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Abstract

Xoodyak and Subterranean 2.0 are two cipher suites submitted to the
NIST Lightweight Cryptography standardization process. In this thesis,
we present implementations based on the specifications of both algorithms
aimed at low power devices like the ARM Cortex-M group of chips used in
various microcontrollers. To improve the performance of Subterranean 2.0
we were able to make use of an alternative and more efficient way of calcu-
lating its round function.
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Chapter 1

Introduction

Combining separate encryption and authentication modes can be challenging
and error-prone, especially for developers not amply familiar with cryptogra-
phy. Because of that, we have seen a rise in Authenticated Encryption (AE)
and Authenticated Encryption with Associated Data (AEAD) schemes in
recent years. Furthermore we have seen an increase in the number of In-
ternet of Things (IoT) and other interconnected but constrained devices.
IoT devices are most commonly low-powered devices that frequently use
the internet or other networks to communicate. This combination increases
the demand for standardisation of a low-power encryption protocol that is
capable of both encryption and authentication.

As of yet, there is no such standard low-power encryption protocol. This
led the National Institute of Standards and Technology (NIST) to issue
a call for Lightweight Cryptography [1], aiming to develop cryptographic
algorithm standards that can work for these low-powered devices. Two of
the submissions are the Xoodyak scheme and Subterranean 2.0 cipher suite.
Hereinafter, the Subterranean 2.0 cipher suite shall be referred to as solely
Subterranean.

To be able to see if an algorithm is suitable for the task it does not only
need to provide the security they claim, but they also need to be performant
enough for practical purposes. In this thesis we show how we constructed
implementations in the C programming language for both Xoodyak and
Subterranean and present their measured performance on an ARM Cortex-
M3 processor.

1.1 Authenticated Encryption

Using schemes that provide confidentiality alone, the receiver can’t be sure
the data received is not tampered with by a third party. To provide au-
thentication, allowing the receiver to check the data has been constructed
by a sender possessing the key, an authentication scheme can be used to-
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gether with the encryption scheme. Having to use separate schemes for both
functionalities is cumbersome and allows room for mistakes.

The term AE refers to encryption schemes that provide both confiden-
tiality and authentication assurance on the data. It usually is more complex
than a scheme that provides only confidentiality or authentication, but it
is easier to use and can be used with a single key. AE schemes return not
only the encrypted plaintext but also a tag over the entire message that the
receiver must use to be able to decrypt.

Nowadays most AE also allow associated data, which is not encrypted,
to also be authenticated. These are often called AEAD schemes.

1.2 NIST’s lightweight cryptography initiative

April 2018, NIST, a physical sciences laboratory part of the U.S. Department
of Commerce, issued a first call for ‘Lightweight Cryptography’ [1]. With
the development of more and more small computing devices being used in
recent times, NIST noticed the need for standardisation of lightweight cryp-
tography tailored for resource-limited devices. The call is for submissions
for the lightweight cryptography standardisation process.

The criteria [3] for a submission requires the specification and implemen-
tation of an algorithm (or family of algorithms) that implement Authenti-
cated Encryption with Associated Data (AEAD). Optionally the submission
may also implement hashing functionality.
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Chapter 2

Preliminaries

In this chapter, we will introduce various concepts that are prerequisites to
fully understand our work. We will briefly describe the sponge construction,
duplex construction, and Xoodoo-permutation. All of which consolidate in
the Xoodyak primitive. Also, a short overview of the ARM Cortex-M3
architecture onto which our software implementations are tested will be
provided.

2.1 The sponge and duplex constructions

The sponge construction and the closely related duplex construction are used
as building blocks to implement symmetric cryptography functions. Both
are constructed with a fixed-length permutation as underlying primitive.

2.1.1 The sponge construction

A sponge construction [5], shown in Figure 2.1, is a method for creating
functions that consume an arbitrary-length input bitstream and produces
an arbitrary-length output bitstream. It does this using a finite internal
state. These constructions can be used to model or construct cryptographic
primitives. The Xoodoo permutation, on which Xoodyak is built, is such
a primitive.

Ordinarily, the construction takes three components:

• A state, consisting of b = r + c bits, initialised with all zeroes. The
value b is called the width, r is called the bitrate, and c is called the
capacity.

• A permutation or transformation f : {0, 1}b → {0, 1}b.

• A reversible padding function pad that pads the input to a multiple of
r bits.
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Figure 2.1: The sponge construction

The function resulting from the construction operates in two phases:

absorbing phase The padded message is split into blocks of r bits, these
blocks get XOR-ed into the first r bits of the state
followed by an application of f .

squeezing phase Returns a concatenation of r-bit sized blocks, trun-
cated to l bits. Each block contains the first r bits
of the state. After an output block is returned, the
permutation f is applied to the state. The length l is
chosen by the user.

With its arbitrarily long input and output sizes, the sponge construction
allows building various primitives such as a hash function, a stream cipher,
or a Message Authentication Code (MAC).

2.1.2 The duplex construction

The duplex construction [8], shown in Figure 2.2, is closely related to the
sponge construction. It allows for the alternating input and output of blocks.
Unlike a sponge function, which is stateless between calls, the duplex con-
struction results in an object that accepts calls that take an input string
and returns an output string that depends on all formerly absorbed inputs.

The security of the duplex construction can be shown to be equivalent
to that of the sponge construction [7].
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Figure 2.2: The duplex construction

2.2 The Xoodoo permutation

Xoodoo [10] was presented as a lightweight permutation (bijective map-
ping) with properties more favourable for low-end 32 bit CPUs compared
to alternatives like Keccak-f [6] and Gimli [4]. The more heavy-weight
Keccak-f uses 16-bit lanes when configured to use the smallest state (400
bits), or when using 32-bit lanes its state of 800 bits is too large to be con-
sidered light-weight. Gimli has a small state of 384 bits and lends itself well
to 32-bit CPUs but its propagation properties are less than what could be
expected.

Xoodoo[nr] is a family of permutations parameterized by its number of
rounds nr. The state s of Xoodoo consists of 384 bits, which is considered
to consist of 3 horizontal planes each consisting of 4 parallel 32 bit lanes.
Another way the state can be viewed is as a set of 128 columns of 3 bits in
a 4× 32 array.

The planes are index by y, from bottom to top. Lanes within a plane
are index by x. Within a lane, bits are indexed by z. All this is illustrated
in Figure 2.3, which for clarity uses a state with 8-bit lanes instead of 32-bit
lanes.

Xoodoo[nr] is specified in Algorithm 1, the notation conventions used
are specified in Table 2.1 The permutation consists of the iteration of a
round function Ri which has 5 steps: a mixing layer θ, a plane shifting
ρwest, an addition of round constants ι, a non-linear layer χ, and another
plane shifting ρeast. The round constants Ci are planes with a single non-zero
lane at x = 0, denoted as ci.
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Figure 2.3: Highlighted toy version of the Xoodoo state, with lanes reduced
to 8 bits.

Ay Plane y of state A

Ay ≪ (t, v) Cyclic shift of Ay moving bit in (x, z) to position (x+ t, z + v)

Ay Bitwise complement of plane Ay

Ay +Ay′ Bitwise sum (XOR) of planes Ay and Ay′

Ay ·Ay′ Bitwise product (AND) of planes Ay and Ay′

Table 2.1: Xoodoo notational conventions
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Algorithm 1 Definition of Xoodoo[nr] with nr the number of rounds

Parameters: Number of rounds nr
for Round index i from 1− nr to 0 do
A = Ri(A)

Here Ri is specified by the following sequence of steps:

θ :

P ← A0 +A1 +A2

E ← P ≪ (1, 5) + P ≪ (1, 14)

Ay ← Ay + E for y ∈ {0, 1, 2}
ρwest :

A1 ← A1 ≪ (1, 0)

A2 ← A2 ≪ (0, 11)

ι :

A0 ← A0 + Ci

χ :

B0 ← A1 ·A2

B1 ← A2 ·A0

B2 ← A0 ·A1

Ay ← Ay +By for y ∈ {0, 1, 2}
ρeast :

A1 ← A1 ≪ (0, 1)

A2 ← A2 ≪ (2, 8)
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2.3 The ARM Cortex-M3 processor

The Advanced Reduced Instruction Set Computer Machine (ARM) Cortex-
M3 is a processor in the Cortex-M line of processors primarily intended for
microcontrollers. It used to be the case that 8-bit microcontrollers were
popular, but the Cortex-M line of processors has been gaining popularity
with its 32-bit wide data path, register bank, and memory interface.

The ARM Cortex-M3 processor implements the ARMv7-M architecture
which is binary instruction upward compatible with the ARMv7E-M archi-
tecture used in the Cortex-M4 and Cortex-M7. There are 13 general-purpose
registers and the instruction set consist of instructions from both the 16-bit
Thumb-1 instruction set and the 32-bit Thumb-2 instruction set.

As such we see it as a good candidate to test how Xoodyak and Sub-
terranean perform on microcontrollers.
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Chapter 3

Xoodyak

Xoodyak [11] is a cryptographic primitive that can be used for hashing,
encryption, MAC computation, and authenticated encryption. In this chap-
ter we will describe the workings of Xoodyak and describe the process of
implementing it.

3.1 The Xoodyak primitive

Xoodyak is an instance of the so-called Cyclist mode of operation on top of
the Xoodoo[12] permutation. The Cyclist mode can be seen as a lightweight
counterpart to Keyak’s Motorist mode [9]. It is simpler than Motorist,
mainly as a result of the absence of parallel variants.

The Cyclist mode of operation has two distinct modes: hash and keyed
mode. Upon initialization with Cyclist(K, id, counter), the Cyclist object
starts either in hash mode if K = ε or in keyed mode otherwise. This yields
a stateful object to which the user can make calls. It is parameterized by
the permutation f , by the block sizes Rhash, Rkin and Rkout, and by the
ratchet size `ratchet, all in bytes. Rhash, Rkin, and Rkout specify block sizes of
the hash and of the input and output in keyed modes, respectively. There
is no way to switch from hash to keyed mode.

Xoodyak uses Cyclist with the following parameters:

• Rhash = 16 bytes

• Rkin = 44 bytes

• Rkout = 24 bytes

• `ratchet = 16 bytes

The available functions depend on which mode the object is started: The
functions Absorb() and Squeeze() can be called in both hash and keyed
mode, whereas the functions Encrypt(), Decrypt(), SqueezeKey(), and
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Ratchet() are restricted to keyed mode. The purpose of each function is
as follows:

• Absorb(X) absorbs an input string X;

• C ← Encrypt(P ) enciphers P into C and absorbs P ;

• P ← Decrypt(C) deciphers C into P and absorbs P ;

• Y ← Squeeze(`) produces an `-byte output depending on the data
absorbed so far;

• Y ← SqueezeKey(`) works like Y ← Squeeze(`) but in a different
domain, for the purpose of generating a derived key;

• Ratchet() transforms the state in an irreversible way to ensure for-
ward secrecy.

3.1.1 Hash mode

In hash mode, the Cyclist object can absorb input strings and squeeze digests
at will. The simplest case goes as follows:

Cyclist(ε, ε, ε)
Absorb(x)
h← Squeeze(n)

Here h will contain an n byte long digest of string x, where n can be chosen
by the user.

More complicated cases are possible, for example:

Cyclist(ε, ε, ε)
Absorb(x)
Absorb(y)
h1 ← Squeeze(n1)
Absorb(z)
h2 ← Squeeze(n2)

Here h1 is a digest over the two-string sequence y ◦ x, and h2 is a di-
gest over z ◦ y ◦ x. The digest is over the exact sequence and not just the
concatenation of the absorbed strings.

3.1.2 Keyed mode

In keyed mode, Xoodyak can do stream encryption, MAC computation,
and authenticated encryption. For example, to produce a t-byte tag (MAC)
over a message M using a key K:
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Cyclist(K, ε, ε)
Absorb(M)
T ← Squeeze(t)

Encryption is done in a stream cipher-like way, hence it requires a nonce.
To encrypt plaintext P with nonce N and key K, we can run the following
sequence:

Cyclist(K, ε, ε)
Absorb(N)
C ← Encrypt(P )

To decrypt a ciphertext C, we would simply replace the last line with:

P ← Decrypt(C)

Finally, authenticated encryption can be achieved by a combination of
the previous sequences. For instance, to encrypt plaintext P with nonce N ,
key K, and associated data A, we proceed as follows:

Cyclist(K, ε, ε)
Absorb(N)
Absorb(A)
C ← Encrypt(P )
T ← Squeeze(t)

Resulting in ciphertext C and authentication tag t.

Ratchet

At any time in keyed mode, the user can call Ratchet(). This causes part of
the state to be overwritten with zeroes, thereby making it computationally
infeasible to compute the state value before the call to Ratchet(). This
forward secrecy and prevents an attacker from recovering the secret key prior
to the application of the ratchet.

Cyclist(K, id, ε)
Absorb(N)
Absorb(A)
C ← Encrypt(P )
Ratchet() {either here . . . }
T ← Squeeze(t)
Ratchet() {. . . or here}
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3.2 Implementation in code

During the research, the Xoodyak specification was still under heavy devel-
opment. As such, no (public) test vectors were available making it difficult
to assess the correctness of our code. To minimise the probability of error
and because of the relatively small size of the specification, we decided to
construct two separate codebases. This allowed us to compare the results
from both and quickly identify discrepancies when they arose.

Both codebases use the publicly available reference code1 for the Xoodoo
permutation written in the C programming language. This way all dis-
crepancies found were known to originate from our Xoodyak part of the
codebase. And because the reference code is architecture-independent we
were not only able to run it on an arm architecture, but also on the x86–64
architecture we used for developing.

The first codebase used the Rust programming language. To interface
with the Xoodoo permutation code written in C first a small wrapper was
written. This way the Cyclist mode part of Xoodyak was able to be written
in pure Rust.

The second and final codebase is written in the C programming language
and later became our final product.

1https://github.com/XKCP/XKCP/tree/master/lib/low/Xoodoo/Reference
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Chapter 4

Subterranean 2.0

Like Xoodyak, Subterranean [12] is a cryptographic primitive. It can be
used for both hashing and a stream cipher. Based on a design dating back
to 1992 [2] its mode can be seen as a precursor to the sponge construction.
Like a sponge construction, it has an absorb phase, followed by a squeezing
phase.

Although its design lends it to be efficiently implemented in hardware
it is not well suited for software. We describe how we can partly overcome
this during implementation at the end of this chapter.

4.1 The Subterranean 2.0 cipher suite

This section introduces the workings of Subterranean, and presents the
cryptographic Extendible Output Function (XOF) [13] function, Doubly-
Extendable Cryptographic Keyed (deck) [10] function, and Session Authen-
ticated Encryption (SAE) scheme built on top of it.

4.1.1 The state and round function

Subterranean has a one-dimensional state with a size of 257 bits. The round
function R operates on this state and consists of four steps:

R = π ◦ θ ◦ ι ◦ χ

We denote the state as s and its bits as si with position index i ranging
from 0 to 256. Any calculations done on the index must be taken modulo
257.

For all 0 ≤ i < 257:

χ : si ← si + (si+1 + 1)si+2

ι : si ← si + δi

θ : si ← si + si+3 + si+8

π : si ← s12i
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Here the addition and multiplication are in F2, and δi is a Kronecker
delta:

δi =

1 if i = 0

0 if i 6= 0.

Figure 4.1 illustrates the round function by the computational graph of
a single bit of the state.
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Figure 4.1: Subterranean round function, fully illustrated for bit s92

4.1.2 The Subterranean duplex object

At the core of the Subterranean duplex object are two functions, the duplex
call and the output extraction. On top of these internal interfaces it has a
thin wrapper consisting of three functions.

The duplex call first applies the round function R to the state and then
injects a string σ of variable length of at most 32 bits. Before adding it
into the state, it pads the string σ to 33 bits with simple padding (10∗) and
hence the injection rate is 33 bits.

In between duplex calls, one may extract 32-bit strings z from the state,
making the extraction rate 32 bits. Each of the 32 bits of the extracted
output z is constructed as the sum of two state bits (see Table 4.1). These
are taken from 64 fixed positions that are the elements of the multiplicative
subgroup of order 64 generated by 124 = 176. We denote this subgroup by
G64. More precisely, we have that for all 0 ≤ i ≤ 31, zi = s124i + s−124i ,
where the minus sign is taken modulo 257, for instance: −120 = −1 = 256
and −124 = −176 = 81.
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i j i j i j i j

0 (1, 256) 8 (64, 193) 16 (241, 16) 24 (4, 253)

1 (176, 81) 9 (213, 44) 17 (11, 246) 25 (190, 67)

2 (136, 121) 10 (223, 34) 18 (137, 120) 26 (30, 227)

3 (35, 222) 11 (184, 73) 19 (211, 46) 27 (140, 117)

4 (249, 8) 12 (2, 255) 20 (128, 129) 28 (225, 32)

5 (134, 123) 13 (95, 162) 21 (169, 88) 29 (22, 235)

6 (197, 60) 14 (15, 242) 22 (189, 68) 30 (17, 240)

7 (234, 23) 15 (70, 187) 23 (111, 146) 31 (165, 92)

Table 4.1: Mapping between state bits and output bits.

The 33 bits of σ after padding are injected into the state at positions that
form the first 33 powers of 124 in G64 (see Table 4.2). For the unkeyed mode
(hashing), the length of input σ is limited to 8 bits. This means that only
the first 9 bits of padded σ can be non-zero bringing the effective injection
rate to 9 bits. Those 9 bits are injected into the state at positions that form
the first 9 powers of 124 in G64. Between injections the round function will
be called twice instead of once when in unkeyed mode.

i j i j i j i j i j

0 1 8 64 16 241 24 4 32 256

1 176 9 213 17 11 25 190

2 136 10 223 18 137 26 30

3 35 11 184 19 211 27 140

4 249 12 2 20 128 28 225

5 134 13 95 21 169 29 22

6 197 14 15 22 189 30 17

7 234 15 70 23 111 31 165

Table 4.2: Input bits for Subterranean duplex object. Bits 0 to 8 are for the
unkeyed mode and all bits are taken for the keyed mode.

On top of the two core internal functions of the duplex object — the
duplex call and the output destruction — is a thin wrapper consisting of
three functions. These facilitate a compact specification of cryptographic
functions and the schemes on top of it. The main features of the wrapper
are supporting the absorbing and squeezing of strings of arbitrary length
and the integration of encryption and decryption with absorbing. It provides
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separators between absorbed strings by imposing that the last injected block
is shorter than (and possibly empty) 32 bits in keyed mode and 8 in unkeyed
mode.

The specification of the Subterranean duplex object can be found in
Algorithm 2. Any input or output is a bit string, unless specified otherwise.
We indicate the length of a bit string X by |X| and the empty string by ε.

Algorithm 2 Subterranean duplex object

Interface: Constructor: Subterranean()
s← 0257

Interface: Y ← absorb(X, op) with op ∈ {unkeyed, keyed, encrypt,decrypt}
if op = unkeyed then w = 8 else w = 32
Let x[n] be X split in w-bit blocks, with last block strictly shorter
Y ← ε
for all blocks of x[n] do

if op ∈ {encrypt, decrypt} then
temp← x[i] + (extract(s) truncated to —x[i]—)
Y ← Y ||temp

if op = decrypt then duplex(temp) else duplex(x[i])
if op = unkeyed then duplex(ε)

return Y

Interface: blank(r) with r a natural number
for r times do duplex(ε)

Interface: Z ← squeeze(`) with ` a natural number
Z ← ε
while |Z| < ` do
Z ← Z||extract(s)
duplex(ε)

return Z truncated to ` bytes

Internal interface: duplex(σ) with |σ| ≤ 32
s← R(s)
x← σ||1||032−|σ|
for j from 0 to 32 do s124j ← s124j + xj

Internal interface: z ← extract(s)
z ← ε
for j from 0 to 31 do z ← z||(s124j + s−124j )
return z

18



4.1.3 The Subterranean-XOF function

The Subterranean-XOF function (Algorithm 3) is meant to be used for (un-
keyed) hashing and takes as input a sequence of an arbitrary number of
arbitrary-length strings M [i], denoted as M [[n]] and returns a bit string of
arbitrary length.

Algorithm 3 Subterranean-XOF

Interface: Z ← Subterranean-XOF(M [[n]], `) with M [[n]] a string se-
quence and ` a natural number
S ← Subterranean()
for all strings M [i] in M [[n]] do S.absorb(M [i],unkeyed)
S.blank(8)
return Z ← S.squeeze(`)

4.1.4 The Subterranean-deck function

The Subterranean-deck function (Algorithm 4) takes as input an arbitrary-
length key K and a sequence of an arbitrary number of arbitrary-length
strings M [i], denoted as M [[n]]. It returns a bit string of arbitrary length. It
can readily be used as a stream cipher, a MAC function, or for key derivation.

Algorithm 4 Subterranean-deck

Interface: Z ← Subterranean-deck(K,M [[n]], `) with M [[n]] a string se-
quence and ` a natural number
S ← Subterranean()
S.absorb(K, keyed)
for all strings M [i] in M [[n]] do S.absorb(M, keyed)
S.blank(8)
return Z ← S.squeeze(`)

4.1.5 The Subterranean-SAE authenticated encryption scheme

The Subterranean-SAE object (Algorithm 5) takes a nonce when starting
the session and can then be used encipher and authenticate a sequence
of messages each consisting of plaintext and associated data. Compared to
authenticated encryption modes based on Subterranean-deck, Subterranean-
SAE has smaller a state and is better suited to offer protection against
Differential Power Analysis (DPA). In particular, the security is based on
the secrecy of a state that evolves during the session rather than a static key.
Across sessions, one can derive a fresh key per session using Subterranean-
deck. This protects against DPA and provides fine-grained forward secrecy.
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Algorithm 5 Subterranean-SAE, with τ the tag length

Interface: start(K,N)
S ← Subterranean()
S.absorb(K, keyed)
S.absorb(N, keyed)
S.blank(8)

Interface: (Y, T )← wrap(A,X, T ′, op) with op ∈ {encrypt, decrypt}
S.absorb(A, keyed)
Y ← S.absorb(X, op)
S.blank(8)
T ← S.squeeze(τ)
if op = decrypt AND (T ′ 6= T ) then (Y, T ) = (ε, ε)
return (Y, T )

4.2 Procrastination of π

Originally Subterranean was designed as a hardware cipher, as such how it
would perform in software was not considered critical. For the Subterranean
2.0 cipher suite submitted to NIST software performance is considered more
relevant, and as such techniques to optimise this were explored. The bot-
tleneck of (software) performance in the cipher suite is the round function,
therefore this was the focal point when searching for optimisations.

The χ and θ steps of the Subterranean round function lend themselves
well for software implementation: they can be implemented using shifts
and Boolean instructions. Likewise, the ι step does not pose a problem,
it can simply be implemented using a single Boolean instruction. The bit-
permutation π, on the other hand, requires the manipulation of individual
bits and is hard to get at low cost.

In this section, we present a technique to avoid implementing π alto-
gether. Instead of executing π we execute variants of χ and θ that operate
on an alternative state representation. This surrogate state changes with
every round. In essence, we push π out in front of us.

4.2.1 The basic concept

Let γ be the shortcut-notation for θ ◦ ι ◦ χ. Then two rounds can be repre-
sented as:

R2 = π ◦ γ ◦ π ◦ γ

Now let γ(1) be defined as π−1 ◦ γ ◦ π. Then

R2 = π ◦ (π ◦ γ(1) ◦ π−1) ◦ π ◦ γ = π2 ◦ γ(1) ◦ γ
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This can be generalised to any number of rounds: let γ(n) be defined as
π−n ◦ γ ◦ πn, then we have:

Rn = πn ◦ γ(n) ◦ γ(n−1) ◦ · · · ◦ γ(1) ◦ γ(0)

So clearly πn can be procrastinated indefinitely.
Of course, this is of no use if we can’t think of an efficient version of γ(n).

So what does γ(n) look like? It can be seen as the sequence of three variant
functions:

γ(n) = π−n ◦ θ ◦ ι ◦ χ ◦ πn

= π−n ◦ θ ◦ (πn ◦ π−n) ◦ ι ◦ (πn ◦ π−n) ◦ χ ◦ πn

= (π−n ◦ θ ◦ πn) ◦ (π−n ◦ ι ◦ πn) ◦ (π−n ◦ χ ◦ πn)

= θ(n) ◦ ι(n) ◦ χ(n)

where θ(n), ι(n), and χ(n) are defined along the same lines as γ(n):

θ(n) = π−n ◦ θ ◦ πn

ι(n) = π−n ◦ ι ◦ πn

χ(n) = π−n ◦ χ ◦ πn

4.2.2 What do θ(n), ι(n), and χ(n) look like?

To answer this question we will first take a look at χ(n). Let a = πn(s),
b = χ(a), c = π−n(b). This way c can be directly expressed as a function on
the state s, and χ(n) = c. Using the definitions of π and χ we have:

ai = s12ni

bi = ai + (ai+1 + 1)ai+2

ci = b12−ni

From ci = b12−ni follows that bi = c12ni. Substitution of this and ai in
bi = ai + (ai+1 + 1)ai+2 gives:

c12ni = s12ni + (s12ni+12n + 1)s12ni+2·12n

We can now write q as a shortcut of 12ni, yielding:

χ(n) : cq = sq + (sq+12n + 1)sq+2·12n

So χ(n) is simply χ with both offset multiplied by 12n. By repeating the same
exercise we can conclude that θ(n) is θ with both offsets 3 and 8 multiplied
by 12n. Because ι only operates on the bit with index zero whose position
is not moved by π it is not affected by this.

21



4.2.3 Localising the state bits

Rather than working with the regular state where the indices of the state
bits are fixed we have a kind of evolving state representation in which these
indices move around with every round. This means that for every round
with input or output we need to be able to localise the bit indices of these
parts of the state.

We know that s = πn(s′) where s is the regular state and s′ is the
evolving state we are working with. Expanding the definition of π we get
si = s′12ni where i is the index of a bit in the regular state. Note that 12n

can be pre-computed, this way this operation consists of a lookup and a
multiplication. We do have an alternative way of calculating the position of
a bit si. The multiplicative group of integers modulo 257 is isomorphic with
the additive group of integers modulo 256, which is likely a less expensive
operation in software. It happens to be the case that 12 is a generator
of the multiplicative group modulo 257, so for every index i > 0 we have
i = 12q. Here the values of q can be pre-computed for all indices. After n
rounds: si = s′12n12q = s′12q+n . So we can compute the indices after n rounds
by adding a constant n and then exponentiation (or, as noted before, a
lookup). Which of the two approaches is faster is not immediately clear.

4.2.4 Applying an offset to the state

In computer hardware, we most likely can’t operate on the state as a single
entity of 257 bits. Modern processors generally have a word size that is a
power-of-two multiple of a byte (8, 16, 32, . . . ). Therefore we chose for our
implementation to save the bit s0 on its own, allowing the rest of the state
to be stored in an array A of 32 bytes. Let w be the word size, assumed
to be a byte multiple, as such w | 256, Let array A consist of elements of
length w, then:

si = A[a][j] for i 6= 0 where
a = b(i− 1)/wc
j = (i− 1) mod w

Here a is the index of the word in A that contains si, and j is the index of
si in this memory unit. For ease of calculation we also store s0 in a word
where all bits are set to s0:

z[j] = s0 for 0 ≤ j < w

In both χn and θn bitwise operations are done using a state si+o that is
offset by o = c · 12n to si where c ∈ {1, 2, 3, 8} as defined in χn and θn.

To do bitwise operations on A we make use of arrays A+o similar to A
with versions of the state offset by o. For example, we can apply θ : si ←
si + si+3 + si+8 on A as follows:

θ : A← A+A+3 +A+8
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Note we have to calculate the effect of θ on bit s0 = z separately.
The elements of A+o can be divided into three groups based on their

index a and the offset o:

• There is an element that contains the bit with index i = −o that maps
to z. Let az be the index in A+o of this element, we can calculate it
as follows:

az = b(−o− 1)/bc

Note that c 6= 0 and as such o = c · 12n 6= 0 =⇒ −o 6= 0.

• The elements with an index a < az.

• The elements with an index a > az.

Construction of the memory units of A+o

We now look at these three element groups separately, determining how they
can be calculated based on z and bit shifted elements of A.

While the bits in an element A+o[a] are in the same order as in A, they
come from (at most) two elements P,Q ∈ A, and if a = az there is a single
bit that comes from z.

The element in A+o with index az

Let jz = (−o− 1) mod w be the index within A+o[az] of the bit that maps
to z. The p = jz number of bits before index jz map to bits in the last
memory unit P of A, and the q = w − p − 1 number of bits after index jz
map to bits in the first memory unit Q of A. Thus:

p = jz

q = w − p− 1

P = A[|A| − 1]

Q = A[0]

To construct A+o[az] we perform an OR operation on masked versions
of z, P , and Q where P and Q have their bits shifted to the correct position
(see Figure 4.2):

A+o[az] = ((P � w − p) & MP ) | (z & Mz) | ((Q� w − q) & MQ)

Here MP is a mask with only the first p bits set to one, MQ is a mask with
only the last q bits set to one, and Mz is a mask with only the bit at index
jz set to one.
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z Q = A[0]

· · ·
P = A[|A| − 1]

� w − q � w − p

& Mz & MQ & MP

w − 1 jz 0

A+o[az]
q p

w

Figure 4.2: Construction of A+o[az]

Elements in A+o with an index a < az

The bits in this kind of memory unit map to at most two memory units in
A. The first p = w− (o mod w) bits map to memory unit P = A[a+bo/wc].
The last q = o mod w bits map to memory unit Q = A[a+ do/we]. Hence:

p = w − (o mod w)

q = o mod w = w − p
P = A[a+ bo/wc]
Q = A[a+ do/we]

As before, we perform an OR operation on masked versions of P and Q
where the bits have been shifted to the correct position (see Figure 4.3):

B[a] = ((P � q) & MP ) | ((Q� p) & MQ) for a < az

Where MP is a mask with only the first p bits set to one and MQ is a
mask with only the last q bits set to one.

Elements in A+o with an index a > az

The construction of these elements take place in a very similar manner as
above; we only need to adjust the offset we use to calculate with to take into
account that the bit at index zero is not included in the array A. As such
let o′ = o− 1.

Again the bits in this kind of memory unit map to at most two memory
units in A. The first p = b− (o′ mod b) bits map to memory unit P = A[a+
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P
· · · · · ·

Q

� q � p

& MP & MQ

w − 1 0

A+o[a]
q p

w

Figure 4.3: Construction of A+o[a] where a 6= az

bo′/bc]. The last q = o′ mod b bits map to memory unit Q = A[a+ do′/be].
Hence:

p = b− (o′ mod b)

q = o′ mod b = b− p
P = A[a+ bo′/bc]
Q = A[a+ do′/be]

Constructing the element (again see Figure 4.3):

B[a] = ((P � q) & MP ) | ((Q� p) & MQ) for a > az

Where MP is a mask with only the first p bits set to one and MQ is a mask
with only the last q bits set to one.

Findings based on the above

We made some observations based which would make implementation easier.
Let p<az be p when a < az etcetera. First, let’s have a closer look at paz :

paz = jz = (−o− 1) mod w

= (−o+ 256) mod w

= −o mod w

= (w − (o mod w)) mod w

= p<az mod w

Since p<az ∈ [0, w] this means paz = p<az when p<az 6= w. We can see that
when p<az = w then paz = 0.
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And for qaz we can conclude:

qaz = w − paz − 1

= w − (−o mod w)− 1

= (−1 mod w)− (−o mod w)

= ((−1 mod w) + (o mod w)) mod w

= (o− 1 mod w)

= q>az

We also saw before that the calculations for memory units with an index
a > az is the same as for memory units with index a < az just with an offset
that has one subtracted. Using this information we are able to calculate an
offset state in a quite efficient way.

4.3 Implementation

Again, because of the active development of Subterranean during our re-
search no test vectors were available. After implementing a non-procrastinated
version in both the C and Rust programming languages, also a procrasti-
nated version in both languages was created. Like before the outputs of
these versions were compared with each other to make sure discrepancies
were found and corrected. After access to a Python implementation version
was given by the authors of Subterranean, was this also put alongside for
comparison.
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Chapter 5

Benchmarks

Benchmarks were done on a STM32F103C81 microcontroller which incoreper-
ates an ARM Cortex-M3 core. This was connected to an ST-LINK/V22, an
in-circuit debugger and programmer that also functioned as the power source
and allowed interfacing via USB.

The performance measurement used is the number of cycles needed to
complete a certain operation. Cycle counting was done using functions
from the libopencm33 firmware library: dwt enable cycle counter and
dwt read cycle counter4. Both are small wrappers around the instruc-
tions needed to activate and read out the ARM Data Watchpoint and Trace
Unit Current PC Sampler Cycle Count Register5.

To read out the values returned by above functions and as a general
debugging tool we used the on-chip debugging tool OpenOCD6.

After the publication of Xoodyak the Keccak Team released their
reference implementation of Xoodyak in the C programming language.
This can be found in the eXtended Keccak Code Package (XKCP)7. As such,
we decided to test these three codebases, all written in the C programming
language:

1. The XKCP version of Xoodyak;

2. Our version of Xoodyak;

3. Our procrastinated version of Subterranean.

All were compiled and linked using version 9.1.0 of arm-none-eabi-gcc,
part of the GNU ARM embedded toolchain.

1https://www.st.com/en/microcontrollers-microprocessors/stm32f103c8.html
2https://www.st.com/en/development-tools/st-link-v2.html
3http://libopencm3.org/
4http://libopencm3.org/docs/latest/lm4f/html/dwt_8c.html
5http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/

ch11s05s01.html
6http://openocd.org/
7https://github.com/XKCP/XKCP/
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5.1 Hash performance

Hashing performance of both Xoodyak and Subterranean was tested by
splitting the hashing operation into its two phases: the absorbing and the
squeezing phase.

5.1.1 Absorbing phase

The absorbing phase consists of initialisation and absorption of data of var-
ious lengths: 1, 16, 256, and 4096 bytes. Results of these benchmarks can
be found in Table 5.1

inputa XKCPb XKCPc Xoodyakb Xoodyakc Subterraneanb Subterraneanc

1 267 267 297 297 5325 5325

16 300 19 330 21 46508 2907

256 76035 298 75739 296 703103 2747

4096 1287795 315 1282219 314 11215228 2739
a length, in bytes
b in cycles
c in cycles per byte of input, rounded up

Table 5.1: Hash absorbing phase benchmark results

The performance of both Xoodyak variants is as good as identical,
which was to be expected as both are written in the same language and don’t
make use of any architecture-specific optimisations. The small difference
in the number of cycles between an input length of 1 and 16 bytes using
Xoodyak is because both will result in a single input block for Rhash = 16.

Subterranean with its hashing input block length of 8 bits requires more
input blocks than Xoodyak per the same length of input. This results in
a quicker stabilisation of the number of cycles per byte. We do see quite
a large gap in performance, where Subterranean is slower than Xoodyak
by about a factor of 10. This is exaggerated because of the double round
function of Subterranean when absorbing in unkeyed mode.

5.1.2 Squeezing phase

The squeezing phase consists of squeezing out a digest of various lengths,
again 1, 16, 256, and 4096 bytes. In the case of Subterranean this is pre-
ceded with 8 blank rounds as per the Subterranean-XOF algorithm (see
Algorithm 3). Results of these benchmarks can be found in Table 5.2

We see that the performance difference between Xoodyak and Subter-
ranean has decreased, most likely due to the larger output blocks of 32 bits
that Subterranean uses for extraction.
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digesta XKCPb XKCPc Xoodyakb Xoodyakc Subterraneanb Subterraneanc

1 5017 5017 5023 5023 11484 11484

16 5026 314 5032 315 21800 1363

256 79740 312 80106 313 201755 789

4096 1275180 312 1281306 313 3074057 751
a length, in bytes
b in cycles
c in cycles per byte of digest, rounded up

Table 5.2: Hash squeezing phase benchmark results

5.2 AEAD performance

Authenticated encrypting performance of both Xoodyak and Subterranean
was tested by applying the authenticated encryption-variants of both cipher
suits on plain text and additional data of various lengths.

The lengths in bytes of the plain text and additional data strings were:
1, 16, 256, and 4096. As we normally don’t expect the size of the additional
data to exceed the size of the plain text we only measured combinations of
plain text and additional data where this is not the case. Results of the
measurements can be found in Table 5.3

plaintexta ADa XKCPb XKCPc Xoodyakb Xoodyakc Subterraneanb Subterraneanc

1 1 20649 20649 20725 20725 56142 56142

16 1 20722 1296 20801 1301 71356 4460

16 16 20755 1298 20834 1303 80219 5014

256 1 72942 285 72689 284 309814 1211

256 16 72975 286 72722 285 318604 1245

256 256 98620 386 98313 385 455021 1778

4096 1 908462 222 902929 221 4116862 1006

4096 16 908495 222 902962 221 4125627 1008

4096 256 934140 229 928553 227 4261670 1041

4096 4096 1384559 339 1378004 337 6433291 1571

a bytes
b cycles
c cycles per byte of plaintext, rounded up

Table 5.3: AEAD benchmark results

Again we see a difference in performance, be it not as stark as when
absorbing data when hashing. Overall we can expect that Xoodyak is
faster by about a factor of 5 for sufficiently large input.
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Chapter 6

Conclusions

As a result of our work we have implementations of both Xoodyak and
Subterranean than can both offer acceptable performance on ARM. As
was to be expected is the performance of Subterranean worse than that
of Xoodyak, but still respectable enough that it should not be outright
dismissed as impractical based on this. We do believe that the efficiency
of both implementations can still be improved. Foremost by making use
of optimisations for the targeted architecture. Our work should be a good
basis for such further work.
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