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Abstract

A known problem with neural networks is the lack of interpretability they
offer. This lack hinders the application of the technology to fields where
comprehensibility is critical, such as the judicial system. It also undermines
trust in the decisions made by neural network based systems. This paper
explores the application of knowledge gathered in the cognitive sciences to
the field of neural network interpretability. It seems that well established
experiments from psychology can also help us understand neural networks
behaviour and decisions. The hypothesis that I will test in this paper is the
claim that neural networks are simple featural classifiers.
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Chapter 1

Introduction

1.1 Context

In the last few years the role of artificial neural networks (ANN) has in-
creased dramatically within the fields of artificial intelligence and computer
science, as well as in the industry, with companies like Google and Face-
book investing heavily in creating frameworks and technologies surrounding
ANNs. This trend kicked of with Krizhevsky et al. publishing AlexNet
[13] in 2012, a convolutional neural network (CNN) which outperformed
the competition for the ImageNet Large Scale Visual Recognition Challenge
significantly. Following this the interest in so called deep learning archi-
tectures increased, as they could be trained for many different tasks and
achieve human like accuracy in many cases.

1.2 Explainability is an unsolved problem

Interestingly however our understanding of how exactly these networks reach
their conclusions has remained an open question. Neural network models
routinely have millions of parameters that are being learned, which makes
it hard to reason about them as a whole. There have been attempts to
understand trained models based on ANN algorithms by fitting a simpler
model to a part of the neural network, such as LIME [25] or FullGrad [32].
However these approaches obviously fall short of the goal of increasing the
general understanding of models created with deep learning architectures.
Other approaches such as models producing an explanation in addition to
their normal output, have an obvious shortcoming: the explanation itself is
created by a process we don’t understand, which makes the explanation just
as trustworthy as the regular output.



1.3 Inspiration from Cognitive Psychology

Yet another approach is to apply methods from cognitive psychology to
trained models in order to explain them the same way we try to explain
the mental processes of humans. Ritter et al. [26] used results from infant
research and applied them successfully to the domain of ANNs. The team
hypothesised that the shape bias found in human categorisation should also
exist in one-shot neural network models trained on object categorisation
tasks. They were able to show that indeed differently seeded ANN archi-
tectures were displaying different levels of shape bias. This lead to further
research into the shape bias as a property of a model, which in turn lead
to a study by Geirhos et al. [7], in which they showed that stronger shape
bias leads to higher accuracy and robustness of models and also showed how
to achieve that. This illustrates how promising this kind of research is and
why it helps us understand neural networks.

1.4 Neural Network Face Detection

In this research we want to apply cognitive psychology (CP) to face detection
in neural networks. Especially to the question as to whether neural networks
process faces one feature at a time (featurally) or as a whole (holistically).
Hinton et al. [27] proposed a new kind of neural network based on capsules,
that is directly inspired by theories from cognitive psychology. They are
trying to process objects as a whole, rather that just features. Wieland et
al [3] on the other hand have done research that shows how close a ”bag
of local features” model can come to state of the art CNN performance on
image data sets. This would imply that CNNs take a featural approach,
as the bag of local features does not take pose and location into account.
By using a cognitive psychology inspired approach, we can simultaneously
test the claims from both Hinton and Wieland. In order to do this, I will
measure the performance of networks with differing architectures on some
face processing tasks and compare them to human performance on the same
tasks. This allows us to use theories and concepts from human face detection
research for analysis and interpretation of NNs.

1.5 Human Face Detection

Similar to how we know about the shape bias in humans, we also know
about different properties of face detection in infants [23]. Face detection
in humans is a big research topic within the field of cognitive psychology.
Researchers are trying to create a complete model of how humans process
faces. To that end, one of the main questions that is being researched is
whether humans process faces by individual parts (featurally) or as a whole



(holistic). Multiple effects have been found during research that shape the
proposed models that are being discussed. Some of the most important
effects are ”Face Inversion” [35], " Thatcher Effect” [16] and ”Perceptual
Closure” [22].

1.6 Research Question

The main interest of this paper is exploratory in nature, as I want to under-
stand how feasible the cognitive psychology approach is for neural network
explainability research. So the main question is:

e Can cognitive psychology help us understand neural networks?

To that end, I will apply theories from cognitive psychology to the domain
of face detection, therefore fitting sub questions are:

e How close is NN performance on face detection tasks to human per-
formance on the same tasks?

e Do NNs process faces featurally as implied by Wieland?

e Do capsule networks process faces differently from regular CNNs?






Chapter 2

Preliminaries

2.1 Artificial Neural Networks

The following is a high level description of artificial neural networks. Fur-
ther information can be found in the book ”Deep Learning with Python”
by Chollet [4]. Artificial neural networks (ANNs) are a family of brain in-
spired computing systems. The brain is an accumulation of interconnected
neuronal cells, also called neurons. Neurons can receive an electric potential
from other neurons, and also transmit a electric potential, when the received
potential(s) is big enough. This principle is imitated by ANNs. The artifi-
cial neurons get input in the form of a number, for example the brightness
value of a pixel in an image, perform some calculation and pass the result to
one or more artificial neurons in the next layer. When an artificial neuron
receives more than one input, it performs a computation that reduces it to
one output. This calculation can take on different forms but most impor-
tantly it has to weigh the importance of the different incoming information
against each other. This weight is what is learned in an ANN.

2.2 The Architecture Zoo

The simplicity of the underlying building blocks of neural networks make
it possible to easily connect them in new ways. This in turn allows for a
multitude of different architectures that all vary in what they can learn and
which tasks they will excel at.

2.2.1 Densely connected

Densely connected neural networks (DenseNets) are a rather simple family
of architectures. The structure of the input is not important for DenseNets.
Thus a black and white image could be represented as an array of pixel val-
ues. These values would be separately put into the input layer neurons. The



input layer of neurons is followed by the first layer of hidden units. That
is just another layer of neurons. The name suggests that these neurons are
neither in the input layer nor in the output layer. Every input layer neuron
is connected to every neuron in the first layer of hidden units. They then
apply a calculation on the entire input array with an individual weight for
every value. These values can be set randomly or by hand before training.
Since every neuron connects to all following neurons, and every input value
has it’s own weight, this class of neural networks is called densely connected.
Once the output layer neurons are reached a number of things can happen.
In a multiclass classification setup such as in the experiments done for this
paper, we will have as many neurons in the output layer as we have classes.
The value they output has to sum to one, such that their outputs are a prob-
ability distribution over the sets of classes. During training we calculate the
difference between the real label for the input and the given probability dis-
tribution. The size of that discrepancy determines how strongly the weights
need to be adjusted in order to reach the correct label. This is repeated
many times over with possibly many thousand input label pairs.

2.2.2 Convolutional

A convolutional Neural Network (CNN) works much like a densely connected
one. The main differences are that the structure of the input plays an
important role and that convolutional layers don’t have a simple one-to-all
correspondence. A convolutional input layer receives the input as a whole,
thus for images, it receives a two dimensional array of pixel values. It then
performs a computation known as convolution: a small consecutive part
for example 2 by 2 pixels of the input image is taken at a time and some
computation is performed on them that reduces the partial image to a single
value. We then move that 2 by 2 window on the input (also known as a
kernel) by a pixel or more to the right and perform another convolution.
The result of that convolution is then written to the right of the first result.
This way we basically create a new two dimensional matrix from the input
matrix. The only weights learned in this CNN are weights attached to the
4 places in the 2 by 2 kernel. Usually we create multiple matrices from the
input layer. In the literature these are often referred to as feature maps.
Every feature map can then again be convolved. In the last stage there
usually is a densely connected neural network which takes the output of the
last layer of convolution operations as input. The densely network works
just like described above.

2.2.3 Capsule

The capsule neural network by Geoffrey Hinton is yet another architecture
for image classification tasks. This network is inspired by an observation
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from psychology: It seems that humans have internal prototypes of objects,
containing reference frames. This means that when we see a car which is
turned upside down, then we only know that this car is upside down because
of the transformation needed to get from the standard frame to the current
frame. Thus the idea is to change the architecture of neural networks such
that the network incorporates this information in it’s decisions. Therefore
the first few layers are convolutional layers. After that there are first a few
convolutional capsule layers (ConvCaps) and at the end one final ConvCaps
layer. The network begins exactly like a convolutional neural network cre-
ating feature maps. Then these feature maps are fed into the first capsule
layer, say PrimaryCapsl. That layer takes in all feature maps and performs
convolutions such that the output is an array of 8 dimensional vectors. Each
vector in this case represents a node in the network. Each of these vectors
is a "capsule”. If the next layer is also a capsule layer, a special routing
algorithm is calculated that decides which capsule contributes information
to which capsule in the next layer. When the final capsule layer is reached,
the input capsules will be transformed into as many capsules as there are
classes in the classification task with 16 dimensions. The output of the net-
work is then generated by calculating the length each output capsule just
like we calculate vector-length, which reduces it to one dimension. In Hin-
ton’s implementation, the length of these vectors represents the probability
of the object being present. The main idea of this capsule approach is that
we want the internal representations of objects to contain information about
the pose (rotation, shear, distortions), instead of only containing a probabil-
ity of the object existing. Figure illustrates how a simple convolutional
network processes objects.

2.3 Neural Network Evaluation

Neural networks for classification tasks are often evaluated in four metrics:
Accuracy, Positive Predictive Value, True Positive Rate and F1 Score. Ac-
curacy is the true positives plus divided by the sample size for the class in
question. Positive Predictive Value is the number of true positives divided
by the number of true positives plus false positives. This value is also called
precision. True Positive Rate is the number of true positives divided by true
positives plus false negatives. This value is also known as Recall. The F1
Score is calculated like this: 2*((precision*recall)/(precision+recall)). This
score goes to 0 when either precision or recall go to zero but is 1 when
both precision and recall are 1. Thus the F1 score can enable us to spot a
badly trained network directly, while precision and recall enable us to see
the weaknesses and the strengths of a network. We usually calculate these
values per class and compute a weighted average corresponding to the ratio
of the class to the entire sample size.
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Figure 2.1: A two-layer CapsNet. In this example, the primary capsule layer
has two maps of 5 by 5 capsules, while the second capsule layer has two maps
of 3 by 3 capsules. Each capsule outputs a vector. Each arrow represents
the output of a different capsule. Blue arrows represent the output of a
capsule that tries to detect triangles, black arrows represent the output of
a capsule that tries to detect rectangles, and so on. Caption and image by
Aurélien Géron[2]
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2.4 Explaining Neural Network Behaviour

Arrieta et al. [I] have defined 9 goals of explaining machine learning models:
Trustworthiness, Causality, Transferability, Informativeness, Confidence, Fair-
ness, Accessibility, Interactivity and Privacy Awareness. A short definition
of these terms can be found in appendix [A]in table Our research will
directly contribute towards Causality, Transferability, Informativeness and
Confidence. Also this indirectly heightens our ability to enable Trustwor-
thiness, Fairness, Accessibility, Interactivity and Privacy Awareness. This
research will help domain experts to judge and interpret models more easily
which in turn allows them to enhance the aforementioned goals.

Arrieta et al. also distinguish between three kinds of machine learning trans-
parency: Simulatability, Decomposability and Algorithmic Transparency.
Simulatability refers to the ability of humans to run the machine learning
process in their head, or strictly think about it. Decomposability describes
the property of a machine learning model to be explained in parts. Algorith-
mic transparency means that a machine learning model can be fully explored
by mathematical analysis and methods. Neural network models as described
in this paper do not fulfil any of the above criteria for transparency. The
simulatability is not fulfilled since state of the art neural network models
all contain thousands of parameters, which makes simulatability impossi-
ble due to complexity. Decomposability is not given since neural network
models only works as a whole, and therefore can’t be analysed in parts. Al-
gorithmic transparency is likewise not given, since we lack a mathematical
understanding of many parts making up neural networks as noted by Sun
[33].

Thus neural networks are opaque systems and the only way we can ex-
plain their behaviour is through post hoc analysis, which Arrieta et al dis-
tinguishes into six categories: Text explanations, Visual explanation, Local
explanations, Explanations by example, Explanations By Simplification and
Feature Relevance Explanation. See Appendix [A] table for definitions.
This research falls under the categories of explanation by example, local
explanation and feature relevance, as we reproduce experiments with pro-
totypical local input, to infer the internal processes of a neural network by
analysing feature relevance.

2.5 Cognitive Psychology

Cognitive Psychology is explaining human behaviour by crafting theories
explaining capacities, which are bounded by effects. A capacity is thought
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to be an ability that a human possesses. It does not need to be discovered
but can be observed easily, for example the ability to speak or walk. An
effect on the other hand is some specific measured fact that is exhibited by
humans under certain conditions which have to be discovered. An example
of this is the McGurk effect reported by McGurk et al. [2I] which shows
that when the syllable "ba” was played along a video of someone saying
7ga”, a subject would report that he heard "da”. Thus any model that aims
to explain the language capacity of humans must account for the McGurk
effect. A model that explains the capacities while incorporating the effects
can then be tested by comparing it to the data gathered in experiments.
This process is comparable to the post hoc explanation approaches of the
machine learning community, with the human as the black box. This sim-
ilarity is what prompted the research question for this paper. That is in
how far can we use the cognitive psychology approach to understand neural
networks.

2.6 Face detection effects

Research by Yin [35] has revealed that humans can recognise upright faces
better than other upright objects after memorising upright examples. How-
ever, that effect disappeared once the subjects had to recognise the stimuli
upside down after memorising them upright. This effect was found in adults
as well as in infants, since a study on 4-month olds [34] revealed that the
time it took them to recognise a face was significantly longer when the face
was inverted, with respect to the version they memorised. This is called the
face inversion effect. In a similar vain face preference research has shown
that children preferred top heavy non face like stimuli to bottom heavy
stimuli [31]. This means that even without facial features present, the pref-
erence for upright configurations was present. Similar research was done
with scrambled pictures of normal faces [30]. The research in this field is
not conclusive towards the preference of one of these over the other, as Ot-
suka [23] notes. It seems that there is a preference for top heaviness but
it is unclear whether there is a preference for normal faces over scrambled
faces. On the other hand, Sekuler et al. [29] have shown that adults do in
fact recognise scrambled faces.

Yet another important study on human adults [22] by Craig M. Mooney in-
vestigated the closure effect for faces that only had global information, with
all local information removed. The study found that the participants were
able to recognise faces in the Mooney pictures, but not when the images had
been inverted.

There exist different theories about the reason why the effects above ex-
ist, but the most popular of them is that faces are processed within different
mechanisms that have to evolve over time. Infants may rely more heavily on

14



holistic mechanisms, while adults may use both holistic and featural mech-
anisms. However, it may also be the case that these findings are not unique
to faces, but objects in general. Thus it could be that faces are inherently
better suited for holistic processing than a car or an airplane.
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Chapter 3

Research

3.1 Methods

3.1.1 Architectures

Four different neural network architectures have been chosen to be investi-
gated: NatCapsNet [17], IBMCapsNet [§], Dense Baseline (DenseBase) and
Convolutional Baseline (ConvBase). NatCapsNet and IBMCapsNet are cap-
sule networks based on Geoffrey Hintons idea of capsules in convolutional
networks. NatCapsNet is based on the network described in the paper ”Dy-
namic Routing between capsules” [27] while IBMCapsNet is based on the
network described in ”Matrix capsules with EM routing” [9]. DenseBase
and ConvBase are both baselines of standard implementations of respec-
tively densely connected and convolutional neural networks. The reason
these architectures were chosen is because they either relate to the topic
of human like perception (NatCapsNet, IBMCapsNet) or are often used in
many different tasks and are therefore relevant architectures (DenseBase,
ConvBase). It should be noted that the architectures produce a probability
distribution over three classes, which is a closed set calculation. Humans
however are performing an open set calculation by having the option of not
knowing an answer. However since the human experiments used as reference
for this paper were forced choice tasks, this should not be an issue.

3.1.2 Training Data

The dataset used for training consists for one third of images of faces, an-
other third of cars and the last third of cats and dogs as a stand in for a
"other” class. The images of faces come mainly from the CelebA dataset [1§]
from Liu et al. The car data comes from the MIO-TCD Dataset by Luo et
al. [19] The cat and dog images come from the kaggle Cats vs Dogs dataset
[11]. The dataset contains 75000 28x28x1 images. The values are integers
between 0 and 255. Since the images come from wildly different sources it
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is almost certain that some images have been preprocessed in various ways.
However since they come from random sources there is no expectation of a
bias towards one or the other class in that regard. After collecting the im-
ages, they were resized using the scikit-image python library and converted
to greyscale using gleam [12]. The images of faces are at most rotated by
90 degrees while most are upright. This seems to be in line with the faces
that humans are seeing [10] during infancy. The car images are upright
as well. The random object images are upright images of natural scenes
including animals. The evaluation set consists of 15000 pictures with the
same characteristics and sources as the dataset.

3.1.3 Training

The task of the networks was to distinguish between three classes: face,
car, random scene. The networks were trained and tested for the following
metrics: Accuracy, Positive Predictive Value, True Positive Rate and F1
Score with weighted averages. The results can be found in table

Table 3.1: metrics for the networks trained on three classes

Acc | PPV | TPR | F1

NatCapsNet. | 0.98 | 0.98 | 0.98 | 0.98
IBMCapsNet | 0.97 | 0.97 | 0.97 | 0.97
ConvBase 0.98 | 0.98 | 0.98 | 0.98
DenseBase 0.87 | 0.87 | 0.87 | 0.87

3.1.4 Clarification of the terminology

The facial information is described with certain words, for which the mean-
ing is not always clear. For a review of these terms in the literature, please
refer to Piepers et al. [24] For this paper, I will use the term local informa-
tion for relatively small features such as the eyes in a face or a door handle
on a car. First order relational information is qualitative information such as
the information that the eyes are above the mouth. Second order relational
information is quantitative information such as the exact distance between
the eyes or the head lights on a car. Configurational information is used to
describe all information that emerges as a result of feature placement in an
object, thus first and second order relational information.

3.1.5 Experiments

The experiments described in this section were chosen to investigate the
importance of local vs first order vs second order relational information. I
created a data set respectively for the 4 experiments, which will be classified
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by the models. Afterwards I compared the accuracy during experiments with
the values from table [3.1}

Face Inversion Effect

To investigate the face inversion effect (FIE) the experiments of one of the
classic FIE papers were used as inspiration. The paper in question is ” Look-
ing at upside down faces” [35] by Robert K. Yin. In the paper Yin examines
the ability of subjects to recognise images they have previously seen during
the training phase. The photos used belong to four classes: faces, houses,
airplanes and "Men in action”. The latter category contains stickfigure
drawings of certain activities. Experiment 1 investigates upright recall af-
ter upright training and inverted recall after inverted training. Experiment
2 investigates inverted recall after upright training and upright recall after
inverted training. Experiment 3 investigates whether an artists drawings
of faces without any shadows still shows the same characteristics as pho-
tographs of faces during previous experiments.

Yins experiments can be seen as classification tasks where the important
variable change is the inversion of the classified images, which led to re-
markable intercategory change but only a small cross category change. I
created a similar classification task where the same variable is changed and
compare the results. Thus the inversion effect is tested by measuring the ac-
curacy for the 5000 images of faces and cars respectively and then repeating
the experiment with the inverted versions. The results were then compared
to those of Yin. The images stem from our evaluation set. If there is a face
inversion effect, faces should be recognised better than other objects when
upright and they should be correctly recognised just as often as objects when
upside down.

Mooney Face Test

The Mooney face test [22] developed by Craig M. Mooney is a well estab-
lished experiment which reveals the human ability for perceptual closure.
That is the ability to form a rich mental image from very little visible infor-
mation. To investigate this ability Mooney blurred grayscale images of faces
and then increased the contrast resulting in a black and white image. These
images were then displayed to subjects which described what they saw. A
newer version of this test is created by Schwiedrzik et al. [28] in which sub-
jects were shown newly created Mooney like images and also similar images
that didn’t contain faces. Subjects were then asked, whether or not they
detected a face in the image. This experiment can be used directly as a
classification task for neural networks, making use of the data set provided
by Schwiedrzik et al. T will measure the accuracy of the face classification
on their dataset.

19
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Figure 3.1: From left to right: Normal, Inverted, Mooney Face

Scrambled Face

In order to understand the importance of low level vs relational informa-
tion, psychologists have often used experiments involving scrambled faces
[23]. Low level or local information would be the shape or orientation of
the eye or that of the mouth, while relational information of the first or-
der includes attributes visible in all normal human faces, such as containing
two eyes, or that the mouth is under the nose. Relational information of
the second order are specific measurements between the eyes for example.
A local disruption can show the importance of single facial features, while
relational disruption, such as moving the pair of eyes shows the significance
of relational information. In order to review the ratio of importance of local
information vs relational information, images of faces were cut into pieces
and rearranged. This could be done automatically, so all 5000 face images
of the evaluation set were prepared this way.

To review the influence of first order relational information, 10 face images
were prepared such that the eyes were switched with the mouth. The dis-
tance between the eyes was kept the same, in order to preserve the second
order relational information as much as possible. Thus for this experiment
10 images were prepared with first order relational perturbations and 5000
with first and second order relational perturbations. The results were then
compared to the paper ”Face processing stages: Impact of difficulty and the
separation of effects” [14] by Latinus et al. The images for this stem from
our evaluation set.

Negative Face

Photographic negative images are an easy way to detect the importance of
local information vs relational information. In a negative, the pixel values
are altered while all relational information and some of the local information
is kept intact. The results of this experiment will be compared with the
experiment of Galper et al. [0]

20



Figure 3.2: From left to right: First Order Perturbed, Scrambled, Photo-
graphic Negative

3.2 Results

3.2.1 Face Inversion Effect

Table 3.2: Accuracy for face and car classification with upright and inverted
stimulus

Upright Inverted
NatCapsNet | Face: 0.99 Face: 0.31
Object: 0.97 | Object: 0.53
IBMCapsNet | Face: 0.97 Face: 0.29
Object: 0.98 | Object: 0.77
ConvBase Face: 0.99 Face: 0.24
Object: 0.97 | Object: 0.63
DenseBase Face: 0.90 Face: 0.19
Object: 0.86 | Object: 0.12
Random Face: 0.33 Face: 0.33
Object: 0.33 | Object: 0.33

3.2.2 Mooney Face Test

Table 3.3: Accuracy for Mooney face detection on the three class trained
networks

Normal | Mooney
NatCapsNet | 0.99 0.42
IBMCapsNet | 0.97 0.15
ConvBase 0.99 0.03
DenseBase 0.90 0.39
Random 0.33 0.33
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3.2.3 Scrambled Face

Table 3.4: Accuracy for normal, first order perturbed and scrambled faces

Normal | FO | S

NatCapsNet | 0.99 0.80 | 0.20
IBMCapsNet | 0.97 0.40 | 0.15
ConvBase 0.99 0.60 | 0.13
DenseBase 0.90 0.40 | 0.18
Random 0.33 0.33 | 0.33

3.2.4 Negative Face

Table 3.5: Accuracy for normal and photographic negative face images

Normal | Negative
NatCapsNet | 0.99 0.01
IBMCapsNet | 0.97 0.05
ConvBase 0.99 0.04
DenseBase 0.90 0.00
Random 0.33 0.33

3.3 Discussion

3.3.1 Face Inversion Effect

A human decision task done by Yin [35] showed a stronger ability to recog-
nise faces vs. a weaker ability to recognise objects from several categories
(outcomes averaged), when the stimulus was upright. When the stimulus
was inverted however, the classification ability of both objects and faces was
worse, but at the same level, see table In our experiments all convo-
lutional and capsule networks have similar accuracy for faces (Mean=0.96,
SD=0.04), objects (Mean=0.95, SD=0.06) and inverted faces (Mean=0.26,
SD=0.05), but not for inverted objects (Mean=0.56, SD=0.19). The mean
accuracy for inverted objects is actually higher than that of inverted faces
for the convolutional networks. The dense network does have a higher accu-
racy for faces than for objects, but the accuracy for the inverted stimuli are
not close to each other. Therefore none of the investigated neural networks
display a face inversion effect as found in humans. However, the convolu-
tional group has an inverted effect, since faces suffer more from inversion
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than cars do. The large standard deviation suggests that the difference be-
tween different architectures is enormous. It exceeds the standard deviation
found in human groups by more than tenfold.

Table 3.6: Average accuracy for face and object classification with upright
and inverted stimulus

Upright Inverted
Human | Face: 0.98 Face: 0.92
Object: 0.93 | Object: 0.92
Random | Face: 0.50 Face: 0.50
Object: 0.50 | Object: 0.50

3.3.2 Mooney Face Test

The Mooney face test leaves first and second order relational information
in faces untouched. But the local information is deleted. This reveals the
importance of this kind of information for humans, since human accuracy
is 93 percent. For convolutional neural networks it seems that local infor-
mation is paramount, with two of them performing worse than the random
classifier (Mean=20, SD=20). The dense neural network seems to be bet-
ter at detecting global information, as it outperforms the random classifier
by around 6 percent. It is interesting that the best performing neural net-
work however is a convolutional neural network, since my intuition would
have suggested that convolutional neural networks with kernel sizes of 3 or
2, are mostly good at capturing and combining small features instead of
recognising global features.

Table 3.7: Human accuracy for Mooney face detection

Accuracy
Human 0.93
Random | 0.50

3.3.3 Scrambled Face

Neural networks performed poorly on first order perturbed images (Mean=0.55,
SD=0.19) and worse on scrambled faces (Mean=0.16, SD=0.03). The best
network in both categories (IBMCapsNet) however performed with 80 per-
cent accuracy on first order perturbed images, and below the random clas-
sifier on scrambled images. However it should be noted that the sample
size for the first order perturbed images is rather small. The human perfor-
mance for scrambled images is more than three times higher than the best
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performing network. The human results for scrambled images can be found
in table 3.8

Table 3.8: Human accuracy for scrambled face detection

Normal | Scrambled
Human 0.99 0.96
Random | 0.50 0.50

3.3.4 Negative Face

All networks performed worse than the random classifier, with all networks
having an accuracy under 6 percent. These results are somewhat surprising
as with this change the first and second order relational information is pre-
served as well as most of the local information. The only thing that isn’t
preserved is the intensity of the pixels. The relative intensity of the pixels
hasn’t changed however. This result is telling us that the investigated net-
works didn’t learn an abstract pattern, but rather a pattern in a concrete
intensity, or in colour images, a certain colour.

Table 3.9: Average accuracy for normal and photographic negative face
images

Normal | Negative
Human 0.98 0.73
Random | 0.50 0.50

3.3.5 How close is NN performance on face detection tasks
to human performance on the same tasks?

The experiments above have demonstrated that neural networks as a whole
do not show any of the specific effects found in humans. However they do
follow general trends of the face detection capabilities, e.g. they perform
worse when humans perform worse and they perform well when humans
perform well. On the other hand, they are far less robust than human
object recognition, as their accuracy decreases substantially for inverted
faces, where human accuracy only decreases by a few percentage points.

3.3.6 Do NNs process faces featurally as implied by Wieland?

The data has shown that both featural and relational information is im-
portant for the neural networks. This implies that neural networks are not
just bag-of-features algorithms, but somewhere in between fully featural and
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fully holistic processing. Thus this research question can be answered with
a clear no.

3.3.7 Do capsule networks process faces differently from reg-
ular CNNs?

There is no clear trend that capsule networks behave fundamentally different
from convolutional networks. The accuracies in all experiments are very
much in line with the convolutional baseline network. We can only see
a clear difference in accuracies between the dense network and the rest.
Therefore we know that capsule based networks in their current state are
not necessarily better at representing human object recognition.

3.3.8 Face Processing in Neural Networks

With the experiments above I have been able to show that neural networks
process faces neither purely holistically or purely featurally. In all cases
both features and composition seemed to play a role in deciding whether
the picture contained a face or not, since disruptions of both local and
configurational information had an impact on the networks accuracy.

It is also the case that some architectures display more or less configurational
processing, as for example NatCapsNet seemed to be less affected by the first
order perturbed images in the scrambled faces Experiment. This suggests
that the local features are weighed as more important than the relational
information. On the other end of the spectrum is the dense neural network
that was able to recognise some faces in Mooney face images, which can
only draw on the strength of the configurational processing. Thus it seems
that the architecture of neural networks dictates how local information is
weighed compared to relational information. And it seems that all neural
network architectures lie on a spectrum between purely relational and purely
featural. Being on the featurally processing end of the spectrum implies that
classifier in question acts more like a bag-of-features model as described by
Wieland [3]. Using this knowledge, we might be able to create adversarial
attacks more easily by exploiting the fact that some networks rely mostly
on featural information.

3.3.9 Face Processing in Humans

It is still an open question whether the face inversion effect reveals image
processing mechanisms in humans specific to face recognition or whether
the effect for faces is circumstantial. Circumstantial means that we are just
better at recognising faces compared to objects, because we spend much
more time with faces, compared to other objects. Since we saw that faces
suffered more from an inversion than objects, it seems like the effect might
be inherent to the face stimuli. This means that this research supports the
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expert theory [29] [20], which stipulates circumstantial reasons for the face
inversion effect. However, it also does not disprove the inherent mechanism
theory [15] which stipulates that humans have an inherent mechanism that
processes faces, which is separate from the mechanisms for recognising ob-
jects. This is because we saw that the trained models lack the effects that
humans display, which implies that they are not a representation of human
face processing.
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Chapter 4

Related Work

The related work is research that tries to explain ANN behaviour post hoc.

4.1 Cognitive Psychology

Ritter et al. [26] have used the knowledge about the shape bias in children to
study CNN behaviour. They found that while showing similar accuracy, the
shape bias was very diverse among differently seeded networks and between
different architectures. This was the first paper that specifically tackled
the neural network explainability problem from the perspective of cognitive
psychology. Afterwards Feinman [5] et. al have done research on the results
of Ritter et al. and tried to relate the results in neural networks to the
shape bias data from experiments in children. In my research the focus is
however on the domain of face detection, for which it seems that this paper is
the first to use the cognitive psychology approach. Furthermore I am using
multiple different network architectures, while Ritter et al. is researching
one architecture with different seeding.

4.2 Decision Tree Simplification

Zhang et al [36] have trained decision trees on the contribution of feature
maps in convolutional neural networks. In their research they used NN
models that have disentangled filters (feature maps that encode features that
no other feature maps encode). Given that disentangled feature maps are
usually representing one ”concept”, they were able to label them accordingly,
which means that the decision tree learned on these feature map activations
is able to "explain” a classification decision by showing the most important
contributing part in the image and also print multiple important concepts.
For example, for the image of a bird we might get a list of answers that
reads: white head, black wing, yellow feet. A drawback of this approach is
that it only works for a specific type of neural network namely convolutional
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neural networks with disentangled feature maps. The research in my paper
however can be applied to all kinds of networks, if there is a corresponding
part of research in cognitive science to draw upon.

4.3 Salience Maps

Salience map producing methods such as LIME [25] and FullGrad [32] are
widely used as explanations for CNN decisions. In all cases the salience map
is a perturbed version of the input image, with a colour coded highlighting
of the important pixels vs the less important pixels. This approach is easy
to use and does allow for quick verification that a network didn’t learn
an unwanted bias in the training data. However, it falls short of actually
explaining neural network behaviour, as it only shows the explanation for
one example at a time. It also needs to be inspected manually in every case.
And furthermore this kind of technique is most useful for image processing
CNNs, but has as of late also been applied to text processing networks.
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Chapter 5

Conclusions

I was able to answer all research questions with this cognitive psychology
inspired approach to understanding neural networks:

e Neural networks do not show the same effects as humans on compa-
rable tasks, but they follow the same trends

e Neural networks use both holistic and featural information in face
recognition

e Capsule networks did not process faces different than CNNs

These findings underline the strength of the cognitive psychology approach,
which helps to answer the overarching question of whether cognitive psy-
chology can help us understand neural network behaviour. As it turns out,
the rich history of psychological theories and experiments lends itself per-
fectly for neural network research. Especially psychology experiments that
only require input from the visual domain, can easily be converted to a ma-
chine learning task, since the setup can often remain the same, just like the
experiments I performed for this study. However one must not forget that
we are far away from understanding the human brain and the behaviour it
facilitates. Even in the case of holistic processing as discussed in this paper,
the research is still out on the question how configural and featural face
processing mechanisms work together in humans and how they develop over
time.

It might also be interesting to pair this approach with powerful tools like
FullGrad salience maps [32], when we have comparable human eye tracking
research at hand. All in all, this direction promises to be a fruitful endeav-
our, which can enhance model evaluation and our understanding of how
neural networks arrive at their classifications.
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Table A.1: XAI Goals according to Wieland et al. [I]

Trustworthiness

A trustworthy model behaves as ex-
pected under known circumstances.

Causality

The underlying causal relationships
in data may not be broken in Al
systems.

Transferability

A model should be able to trans-
fer it’s knowledge to new problems
never seen before.

Informativeness

Al systems should show informa-
tion about the problem they are
solving and about how they derived
at their solution.

Confidence

A generalisation of robustness and
stability of a model.

Fairness

A measure of how ethical a network
is in respect to human morale and
expectation.

Accessibility

Ease of use and wide range of po-
tential users.

Interactivity

A systems potential to be tweaked
and fine tuned by the end user for
a specific task.

Privacy Awareness

Knowledge about and power to
change the privacy implications of
AT systems for users.
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Table A.2: XAI post hoc explanations according to Wieland et al. [I]

Text

Textual explanations, such as rule
based explanations and every sym-
bol generating explanation ap-
proach.

Visual

Every explanation that uses a vi-
sualisation of some sort. Examples
are saliency maps and sensitivity
analysis.

Local

Explanations that elicit only a part
of the solution space.

Example

Explanations that are based on
grasping a representative example
from the input.

Simplification

All approaches that create a sim-
pler model that is nearly as efficient
belong to this category of explana-
tions.

Feature Relevance

Approaches that rank individual
features from the input space ac-
cording to their influence on the
output. For image data this usually
includes some image segmentation
method as well.
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