
Bachelor thesis
Computing Science

Radboud University

Investigating the minimality of the
ZH-calculus

Author:
Thomas van Ouwerkerk
s4708105

First supervisor/assessor:
Aleks Kissinger

aleks.kissinger@cs.ox.ac.uk

Second assessor:
Freek Wiedijk

freek@cs.ru.nl

June 2019

1 Introduction

1.1 History

In 1982 well-known physicist Richard Feynman suggested we might need to build a new kind of
computer to accurately simulate all of physics. Specifically quantum-mechanics is a problem, as it
is currently impossible to simulate the behaviour of quantum-mechanics efficiently on a classical
computer. So we need a new device, something that exploits the properties of quantum mechanics:
a quantum computer [7].
While physicists and engineers were thinking about how to build such a device, computing scien-
tists and mathematicians put work into thinking about how to use a quantum computer once it
would be built. In the following two decades a number of quantum algorithms were designed, e.g.
[4][11][8]. These are algorithms that can run on a quantum computer to grant some improvement
in solving problems which are hard to solve on classical computers. This improvement can come
in the form of significant speedup in calculation, compared to classical computers, or giving new
solutions with fewer drawbacks to existing problems.
In 2004 Abramsky and Coecke took a more abstract look at quantum mechanics and introduced a
semantics using concepts from category theory [1]. This semantics was worked on in the following
years and in 2008 Coecke and Duncan introduced the ZX-calculus [5]. Many papers have been
written about this calculus and some alternatives have even been created, like the ZW-calculus[9]
and the ZH-calculus[3]. The latter of these is the main topic of this thesis. Further, more detailed,
reading on the history of the ZX-calculus can be found in chapter 1.3 of [6]. This introduction
was only a very brief summary of that section.

1.2 Graphical calculi and ZX

The ZX-calculus is a graphical calculus. It is a language of string diagrams, used for reasoning
about quantum mechanics and quantum information theory.[6].
A string diagram is a diagram consisting of a number of boxes, or other 2-dimensional shapes like
circles or triangles, connected by lines (wires). The way to read such a diagram is from bottom to
top. The wires dangling at the bottom are inputs and the free wires at the top are outputs. The
shapes in between represent some operation on information on the wires. The most important
rule here is: Only connectivity matters. This means that you can freely move and turn and twist
boxes and wires.

. . .

. . .

. . .

. . .

= =

.

. . .

=

. . .

. . .

.

. . .

=

For the ZX-calculus, the most important ‘boxes’ are the Z-spider and the X-spider. These are
displayed as a white dot and a grey dot respectively.

. . .

. . .

n

m

. . .

. . .

n

m

The rules of a calculus like ZX can be used to rewrite diagrams, which is useful in circuit opti-
misation for example. If there exists some circuit that is designed to solve a certain problem one
might ask whether it can be designed more efficiently. Computing scientists (or others who have
experience in digital circuit design) will likely be familiar with De Morgan’s laws, which can be
used to rewrite and ultimately simplify classical electrical circuits. The ZX-calculus allows for the
same thing in the case of quantum circuits.

1

1.3 Completeness and minimality

A graphical calculus, like ZX, will consist of some definitions and a number of rewriting rules.
These rules can then be used to rewrite other diagrams and so create expressions which equate
different diagrams to each other.
The thing that is desired of such a set of rules is completeness. Completeness is the following
property for a set of axioms X and diagrams D1 and D2 :

∀D1, D2; [[D1]] = [[D2]]→ X ` D1 = D2

This means that if two diagrams have equal interpretations, they can be proven to be equal using
the rules in X.

When a complete set of rules is found, the next challenge is to figure out whether that set is
minimal. Finding a complete set of rules can be made trivial if you just assume everything, but
the resulting calculus is not very interesting. It is a lot less trivial to find a complete rule set that
is as small as possible.
Such a minimal set of rules is more powerful, as it needs to assume less to prove the same things.
Additionally it makes automated proving easier, as provers need to consider fewer rules, which
can potentially speed up computation. Finally, a minimal set of axioms can be seen as the most
fundamental set of rules, which most closely relates to reality[10].

1.4 Outline

This thesis will investigate the minimality of the rule set of the ZH-calculus. First, the ZH-calculus
itself will be introduced and explained. Secondly, the concept of independence will be introduced.
Along with this the main technique used to find results is explained and a proof for its functioning is
shown. Besides being able to show independence, this technique also allows for making statements
about the necessity of rules. After the explanation, this technique is applied a number of times
to find independence between subsets of the ZH-calculus’ axioms. Finally all these results are
collected and combined to give an overview of the (in)dependence relations between the axioms
and a suggestion for future work will be made.

2

2 The ZH-calculus

In 2018 Backens and Kissinger first introduced the ZH-calculus [9]. In essence, this calculus
is very similar to ZX. It is another graphical calculus, using string diagrams for diagrammatic
reasoning about quantum mechanics. Like the ZX-calculus, ZH uses a white Z-spider as one of its
generators. Unlike ZX, ZH has an ‘H-box’ as its second generator. This is an n-ary generalisation
of the Hadamard gate, an operation used in quantum computing that is normally only defined to
be used on a single qubit.
Diagrams in the ZH-calculus are constructed using the white Z-spiders, and H-boxes. The boxes
are displayed as white squares, labelled by a complex number a. When an H-box has a label of

−1, the label is left out and the box symbol is drawn smaller, e.g. -1:=
These diagrams represent linear maps, which are interpreted in the following way, where [[·]] is the
interpretation mapping, mapping diagrams to linear maps.


. . .

. . .

n

m


 := |0〉⊗n 〈0|⊗m + |1〉⊗n 〈1|⊗m




. . .

a

. . .

n

m


 :=

∑
ai1...imj1...jn |j1 . . . jn〉 〈i1 . . . im|

The notation using vertical lines and angle brackets is called bra-ket notation, also known as Dirac
notation. 〈a| is called a bra, |b〉 is called a ket and 〈a|b〉 is a braket. It is used here to represent
the following vectors:

〈0|
(
1 0

)
|0〉

(
1
0

)
〈1|

(
0 1

)
|1〉

(
0
1

)
The ⊗ symbol is used to denote the Tensor-product, which is used here as a kind of matrix mul-
tiplication, where you take the elements of the matrix on the left one by one and multiply them
by the entire matrix on the right every time. A new matrix is then constructed using these scalar
multiplied matrices by placing them in the same way the original elements of the matrix on the
left were ordered, e.g.

V⊗W =

(
v1 v2
v3 v4

)
⊗
(
w1 w2

w3 w4

)
=

v1 ∗
(
w1 w2

w3 w4

)
v2 ∗

(
w1 w2

w3 w4

)
v3 ∗

(
w1 w2

w3 w4

)
v4 ∗

(
w1 w2

w3 w4

)
 =


v1w1 v1w2 v2w1 v2w2

v1w3 v1w4 v2w3 v2w4

v3w1 v3w2 v4w1 v4w2

v3w3 v3w4 v4w3 v4w4


The superscript tensor product notation used in the definition of Z-spiders is similar to the gen-
eral power-notation most people are familiar with, but using the tensor-product as its repeating
operation, instead of a regular product. e.g. |0〉⊗3 = |0〉 ⊗ |0〉 ⊗ |0〉
Having a bra or ket with multiple numbers in it, e.g. 〈a1a2|, is also a shorthand for the tensor
product of individual bras or kets, so 〈a1a2| = 〈a1| ⊗ 〈a2|

With these definitions, the general structure of generators’ matrices can be described as follows:
Z-spiders have a matrix interpretation which is a matrix with a one in the top-left and bottom-
right corners and zeroes as the rest of its entries, a height of 2n, and a width of 2m , e.g.

[[]]
=

(
1 0
0 1

) [[]]
=

(
1 0 0 0
0 0 0 1

) [[]]
=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



3

H-boxes have a matrix interpretation which is a matrix with its label in the bottom right and
ones as all its other entries. Just like the Z-spiders they have a height of 2n and a width of 2m,
e.g.

[[]]
=

(
1 1
1 −1

) [[
a

]]
=

(
1 1 1 1
1 1 1 a

) [[
a

]]
=


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 a


Straight and curved wires are defined as follows:[[]]

:= |0〉〈0|+ |1〉〈1|
[[]]

:= |00〉+ |11〉
[[]]

:= 〈00|+ 〈11| .

When two diagrams are placed next to each other, the associated linear map is the tensor product
of the two separate linear maps. Two diagrams can also be sequentially composed, connecting
their wires, which is associated with the matrix product of the associated matrices.

[[
D1

. . .

. . .
D2

. . .

. . .

]]
:=

[[
D1

. . .

. . .

]]
⊗

[[
D2

. . .

. . .

]] 


D1

. . .

. . .

D2
. . .


 :=

[[
D1

. . .

. . .

]]
◦

[[
D2

. . .

. . .

]]

In order to make some diagrams easier to read, derived generators are introduced. These are
grey spiders, also known as X-spiders, and NOT respectively.

:=

. . .

. . .

. . .

. . .

n

m

n

m

1
2

¬ := 1
2

The rules of the ZH-calculus, as they were originally presented, are shown in figure 1. Since
the publishing the following equality has been proved to be derivable from the other rules, as can
be found in [12]:

=

As can be seen, some of the presented rules include a scalar multiplication of two. This is necessary
to make the presented equality true. In the context of this language, it is necessary to present
proper rules. But in the context of quantum computation, these scalar multiplications are not
that important. Since all measurements that can be done in the context of quantum computing
give us results up to a non-zero scalar, it is fine to show equality up to a non-zero scalar.
The bialgebra rules BA1 and BA2, while presented as such, are not actually two distinct rules,
but rather two families of rules. BA1 and BA2, as described here, show what all members of these
families look like. However, they both follow from three different finite rules respectively, when
taking spider laws into account. The proof for this and further explanation on the concept can be
found in [6] (section 9.3) covering strong complementarity.

. . .

. . .

m

n

. . .

n

m

. . .

= :=

 = , = , =



4

(ZS1)

. . .

. . .

m

n

. . .

n

m

. . .

= (HS1)

. . .

a

. . .

m

n

. . .

n

m

. . .

a
= 2

(ZS2) == (HS2) = 2

(BA1)

. . .

. . .

m

n

. . .

n

m

. . .

= (BA2)

. . .

. . .

m

n

. . .

n

m

. . .

=

(M)

a b

=
ab

(U)
1

=

(A) a b
=

a+b
2

2

¬

(I)
a a

=
¬

a

(O) =¬2 ¬

Figure 1: The original rules of the ZH-calculus as defined in [3]. m,n are nonnegative integers and
a, b are arbitrary complex numbers. The right-hand sides of both bialgebra rules (BA1) and (BA2)
are complete bipartite graphs on (m + n) vertices, with an additional input or output for each
vertex. The horizontal edges in equation (O) are well-defined because only the topology matters
and we do not need to distinguish between inputs and outputs of generators. n.b. the rules (M),
(A), (U), (I), and (O) are pronounced multiply, average, unit, intro, and ortho, respectively.

5

The rules composing BA1, as can be seen, are the special cases (n = 2,m = 2), (n = 0,m = 2),
(n = 2,m = 0). BA2 cannot be expanded in the same way directly, but it can be rewritten
to follow the same pattern as BA1, after which its corresponding three finite rules can easily be
found:

. . .

. . .

m

n

. . .

n

m

. . .

=

. . .

. . .

m

n

. . .

n

m

. . .

=1
2

. . .

. . .

m

n

. . .

m

≈

n

. . .

. . .

n

m

. . .

=1
2

. . .

. . .

m

n

.

The steps followed are, in order, applying the definition of the X-spider, adding a row of n boxes
to each side and then applying HS2 to get rid of the boxes on the left-hand side. In this last step a
scalar of 2(n− 1) appears, which is left out. Using this alternative shape of the rule, the following
can be defined:

. . .

. . .

m

n

. . .

n

m

. . .

= :=

 = , = , =



6

3 Independence

Independence is the notion that an axiom A in a rule set P does not follow from other axioms in
that rule set, i.e. A cannot be proven using the rules in P −A.
This definition can also be expanded to subsets of P . If one was to split P into the non-empty
subsets Q ⊂ P and P − Q, Q can be said to be independent from P if no axiom in Q can be
proven from the rules in P −Q.
Independence can be used in the context of the search for a minimal set of axioms. Say there is
some complete set of rules P , but it is not certain whether some A ∈ P can be removed from P
while still having a set of rules that is complete. If it is known A is independent from the rest of
the rules, removing it would cause A to no longer be provable, which would mean P is no longer
complete. So if some A is independent from the other rules, it is apparently a necessary part of
the minimal rule set.
If a non-empty subset Q ⊂ P is independent from P −Q, at least one, but maybe more than one,
rule must be added to P −Q to be able to prove the rules in Q. It can be concluded that at least
one of the rules in Q is necessary to create a complete minimal set of rules. This may not be clear
immediately, but should be once shown in the proof in the next section.

3.1 Showing independence

Simply put, we can show independence of some subset of axioms by changing the interpretation
mapping [[.]] and looking for the axioms that no longer hold. These are independent from the rest.
The proof for this is covered in [10], but because of its importance to this thesis it is covered
below as well, in more detail. The proof uses some concepts from a branch of mathematics called
category theory, but only a few basic ones, which are explained here first.
Categories are used as abstractions to other mathematical concepts and can be seen as labelled
directed graphs. We will call the nodes of these graphs ‘objects’ and the directed edges ‘arrows’.
An example of a category is the category of sets, where sets are the objects and functions between
sets are the arrows. The ZH-calculus is a category as well, where diagrams are arrows going from
inputs to outputs.
A functor is a mapping between categories. It maps all objects to objects and arrows to arrows.
So if we take diagrams in the ZH-calculus and count the number of H-boxes, this is a functor that
maps diagrams to numbers and the objects to some other arbitrary object. If we interpret the
diagrams in the ZH-calculus and get their corresponding matrices, this is a functor that maps the
diagrams to matrices of complex numbers [2].
With this bit of theory, it should be possible to understand the following definitions and accom-
panying proof.

Definition 3.1. An axiom A is independent from a set of axioms ZH if ZH − A 0 A. A
non-empty subset of axioms S ⊆ ZH is independent from ZH if ∀A ∈ S,A is independent from
ZH.

Definition 3.2. Given a functor [[.]]′ : ZH → C, an axiom A := Al = Ar is satisfied if C ` [[Al]]
′ =

[[Ar]]′. A subset of axioms S ⊆ ZH is satisfied if ∀A ∈ S,A is satisfied.

Definition 3.3. An axiom A ∈ ZH is necessary if ZH −A is incomplete.

Lemma 3.1. Given a functor [[.]]′ : ZH → C, if a non-empty subset S ⊆ ZH is the set of axioms
not satisfied by [[.]]′, S is independent from ZH.

Proof. Let S be the axioms not satisfied by [[.]]′, i.e.

∀A ∈ S, C 0 [[A]]′ (1)

Suppose S is not independent from ZH, i.e.

∃A ∈ S,ZH − S ` A (2)

7

From (2) follows there exists some finite proof P , that proves A using the rules in ZH − S and
from (1) follows all of the steps in this proof are satisfied by [[.]]′

Using P , an alternate proof P ′ can be constructed in C, where every step D1 = D2 is substituted
by [[D1]]′ = [[D2]]′. Such a substitution is guaranteed to be possible, since all steps are satisfied.
This proof shows the following:

C ` [[A]]′ (3)

(1) and (3) contradict each other, thus the original assumption, (2), must be false and S is
independent from ZH.

Lemma 3.2. If a non-empty subset S ⊆ ZH is independent from ZH, at least one axiom in S is
necessary.

Proof. Suppose the axioms in S are not necessary, i.e.

ZH − S is complete. (4)

From 4 follows:

∀A ∈ S,ZH − S ` A (5)

(5) is in contradiction with our definition, since S is independent from ZH. This means the
original assumption was false and it must be the case at least one axiom in S is necessary.

Using this, the goal is no longer to directly find independence, but to choose categories and
functors. Similarly to [10], the following categories will be considered:

1. Booleans. This boils down to choosing some property about diagrams and determining
whether this property is retained when applying the axiom. One example of such a property
could be: ‘The diagram contains boxes’. If this is true for both sides or false for both sides
of an axiom equality, it satisfies the functor. The actual category will be a single object,
with two arrows to itself, one labeled ‘true’ and one labeled ‘false’.

2. Infinite sets, specifically using the set of complex numbers C. This set is used to apply oper-
ators to the labels of H-boxes that some of the diagrams contain. For example adding them
together, multiplying, or some other operation, that yields a complex number. Similarly to
the Booleans, this category will also have a single object, but with more arrows pointing to
itself, one labeled for each complex number.

3. ZH. Alternate interpretations for diagrams can be given. As defined earlier in this thesis, the
ZH-calculus has two generators, with their own matrix interpretations. These interpretations
can be chosen to be different, causing some axioms to hold under interpretation, while others
break. The standard interpretation functor maps the arrows of diagrams to arrows that are
matrices of complex numbers. This mapping is maintained, but the matrices at the arrows
are changed.

Some of the ZH axioms are visually rather similar. The bialgebra rules for example:

. . .

. . .

m

n

. . .

n

m

. . .

=

. . .

. . .

m

n

. . .

n

m

. . .

=

8

or the patterns found among M, A, I and U.

a b

=
ab

a b
=

a+b
2

2

¬

a a
=

¬

a

1
=

These similarities could suggest that one of them might follow from others. A particularly inter-
esting result, would be finding independence between rules which are very similar, indicating they
are more unique than they seem at first glance.

3.2 Diagrammatic properties

A similar question to the one being asked in this thesis, has been covered before in a different
paper [12]. It defines an alternate version of the ZH-calculus, where phases are removed from
consideration and a similar but different set of axioms is defined.
In a part of this paper, the authors have investigated the minimality of their new set of axioms.
The authors construct a number of graph-theoretic arguments, which can also be applied to the
regular ZH-calulus. This lead to the functors [[.]]ew, [[.]]ed, [[.]]Z4,and [[.]]H4. These functors map
the category of diagrams to a category B containing a single object, with two arrows ‘true’ and
‘false’. All objects in the ZH category are mapped to that single object, while every diagram
is mapped to either the ’true‘ or ’false‘ arrow. In the new category sequential composition and
parallel composition both need to be defined, but these operations will depend on the chosen
properties, so they are shown along with the functor.

3.2.1 Empty wires

When looking at the rules of the ZH-calculus, there are only two rules which can change an empty
wire into a non-empty one. So a functor can be created

[[.]]ew : ZH → B

which maps diagrams to the corresponding Boolean value using the property ‘ignoring generators
without inputs or outputs, the diagram consists only of empty wires’. Here parallel and sequential
composition,respectively ⊗ and ◦, are defined as the logic AND: ∧. Only if both diagrams consist
only of empty wires, the compositions of them do as well.
The only rules that do not satisfy this functor are ZS2 and HS2. All of the other rules do not
involve empty wires on either side of the equality, meaning both sides of each rule get mapped to
‘false’ and the rule will satisfy the functor. ZS2 and HS2 both have an empty wire on one side of
their equations, but not the other, meaning one side of each equation is mapped to ‘true’ by the
new functor, while the other side is False.

3.2.2 Empty diagrams

Similarly to looking at empty wires, the empty diagram can be considered as well. there are two
rules which can have an empty diagram on one side. The functor

[[.]]ed : ZH → B

9

Satisfy [[.]]ew Do not satisfy [[.]]ew
ZS1 ZS2
HS1 HS2
BA1
BA2
M
A
U
I
O

Table 1: Results investigation satisfying the functor [[.]]ew

maps diagrams to the corresponding Boolean value using the property ‘the diagram is the empty
diagram’. For this functor both types of composition need to be defined as the logic AND, as
a composed diagram will only be the empty diagram if both the diagrams composing it are also
empty. So ◦ = ⊗ = ∧. The functor will show another independence. It is satisfied by all rules
besides BA1 and BA2.
BA1 and BA2, taking m = 0 and n = 0, will both have an empty diagram on the right-hand side
of their equations. The other rules do not involve empty diagrams, as they all have at least a
single wire or generator on each side of their equations.

Satisfy [[.]]ed Do not satisfy [[.]]ed
ZS1 BA1
ZS2 BA2
HS1
HS2
M
A
U
I
O

Table 2: Results investigation satisfying the functor [[.]]ed

3.2.3 Z-spiders with a degree ≥ 4

Another one of the properties presented in [12], is the following: ZS1 is the only rule that shows
equality between a diagram with a Z-spider of a degree less than 4 and a diagram with a Z-spider
of a degree greater than or equal to 4. This property can be rephrased to define another functor:

[[.]]Z4 : ZH → B

which evaluates diagrams using the statement ‘This diagrams contains a Z-spider with a degree of
4 or greater’. Both types of composition are defined in the new category as the logic OR operation,
since neither will influence the degree of generators and either composing diagram needs to contain
one to be true. This means ◦ = ⊗ = ∨

For most of the rules, it is easy to see this functor will evaluate to ‘false’ on both sides of the
equality, as these do not contain any Z-spiders of a degree of 4 or greater. Since BA1 and BA2
are defined by three distinct cases, there only needs to be consideration of rules up to n = 2 and
m = 2, as all other possibilities are covered by these under induction. For all of these cases the
maximum degree of Z-spiders on either side of their equality is 3, since the maximum degree of

10

Z-spiders is 1 + n or 1 +m. This means both sides of each equality will evaluate to ‘false’ and the
rules satisfy the functor.
Finally, the case of ZS1 where (n = 2,m = 2), will evaluate to ‘false’ on the left-hand side, as both
Z-spiders have a degree of 3, but the right-hand side will evaluate to ‘true’, as the degree of the
Z-spider there is 4. This means ZS1 is the only rule that does not satisfy this functor.

Satisfy [[.]]Z4 Do not satisfy [[.]]Z4

ZS2 ZS1
HS1
HS2
BA1
BA2
M
A
U
I
O

Table 3: Results investigation satisfying the functor [[.]]Z4

3.2.4 H-boxes with a degree ≥ 4

Following the same reasoning as [[.]]Z4, [12] shows that HS1 is the only rule that relates H-boxes
with a degree of 4 or greater to ones below that.
Defining this is a functor gives:

[[.]]H4 : ZH → B

Which evaluates to ‘true’ iff a diagram contains an H-box with a degree of 4 or greater. Just like
the [[.]]H4 functor, sequential and parallel composition are defined as OR: ◦ = ⊗ = ∨
Again, it is easy to see most rules do not contain any H-boxes of this degree, so it follows quickly
that these rules satisfy the functor. The only ones that really need to be considered in more
detail are HS1 and BA2. At first glance, BA1 might also still be a candidate for not satisfying
this functor, since it can fan out and might create some boxes with high degree. But at closer
inspection, applying the definition of the X-spider will only create H-boxes with a degree of 2, so
both sides of this rule evaluate to ‘false’ as well.
When considering BA2, the rules up to n = 2 and m = 2 need to be considered, similarly to the
investigation of [[.]]Z4. All of these rules do not contain any H-boxes with a degree of 4 or greater.
So it can be concluded they all satisfy the functor and by that BA2 does too. HS1, just like ZS1
with [[.]]Z4, with the case (n = 2,m = 2), does not satisfy [[.]]H4, as the left side will evaluate to
‘false’, while the right-hand side will evaluate to ‘true’. This means HS1 is the only rule that does
not satisfy this functor.

3.2.5 H-box parity

For this functor to work, the diagrams first need to change slightly. Under the standard interpre-
tation, a single white dot with no connecting wires equals 2:

[[]] = |0〉⊗0 〈0|⊗0 + |1〉⊗0 〈1|⊗0 = 1 ∗ 1 + 1 ∗ 1 = 2

This means we can freely swap out the h-box scalar 2 for a white dot.

With these alternate diagrams, where the scalars are now white dots instead of boxes, the following
functor becomes interesting:

[[.]]ParityH : ZH → B

11

Satisfy [[.]]H4 Do not satisfy [[.]]H4

ZS1 HS1
ZS2
HS2
BA1
BA2
M
A
U
I
O

Table 4: Results investigation satisfying the functor [[.]]H4

This functor will evaluate to ‘true’ if, and only if, a given diagram contains an even amount of
boxes. Effectively, this functor now takes the standard diagrams, swaps out the scalar box for a
white dot and then checks the parity of the amount of H-boxes. This means that if two diagrams
which evaluate to ‘true’ are composed or two diagrams which evaluate to ‘false’ are composed, the
resulting diagram should also evaluate to ‘true’. This corresponds to the logic XNOR operation.
So both types of composition are defined in the new category as XNOR: ◦ = ⊗ = �.
When investigating the rules for this property, the following things can be taken into consideration:

• NOT contains five H-boxes in its definition. Therefore it does need to be counted as it will
change the parity.

• The X-spider contains, by its definition, an H-box for every wire connected to it, so its degree
can be used in counting.

Looking at the rules, ZS1 and ZS2 satisfy the functor, as they both have an even amount of boxes
on both sides of the rule: none. Not taking the scalar in consideration, HS1 has odd amounts
on both sides and HS2 even amounts, so these satisfy the functor as well. M, U, A, I and O are
also quite easily counted by hand. O satisfies the functor, which can be seen at a glance because
the only difference is the splitting of a wire and addition of two Z-spiders. M and U can also be
counted at a glance, two and one, and one and zero, from left to right respectively. So M and U
do not satisfy the functor. Counting the NOT as five boxes, A and I both have seven boxes on
one side and a single one on the other. Both odd numbers, so these both satisfy the functor.
BA1 and BA2 need to be considered a bit more carefully. First BA1, which we will find does not
satisfy the functor. All of its composing rules do not in fact. The first has an X-spider of degree
three on the left-hand side, while having two of those on the right-hand side. This means both
sides of the equation do not have the same parity of H-boxes, odd and even respectively, and the
equation does not satisfy. The other two rules also do not satisfy the functor, as they contain 3
and 1 boxes respectively on the left, while having 0 and 2 respectively on the right.
Secondly, the decomposing rules of BA2. These rules follow a similar pattern to BA1. But the
position of the X-spider is replaced by two H-boxes. This means that the parity of the amount
of H-boxes actually does not change, as the amount only changes in steps of two, which does not
affect the parity.
This result tells us the bialgebra rules are not necessarily directly dependent on each other.

3.3 Infinite sets

3.3.1 Multiplying labels

[[.]]MultH : ZH →M

Just like the functor considering the parity of the amount of H-boxes, this functor also takes two
steps. First the floating H-boxes with a label of two are again replaced by Z-spiders without

12

Satisfy [[.]]ParityH Do not satisfy [[.]]ParityH

ZS1 BA1
ZS2 M
HS1 U
HS2
BA2

A
I
O

Table 5: Results investigation satisfying the functor [[.]]ParityH

inputs or outputs. Then the labels of all H-boxes in the diagram are multiplied. The categoryM
is defined by a single object with an arrow for each possible complex number. All diagrams are
mapped by [[.]]MultH to the arrow with a label equal to their multiplied labels. The composition
operators are both defined by multiplication, i.e. ◦ = ⊗ = ×.
ZS1 and ZS2 do not contain any H-boxes, so they automatically satisfy the functor. HS1 gets a
left-hand side of −1 ∗ −1 ∗ a and a right-hand side of a. These are equal to each other so HS1
satisfies the functor. HS2 gets −1 ∗ −1 on the left-hand side and 1 on the right-hand side, so this
rule also satisfies the functor.
BA1 and BA2 only contain boxes with labels of −1. This means if the amount of boxes on either
side of either equation is even, the result is 1, while otherwise the result is −1. From this can
be concluded the rules satisfy the functor if and only if they satisfy the functor [[.]]ParityH . This
means BA1 does not satisfy [[.]]MultH while BA2 does.
M, U, and O also satisfy the functor. This can be quickly checked, as it can be seen quickly that
a ∗ b = ab and 1 = 1, and O is symmetric in the amount and labels of H-boxes. A and I do not
satisfy [[.]]MultH , as for A −1 ∗ a ∗ b 6= a+b

2 , and for I a 6= −1 ∗ a ∗ a. In summary: BA1, A, and I
do not satisfy [[.]]MultH , as displayed in table 6.

Satisfy [[.]]MultH Do not satisfy [[.]]MultH

ZS1 BA1
ZS2 A
HS1 I
HS2
BA2
M
U
O

Table 6: Results investigation satisfying the functor [[.]]MultH

3.4 Alternate ZH interpretation models

3.4.1 H-box becomes a W-gate

A possible alternate generator interpretation is:

[[.]]W : ZH → ZH

where the H-box’s interpretation becomes that of the W-state as defined in [9]. The standard
interpretation of diagrams takes the category and maps the diagrams to a category C, where
arrows are labelled by matrices of complex numbers. This altered interpretation is the same, only
the matrices that label the arrows are changed to fit the W-spider definition. The compositional
rules remain unchanged.

13

To represent this matrix, label all rows and columns with the binary representation of their
number, starting with zero, e.g. the third row and column are both labelled 010. Then place a
one in column 0 for every row where the binary label contains exactly a single one and place a
one in row 0 for every column with a binary label that contains exactly a single one. Examples
can be seen in figure 2. In this model placing a complex number a in the H-box has no effect on
its corresponding matrix.

[[]]
W

=

(
0 1
1 0

) [[
a

]]
W

=

(
0 1 1 0
1 0 0 0

) [[
a

]]
W

=


0 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0


Figure 2: Example W-gate matrices

A W-state with one input and one output gives a matrix which is equal to the NOT oper-
ation. From this follows that grey spiders become white spiders surrounded by NOTs. NOT
copies through the white spiders, as proven in [3](Lemma 3.2). For every grey spider, one of the
connected NOTs can copy through, making the wire empty, while adding a NOT on every other
wire connected to the spider. Since NOT is its own inverse, the NOTs on all wires will cancel out
and leave just a white spider.

¬ ¬

¬ ¬
. . .

. . .

=

¬

¬ ¬
¬ ¬

¬

. . .

. . .

=

¬
¬

. . .

. . .

We now consider each of the ZH equational rules and determine which still hold up to a scalar
and which no longer do.

Since only the H-box is altered, spider fusion for white spiders is unchanged and ZS1 and ZS2 still
hold as they did before, so they satisfy our functor.
The H-boxes are now W-states. The properties described by HS1 and HS2 follow from the defini-
tion of this W-state, as can be found in [9].
Looking at BA1, we can turn the grey spiders into white ones, as stated before. This creates a
problem. When looking at the second and third rule of its definition, we see that the left sides
will fuse into a cap and a cup respectively, while having disconnected nodes on both right sides.

→ → → 6=

→ → → 6=

In both cases, calculating the matrix of the separated nodes will yield a different matrix than the
one of the cap and cup.
For BA2, it suffices to investigate the rule

=

14

Calculating the matrices of the left-hand side and right-hand side yields two different vectors which
are not scalar multiples of each other, thus BA2 does not satisfy the functor.
The remaining rules are finite and their matrix equalities can be checked by calculating them.
This shows that multiply and average still hold, while unit, intro and ortho break.

This leaves us with the first division of independent axioms:

Satisfy [[.]]W Do not satisfy [[.]]W
ZS1 BA1
ZS2 BA2
HS1 U
HS2 I
M O
A

Table 7: Results of changing H-box to W-gate

4 Results

This thesis has given an explanation on graphical calculi and the ZH-calculus. The concept of
independence was explained. It was shown that the independence of a subset of axioms can be
shown and that from this follows one of those axioms is necessary for the minimal set of axioms.
After this a number of functors were presented and it was investigated which axioms would and
would not satisfy these functors. These functors can be viewed in table 8.
The functors defined in this thesis give a number of restrictions on the possible minimal subset.

Since there are 11 axioms, there are 211 = 2048 possible ways of using or not using each of the
separate axioms.
Looking at the ‘Does not satisfy’ column in table 8, 7 disjunctions can be made of rules that should
be included. Running an exhaustive search, it was determined there are 246 possible combinations
of axioms which satisfy these restrictions, i.e. 246 subsets of the axioms of the ZH-calculus contain
at least one of each rule of each disjunction. It should be noted that not all of the functors are
necessary to come to this conclusion. Since the set of possibly necessary rules associated with
[[.]]ed is a proper subset of the one associated with [[.]]W , the latter of these two does not actually
add to restricting the amount of possible subsets of rules. Quantitatively this means [[.]]W is not
an interesting result, but it still adds to this thesis by showing an example of a possible alternative
interpretation and can act as inspiration for future work.
Besides these quantitative results, the specific subsets that were found also show some more
interesting qualities. BA1 and BA2, while visually similar, are in fact independent. And the rules
ZS1 and HS1 are necessary. These last two are the most restrictive type of results, which is good
as it greatly decreases the amount of possible minimal subsets. It also indicates that any functors
that are added to these results, should at least satisfy these rules.

Functor Satisfies Does not satisfy
[[.]]ew ZS1, HS1, BA1, BA2, M, A, U, I, O ZS2, HS2
[[.]]ed ZS1, ZS2, HS1, HS2, M, A, U, I, O BA1, BA2
[[.]]Z4 ZS2, HS1, HS2, BA1, BA2, M, A, U, I, O ZS1
[[.]]H4 ZS1, ZS2, HS2, BA1, BA2, M, A, U, I, O HS1
[[.]]parityH ZS1, ZS2, HS1, HS2, BA2, A, I, O BA1, M, U
[[.]]MultH ZS1, ZS2, HS1, HS2, BA2, M, U, O BA1, A, I
[[.]]W ZS1, ZS2, HS1, HS2, M, A BA1, BA2, U, I, O

Table 8: The functors presented throughout this thesis and the gathered results.

15

5 Future work

The following additions and improvements can be made on the results provided by this thesis:

• A limited amount of functors was investigated, trying other functors might yield additional
interesting results to narrow down the amount of possible minimal subsets. Specifically
there could be more investigation into functors mapping diagrams to other diagrams or to
the infinite sets of numbers, e.g. by applying arithmetic on phases or counting the amount
of occurrences of some generator.

• This thesis has investigated the relations between different axioms, but has not shown any
distinctive proofs of rules not being necessary. A great result would be finding a proof that
a certain rule is not necessary, for example by showing how this rule follows from others.

• Like this thesis made use of minimality results found regarding the phase-free ZH-calculus,
the knowledge gained in investigating the minimality of this specific graphical calculus, could
be applied to other calculi.

16

References

[1] Samson Abramsky and Bob Coecke. A categorical semantics of quantum protocols. In
Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004., pages
415–425. IEEE, 2004.

[2] Steve Awodey. Category theory. Oxford University Press, 2010.

[3] Miriam Backens and Aleks Kissinger. Zh: A complete graphical calculus for quantum com-
putations involving classical non-linearity. arXiv preprint arXiv:1805.02175, 2018.

[4] Charles H Bennett and Gilles Brassard. Quantum cryptography: public key distribution and
coin tossing. Theor. Comput. Sci., 560(12):7–11, 2014.

[5] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra and
diagrammatics. New Journal of Physics, 13(4):043016, 2011.

[6] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum
Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

[7] Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21(6):467–488, Jun 1982.

[8] Lov K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.
Lett., 79:325–328, Jul 1997.

[9] Amar Hadzihasanovic. A diagrammatic axiomatisation for qubit entanglement. In 2015 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, pages 573–584. IEEE, 2015.

[10] Borun Shi. Towards minimality of clifford + t zx-calculus. 2018.

[11] Peter W Shor. Algorithms for quantum computation: Discrete logarithms and factoring. In
Proceedings 35th annual symposium on foundations of computer science, pages 124–134. Ieee,
1994.

[12] John van de Wetering and Sal Wolffs. Completeness of the phase-free zh-calculus. arXiv
preprint arXiv:1904.07545, 2019.

17

