BACHELOR THESIS
COMPUTING SCIENCE

Fia:

a
é\9 Ny
S
orrer

MiNe €

RADBOUD UNIVERSITY

Introducing Programming in
Primary Education: A Review of
Scientific Literature

Author: First supervisor/assessor:
Abe Heemskerk Prof. Dr. E. Barendsen (Erik)
s4310659 Erik.Barendsen@ru.nl

Second assessor:
Dr. J.E.W. Smetsers (Sjaak)
S.smetsers@cs.ru.nl

October 13, 2020

Abstract

Everything around us is becoming more and more connected. Your car, your
watch and even the coffee machine can be connected to the cloud. Therefore,
it is pivotal to think about ways to teach our youngest generations the ins
and outs on this subject. Already many studies have been conducted on the
introduction of programming skills to young children. The aim of this thesis
is to create an overview on what is known about teaching programming in
primary education, i.e. children up to the age of 12 (k-6). To this end, a
combination of scientific review studies and original studies were analyzed
with a focus on specific learning goals, learning content, the student’s un-
derstanding, instructional design and assessment. In conclusion it can be
stated that a plugged project based intervention could help young students
in becoming better programmers in the future!

Contents

1 Introduction

2 Background
2.1 Goals and objectiveso oo
2.2 Students’ understanding oL oL
2.3 Instructional strategies L.
2.4 Assessmento

3 Aim of the study

4 Method
4.1 Literature
4.2 Search terms
4.3 Selection criteria
4.4 Article selectiono

5 Results
5.1 Goals and objectives
5.2 Students’ understanding oL
5.3 Instructional strategies Lo
5.4 Assessment

6 Conclusion & Discussion

References

13

14
14
14
15
15

16
16
18
20
22

24

27

Chapter 1

Introduction

Computers are becoming a greater part of everyone’s lives (Wodjao, 2020).
The so called “Internet of Things” is all around us. Everything is connected
to each other, every system has a database in the cloud or operates digi-
tally. In fact, it became an important aspect of our society so quickly that
the foundation for teaching and understanding the basics of computer sci-
ence were never thought of.

The youngest generation needs to come in contact with the "why” and the
"how” questions surrounding computer science. Why is everything con-
nected to each other? Why is my mobile phone connected to that specific
access point? How is this connection established? And how is my data sent
over this connection? If you never ask these questions a deeper understand-
ing will never be achieved. Therefore, a true understanding is not present
in the minds of future generations.

Wing (2006) states that not only computer scientists but everyone should
have some understanding of computational concepts. A true understanding
comes with understanding of the multiple levels of abstraction. Not only
knowing how your computer is connected to the internet, but understand-
ing why it is connected to the internet. The information technology (IT)
sector is growing faster than ever before. The top three of fastest growing
industries in the US are all IT related (Ibisworld, 2019). Gresnigt, Taconis,
van Keulen, Gravemeijer, and Baartman (2014) also shows that many peo-
ple work in jobs related to science and technology, and a great workforce
with suitable schooling in these subjects is needed.

In other words, if we do not do anything our future will hold a shortage of
people working in science and technology. We know that in primary school
and in the teacher training program, there is a struggle to implement this
kind of education. The importance of this subject has been acknowledged,

but an efficient way of implementation into the primary school curriculum
has not yet been found.

A first step must be taken in integrating this into the standard curriculum.
Learning how to program is the basis of computer science (Grover & Pea,
2013). Therefore, we take a look at what has been done when it comes to
implementing programming education in primary schools. By implementing
a programming curriculum, a first step will be taken in getting our younger
generation ahead in the field of computer and information science.

It has been shown that most students develop their interest in and attitudes
towards science before the age of 14 (Osborne & Dillon, 2008). Therefore,
if a greater effort is put in ensuring that the quality of science education
before this age is of the highest standards, a bigger interest in this specific
field will be generated for the next generation.

When taking a look at how to introduce programming in the primary school
curriculum, there are a lot of aspects that need to be taken into account.
Simple examples are; what kind of teach material suits different classes?
What can be taught (not to difficult)? What level of understanding do the
children have? All these questions pop into mind when first asking the ques-
tion: How to do integrate programming in primary schools.

The research will be contributing to the work that Shirley de Wit is do-
ing together with Hanno van Keulen with the "Tech your future’ science
group. They are researching the question 'What is the place of program-
ming in elementary school?’. What has been tried in the field of introducing
programming into the primary school curricula and how was this achieved
at the time.

In the chapter Background an insight is given with regards to the theoretical
background. In the chapter Research a overview is given of the studied case
studies. Conclusion and Discussion both conclude and discuss the found
results.

Chapter 2

Background

Computer programming is defined as follows:

"The activity or job of writing computer programs (Cambridge interna-
tional dictionary of English, n.d.).”

This is a rather broad definition. Writing a computer program is mostly
done via the use of a basic textual programming language (C, Java, etc..).
These languages uses various syntax, libraries, a object oriented or impera-
tive base for its language.

These definitions are too complex to teach in primary school (McCalla &
Greer, 1993). Primary school has children ranging from ages K-6 (Kinder-
garten to 12 years old). Every age group and grade has a different cur-
riculum. When defining a curriculum there are various aspects that should
be taken into account. Van den Akker (2007) states that there are mul-
tiple questions that should be asked when you are creating a curriculum.
(Van den Akker, 2007) defines the following questions:

e What do they need to learn?
e What are they learning?

e How are they learning?

e What is the teacher’s role?

e What do they use to learn?

e With whom are they learning?
e Where are they learning?

e When are they learning?

e How are they being assessed?

These are a lot of questions, but they tackle the core principle when cre-
ating a curriculum. To define structure when asking these questions about
how to integrate programming on primary schools, we apply the framework
introduced by Magnusson, Krajcik, and Borko (1999). They had developed
this framework with taking into account the specific pedagogical aspects.

”The figure can serve as a map for planning science teacher education expe-
riences and for specifying desired knowledge outcomes of those experiences.”
(Magnusson et al., 1999)

The "figure” they are referring to, is the following: Goals and objectives,
Students’ understanding, Instructional strategies and Assessment. We use
the framework that is provided by Magnusson et al. (1999) combined with
the design questions of Van den Akker (2007).

2.1 Goals and objectives

When teaching a subject, whether it is programming or computational
thinking, a clear scope needs to be defined. This way we know when a
certain set goal has been achieved. When setting a goal, in the field of
programming, there are different angles of approach you can take to obtain
a goal, as stated by research done by Robins, Rountree, and Rountree (2003).

The first one is the comparison between an expert and a novice. In the
definition of an expert or the definition of a novice a lot is left open to in-
terpretation. Primary school cannot be defined as a single type or constant.
It contains children from different ages: 4 to 12 years old. Therefore, there
is a difference in skill level within this broad group. The first time someone
comes into contact with a programming course they are, as of the defini-
tion, a novice in that specific area. But it is not the same ’level of novice’
per grade. At every age a child has more life experiences and it is more
developed than the year before. This is described in the way information
can be presented to children in different age groups. Every grade is more
experienced and can understand more than the grade below.

Bybee (2011) has come to that same conclusion, but with regards to the
tools children can use. ”In the early grades, students can learn to use ap-
propriate instruments (e.g., rulers and thermometers) and their units in
measurements and in quantitative results to compare proposed solutions to
an engineering problem. In upper grades, students can use computers to
analyze data sets and express the significance of data using statistics.”

An example of this increasing difficulty are mathematics lessons on pri-
mary school. All throughout primary school we have had mathematics.
Every year a couple of hours a week. Every year learning new things
about the field of mathematics. Mathematics does not have a general
book on how it should be taught. It is a carefully constructed curriculum
to suit the capabilities of the grades, specified for each year. Teaching
programming in K-6 must have the same framework.

van Bekkum (2017) integrates this problem in his proposed curriculum.
He states that the described level of difference is essential in designing a
curriculum. For each grade a different, higher and more difficult level of
understanding of the grammar of programming. He states the following
learning goals: algorithm, decomposition, patterns, repetition, errors, pre-
requistes, abstaction, function, variable and representation. (van Bekkum,
2017).

As long as the children do not notice the transition in subject, it is an
indication that they are capable of performing this next step in understand-
ing programming or a specified concept of computational thinking, and that
a previous set goal has been achieved. Bybee (2011) refers to this as a stan-
dard experience.

After the comparison between an expert and a novice comes the compar-
ison between comprehension and generation (Robins et al., 2003). When
the information is taught, do they understand the holistic view of the basis
of programming or are they only able to generate a logical answer to the
presented problem question.

Let us emphasize this distinction of comprehension versus generation
with a real life example. We can teach a child how to build a house
using LEGO blocks. First we build a house with all sorts of blocks and
it looks like a firm and steady house. When you ask a child to also
build a house out of LEGO there are two types of approaches it may
take. The first one is copy behaviour (generation). It sees the house
you build and it starts to build the house according to the visuals of the
house we have built. This way the foundation of building a house is not
taken into consideration. The second way is building with a foundation,
starting by building a base and building a house from the ground up
(comprehension).

It is important that there is a understanding of how the house is built.
When introducing a introductory programming course the same applies. It

is necessary that the children are able to generate an assessable product
in the end, a product generated via comprehension instead of replication.
If a teaching exercise is presented during class, children between K-12 are
expected to generate a solution via comprehension. Planning and carrying
out investigations to get a better understanding in solving a problem should
be the standard experience in every k-12 classroom (Bybee, 2011).

Not only the representation and the framework are important criteria for
the teaching programming for student k-6. Linn and Dalbey (1989) proposes
a ‘chain of cognitive accomplishments’ of learning goals, that should arise
from ideal computer programming instruction. This chain of accomplish-
ments forms a good summary of what could be meant by deep learning in
introductory programming. This chain is defined as follows:

e The first link is the features of the language being taught
e The second link is design skills

e The third link is problem-solving skills

This chain defines the way the cognitive accomplishments are introduced
into the curriculum of the student.

Explanation of the chain of cognitive accomplishment: First, the stu-
dent needs to understand the language the program uses. Without the
understanding of the language or the usage of the tool a learning pro-
cess cannot be enabled. This also applies to learning how to talk for
example. If you do not know the words used in a specific language, it
is nearly impossible to construct complete and correct sentences. This
is the first link used by Linn and Dalbey (1989) and the second phase
used by Zaharija, Mladenovi¢, and Boljat (2013). Once the basic under-
standing of the language or tool has been established, the second link
and third phase both state that the children/students now must learn
how to use the language or tool to create a solution, i.e. understanding
how multiple separate aspects can work together to create a coherent
whole. After these stages, the children are able to use the language
or tool properly. This brings us to the final and third link and fourth
phase, executing the knowledge about the language or tool to a real life
problem.

Zaharija et al. (2013) describes a more recent study that used a different
version of this ’chain of cognitive accomplishments’. This study worked
with four different phases, as compared to the three used by (Linn & Dal-
bey, 1989). It is a good example on why these steps are a solid basis for

each curriculum.

By using these steps, the underlying problem will be addressed and no result
is obtained via trial-and-error (Zaharija et al., 2013).

When we look at Van den Akker (2007) the two questions that should be
asked are: what do they need to learn? And what are they learning?

When the learning goal 'what do they need to learn?’ has been established,
smaller simpler goals must be set to achieve that goal. This is defined as
the learning content which answers the question 'what are they learning?’.

The context of teaching and learning how to program on primary schools
is a small scope. This is because children from ages k to 6 are not suscep-
tible to understanding the more advanced terms and understandings that
are connected to programming. You cannot start with explaining iteration,
recursion or loops (McCalla & Greer, 1993). How to solve these obstacles,
brings us to the pedagogical side of teaching a primary school.

2.2 Students’ understanding

One of the most important aspects to consider when implementing a new
course in the curriculum, are the students that are being taught. We are
looking at introducing a programming course in Dutch primary schools.
This contains children from the ages four or five to ages at twelve or thir-
teen. This is defined as K-6 (kindergarten to twelve years old). School is not
only meant to teach children pure knowledge. Primary school is much more
than a phase in which the children must absorb knowledge. It is the first
time they come into contact with a lot of other things. They learn about
making friends, what sport they like, they develop interest in activities and
learn about what is right and wrong. Therefore, this is a difficult group to
study.

Pointed out by Lye and Koh (2014) a better understanding is necessary
of the students’ engagement. The children on primary school are ranging
from the ages 4 to 12. In all cases we know that concentration for a longer
period of time is difficult for these children. Focusing on a task they are not
interested in, is difficult as well. Therefore, the main task from a teachers’
point of view is engaging the children in the task at hand (Duncan & Bell,
2015).

The engagement of the students combined with the not yet developed cog-

nitive capabilities of the children, results in the fact that complex problems
cannot be presented to children. Since reducing a problem into smaller sub-
problems is not possible for the children (Robins et al., 2003).

2.3 Instructional strategies

There are many different forms of education for children from k-6. Teaching
programming has two ways in which it can be presented to the students:
plugged and unplugged education. Plugged education is with the usage of a
digital device whereas unplugged education is relying on tangible materials
(Saxena, Lo, Hew, & Wong, 2020).

Other then plugged or unplugged programming, we could also take a look
at what form of representation is used to present the problem. It can be
presented as a visual or textual problem. The difference between visual and
textual is what object is used to represent the problem that the student
needs to solve. Visual representation is by means of an object, drawing or
other non-textual visual image whereas the textual representation is purely
based on representation via text.

When designing and presenting instructions, for students from k to 6, it
is important to realise that without guidance on the cognitive aspects of
computational practices and computational perspectives, the programming
experience may be non-educative as students are not actively reflecting on
their experience (Grover & Pea, 2013). They could be merely doing it in the
trial-and-error mode rather than thinking as they are doing. This also refers
to the section about comprehension as described in the goals and objectives
chapter.

The implication described by Grover and Pea (2013) holds the same value
for visual programming in k-6. These students need to work within a certain
framework that is understandable from a cognitive point of view. A trial-
and-error mode does not have the preference over a thinking-doing strategy.
A thinking-doing strategy is also proposed by Lye and Koh (2014). Be-
cause of this implication, a framework must be kept simple (Grover & Pea,
2013). This way a focus on the task at hand is favoured. Bybee (2011) also
suggests that a framework must be kept simple. Therefore, Bybee (2011)
proposes that lower grades should different, more easy to use, tools than
higher grades. Because the usage of a tool should not be an implication in
the learning process.

From the questions that we asked based on Van den Akker (2007), we
see that the most questions are applicable to the subsection instructional
strategies, based on Magnusson et al. (1999).

e How are they learning?

e What is the teacher’s role?

What do they use to learn?

With whom are they learning?

Where are they learning?

e When are they learning?

Since these questions form the basis of what is being learned and how it is
taught, many of the questions were expected to be answered in this section.
This is due to the fact that, as said by Van den Akker (2007):

”"The components of learning activities, teacher role, and materials & re-
sources are at the core of the micro-curriculum in the classroom.”

We are looking at introducing programming in primary schools. Thus, we
already know the answers with regards to the questions; with whom are they
learning? Where are they learning? When are the learning?

Our focus will therefore be on the questions raised by the core of the micro-
curriculum. These components refer to the following questions:

1. How are they learning (learning activities)?
2. What is the teachers’ role (teachers’ role)?

3. What do they use to learn (materials and components)?

To answer the question how are they learning, we take a look at the state-
ment made by Lye and Koh (2014). When considering a teaching method
the researchers looked at the different intervention approaches. When trying
to introduce computational thinking they described four methods:

”They are reinforcement of computational concepts, reflection, and informa-
tion processing and constructing their own programs” (Lye & Koh, 2014).
The reflection method and the information processing method were only
evident in higher education. Thus, not useful for studying students who
attend primary school. This leaves the other two methods to be examined
as answers on the question: how are they learning? Both those methods,

10

reinforcement of a concept and constructing their own program, can oper-
ate as a stand alone teaching method, but they can also co-exist. A form
of reinforcement on a small program, created by the student, contains both
methods as described by Lye and Koh (2014).

The second question we need to answer is: What is the teacher’s role?
A concluding argument about the participation and the functionality of the
teacher in the class is not a point of focus for this review. However, the
participation will be evaluated partly, because the way in which information
is presented to the students will be analyzed later on in this review.

The last question we need to answer in the section of instructional strate-
gies based on Van den Akker (2007) is: What do they use to learn? The
main difference is what is being used as a tool when we look at plugged
programming. These are different applications designed to let the students,
k-9, focus on concrete physical motion (Duncan & Bell, 2015). The most
common applications amongst case studies are: Logo, Scratch, Scartch Jnr.,
Dr. Scartch, Lego with the usage of CHERP and Game Maker Studio.

Since unplugged programming does not use computers at all. The learn-
ing process can be done, for example, with cards that contain instructions.
Thus, creating a chain of actions that can be taken (Jeuring et al., 2016).
It can also be done with every tangible object as long as that object can
represent a chain of actions.

Answering the question with all the specific tools will be answered in the
chapter containing the results.

2.4 Assessment

If we consider teaching and the education as a systematic approach, we can
define teaching as any other system. It has a defined input. A process occurs
over this input, which results in an output. Over this process we can check,
assess, features of our system (Yiiksel & Giindiiz, 2017).

Assessment as we know it comes in two forms: formative assessment and
summative assessment. This last form, summative assessment, is very com-
mon in the educational world (Yiiksel & Giindiiz, 2017). Summative assess-
ment is defined as obtaining data to assess how much a student has learned
at the completion of a course (Dixson & Worrell, 2016). Typical examples
of summative assessment is an written exam, a final project or a final paper.
It is an evaluation of a student at the end of a learning process against a
benchmark of some kind.

11

Formative assessment is done by gathering data for improving the learn-
ing process of the student (Dixson & Worrell, 2016). Via monitoring the
student’s learning process and providing feedback and insights, the student
can improve its own learning. Examples of formative assessment is any form
where continuous feedback is given to the student: assessment for learning.
Common forms are emphasizing a students strengths and weaknesses, talk-
ing about topics that are difficult for the student or summarizing lectures
to check whether the student had understand the lecture.

In the educational system the most common form of assessment is sum-
mative. A final test at the end of a curriculum to test whether the student
understands the learning content and has reached to learning goal. When
it comes to an introductory programming course at a primary school a fi-
nal test at the end of the course is not as common. As stated by Lye and
Koh (2014) most of the research examines the programming process. The
programming process was, in most cases, captured by observation. The re-
searchers suggest that in the future a think-aloud method, where the student
says what he thinks could be beneficial to better assess the process. A hin-
drance in the think-aloud method of assessment is that it does not work in
a classical setting due to overlapping noises. This impairs the concentration
level and, may, influence their thought processes. Therefore, a think-aloud
method of assessment is only functional when assessed individually.

It has been established that formative assessment is important in the learn-
ing process of the student, but defining and integrating this form of assess-
ment in the classroom has been shown to be a rather difficult task (Antoniou
& James, 2014).

Important for any form of assessment is that all the different barriers that
are present for each individual student must be taken into account when de-
signing these assessments (Council et al., 2012). The student must be solely
assessed if he or she reached the learning goal. Therefore, it cannot be too
difficult to understand the assessment form or have any other obstructions.
The last question we need to answer with regards to Van den Akker (2007)
is: how are they being assessed? As defined above, this varies. It can be a
summative final test or final project but formative assessment is more com-
mon compared to summative assessment. This is because most of the topics
of programming are too difficult to teach to students who attend primary
school. Recursion, iteration, complexity or writing an entire textual program
is too hard. As said in the subsection about instructional implications, a
student needs to understand the basics first.

12

Chapter 3

Aim of the study

The research question we are asking is the following:
What do we know about teaching programming in primary education?

The study will be based on a mix literature reviews and case studies. A
overview of this study are will be created based on other reviews. A so
called review of reviews. This way existing gaps in this study area can be
identified (Gough, Oliver, & Thomas, 2017).

The theoretical aspects of the results will be based around four themes:
goals, students, instruction and assessment. The research question will,
therefore, be divided in four sub-questions. These questions are:

e What is known about teaching programming in primary education
with regards to the goals and objectives?

e What is known about teaching programming in primary education
with regards to the students’ understanding?

e What is known about teaching programming in primary education
with regards to the instructional strategies?

e What is known about teaching programming in primary education
with regards to the assessment?

13

Chapter 4

Method

When evaluating a selection of articles to implement programming in ele-
mentary schools, there are multiple questions that come mind. There are
many variables that should be taken into account when trying to figure
out the best solution for this implementation. We have chosen to create a
framework based on the variables states by Magnusson et al. (1999):

1. Goals and objectives

2. Students’ understanding
3. Instructional strategies
4. Assessment

We took a look at what has been researched and what has been done, with
regards to these four various aspects. When the articles have been analysed,
we looked for different patterns that may or may not exists in these results.
We tried to find a correlation between the articles and the case studies.
What has been done to the extend in which there could be a conclusion and
which aspects do still need further exploration when it comes to research.

4.1 Literature

A literature search was conducted to find relevant articles for this thesis.
Academic search engine Google Scholar was used to collect and select stud-
ies.

4.2 Search terms

The used search terms were (computational thinking OR programming OR
programming languages OR game making OR coding) AND (elementary
school OR, primary education OR middle school OR high school OR K-6

14

OR K-12) AND (plugged-in OR unplugged) AND (learning OR assessment
OR teaching) AND (review OR case study).

Computational thinking was used as a search term since a lot of original
studies, regarding programming, used a computational concepts as learning
goal.

4.3 Selection criteria

Year of publication: only original empirical studies published in 2010 or
later were included in this thesis.

Publication format: peer-reviewed articles published in scientific journals
or as chapters in study books were included.

Content: included articles describe an original study or a review study of
the introduction of programming or computational thinking in primary or
secondary education, up to K-12. The study introduces a specific method
for programming education, i.e. a tool, an online program, a game or a
simulation.

Age: studies focusing on teaching programming for children up to 12th
grade, were included for the (theoretical) background of this thesis. This
involves children up to the age of 18. The focus of articles presenting specific
original studies (described in the result section of this thesis) was on K-6
level education, displaying a population of children up to the age of 12.

Study design: the original studies present qualitative research with a fo-
cus on the development of computational thinking in a group of children
of a specified age, in a specified environment, applying a specified learning
task.

4.4 Article selection

Using the search terms and applying the selection criteria described above,
2550 hits were obtained. After deliberate consideration on source and rele-
vance, a total of 40 articles (23 reviews and 17 case studies) were included
in this study.

15

Chapter 5

Results

When going over the found results, the following was taken into account:
first of, we only looked at original studies of recent years. The studies we
were interested in, are the ones conducted from 2010 onwards (younger than
2010). This decision was made to ensure that the research performed was
done with more recent technology. Since we wanted to sketch an image of the
near past and the current state of the introduction of programming in pri-
mary schools, we only take original studies of which the studied group is k-6.

A total amount of 17 original studies were included in the results. This
is after all the selection criteria were met. The results that have been found
were concluded from research that has been conducted in various countries.
The countries that were present in the data are: Greece, Scotland, Spain,
Indonesia, Canada, United States of America, Germany, Chile and Turkey.
Since we wanted to study the question; what has been done? It was impor-
tant to include various tools and teaching methods in the results. The found
results will be described in the following subsection with more details. Each
subsection will try to analyse the results, with regards to the structure as
we have defined throughout this paper by using Magnusson et al. (1999).

5.1 Goals and objectives

The goal and the objective is the initial start of each research (as defined in
the chapter: Background). In this chapter we have also stated that a goal
and objective is twofold. The goal and objective is divided in; the learning
goal and the learning content.

The learning goal is in most studies the same. The goal that most studies
want to achieve is to improve the thought process of the students by improv-
ing their understanding of computational concepts. Papadakis, Kalogian-
nakis, and Zaranis (2016), Wilson, Hainey, and Connolly (2013), Séez-Lépez,

16

Roméan-Gonzilez, and Vazquez-Cano (2016), Jenson and Droumeva (2016),
Moreno-Leén, Robles, and Romén-Gonzélez (2015), (Gregg, Tychonievich,
Cohoon, & Hazelwood, 2012), Brackmann et al. (2017), Leifheit, Jabs, Nin-
aus, Moeller, and Ostermann (2018), del Olmo-Munoz, Cézar-Gutiérrez,
and Gonzalez-Calero (2020), Tsarava et al. (2017) and Kazakoff, Sullivan,
and Bers (2013). All state that their learning goal is to see if their teaching
methods results in improving the students’ understanding of computational
concepts. There are different learning goals that teachers want the students
to achieve. Understanding of computational concepts in taught via different
concepts.

These concepts may vary. When the students are using a tool we can see
different ways in which the students come into contact with these concepts.
Examples are; the understanding and using of variables in solutions, un-
derstanding of basic operations of the learning tool, the understanding and
usage of sequencing or the usage of conditionals in problem solving. How-
ever, in most cases there was no true defined computational thinking aspect
that the students needed to achieve.

Other original studies focused more on improving the problem solving skills
of the students (Fessakis, Gouli, & Mavroudi, 2013), (Pardamean, Evelin,
& Honni, 2011) and (Kalelioglu & Giilbahar, 2014), i.e. learning how de-
composition works, breaking down a bigger problem into smaller problems.
The third, and final, learning goal that was established was to teach the
understanding of the basic concepts of computer science or software engi-
neering. This varies from creating a game (Forster, Forster, & Lowe, 2018)
(Gutierrez et al., 2018) to programming a robot (Bers, Flannery, Kazakoff,
& Sullivan, 2014).

‘ Amount of original studies
CT concepts 11
Problem Solving 3

Software Engineering | 3

The complementary part to the learning goal was the learning content. Ev-
ery study teaches in the use-modify-create method as described by Waite
(2017). The studies can be divided in the actions they were performing to
attain knowledge to achieve the learning goal. We can divide the learning
content in one main class that contains three different sub-classes. The main
class is the complete program. The learning content changes every hour, ses-
sions, weeks to provide a complete introductory course (del Olmo-Munoz et
al., 2020) (Tsarava et al., 2017) (Kalelioglu & Giilbahar, 2014) (Bers et al.,

17

2014) (Kazakoff et al., 2013). In these complete programs every sub-class is
present. The sub-classes, of the learning content, are:

e The student has to move an object via the use of commands from one
place to the other. (Papadakis et al., 2016) (Fessakis et al., 2013)
(Pardamean et al., 2011) (Brackmann et al., 2017)

e The student has to build an object or program. (Wilson et al., 2013)
(Jenson & Droumeva, 2016) (Moreno-Leén et al., 2015) (Forster et al.,
2018) (Kalelioglu & Giilbahar, 2014)

e The student is learning via a platform where to student can play with
pre-existing applications. (Sdez-Lépez et al., 2016) (Gregg et al., 2012)

(Leifheit et al., 2018)

The ratio, between the different styles of learning content, is as follows:

Amount of original studies

Complete Programs | 5
Move 4
Build 5
Play 3

5.2 Students’ understanding

The second aspect from (Magnusson et al., 1999) was the students’ under-
standing. The common theme when studying primary school students is
that there is a form of instructional implication. Trying to teach them a
programming topic, or explain the problem at hand, can result in misun-
derstandings or different interpretations. These are to be divided into 3
sub-topics within instructional implications:

1. Cognitive skills
2. Pedagogical development

3. Difference between genders

The cognitive skills of children, on primary schools, is seen as an impair-
ment when teaching programming. Introducing programming in the early
grades is difficult. This is because understanding programming goes hand

18

in hand with understanding different levels of abstraction. We can tackle
this problem by introducing problems for the children that they can relate to.

Zaharija et al. (2013) states that one of the difficulties was that children
at that age have not yet developed abstract, hypothetical thinking. Because
of that they can only solve concrete real world problems. Jonassen (2011)
says that all teaching materials should be anchored in an authentic problem
that is relevant to the learner. He does not specifically state that this is the
case for children, but his theory applies to all types of students. Therefore,
we can conclude that the children can relate to a physical, concrete problem.

This conclusion aligns with the thoughts of Piaget (1976) described in the
context of k-8 by Council et al. (2007). During the Preoperational Stage (2
- 7 years), a beginning of understanding objects symbolically begins. This is
followed by the Concrete Operational Stage (7 - 11 years), where the devel-
opment of logical thought begins. A true understanding of abstract objects
or abstraction in general is not developed until Formal Operational Stage
(11 years and over). The difference in the teaching of abstraction to chil-
dren attending primary school can be seen in the research done by Lindberg,
Laine, and Haaranen (2019). The grades 1-3 are taught different topics of
programming and abstraction than the grades 4-6.

To understand which level of steps can be taken, we take a look at what
Bloom et al. (1956) tells us. He described the multiple levels of under-
standing that exist. It is called Bloom’s taxonomy. The different levels are:
remember, understand, apply, analyze, evaluate and create. This relates to
the, earlier discussed, learning goals. Setting a realistic goal that levels with
the cognitive understanding of the children is difficult when it is in preoper-
ational stage or when it is in the concrete operational stage (Piaget, 1976).
When teaching children it should be about the development of cognitive
skills instead of pure code. The competence model applies to programming
and should be taken into consideration when designing a curriculum: un-
derstanding, usage, communication and strategy (van Bekkum, 2017).

Cognitive skills are only mentioned in two of the seventeen original studies.
Besides Zaharija et al. (2013), (Fessakis et al., 2013) mentions the cognitive
skills of the students. They stated that a minor problem was the under-
standing of the software interface. The children could locate the ladybug
and the leaf, but not yet understand the concept of navigation. Also was
there a problem with orally expressing what they wanted (Go up’ - instead
of turn left). The other studies did not mention any form of instructional
implication because of a cognitive impairment. The second sub-topic was
pedagogical development. Pedagogical development or pedagogical impair-
ment has had no remarks within any of the original studies. A difference in

19

the degree of development between classmates can be an impairment. How-
ever, none of the studies showed this.

The defined implications are applicable to both genders. As stated by
Jeuring et al. (2016) the fun boys and girls have in programming, in pri-
mary education, is almost equal. This translates to the fact that there is
no difference in the ability the learn how to program between the two dif-
ferent genders. This research was done on the subject on programming on
elementary school. So we assume that there is no significant difference in
performance between boys and girls between the ages of 4 through 12. In
the original studies it was not stated to be a central subject in the research.
However, six studies have mentioned some relation between genders. The
other studies did not mention the genders at all (except for the fact that
boys and girls participated in the research).

Of the six studies that mentioned gender, five studies had an almost 50-
50 percent participation rate of boys and girls (Moreno-Leén et al., 2015)
(Forster et al., 2018) (del Olmo-Munoz et al., 2020) (Gutierrez et al., 2018).
Jenson and Droumeva (2016) did not mention how many of the 67 students
were boys and how many were girls. Jenson and Droumeva (2016) mentioned
that girls were a bit more shy than boys in the class and they had a lower
active participation rate. They would not raise their hand as much and ask
fewer questions to the teacher. Furthermore, non of the studies could see
any significant difference in the performance or in the assessment of boys
and girls (Moreno-Leon et al., 2015) (Forster et al., 2018) (del Olmo-Munoz
et al., 2020) (Gutierrez et al., 2018).

5.3 Instructional strategies

The questions we asked on instructional strategies, based on Van den Akker
(2007) questions, were: What do they use to learn? How are they learning?
What is the teachers’ role?

The distribution is the following:

Amount of original studies

Plugged 13
Unplugged | 2
Both 2

Of the seventeen original studies, four used some form of unplugged method
(Fessakis et al., 2013) (Brackmann et al., 2017) (Leifheit et al., 2018) (Tsarava

20

et al., 2017). All of these methods used simple pen and paper to let the stu-
dents solve the problem at hand.

We have seen that fifteen original studies use some form of plugged teaching.
The following tools are being used in the plugged programming studies:

Amount of original studies
CHERP (Robotics) | 2

Scratch 7
Logo 2
Different application | 4

As we can see Scratch prevails. In this total the variations on the Scratch
software are also included. This number includes the studies that use Dr.
Scratch (Moreno-Leén et al., 2015) (Gutierrez et al., 2018) and the study
that uses Scratch Jr. (Papadakis et al., 2016). The other studies that
use Scratch are Wilson et al. (2013), Sdez-Lépez et al. (2016),Forster et al.
(2018) and Kalelioglu and Giilbahar (2014). Scratch is followed by Logo
(Fessakis et al., 2013) (Pardamean et al., 2011) and CHERP that is being
used with TabgibleK by Bers et al. (2014) and with LEGO Education We-
DoTM Robotics Construction Sets by Kazakoff et al. (2013). The last stud-
ies all use a different application or website to teach the student. Jenson and
Droumeva (2016) uses Game Maker Studio, Gregg et al. (2012) uses EcoSim,
del Olmo-Munoz et al. (2020) uses the website code.org and Tsarava et al.
(2017) uses the application MIT AppInventor.

When we take a look at plugged teaching, we also seperated the usage
of textual and/or visual programming. The applications were divided as
follows:

‘ Amount of original studies
Visual 15
Textual | 0

The following questions that must be answered are: How are they learn-
ing? And the question, what is the teachers’ role? These questions will be
answered in a combined answer. To separate the different ways of learning
of how the teacher is involved, we take look at the possible ways to teach
students:

e classical. This is with a teacher in front of the whiteboard or digiboard
explaining the subject. A professional will explain the matter to the
novice student.

21

e Project based. Students will be learning via the means of a project.
The students must create the project. It will follow a manual or work
towards a goal. At any point in time the student may ask a tutor or
teacher for advice or help. This way the student will never get stuck.

e Mixed. A mixed combination where the teacher or tutor first teaches
classical, followed by a project. These project are, most of the time, a
group project.

When we took a look at the original studies, the following results were
obtained:

Amount of original studies

Classical 0
Project based | 3
Mixed 14

Zero studies were conducted on the, traditional, classical way of teach-
ing. Project based teaching was in the case of Sdez-Lépez et al. (2016),
Pardamean et al. (2011) and Jenson and Droumeva (2016). By far the most
studies were a mix of both. In all the cases there first was an introductory
classical part, followed by a project that the students had to do in pairs or
groups. In all these cases there was a teacher or tutor present to answer
possible questions (Papadakis et al., 2016) (Wilson et al., 2013) (Fessakis
et al., 2013) (Jenson & Droumeva, 2016) (Gregg et al., 2012) (Brackmann
et al., 2017) (Leifheit et al., 2018) (Forster et al., 2018) (del Olmo-Muiioz
et al., 2020) (Tsarava et al., 2017) (Gutierrez et al., 2018) (Kalelioglu &
Giilbahar, 2014) (Bers et al., 2014) (Kazakoff et al., 2013).

The duration of each of these interventions differs. The shortest intervention
was the workshop given by Moreno-Leén et al. (2015) and the longest was
the course given by Pardamean et al. (2011), which had a total of 16 session
of 40 minutes of a 8 week period. All the other studies are between these
lengths.

5.4 Assessment

The last segment of the Magnusson et al. (1999) subjects is the one about
assessment. When it comes to teaching programming the most important
part is that progress can be tested or monitored (van Bekkum, 2017). In
the background we have described two ways in which assessment can take
place, i.e. formative or summative. That is also the question that Van den
Akker (2007) asked. How are they being assessed?

22

‘ Amount of original studies

Formative 1

Summative | 16

The only formative assessment that was done, was done by Gregg et al.
(2012). As stated: ”The researchers did not perform formal assessments
(e.g., tests or deadlinebased homework). However, they reviewed the stu-
dents’ work regularly and gave feedback often.” (Gregg et al., 2012). This
is a classical example of a formative assessment. The other sixteen studies
all did some form of summative assessment. These assessment are divided
in pre-test and post-test, assessment done via an observer or a combination

both.

Amount of original studies
Pre-post test | 11
Observer 3

Combination | 2

From the pre-post test studies there were studies that used regular questions
as pre-post test (Fessakis et al., 2013) (Pardamean et al., 2011) (Leifheit et
al., 2018) (del Olmo-Mufioz et al., 2020) (Kalelioglu & Giilbahar, 2014)
(Kazakoff et al., 2013). Brackmann et al. (2017) used multiple-choice ques-
tions. There are two studies that used the application function as Dr.
Scratch (Moreno-Leén et al., 2015) (Gutierrez et al., 2018). This appli-
cation assigns a grade from 1-3 to certain computational thinking concepts
based on your coding. Furthermore, Forster et al. (2018) assessed a project
based on pre-established coding criteria and did Tsarava et al. (2017) use a
reward system via badges.

The summative assessment via a general observer was done by Papadakis
et al. (2016), Wilson et al. (2013) and Bers et al. (2014). A combination
of these two methods was found in Wilson et al. (2013) and Jenson and
Droumeva (2016).

23

Chapter 6

Conclusion & Discussion

Goals and objectives

Going over the results of this section the first thing that must be noticed
is that the main focus of these studies lays on the goal of teaching com-
putational concepts. What these concepts are varies per study. This can
be a bit confusing since there is no clear definition of what ”computation
thinking concepts” are. For example, the ability to ”solve a problem” can
also be seen as a computational concept since problem solving has a focus
on ’decompositional’ thinking and sequence of actions (cause-effect). The
same goes for the studies that focus on Software Engineering. These studies
start with focusing on the understanding of abstraction, which can be seen
as a computational thinking aspect as well.

Setting a goal needs to be clear. What the goal is may vary as long as
the goal has some relationship with computational thinking. Computa-
tional thinking is the basis for teaching programming in the future, since
textual programming languages are far too complex for students of this age
to understand.

Students’ understanding

Defining the sub-topics in the original studies was difficult. A lot of review
studies did mention this. An explanation for why there was nothing or little
to say about cognitive skills or pedagogical impairment can be given by the
fact that the tools used are already created with some pedagogical impair-
ments in mind. That is why the tools have big buttons, lots of colors and
are easy to use, as the developers know what impairments students between
the ages of four and twelve have. Furthermore, most of the lessons given
are short and at most two times in one week. This may add to the chil-
dren’s motivation on the subject. However, as described in the studies, it is
difficult to discuss the children’s motivation since some of the courses were

24

based on students that entered on a voluntary basis. Thus, it was not part
of their regular curriculum. Motives to participate in such programs were
not further discussed.

In conclusion it can be stated that these aspects were not the main focus
points of all the studies. It is important to keep the cognitive capabilities
of the students in mind, as well as the pedagogical impairments. This is
mostly already done by the tool that is being used and the teacher or school
that is presenting or teaching this subject.

Instructional strategies

With regards to the instructional strategies it is pretty clear that the in-
struction and project must be a form of visual programming. Whether it is
dragging blocks or clicking on buttons, it needs to be visual. This is based
on the fact that all the found and tested tools used a visual programming
interface. This can be derived of the basis that the textual concepts are
too difficult. A plugged visual programming course will, as shown, have the
advantage over alternative methods.

We can also conclude that the classical way of teaching is not as conventional
as it used to be. None of the studies chose this way to teach. This makes
sense, since the subject that is being taught is how to program. Learning
how to program, learning how to build and create will be difficult to learn if
the matter is only taught in the classical way. Interaction and create-modify
has been found necessary.

Assessment

Summative assessment is the more traditional assessment, but we are trying
to find a way to make assessing more formative. However, it is hard to find a
way to replace this summative way of assessing. Assessing the performance
and knowledge of a student against a pre-defined benchmark is still the eas-
iest way. It will take a lot more effort to come up with an effective way to
make formative assessment the standard. Formative assessment takes too
much time and effort to assess all the individual students and provide them
with solid feedback. Until this can be made more effective, there will not be
any change coming soon.

When we assess all the reviews and the original studies we can see a clear
trend. All these courses and studies focus on the precursor to textual pro-
gramming: introducing some form of computational thinking. Various tools
exist which are solely created to be used by primary school children for
learning these concepts. They are proven to be successful in increasing the

25

understanding of the basic computational concepts. However, we need to
keep in mind that all the review studies and original studies that have been
studied, are studies that have been done outside of the Netherlands. Each
country has its own culture and own ways of teaching. You cannot provide
one single answer when it comes to introducing a new curriculum into an
existing program. The same goes for introducing programming on primary
schools. It has been shown that there are a lot of ways to introduce some
type of introductory programming courses via the use of various e-tools and
applications or introducing these concepts unplugged. This just needs to
find its way into our present study program on the primary schools!

26

References

Antoniou, P., & James, M. (2014). Exploring formative assessment in
primary school classrooms: Developing a framework of actions and
strategies. Fducational Assessment, Evaluation and Accountability,
26(2), 153-176.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Com-
putational thinking and tinkering: Exploration of an early childhood
robotics curriculum. Computers & Education, 72, 145-157.

Bloom, B. S., et al. (1956). Taxonomy of educational objectives. vol. 1:
Cognitive domain. New York: McKay, 20, 24.

Brackmann, C. P., Romén-Gonzalez, M., Robles, G., Moreno-Leén, J.,
Casali, A., & Barone, D. (2017). Development of computational
thinking skills through unplugged activities in primary school. In Pro-
ceedings of the 12th workshop on primary and secondary computing
education (pp. 65-72).

Bybee, R. W. (2011). Scientific and engineering practices in k-12 classrooms.
Science Teacher, 78(9), 34-40.

Cambridge international dictionary of English, p., year=1995. (n.d.). Cam-
bridge international dictionary of english.

Council, N. R., et al. (2007). Taking science to school: Learning and teaching
science in grades k-8. National Academies Press.

Council, N. R., et al. (2012). A framework for k-12 science education:
Practices, crosscutting concepts, and core ideas. National Academies
Press.

del Olmo-Munoz, J., Cézar-Gutiérrez, R., & Gonzilez-Calero, J. A. (2020).
Computational thinking through unplugged activities in early years of
primary education. Computers & Education, 150, 103832.

Dixson, D. D., & Worrell, F. C. (2016). Formative and summative assess-
ment in the classroom. Theory into practice, 55(2), 153-159.

Duncan, C., & Bell, T. (2015). A pilot computer science and programming
course for primary school students. In Proceedings of the workshop in
primary and secondary computing education (pp. 39-48).

Fessakis, G., Gouli, E., & Mavroudi, E. (2013). Problem solving by 5-6 years
old kindergarten children in a computer programming environment: A
case study. Computers & Education, 63, 87-97.

27

Forster, E.-C., Forster, K.-T., & Lowe, T. (2018). Teaching programming
skills in primary school mathematics classes: An evaluation using game
programming. In 2018 ieee global engineering education conference
(educon) (pp. 1504-1513).

Gough, D., Oliver, S., & Thomas, J. (2017). An introduction to systematic
reviews. Sage.

Gregg, C., Tychonievich, L., Cohoon, J., & Hazelwood, K. (2012). Ecosim:
a language and experience teaching parallel programming in elemen-
tary school. In Proceedings of the 43rd acm technical symposium on
computer science education (pp. 51-56).

Gresnigt, R., Taconis, R., van Keulen, H., Gravemeijer, K., & Baartman,
L. (2014). Promoting science and technology in primary education:
a review of integrated curricula. Studies in Science Education, 50(1),
47-84.

Grover, S., & Pea, R. (2013). Computational thinking in k—12: A review of
the state of the field. Educational researcher, 42(1), 38-43.

Gutierrez, F. J., Simmonds, J., Hitschfeld, N., Casanova, C., Sotomayor,
C., & Pena-Araya, V. (2018). Assessing software development skills
among k-6 learners in a project-based workshop with scratch. In 2018
ieee/acm 40th international conference on software engineering: Soft-
ware engineering education and training (icse-seet) (pp. 98-107).

Ibisworld. (2019). Fastest growing industries in the us by revenue growth (%)
i 2020. https://www.ibisworld.com/united-states/industry
-trends/fastest-growing-industries/.

Jenson, J., & Droumeva, M. (2016). Exploring media literacy and computa-
tional thinking: A game maker curriculum study. Electronic Journal
of e-Learning, 14(2), 111-121.

Jeuring, J., Corbalan, G., Montfort, J., Es, N., Leeuwestein, H., et al. (2016).
Vorm en effect van programmeeronderwijs in het primair onderwijs
(No. UU-CS-2016-005). UU BETA ICS Departement Informatica.

Jonassen, D. (2011). Supporting problem solving in pbl. Interdisciplinary
Journal of Problem-Based Learning, 5(2), 95-119.

Kalelioglu, F., & Giilbahar, Y. (2014). The effects of teaching program-
ming via scratch on problem solving skills: A discussion from learners’
perspective. Informatics in Education, 13(1), 33-50.

Kazakoff, E. R., Sullivan, A., & Bers, M. U. (2013). The effect of a classroom-
based intensive robotics and programming workshop on sequencing
ability in early childhood. Early Childhood Education Journal, 41(4),
245-255.

Leifheit, L., Jabs, J., Ninaus, M., Moeller, K., & Ostermann, K. (2018).
Programming unplugged: An evaluation of game-based methods for
teaching computational thinking in primary school. In Fcgbl 2018 12th
european conference on game-based learning (p. 344).

Lindberg, R. S., Laine, T. H., & Haaranen, L. (2019). Gamifying program-

28

ming education in k-12: A review of programming curricula in seven
countries and programming games. British Journal of Educational
Technology, 50(4), 1979-1995.

Linn, M. C., & Dalbey, J. (1989). Cognitive consequences of programming
instruction. Studying the novice programmer, 57-81.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of
computational thinking through programming: What is next for k-
127 Computers in Human Behavior, 41, 51-61.

Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and
development of pedagogical content knowledge for science teaching.
In Ezamining pedagogical content knowledge (pp. 95-132). Springer.

McCalla, G. I., & Greer, J. E. (1993). Two and one-half approaches to
helping novices learn recursion. In Cognitive models and intelligent
environments for learning programming (pp. 185-197). Springer.

Moreno-Leén, J., Robles, G., & Romén-Gonzalez, M. (2015). Dr. scratch:
Automatic analysis of scratch projects to assess and foster computa-
tional thinking. RED. Revista de Educacion a Distancia(46), 1-23.

Osborne, J., & Dillon, J. (2008). Science education in europe: Critical
reflections (Vol. 13). London: The Nuffield Foundation.

Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fun-
damental programming concepts and computational thinking with
scratchjr in preschool education: a case study. International Jour-
nal of Mobile Learning and Organisation, 10(3), 187-202.

Pardamean, B., Evelin, E., & Honni, H. (2011). The effect of logo program-
ming language for creativity and problem solving. In Proceedings of
the 10th wseas international conference on e-activities (pp. 151-156).

Piaget, J. (1976). Piaget’s theory. In Piaget and his school (pp. 11-23).
Springer.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching
programming: A review and discussion. Computer science education,
13(2), 137-172.

Saez-Lépez, J.-M., Roman-Gonzélez, M., & Vazquez-Cano, E. (2016). Vi-
sual programming languages integrated across the curriculum in ele-
mentary school: A two year case study using “scratch” in five schools.
Computers & Education, 97, 129-141.

Saxena, A., Lo, C. K., Hew, K. F.; & Wong, G. K. W. (2020). Designing
unplugged and plugged activities to cultivate computational thinking:
An exploratory study in early childhood education. The Asia-Pacific
Education Researcher, 29(1), 55-66.

Tsarava, K., Moeller, K., Pinkwart, N., Butz, M., Trautwein, U., & Ninaus,
M. (2017). Training computational thinking: Game-based unplugged
and plugged-in activities in primary school. In Furopean conference
on games based learning (pp. 687-695).

van Bekkum, W. (2017). Programmeren implementeren.

29

Van den Akker, J. (2007). Curriculum design research. An introduction to
educational design research, 37.

Waite, J. (2017). Pedagogy in teaching computer science in schools: a lit-
erature review (after the reboot: computing education in uk schools).
Online. (November 2017). Retrieved July, 24, 2019.

Wilson, A., Hainey, T., & Connolly, T. M. (2013). Using scratch with pri-
mary school children: an evaluation of games constructed to gauge un-
derstanding of programming concepts. International Journal of Game-
Based Learning (IJGBL), 3(1), 93-1009.

Wing, J. M. (2006). Computational thinking. Communications of the ACM,
49(3), 33-35.

Wodjao, T. B. (2020). A double-hurdle model of computer and internet
use in american households. Departement of Economics, Western
Michigan University. Fabrizio Carlevaro, Ywves Croissant, Stéphane
Hoareau, 49.

Yiiksel, H. S., & Giindiiz, N. (2017). Formative and summative assessment
in higher education: opinions and practices of instructors. Furopean
Journal of Education Studies.

Zaharija, G., Mladenovi¢, S., & Boljat, I. (2013). Introducing basic pro-
gramming concepts to elementary school children. Procedia-social and
behavioral sciences, 106, 1576.

30

