forest to estimate
this heterogeneous average treatment effect. We use this generalized random forest
because the basic random forest is not suited for treatment effect estimation. It is used
for regression and classification.

Pelvic floor disorders frequently occur in women [7]. The pelvic floor for women is a
series of muscles which support the pelvic organs, among them the vagina, bladder and



uterus. When damaged, women can suffer from incontinence, obstructive bowel disease
or pelvic pain. This can be treated with various types of pelvic floor surgeries. Women
face a 10 to 25% lifetime risk of pelvic floor surgery [7]. At least 15% of pelvic floor
surgeries do not lead to improvement in conditions [§]. The exact factors influencing
surgery success are not well understood.

Machine learning in the form of feed-forward artificial neural networks has been
used to identify patients with pelvic organ prolapse from a data set containing healthy
and affected patients [5]. There is also extensive data available on average pre- and
post operative UDI scores for the types of pelvic floor surgeries involved in this thesis.
However, to the best of our knowledge, machine learning has not been applied to pelvic
floor surgery data so far.

Chapter 2 will provide the background for classification, the random forest algorithm
as applied to regression, feature importances and the estimation of average treatment
effects with generalized random forests. Chapter 3 details the preparation of the dataset,
the application of the data mining algorithms and the results found. Chapter 4 discusses
related work. The final chapter concludes and discusses this thesis.



Chapter 2

Preliminaries

2.1 Classification

In this thesis, we will be using a classification and regression pipeline to estimate medical
treatment effects and outcomes. This will be based upon a data set. The data set will
contain a number of features X. These are variables that may or may not effect the
outcome Y. The outcome Y is in our case the difference in health satisfaction before
and after a pelvic floor surgery. This pipeline consists of first selecting relevant features,
their values and those of the outcome variable Y from the data set and splitting the
data into a training and a test set [I0]. A machine learning algorithm is applied to the
training set, resulting in a model. This model can predict the class or outcome Y in case
of regression for a given set of input features. The final step in the pipeline is applying
the model to a new, unknown set of data. This is generally first done to the test set, to
estimate the accuracy or error rate of the classifier [10].

For our research we use medical history, surgery type, POP-Q scores and the Urinary
Distress inventory(UDI) questionnaire score before the operation as features X. We use
the difference between UDI-score before and after the surgery as our outcome variable
Y.

We choose to apply the random forest algorithm to our problem. We made this
choice because the random forest has been found to perform well [4] compared to other
classification /regression algorithms.

2.2 Methodology

We will first examine the algorithm for a random forest regressor. We train this re-
gressor on our data set to predict the difference in UDI-score before and after surgery
for a patient. This will be discussed in [subsection 2.2.1] . After that we explore in
[subsection 2.2.2| generalized random forest. We use this generalized random forest to
estimate the treatment effect for the different types of surgery. The treatment effect is
the difference between the case where treatment (surgery for us) and no treatment is
used.




Algorithm 1 Random Forest Regressor (Adapted from Hastie, Tibshirani, p.588)[6]

All tuning parameters are pre-specified, including the number of trees B and the size of
the sample s rate used in BOOTSTRAP

1: procedure RANDOMFORESTREGRESSOR(training set S)

2: for b = 1 to total number of trees B do

3: set of samples Z <— BOOTSTRAP(S, s)

4: tree 7 <— REGRESSIONTREE(Z)

5: > Regression tree using CART algorithm (In this case they use ran-
dom feature subset selection) [3]

6: output {7}, the ensemble of trees

7: prediction fgc = % Zle Ty(x) > To make a prediction for sample x

BOOTSTRAP draws a random subsample of size s from S with replacement (bootstrap
aggregating)

2.2.1 Random forest regressor

A random forest regressor combines a set of randomly sampled regression trees to predict
a regression target value for a given set of input features. Every trained regression
tree predicts an output value for the given input features, which are then averaged for
the total tree prediction[2]. In our case we are using this to predict the outcome, the
difference in UDI-score before and after surgery for a given patient.

Breiman’s Random Forest algorithm starts with a training set S, which is used to
train our regressor. Every element of set S consists of features X and outcome Y.
From this training set S we generate a number of training sets Z by bagging. Bagging,
bootstrap aggregating, is randomly drawing with replacement from the training set S.
We do this B times to create B subsamples. Next we fit a regression tree modified with
random feature selection on each of these bootstrapped training sets Z. A regression
tree recursively partitions the space of a training set into halves, forming a binary tree.
These splits are on the features X of a set. The leaves of this tree contain a range of
predictions Y of the training set space. A fitted tree gives a prediction for a new given
input. The output of the initial random forest algorithm application is an ensemble of
regression trees Tj. In order to make a prediction for a sample of input features x, every
regression tree in the ensemble gives a prediction for x. These predictions are averaged
to give the result for the forest.

2.2.2 Treatment effect estimation with generalized random forests

In the previous paragraph we were exploring a random forest for predicting surgery
outcomes based on variables and surgery types. In this paragraph we are using a different
type of random forest, a generalized random forest for estimating the treatment effect
of each type of pelvic floor surgery. The treatment effect is the difference between the



situation where treatment W (surgery for us) is applied and the situation where no
treatment is applied.

A treatment effect is estimated based on input variables X, treatment assignment
W, and outcome Y for each situation. For our case: Input variables X contain medical
history, surgery type excluding treatment W, POP-Q scores and the UDI-score before
surgery. Treatment assignment W consists of the surgery for which the treatment effect
estimation is done. Y is the difference in UDI-score before and after the surgery.

We will first examine the problem of treatment effect estimation. Next, we examine
the general random forest algorithm and finally its implementation for treatment effect
estimation, the so called causal forests.

Defining the problem: Heterogeneous treatment estimation under uncon-
foundedness

Take a number of independent training cases ¢ = 1, ...n with a feature vector X; € [0, 1]d,
outcome Y; € R and treatment W; € 0,1 each [11]. The heterogeneous treatment effect

at x is then the function 7(z) for outcomes Yi(l) (with treatment) and Yi(o) (no treat-
ment) as given by Wager and Atley [I1] based on Rubin:
(@) = B[,V = vV |x; = 2.

7

The problem with estimating 7(x) here is that we only have information about one

of the outcomes Y;(l) and Yi(o). This is because a patient can receive treatment or not,
but not both. We can therefore not train a machine learning algorithm on the difference
between Yi(l) and ifi(o). In order to estimate the treatment effect a further assumption
is necessary: unconfoundedness [9]. The unconfoundedness assumption means that on
condition of features X, the outcomes Y1) and Y are independent of treatment as-
signment W

{Yy© yMy 1| w|X.

Under this assumption, as shown in figure [2.1} any confounding variable C' which might
influence both treatment W and outcome Y is already controlled for in X. An example
of a confounding variable in our case would be a variable C' which influences whether a
patient does or does not receive treatment W which is not contained in X.

A counterexample where unconfoundedness does not hold, is shown in figure 2.2
Imagine a patient who requires surgery. Outcome Y is the improvement to his medi-
cal condition. Relative C' advises the patient to take treatment W because he read a
horoscope predicting disaster otherwise. C' also ensures that the patient follows all the
doctors advice before and after surgery, positively affecting the outcome Y. The treat-
ment effect we measure for W now includes the effect of treatment W and the effect
of closely following the doctors instructions. This is obviously not what we want to
estimate.
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Figure 2.1: Unconfoundedness assump- \\__/'

tion: Confounding variable C' will not

influence the results, despite affecting Figure 2.2: Unconfoundedness does not
treatment W and outcome Y. This hold: Here confounding variable C' in-
is because C’s influence on W goes fluences both treatment assignment W
through feature vector X, our control and outcome Y, but the effect on W is
variable. not mediated by X.

Generalized random forests

Generalized random forests are an adaptation of Breiman’s random forest concept adapted
for non-parametric statistical estimation by Athey and Wager[l]. In our case, they are
used for estimating heterogeneous treatment estimation. This makes it a causal forest, as
it estimates the treatment effect in its trees. Generalized random forests keep a number
of basic principles of random forests, specifically random selection of splits, subsampling
and recursive partitioning of the sample space [1]. The main difference lies in the usage
of forest based local estimation. An adaptive nearest neighbor estimator is used instead
of using the average result of the forests.

The generalized random forest is an adaptation of the random forest for a number
of statistical tasks, each with their own estimation equation. It works as follows ({2)) :

As input a set of examples S and a test point x are used. The algorithm follows the
normal random forest procedure by growing an ensemble of trees B. For every tree we
select a subsample s from the training set. This is split into to 2 evenly-sized, random
halves.

A gradient tree algorithm is applied to samples in the first half of the split, growing
a tree T using only this half. The algorithm differs from a normal CART regression tree
algorithm in the way it chooses how to make splits. The gradient tree split increases
the heterogeneity of estimates 6 in the tree quickly [I]. This contrasts with a normal
regression tree where the chosen split minimizes the prediction error.

From the second half of the split all those elements that fall into the same leaf as
x in tree T are taken. These are the neighbors of x. The neighbors are used to adjust
a number of similarity weights afe] of every training sample i to equal positive values.
Weights afe] are later used to calculate a solution to the problem our algorithm has to
solve. The split into two halves where one half is used for growing a tree and the other
half for finding examples in the same leaf as x satisfies a condition called honesty. An



Algorithm 2 Generalized random forest with honesty and subsampling (by Athey and
Wager) [1]

All tuning parameters are pre-specified, including the number of trees B and the sub-
sampling s rate used in SUBSAMPLE. This function is implemented in the package grf
for R and C++.

1: procedure GENERALIZEDRANDOMFOREST(training set S, test point x)

2: weight vector a < ZEROS(|S|)

3 for b =1 to total number of trees B do

4 set of samples Z < SUBSAMPLE(S, $)

5: sets of samples Ji, Ja2 <~ SPLITSAMPLE(Z)

6: tree 7 <— GRADIENTTREE(J], X)

7 N <NEIGHBORS(z, T, J2)

8 for all example ¢ € N do

9 ale] +=1/|N|

10: output é(:):), the solution to the estimating equation with weights /B

The function ZEROS creates a vector of zeros of length |S|; SUBSAMPLE draws a sub-
sample of size s from S without replacement; and SPLITSAMPLE randomly divides a set
into two evenly-sized, non-overlapping halves. X is the domain of the feature vector X;.
NEIGHBOR returns those elements of J5 that fall into the same leaf as x in the tree 7.
Note that only line 7, 8 and 9 are run for every test point x, as the sample split and the
resulting gradient tree are reused.

honest tree uses a response Y only to calculate the treatment effect or to determine how
to make a split, but not both [IT].

The solution é(m) to the estimating equation for x is found by first averaging all the
found weights for use in the estimating equation as seen in figure Next the equation
is solved with these weights. This is a nearest neighbor approach, because we use the
values found for neighbors of z. The approach therefore differs from the averaging of
solutions of a tree as in the earlier discussed random forest regressor.

Causal Forests

Finally we need to adapt the generalized random forest to our problem of heterogeneous
treatment effect estimation under assumption of unconfoundedness. This application is
called a causal forest, as we estimate causal relationships of treatments. For this Athey
et. al [I] used treatment effect estimate 6(z) (2.1), assuming unconfoundedness:

5o CovlWy, Y| X; = x]
O(z)= Var[W;| X; = x]

(2.1)

W; is the treatment assignment, X; the feature, Y; the outcome with ¢ = 1, 2, ..n training
samples and test point z. We solve 6(z) with generalized random forest estimator 6(x)
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Figure 2.3: Illustration of the general random forest weighting function. The rectangles
depicted above correspond to terminal nodes. Each tree starts by giving equal (positive)
weight to the training examples in the same leaf as our test point x of interest, and zero
weight to all the other training examples. Finally, the forest averages all these tree-based
weightings, and effectively measures how often each training example falls into the same
leaf as x (Figure and description by Athey and Wager).[I]

in the estimating equation in . é(x) gives us a solution for the treatment effect 7, using
the weights found in the gradient trees. This can be seen as a case of fitting a simple
linear regression line in [2.1] as seen in figure 2.4]. Further details can be found in Athey
et al [I].
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Figure 2.4: Linear regression for treatment effect estimation for sample ¢ with treatment
assignment W;, outcome Y; and test point (treatment) x. Random forest weights found
by the generalized random forest algorithm [2| are used in the regression line calculation.
0(z) is the fitted regression line in the figure.
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Chapter 3

Research

3.1 Data preprocessing

For our research, a dataset of originally 2500 pelvic floor surgeries is used. The dataset
has been provided by the department Obstetrics and Gynaecology of the RadboudUMC.
It contains a combination of data, consisting of variables derived from pre- and post
operation patient questionaires and case reports.The most relevant questionaire was
the Urinary distress inventory (UDI). The dataset contained entries for pre- and post
operation answers on the UDI. These answers were converted into 5 main UDI scores for
each questionaire. The scores ranged from 0 to 100, 0 being the best, 100 the worst. If
a value was missing it was, if possible, compensated for in the UDI-calcuation formula
used. If too many values were missing to calculate a working UDI-score, the entry was
not used in our final training/test set. We calculated the average score over the 5 UDI-
scores for each questionaire. Next, the difference between the average UDI-score before
the operation and 6 months after the operation was calculated for each patient .
The difference ranges from -100 to 100. We flipped this from negative to positive, so
that improvement is a positive number. We took the average progression/regression
score after 6 months as our value Y. This is the value we wanted to predict with our
machine learning algorithm.

We replaced missing values with an out of range value. Outliers and wrong entries
were identified and reclassified as missing values or fixed in the case of typos. Duplicate
variables were merged. For a number of missing pre-operation values, mainly height,
weight and other general health information we used the post operation value instead.

Of the 2500 entries, only 730 were useful for prediction of treatment outcomes. There
were multiple reasons for this culling of data entries. The main issue was missing values
in one of the pre- or post operative UDI-questionnaires In such a case it was impossible
to calculate the difference between pre- and post operative UDI score. The entries from
2 experimental studies were also removed.

11



Table 3.1: UDI-scores

UDI UDI UDI Mean of
Name genital | UDI OAB | . obstructive | UDI pain all
prolapse incontinence micturition UDI-scores

Missing entries 0 88 22 37 21 0
Mean pre-op 52.19 32.09 27.91 27.56 31.45 34.57
Median pre-op 66.66 22.22 16.67 16.67 33.33 31.11
Pre-op std. deviation 31.80 26.14 26.65 27.56 27.30 17.86
Mean post-op 7.74 19.01 18.84 15.20 17.30 15.64
Median post-op 0.00 11.11 18.84 0.00 0.00 12.22
Post-op std. deviation 17.41 22.58 22.46 22.22 22.66 14.98
Mean improvement 44.45 13.26 8.79 11.87 14.12 19.18
Median improvement 41.67 11.11 0.00 0.00 16.67 17.78
Improvement std. deviation 33.91 22.58 25.16 28.35 26.72 17.55

3.2 Variables

After pruning non-relevant and duplicate variables, 70 features were used for training the
machine learning algorithm for predicting the UDI score. These can be aggregated into 4
basic categories: medical history, surgery type and pelvic organ prolapse quantification
(POP-Q) scores, UDI-score pre—operation. It should be noted that one patient can
have multiple types of surgeries at the same time.

Table 3.2: Variables for the random forest

prev_prolsurgery_n

prev_incosurgery._n

SuHi_vaghyst
SuHi_abhyst
SuHi_vwn
SuHi_aw
SuHi_portamp
SuHi_ssf

No of previous pelvic

prolapse surgeries

No of previous pelvic

incontinence surgeries

Previous vaginal hysterectomy

Abdominal hysterectomy

Previous anterior colporrhaphy

Previous posterior colporrhaphy

Previous portio amputation/Manchester operation

Previous sacrospinal fixation

Variable Description Variable type
age Age of patient Medical history
menopauze Patient is post menopauze Medical history
smoking Patient smokes Medical history

Medical history

Medical history

Medical history
Medical history
Medical history
Medical history
Medical history
Medical history

Continued on next page
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Table 3.2 — continued from previous page

Variable

Description

Variable type

SuHi_burch
SuHi_stamey
SuHi_raz
SuHi_v.enteroc
SuHi_a.enteroc
SuHi_fixvv
CoMo_la
CoMo_lac
CoMo_2a
CoMo_2ac
CoMo_3a
CoMo_3ac
CoMo_4a
CoMo_4ac
CoMo_ba
CoMo_bac
CoMo_6a
CoMo_6ac
CoMo_7a
CoMo_Tac
CoMo_8a
CoMo_8ac
fysiovoor

vagpessvoor

Aa

Ba
C
HG
PB
TVL
Ap
Bp
D

ass_oper

Previous colposuspension

Previous needle suspensions (Stamey)
Previous needle suspensions (Raz)
Previous vaginal enterocele resection

Previous abdominal enterocele resection

Previous fixation vaginal vault
CNS disease

Still present?
Cardiovascular disease

Still present?

Respiratory disease

Still present?
Gastrointestinal disease
Still present?

Endocrine disease

Still present?
Musculoskelatal disease
Still present?

Allergy

Still present?

Other

Still present?
Physiotherapy preoperative

Vaginale pressary preoperative

POP-Q

POP-Q
POP-Q
POP-Q
POP-Q
POP-Q
POP-Q
POP-Q
POP-Q
Surgery performed by resident

Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
pelvic organ
prolapse

quantification

surgery type

Continued on next page
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Table 3.2 — continued from previous page

COK _levator
COK _labhardt
COK_v.enteroc
COK _a.enteroc

COK _shull
COK_Mccall
COK _rectprol
COK _analsph
Hoogste_opl
Kind_n
Kind_sct
Kind_tan
Kind_vac
Kind_kni
Kind_sch
Lft_1bev
bmi_1

UKLgpr-1

UKL_preop

Needle suspensions (Stamey)
Needle suspensions (Raz)
Vaginal enterocele resection
Abdominal enterocele resection
Shull vaginal vault fixation
Mececall vaginal vault fixation
Rectal prolapse

Anal sphincter repair

Highest education patient
Number of children

No of previous c-sections

No of previous forceps delivery
No of previous vacuum delivery
No of previous episiotomy

No of previous perineal tear
Age of first delivery

Patient BMI

Pre-operative UDI genital prolapse score

Average pre-operative UDI score

Variable Description Variable type
COK_vw Anterior colporrhaphy surgery type
COK_aw Posterior colporrhaphy surgery type
COK _peri Perineoplasty surgery type
COK_portamp Portio amputation/Manchester operation surgery type
COK_vue Vaginal hysterectomy surgery type
COK _ssf Sacrospinal fixation surgery type
COK klaw Classical posterior wall surgery surgery type

surgery type
surgery type
surgery type
surgery type

surgery type
surgery type
surgery type
surgery type
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
Medical history
UDI-score
pre-operation
UDI-score

pre-operation

3.3 Data Processing

For the surgery outcomes prediction, we used the RandomForestRegressor function from
the scikit-learn machine learning library, written in Python. In the random forest re-
gressor we optimized the parameters for best prediction performance using the sci-kit
learn RandomizedSearchCV function. For the estimation of average treatment effects,

we used the grf (generalized random forest) package in the language R. Here we trained

14

a causal forest on our data set with the causal forest function, made predictions for
individual cases and used the average_treatment_effect function to estimate the average




treatment effect.

3.4 Results

3.4.1 RandomForestRegressor

We first randomly split our datset of 730 entries into a training and a test set. This split
was 75% training set and 25% test set. Next, we trained a random forest regressor on
the training set. The trained forest was used on the test set to evaluate its performance.
We used three metrics to examine the performance of our random forest regressor in
predicting: the mean absolute error, the explained variance and the explained absolute
deviation. For continuous values the mean absolute error calculates the difference be-
tween the value of paired observations y; and ¢;. In our case this are the actual patient
UDI-score difference y; and the predicted difference g;:

I~
MAE = EZM — yil- (3.1)
i=1

The explained variance gives an estimate of how well a model explains the variation of
a given set of observations:

~ Var{y -3}
Var{y}

Var is the square of the standard deviation, with y the actual output and ¢ the predicted
output. 1 is the best score for explained variance with lower values indicating worse
performance:

explained variance(y,y) = 1 (3.2)

MAE
Mean{|y — median{y})|}"

Explained absolute deviation =1 — (3.3)
MAFE is the mean average error and y the actual output. This metric adjusts the MAE
error to the deviation of the y value. This is to ensure predictions for the UDI and
UDI_GPR can be compared, even if the y values for them have a different standard
deviation.

We fitted a random forest regressor to our training set. We used two separate regres-
sors: one for the averaged UDI-improvement as y-variable and one for the UDI genital
prolapse score. Afterwards we applied each regressor to our test set. This led to the
results in table 3.3

For the UDI improvement the mean absolute error was 10.01. As the mean improve-
ment is 19.18 with a standard deviation of 17.55, the prediction error of the regressor
is large in comparison with the standard deviation. One reason for this might be the
relatively large standard deviation of the averaged UDI-improvement in the data set.
The explained variance was relatively low at 0.32. This might be an effect of averaging
the UDI-scores. For the UDI genital prolapse improvement(UDI_GPR) score, the mean

15



Table 3.3: Random forest regressor test results

Output Output description MAE | Explained variance | Explained absolute deviation
UKL Urinary distress inventory improvement | 10.01 0.32 0.29
UKL_GPR UDI genital prolapse improvement 13.54 0.70 0.52
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Figure 3.1: Random forest regression prediction ¢ vs actual
value y. They represent the difference between pre- and post
operation average UDI in the test set.

absolute error of 13.53 was significantly higher than for the averaged UDI improvement
score. However the explained variance was higher at 0.70. It appears that the predictor
is better at accounting for dispersion of a single score in the UDI. The same is true for
our third metric, were the MAE is adjusted for standard deviation. This can also be
seen in the regression plot of the prediction g vs the actual value y, figure and
One reason for this difference may be that the UDI variable is an average of all UDI
scores, where the UDI_GPR is not an average.

Finally, we examine the feature importances of our regressor for average UDI and
the UDI genital prolapse improvement. The feature importances are a ranking of which
feature (variable) decreases the impurity the most. The impurity is a measure of the
importance of each variable as the splitting criteria in the regression trees of the random
forest. This is ranked on a scale on a scale from 0 to 1, summing up to 1.

16
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Figure 3.2: Random forest regression prediction ¢ vs actual
value y. They represent the difference between pre- and post
operation UDI_GPR in the test set.

Feature Importances

From the feature importance ranking for the UDI-average improvement score [3.3] it is
clear that the average UDI-score before the operation is the most important at over
0.55. The pelvic organ prolapse quantification (POP-Q) scores are also quite relevant.
Age, body mass index and previous birth detail variables are ranked highly. The type
of surgery seems to be irrelevant to the prediction. This may be because most patients
show an improvement in UDI-scores after their operation. The condition of the patient
before surgery seems to matter more than the exact type of surgery.

The results for the UDI genital prolapse score [3.4] are similar, but the UDI-genital
prolapse pre-operation score is even a stronger predictor at 0.75. The other factors seem
to weigh less, but are relatively comparable to their feature importance for the UDI-
average score. The stronger feature importance of the pre-operation score may explain
the better predictive score for the variance of the random forest regressor.
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Figure 3.3: Feature importances for the random forest regressor which predicts the

difference between pre- and post operation average UDI .
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Figure 3.4: Feature importances for the random forest regressor which predicts the

difference between pre- and post operation UDI _gpr.



3.4.2 Causal Forest

The causal forest calculated an estimate of the average heterogeneous treatment effect
7(x) for 6 different types of surgery for patients i = 1,..n. The variables in table [3.2] were
chosen as feature vectors X;. The surgery type for which we estimate 7(x) is treatment
W;. Treatment W; was left out of features X;. Outcome Y; was the mean difference in
patient UDI score pre- and post operation. The higher the treatment effect value, the
more positive the effect of the treatment. We trained a generalized random forest for
each of the surgery types.

An important issue is that our data set only contained cases where at least one
type surgery was performed. Our data set did not contain cases where no surgery
was performed. This means there was no case where W; = 0 for all possible surgery
treatments. The treatment effect is thus the treatment effect of one type of surgery
compared with all the other types of surgeries. This is a major limitation of our study,
which needs to be taken into consideration when looking at the results. It is also occurred
that one patient received multiple types of surgery at the same time.

The results of the causal forest in table estimate the average treatment effect on
the treated sample where E[Yi(l) — YZ-(U)|Xi = x,W; = 1]. These are the samples where
the patient receives treatment W;. The number of cases with the respective treatment
is also given. As the total number of cases exceeds the number of patients (730), it is
obvious that some patients receive multiple treatments simultaneously.

Table 3.4: Average treatment effect on treated:

Treatment (W;) | Nr of cases(W; = 1) | Average treatment effect on treated
COK_vw 537 0.24
COK_aw 485 1.11
COK _peri 108 0.61
COK _portamp 130 0.94
COK_vue 140 0.89
COK _sst 137 -0.31

For a number of surgeries types there were too few cases to calculate valid treatment
effect values. We did not include these in the results. Noticeable is also that each
entry may have multiple surgeries conducted simultaneously. We were able to detect
a strong treatment effect of the posterior colporrhaphy (COK_aw), portio amputation
(COK_portamp) and vaginal hysterectomy (COK_vue surgery). The treatment effect
for perineoplasty (COK _peri) was slightly less. We only found a small treatment effect
for anterior colporrhaphy (COK_vw). This was somewhat strange. The reason for
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Treatment effect estimates for the treated population
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Figure 3.5: Treatment effect estimates as determined by the
generalized random forest estimator for the treated part of the
sample with treatment COK_aw.

it might be that almost all pelvic floor surgeries in the dataset include this surgery.
This may reduce its own effect. Sacrospinal fixation (COK_sff) had no measurable
positive treatment effect. This may be an anomaly in the data. Figures and
depict histograms showing the distribution of treatment effect estimates found by the
generalized random forest estimator for the treated and non-treated cases for COK_aw.
When comparing the histograms it becomes clear that the treatment effect estimates
for the treated population are distributed further to the right. This implies that the
treatment effect estimate for the treated population is higher than for the non-treated
population.
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Treatment effect estimates for the non-treated population
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Figure 3.6: Treatment effect estimates as determined by the
generalized random forest estimator for the non-treated part
of the sample with treatment COK_aw.
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Chapter 4

Related Work

In this chapter we describe related research and other approaches to prediction and
treatment effect estimation with machine learning.

We have found no previous work involving the use of random forests or generalized
random forests for the prediction of specific pelvic floor surgery outcomes. Machine
learning approaches have however been used in related areas. Robinson, Swift and
Johnson conducted research where they used artificial neural networks to predict pelvic
organ prolapse from a data set containing healthy and affected patients [5].

There are many options for the prediction of target outcomes with machine learning.
These options include regression trees, nearest neighbor approaches, artificial neural
networks and the random forest which we used. Nearest neighbor algorithms use the
closest training examples next to the sample for which a prediction is wanted to provide
an estimate. Artificial neural networks are inspired by biological neurons and use layers
of nodes with adjustable weights to learn the best output for a given set of input features
[6]. They have the disadvantage of being somewhat of a black box, as they do provide
scant information on the importance of specific input features on the prediction.

For the estimation of the average treatment effect we used the causal forest variant
of the generalized random algorithm. Previously, Wager and Athey [II] used a causal
forest method which they call Procedure 1. This closely matches the generalized random
forest. Both methods use a random forest variant to predict the treatment effect. One
difference is in the calculation of the final treatment estimate from all the trees. A
generalized random forest uses nearest neighbor matching to calculate estimates. On
the contrary, Wager and Athey’s causal forest has each tree compute an estimate of the
treatment effect and then averages the result of the trees. Another difference lies in
the construction of the trees. Here the generalized random forest uses a gradient based
criterion to split the feature space into leafs. The causal forest applies an exact loss
criterion for the split.
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Chapter 5

Conclusions

The goal of this thesis was to predict pelvic floor surgery outcomes and give insight
in the variables influencing them. We used a random forest regressor for the outcome
prediction. This regressor predicted improvement in patient score in the average urinary
distress inventory(UDI) and the UDI genital prolapse score(UDI_GPR) on a scale from -
100 to 100. The predictor for the mean UDI-improvement score achieved a mean absolute
error of 10.01 and an explained variance of 0.32. For the UDI_GPR, our predictor
achieved a mean absolute error of 13.53 and an explained variance of 0.70. The explained
variance here was larger than for the UDI. The feature importances of the random forest
revealed that the prior UDI-scores were the most important features for prediction,
followed by POP-Q scores.

We tried to gain insight into the effect of the different surgery types. We estimated
an average treatment effect for different types of pelvic floor surgeries with a generalized
random forest. For a number of surgery types we did not have enough data to estimate
the treatment effect. One major limitation of our research is that we did not have cases
where no surgery was performed. Our treatment effect estimation could thus only use
data where different types of pelvic floor surgery where performed. This means it could
not use cases without treatment in its calculation of the treatment effect. For a first
attempt this was adequate, but future efforts need to account for this.

In order to use a random forest predictor for clinical application, the performance
could be improved in further research. A larger data set of pelvic floor surgeries, to train
the random forests on, might be a suitable solution. This might be especially helpful for
treatment effect estimation of rarer surgery types in our data set.

In order to improve the treatment effect estimates of the causal forest, the data set
could be supplemented with pelvic floor disorder cases where no surgical intervention
was performed. Another approach would be to decrease the number of missing values
in the collected data. Aside from improving the quantity and quality of the data set,
further research might also look at using different machine learning techniques than our
random forest approach.
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