
Bachelor thesis
Computing Science

Radboud University

An exploration of static analysis
used on C cryptography libraries

Author:
Auke Zeilstra
s4751701

First supervisor/assessor:
dr. P. Schwabe (Peter)
p.schwabe@cs.ru.nl

Second assessor:
dr. ir. E. Poll (Erik)

e.poll@cs.ru.nl

January 19, 2020



Abstract

Cryptography libraries are commonly written in the programming language
C. These libraries feature unusual code, such as big-integer arithmetic and
implementations for cryptographic primitives. C contains subtleties that
even people familiar with the standard struggle with [24]. This study aims
to determine to what extend static analysis tools for C are helpful in the
process of finding bugs in C cryptography libraries.
Secondly, the TweetNaCl library contains a bug resulting from a type mis-
match inside a for-loop condition. Compiling the library with GCC does
not generate a warning, even with all warnings enabled. An attempt will be
made to reliably detect this bug using data-flow analysis.

Three popular static analyzers were used to perform static analysis on the
source code of four cryptography libraries. The statically analyzed libraries
are BearSSL, mbed TLS, Libsodium and TweetNaCl. The reports were
checked for correctness and reasoning behind their occurrence. Common
warnings from two static analyzers are summarized and a couple of true
positives are examined. Lastly, coding practices specific to cryptography
that lead to the generated reports are summarized.
The TweetNaCl bug is characterized and a strategy is presented to catch
the bug using data-flow analysis. A prototype implementation called Sans t
is presented in the form of a GCC plugin, which is used on the four cryp-
tography libraries from the other half of this study.

The results indicate that static analysis can be used to find bugs in C cryp-
tography libraries, without cryptography specific code practices causing an
infeasible amount of false positives. Based on the presence of two potentially
critical bugs, statically analyzing a cryptography library before a release is
recommended.
The Sans t prototype detects the TweetNaCl bug, at the cost of generat-
ing false positives for the other libraries due to not performing value range
analysis.
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Chapter 1

Introduction

1.1 C static analysis

Cryptography libraries aim to provide a simple interface to achieve secure
communication. These libraries are commonly written in the programming
language C. Examples include OpenSSL, NaCl, and cryptlib. The ANSI C
language standard has been around for more than 30 years, and the lan-
guage remains useful for its efficiency and portability. At the same time, C
is a language that provides a lot of pitfalls. It does not provide classes such
as BigInteger like Java, nor does it present the memory safety of Rust,
which is similar in terms of syntax. A cryptography library written in C
requires extensive checking and testing of its code, by its developers and the
outside world. Static analyzer are used to analyze code without executing
it, helping users by pointing out alarming code constructions. After the
Heartbleed bug [8] in OpenSSL was publicly disclosed in 2014, few static
analyzers were found that were able to catch the bug [38]. This presents the
question whether modern static analyzers such as Facebook Infer and the
Clang Static Analyzer, are helpful for finding bugs in present-day cryptog-
raphy libraries.
If results show a feasible amount of false positives, paired with a few true
positives, authors of cryptography libraries might be inclined to use such
tools whenever a release candidate is developed. This could lead to fewer
bugs in actual releases, and possibly a coding style adapted to prevent false
positives produced by the employed static analyzer.
This study will apply static analyzers designed for regular C code to cryp-
tography libraries. The approach will be focused on the code that handles
the cryptographic primitives. This contrasts with similar studies, which
either focus on protocol implementations [9] or actual verification of a cryp-
tographic primitive [2].
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1.2 TweetNaCl type mismatch bug

One of the cryptography libraries that is statically analyzed is TweetNaCl.
TweetNaCl contains a bug resulting from a type mismatch inside a for-loop
condition. The condition will compare a 32-bit signed integer to a 64-bit
unsigned integer. The latter is typically a parameter describing the size of
an array, which is passed by reference.
In TweetNaCl, the construction leading to the bug is not warned about dur-
ing compilation using GCC with the -Wall flag. The -Wsign-compare flag,
included in -Wextra, warns about comparisons between integer expressions
with a different signedness. Thus, the bug is partially exposed by GCC’s
extra warnings flag. The bug may result in undefined behavior when Tweet-
NaCl usage guidelines are ignored. Figuring out a way to detect the presence
of the bug would help avoid it in the future.
To catch the bug using a GCC plugin, data-flow analysis is performed to
trace which variables are influenced by long unsigned parameters. Doing so
requires correctly interpreting C constructions such as goto expressions and
conditional expressions. Basic blocks are created, each with their own vari-
able influence map. These maps are used to propagate flags for variables,
either to the start of successor blocks or right before an (array) reference is
used. The references can be checked for the bug using the propagated flags.
The bug is not a common occurrence, nor is it heavily researched. There
are static analysis checkers with the ability to catch part of the bug, such as
Splint [13]. Splint reports potentially harmful comparisons, but this check
is not specific enough to catch the bug without unnecessary false positives.
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Chapter 2

Preliminaries

2.1 Static analysis tools

Static analysis is concerned with the analysis of a program without actually
running it, usually by automated means. Generally, this process consists of
3 phases, as described in [11]:

1. Observe the program instructions. A suitable level of abstraction must
be chosen for the problem at hand. For example, if all language infor-
mation is important, one could choose Abstract Syntax Trees (ASTs).

2. Build a model of the program state, using appropriate abstractions.

3. Run the model over (a set of) abstract states.

There are a variety of ways to build the model. The following list sums these
up for the static analyzers that will be used for analyzing the cryptography
libraries:

• Facebook Infer [6] uses automatic verification with separation logic
[30], an extension to Hoare logic [16]. Separation logic includes support
for pointer data structures and transfer of ownership. An important
concept in Infer is that, whenever a procedure allocates a new object,
it should either deallocate this object itself, or make it available to the
caller. Specification synthesizing is another important feature of Infer,
steering away from interactive proofs. Hoare triples are generated
bottom-up, roughly meaning that a composite procedure will ‘inherit’
deduced specifications from the procedures it calls. Infer is used in
order to verify memory safety in C code.

• The Clang Static Analyzer [22] builds a control-flow graph, on which
it performs path- and flow-sensitive analysis. These techniques are
used to reason about variable values and their propagation. Flow-
sensitive analysis takes into account the order of statements, whilst
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path-sensitive analysis takes into account conditions in branch guards.
The main challenges of this approach include avoiding a state explosion
and choosing the right model precision whilst keeping false positive
rates in mind.

• Splint [13] uses similar techniques to the above; procedure annotations
for pre- and postconditions, flow-sensitive analysis and resolving pre-
conditions from earlier statements. However, Splint is based on several
compromises, such as merging paths during flow-sensitive analysis and
using loop heuristics as a simplification. A clear trade-off was made
between performance and false positive rate.

An honorable mention is CBMC [23], a bounded model checker for both user-
defined- and automatically inserted assertions in C code. CBMC performs
symbolic execution on an intermediate representation, which translates con-
ditional statements and loops to guarded goto statements. Loop unwinding
is done up to a certain depth and Static Single Assignment (SSA) form is
used. The program is represented as a single equation, which is transformed
into a CNF formula. A SAT solver is used to find counterexamples to any
of the assertions. Due to compilation problems, CBMC will not be included
in the report.

2.2 GCC

The GNU Compiler Collection (GCC) supports various programming lan-
guages, of which C was the first one. GCC and Clang are the mainstream
options when compiling C code for Linux related projects.
When lowering source code from a high-level language, the compilation pro-
cess of GCC generally uses three Internal Representations (IR), one for
each lowering stage [36]. In order, these are GENERIC, GIMPLE, and
RTL. GENERIC and GIMPLE are machine-independent representations
and therefore the preferred analysis target for static analysis of source code
targeting multiple platforms.
GCC skips AST representation for C files. The front-end directly produces
GENERIC IR, in which functions are represented as trees; implementation
details are found in tree.def [15].
Since the GENERIC IR is used to lower name spaces, including scopes, this
is the representation for analyzing the code as close to its origin as possible.
This strategy is used in IDE’s on the AST, because the representation still
captures high-level abstractions that would be compiled away during the
translation to intermediate code [33]. Because ASTs are skipped, procedu-
ral lowering has already happened in GENERIC. Earlier mentioned static
analyzers favor procedural analysis. The bug in question is associated with
procedures and their usage of array-length parameters, meaning the lower-
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ing level of GENERIC is suitable for catching the bug.
The GCC plugin system allows users to register callbacks for specific passes
in the compilation phase. The callback is registered in a C/C++ project.
The project is build into a shared object file, so that it can be included
whenever invoking gcc using the -fplugin=... flag, without needing to re-
compile gcc. Particularly helpful in this case is the plugin event
PLUGIN_FINISH_PARSE_FUNCTION. Whenever the front end finishes parsing
a function into GENERIC, the callback receives the
function_decl tree as event data. The tree type is defined as a pointer to
a tree_node. Trees have type codes, associated with language-independent,
but also language-dependent constructs in case of C/C++ [35].

For this project, the latest version of GCC at the time of development will
be used, which is GCC 9.2.0.
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Chapter 3

Type mismatch bug

In this chapter, a type mismatch bug that appears in TweetNaCl is charac-
terized and examples of the bug are shown. A strategy aiming to catch the
bug is presented, along with a GCC plugin called Sans t, which implements
this strategy.

3.1 Bug characterization

The usual environment for the bug to take place is any function with a
parameter field intended to be used to specify the size of some array or in-
direct reference. The type of the size parameter is normally unsigned long

or unsigned long long, both typically with a 64-bit precision. The array
can be passed to the function or declared inside. Within this function, a
for-loop uses a short loop counter variable i, for example a signed integer
with a precision of 32 bits.
The initialization value of the loop-counter variable can be any integer, but
is typically 0. A conditional expression compares the short loop counter
against a long unsigned integer data_len. This can be the size parameter
or a long integer derived from the size parameter. The long unsigned integer
has a higher precision and represents the size of some array data. For the
example, we will assume a precision of 64 bits. The comparison is of the
form:

short integer i < long integer n,

with the relational comparison optionally being ’<=’.
The afterthought consists of a simple increment, typically a
pre/post-increment of the loop counter variable. Inside the for-loop body,
the loop counter variable is used as an index for the array. This setup allows
for buffer overreads whenever the array size, the long integer, is bigger than
the maximum value of the loop counter variable. A similar situation can
take place whenever one accesses the array backwards, using a decrement
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afterthought and a ’>’ or ’>=’ relational operator.
An instance of the bug is shown in Figure 3.1.

1 #include <stddef.h>

2 void all_zero(unsigned char *data, size_t data_len){

3 signed int i;

4 for(i = 0; i < data_len; ++i)

5 data[i] = 0;

6 }

Figure 3.1: A simple instance of the bug.
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3.2 Reason and variants

The reason that the bug occurs is the range difference between the compared
integers. The behavior this causes is dependent on the value of the long
integer. Note that we assume the usage of two’s complement for signed
number representation. In Figure 3.2 on the next page, we can distinguish
three cases if len were assigned a different value on line 4. Note that the
behavior in the cases is not specific to the types used in Figure 3.2; this is
just an example of a type combination leading to the bug.

1. 0 <= len <= SHRT MAX:
len is in the range of the signed short. For the comparison i < len,
i is promoted to an unsigned int. Since i stays within the bounds
of len, the promotion simply means the i is represented wider during
comparison.

2. SHRT MAX < len <= UINT MAX − SHRT MAX:
The counter i will increment until it reaches SHRT_MAX. The iteration
after this, the pre-increment causes it to loop around to its most neg-
ative value, SHRT_MIN = −215. The following representations explain
what happens in the comparison:

Decimal: −215

Unsigned short: 10000000 00000000b

(Un)signed int: 11111111 11111111 10000000 00000000b

Alternatively, −215 ≡ 232 − 215 ≡ (232 − 1) − (215 − 1) (mod 232).
Thus, due to promotion rules, the unsigned int representation will
be compared to len. Clearly i = 231 + 230 + ... + 215 > len, causing
the for-loop to stop immediately.

3. UINT MAX − SHRT MAX < len <= UINT MAX:
This is the situation depicted in Figure 3.2, in which the loop body
is executed a single time with a negative i value. Because a less-than
operator is used, the loop will end at its latest when
len = UINT MAX = 232 − 1.
For this value of len, the counter i takes on the values
{0, 1, ..., SHRT MAX,SHRT MIN, SHRT MIN + 1, ...,−2} inside
the for-loop body. Because −1 ≡ 232 − 1 (mod 232), the loop ends
when i = −1.

The output of the code in Figure 3.2 is shown in Figure 3.3.
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Finally, there is another variant of the bug, which occurs when both the
loop-counter variable and the length variable are of a type shorter than int.
This can be seen in Figure 3.4 on the next page, along with its output in
Figure 3.5 (also on the next page). The ranges of unsigned short len and
signed char i are within signed int range. Therefore, any length over
CHAR_MAX causes an infinite loop if the ~i condition was not present. Note
that memory preceding (arr+len) is accessed.

1 #include <limits.h>

2 #include <stdio.h>

3 int main(int argc, char *argv[]){

4 unsigned int len = (UINT_MAX - SHRT_MAX) + 1;

5 signed short i;

6 printf("%6s\n", "i");

7 for(i = 0; i < len; ++i)

8 if(!(i&((1 << 13)-1))) printf("%6d\n", i);

9 return 0;

10 }

Figure 3.2: The last iteration of the loop uses a negative i.

i

0

8192

16384

24576

-32768

Figure 3.3: The output produced by the code in Figure 3.2.
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1 #include <limits.h>

2 #include <stdio.h>

3 int main(int argc, char *argv[]){

4 unsigned short len = CHAR_MAX + 1;

5 unsigned short arr[len<<1];

6 for(unsigned short i = 0; i < (len << 1); ++i)

7 arr[i] = i;

8 signed char i;

9 printf("%4s %s\n", "i", "(arr+len)[i]");

10 for(i = 0; i < len && ~i; ++i)

11 if(!(i&15)) printf("%4d %12u\n", i, (arr+len)[i]);

12 printf("Loop ended at %d to prevent infinite loop.\n", i);

13 return 0;

14 }

Figure 3.4: Promotion of both comparison operands to integer.

i (arr+len)[i]

0 128

16 144

32 160

48 176

64 192

80 208

96 224

112 240

-128 0

-112 16

-96 32

-80 48

-64 64

-48 80

-32 96

-16 112

Loop ended at -1 to prevent infinite loop.

Figure 3.5: The output produced by the code in Figure 3.4.
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3.3 TweetNaCl example

The following definitions from TweetNaCl are relevant to the code that
contains the type mismatch bug:

1. #define FOR(i,n) for (i = 0;i < n;++i)

2. typedef unsigned long long u64

Figure 3.6 on the next page shows an instance of the bug in the cryptography
library TweetNaCl [4]. The function verifies the signature of the signed
message sm of length m; sm is an array of bytes. The public key used to
verify the signature is stored in pk. If the signature is valid (check in line
24), the message m and its length mlen = n - 64 are stored and the function
returns 0, signaling that the content of the message is authenticated. The
minimum ranges of the variables in the code snippet, as stated in the C17
ballot [19] and C90 [17]:

Loop counter variable: int i ∈ [−215, 215–1]

Array size: u64 n ∈ [0, 264–1]

In the expanded FOR-macro in line 13, the less-than comparison i < n in
combination with the pre-increment expression ++i may cause at least the
following two problems:

1. The short integer reaches its maximum value and wraps around to its
minimum value, which could still result in the condition evaluating to
false depending on the value of n.

2. After wrapping around, a signed short integer such as i in the above
example, will represent a negative value. A negative index i for an
array of type T results in memory access of sizeof(T) bytes located
at array_base_address - sizeof(T)*i. This is undefined behavior.

In practice, two details should be noted:

1. The ranges are almost always problematic, unless really exotic hard-
ware is used. Even if unsigned long integers use their minimum range,
and the integer uses the minimum signed long range [−231, 231–1],
there are still 231 unsupported array sizes.

2. On common platforms, signed integers use the [−231, 231–1] range.
This means that for the unwanted/undefined behavior to occur in
TweetNaCl on these platforms, one would be dealing with a message
of at least 231 bytes. NaCl’s Validation and verification [26] section
suggests users to ”put a small global limit on packet length”, hinting
at 4096 bytes or less, the maximum test size.
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1 int crypto_sign_open(u8 *m,u64 *mlen,const u8 *sm,

2 u64 n,const u8 *pk)

3 {

4 int i;

5 u8 t[32],h[64];

6 gf p[4],q[4];

7

8 *mlen = -1;

9 if (n < 64) return -1;

10

11 if (unpackneg(q,pk)) return -1;

12

13 FOR(i,n) m[i] = sm[i];

14 FOR(i,32) m[i+32] = pk[i];

15 crypto_hash(h,m,n);

16 reduce(h);

17 scalarmult(p,q,h);

18

19 scalarbase(q,sm + 32);

20 add(p,q);

21 pack(t,p);

22

23 n -= 64;

24 if (crypto_verify_32(sm, t)) {

25 FOR(i,n) m[i] = 0;

26 return -1;

27 }

28

29 FOR(i,n) m[i] = sm[i + 64];

30 *mlen = n;

31 return 0;

32 }

Figure 3.6: The crypto sign open function in TweetNaCl version 20140427.

3.4 Bug-catching strategy

The following strategy is used to search for the bug in the GCC plugin
Sans t:

0. Receiving the GENERIC function tree(s).
Receive the GENERIC function representations from GCC. Only the
procedural abstraction has happened yet, meaning we can reason about
name spaces, data and control.
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1. Parsing the GENERIC function tree(s).
Walk the GENERIC function tree and produce basic blocks, a con-
venient representation for analysis. The conditional-, goto- and label
expressions influence the structure of the basic block graph, which
takes on the shape of a directed, cyclic graph. The blocks are influ-
enced by scoping and the statements contained in the source code.
Scopes are described by bind expressions, each containing a chain of
active variables that are introduced within its body, and a body con-
taining statements. Statements are grouped inside a statement list
node unless only a single one is included.
Two statements that are of particular interest are the ones describing
how variables influence each other, the declaration- and modification
expressions. Whenever a variable is flagged for having a specific prop-
erty, the property may transfer to other variables inside one of these
expressions. For the class of bugs we aim at detecting, there are two
‘stages’ of flagged variables. The first stage consist of variables in-
fluenced by a long integer parameter. The second stage consist of
variables compared to first stage flagged variables in a conditional ex-
pression comparison with a precision difference.
The challenge is to save each of these nodes in such a way that we can
symbolically execute the source code, without calculating any values.
All paths need to be considered and nodes like the bind expression
must be used to keep track of the active variables for each of these
paths.

2. The first flagging stage.
Any long integer parameter declaration is initially flagged. Then, for
every block available, calculate the effect of the block on all of the
flagged variable states going into the block. This results in another
set of flagged variables. Control flow needs to be taken into account;
due to the problem involving a cyclic graph, we will need to revisit
certain nodes whenever a new flagged variable state is added by a
back edge. An example would be a goto expression jumping back to
a label expression, with statements (un)flagging variables in between.

3. The second flagging stage.
Variables with a lower precision than the ones they are being com-
pared to should also be flagged, but their flagging reason is different.
The following scenario needs to cause a second-stage flag:
Assume integer variable y1 to be first-stage flagged, and variables
x1, . . . , xn to be on the other side of integer variable y1 in a relational
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operator inside a conditional expression:

max rprec({x1, . . . , xn})
= max{rprec(x1), . . . , rprec(xn)}
< max rprec({y1, . . . , yn})

Let rprec(a) be the precision of the integer variable a without tak-
ing signs into account. For example, a 32-bit signed integer a has
rprecision(a) = 31 (the number of bits adding to its absolute maxi-
mum value).
If operator? is operator< or operator<=, the loop counter variable
is likely to loop around when the afterthought is an increment. The
same idea, with a flipped operator? and
max prec(x1, . . . , xn) > max rprec(y1, . . . , yn)
needs to cause a second-stage flag.

4. Checking reference indices.
For each block, we have the lines that include references, as well as the
variables used as indices. In the previous step, variables were second-
stage flagged for being dangerous to use in indices, taking execution
paths into account. The last step: check whether second-stage flags
and index variables intersect. If this is the case, report a potential
range mismatch.

3.5 Implementation details

3.5.1 File summary

The source code of Sans t is available at
https://github.com/Sanstee/Sans_t.
One should use GCC version 9.2.0 to build the plugin.
It is required to run ./contrib/download_prerequisites from the the top-
level GCC source directory before building GCC, in order to build Sans t.
The individual goals each of the files achieve can be summarized as follows:

src/genericparser.cc Parse the GENERIC representation of functions into
a BlockStorage instance.

src/blockstorage.cc Represent a directed, cyclic graph with the
BlockStorage class. Nodes represent basic blocks. Also keeps track
of comparisons and local effects within blocks.

src/blockinterpreter.cc Propagate flags through a BlockStorage model
to check for the type mismatch bug. Triggers a warning enabled by
-Wall if the bug is detected.
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src/sans t scoped.cc Registers the plugin_finish_parse_function call-
back.

For more precise implementation details, it is advised to inspect source code.
The source code contains comments for almost every function. Comments
describe parameters, return values, function summaries and implementation
notes.

3.6 Sans t example output

Using the libraries that are employed in the static analysis section of this
study, a set of example outputs have been generated. The full output along
with explanations can be found in section 4.1.8.

3.6.1 TweetNaCl

The plugin is created to find the bug present in the current version of Tweet-
NaCl. It does exactly that when included whilst compiling TweetNaCl,
resulting in a total of seven reports.

. / tweetnacl−usab le / tweetnac l . c : In func t i on '
c rypto s i gn ed25519 twee t ' :

. / tweetnacl−usab le / tweetnac l . c : 7 2 3 : 2 6 : warning : Loop c t r var
suspected range mismatch . [−Wall ]

723 | FOR( i , n ) sm[64 + i ] = m[ i ] ;
| ˜ˆ˜˜

The above is a report for a non-alarming instance of the bug with a precision
difference of a single bit. The full report contains two warnings, one for each
index containing the loop counter variable.

. / tweetnacl−usab le / tweetnac l . c : In func t i on '
c rypto s i gn ed25519 twee t open ' :

. / tweetnacl−usab le / tweetnac l . c : 7 9 0 : 2 1 : warning : Loop c t r var
suspected range mismatch . [−Wall ]

790 | FOR( i , n ) m[ i ] = sm [ i ] ;
| ˜˜ˆ˜˜

This is one of the five reports for the crypto_sign_ed25519_tweet_open

function, as depicted in Figure 3.6.
Thus, the bug is correctly warned about in TweetNaCl, without any false
positives.

3.6.2 BearSSL, mbed TLS and Libsodium

The plugin output for the other three libraries consists solely of false posi-
tives. Each of these can be attributed to the fact that the plugin does not
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perform value analysis; it solely traces the variables. The following com-
mented report is representative of the type of false positives that can be
expected whilst running the plugin in its current state:

ccm . c : In func t i on ' ccm auth crypt ' :
ccm . c : 1 4 6 : 3 6 : warning : Loop c t r var suspected range mismatch . [−

Wall ]
146 | ( dst ) [ i ] = ( s r c ) [ i ] ˆ b [ i ] ;
ccm . c : 2 8 7 : 9 : note : in expansion o f macro 'CTRCRYPT '
287 | CTRCRYPT( dst , src , u s e l e n ) ;

The for-loop surrounding line 146: for( i = 0; i < (len); i++ ), in-
side the macro. The types are unsigned char i and size_t tag_len. The
macro argument use_len is kept smaller or equal to 16 in line 278, by the fol-
lowing statement: size_t use_len = len_left > 16 ? 16 : len_left.
Thus, the wider integer is guaranteed to have a value in the range of the
byte.

Using the plugin on Libsodium does not generate a single report. Compiling
BearSSL and mbed TLS with the plugin generates a combined total of ten
false positives. Without counting warnings about the same line (e.g. array
copies), this is reduced to six warnings.

3.7 Possible improvements

The current Sans t prototype is functional to a certain extend. Whilst
the output for TweetNaCl is as desired, unnecessary false positives remain
present when Sans t is used on the other cryptography libraries. For in-
stance, problems arise when masking is used to put an integer in a safe
range for comparison. Masking is a common technique within cryptography
libraries. Therefore, adding a custom interpretation for expressions that
mask integers can be considered feasible.
On the other hand, the flagging used in Sans t can be made more generic
than it currently is. Constructions leading to a first/second stage flag are
hard-coded, due to the plugin focusing only on the type mismatch bug in
TweetNaCl. The flagging system could be extended to flag according to
a user-defined sequence of expressions, also requiring a variable amount of
flagging stages. This would allow for more types of bugs to be searched for.
Some C syntax is not interpreted by the current prototype. For example,
assignments inside the condition of conditional statements are ignored.
Lastly, one could consider using GIMPLE, a simplified subset of GENERIC,
instead of GENERIC.
Sans t shows it is possible to reliably detect the type mismatch bug in Tweet-
NaCl. This currently comes at a cost of generating false positives, some of
which can easily be made exceptions for by rewriting parts of the GENERIC
parser.
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Chapter 4

Static analysis of C
cryptography libraries

In this chapter, analysis results of three static analyzers used on four C
cryptography libraries will be discussed. The static analysis methodology
that leads to the results is described. The true positives are examined closely.
The false positives are used to construct a list of coding practices that lead
to them being reported.

4.1 Static Analysis Methodology

In this section, the methodology and version details that may be used to
reproduce the static analysis results are summarized. The results can be
found from Section 4.2 onward.

4.1.1 Library versions

Library Version Release date

BearSSL v0.6 2019-09-04

mbed TLS 2.16.3 2019-09-06

Libsodium 1.0.18 2019-05-31

TweetNaCl 20140427 2014-04-27
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4.1.2 Static analyzer versions

Static analyzer Version Release date

Facebook Infer v0.17.0 2019-08-06

Clang Static Analyzer* 6.0.0 2018-03-08

Splint 3.1.2 2018-02-20

*scan-build is a Perl script that invokes the Clang Static Analyzer.

4.1.3 OS and compiler versions

Every static analysis tool, except for the Sans t plugin, was used under the
following circumstances:

Operating system

Distributor ID: Ubuntu

Description: Ubuntu 18.04.3 LTS

Release: 18.04

GCC (default compiler)

gcc (Ubuntu 7.4.0-1ubuntu1~18.04.1) 7.4.0

The target triple:

x86_64-linux-gnu

Clang

clang version 6.0.0-1ubuntu2 (tags/RELEASE_600/final)

Target: x86_64-pc-linux-gnu

Thread model: posix

The Sans t plugin is made for a newer version of GCC than the one used to
compile the libraries whilst performing static analysis.
This newer version is referred to as /gcc-install/bin/gcc in any com-
mand; it uses gcc (GCC) 9.2.0. Tests ran using this version of GCC are
performed on a secondary operating system.

Secondary OS

Distributor ID: Ubuntu

Description: Ubuntu 19.10

Release: 19.10

The target triple:

x86_64-pc-linux-gnu
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4.1.4 Infer

BearSSL infer run -o ./BearSSLInferOut --no-uninit -- \

make

mbed TLS infer run -o ./mbedTLSInferOut --no-uninit -- \

make no_test

Libsodium ./configure; infer run -o ./LibsodiumInferOut \

--skip-analysis-in-path test --no-uninit -- \

make

TweetNaCL infer run -o ./TweetNaClInferOut --no-uninit -- \

gcc tweetnacl.c tweetnacl.h randombytes.c randombytes.h main.c

Note the usage of the --no-uninit flag. The uninitialized check generates a
lot of false positives when enabled. For instance, it will count 34 instances of
uninitialized values in TweetNaCl, which are mostly false positives caused
by misinterpreting the FOR macro.

4.1.5 Clang Static Analyzer / scan-build

BearSSL
See Figure 4.1 on the next page.

mbed TLS
For mbed TLS, the same command as in Figure 4.1 is used, but with make
target no_test instead of the default one.

Libsodium

1. scan-build ./configure

2. The same command as in Figure 4.1.

Running the configure script through scan-build is recommended by the
scan-build recommended usage guidelines [31].

TweetNaCL
The same command as in Figure 4.1 is used, apart from using
gcc tweetnacl.c tweetnacl.h randombytes.c randombytes.h main.c

instead of make.
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scan-build \

-enable-checker alpha.core.CallAndMessageUnInitRefArg \

-enable-checker alpha.core.CastToStruct \

-enable-checker alpha.core.PointerArithm \

-enable-checker alpha.core.SizeofPtr \

-enable-checker alpha.deadcode.UnreachableCode \

-enable-checker alpha.security.ArrayBoundV2 \

-enable-checker alpha.security.MallocOverflow \

--keep-empty --force-analyze-debug-code \

make 2>clangstderr.txt

Figure 4.1: scan-build command used for BearSSL.

4.1.6 Splint

BearSSL splint src/aead/ccm.c -Iinc -Isrc &>bear_ccm.txt

mbed TLS

splint library/ccm.c -Iinclude -preproc &>mbed_ccm.txt

Libsodium splint \

src/libsodium/crypto_aead/xchacha20poly1305/sodium/\

aead_xchacha20poly1305.c -Isrc/libsodium/include/sodium \

&>libsodium_aead_xchacha20poly1305.txt

TweetNaCl splint tweetnacl.c -I. &>tweetnacl_tweetnacl.txt

Because of the high amount of false positives Splint produces, Splint is only
used on a the following unannotated files, along with any files included by
them:

BearSSL src/aead/ccm.c

mbed TLS library/ccm.c

Libsodium src/libsodium/crypto_aead/xchacha20poly1305

/sodium/aead_xchacha20poly1305.c

TweetNaCl tweetnacl.c

4.1.7 CBMC

CBMC is one of the original tools that looked promising for the static anal-
ysis of cryptography libraries. Whilst this may still be true, errors have
presented itself whilst trying to compile libraries with the goto-cc com-
piler.
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A valid GOTO-binary is essential for verification with CBMC. For exam-
ple, building Libsodium according to the instructions found in the CPROVER
manual [7]:

./configure YACC=byacc CC=goto-cc --host=none-none-none

make

Running these commands errors during the make process. The output:

[1msodium/utils.c:[0m In function [1m'sodium_memzero'[0m:

[1msodium/utils.c:112:1: [31merror:

[0msyntax error before `len'

if (len > 0U && memset_s(pnt, (rsize_t) len,

0, (rsize_t) len) != 0) {

PARSING ERROR

make[3]: *** [sodium/libsodium_la-utils.lo] Error 1

make[2]: *** [all-recursive] Error 1

make[1]: *** [all-recursive] Error 1

make: *** [all-recursive] Error 1

Apart from TweetNaCl, none of the libraries compiled with the goto-cc

compiler. Therefore, CBMC was skipped altogether.

4.1.8 Sans t

BearSSL

make \

CFLAGS='-fplugin=/ABSOLUTE/PATH/sans_t_scoped.so -Wall -fPIC' \

CC='/gcc-install/bin/gcc'

mbed TLS

make no_test \

CFLAGS='-fplugin=/ABSOLUTE/PATH/sans_t_scoped.so -Wall' \

CC='/gcc-install/bin/gcc'

Libsodium

./configure; make \

CFLAGS='-fplugin=/ABSOLUTE/PATH/sans_t_scoped.so -Wall' \

CC='/gcc-install/bin/gcc'

TweetNaCl

/gcc-install/bin/gcc \

tweetnacl.c tweetnacl.h randombytes.c randombytes.h main.c \

-fplugin=../sans_t_scoped.so -Wall
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4.2 True Positives

s r c / ec / ec p256 m62 . c : 5 8 2 : e r r o r : DEAD STORE
The value wr i t t en to &cc ( type unsigned long ) i s never used .
580 . w = t [ 2 ] − cc ;
581 . t [ 2 ] = w & MASK52;
582 . > cc = w >> 63 ;
583 . w = t [ 3 ] − BIT(36) ;
584 . t [ 3 ] = w & MASK52;

Listing 4.1: A report about a dead store in BearSSL, generated by Infer.
The Clang Static Analyzer also reports this bug.

The code is located in the f256_final_reduce function, which performs a
conditional subtraction on its input value. The function ensures that the
output value is smaller than the constant p = 2256 − 2224 + 2192 + 296 − 1.
uint64_t cc acts as the carry for the subtraction of 2^192 + 2^96 from t.
The subtraction uses four limbs of out five. t[2] only needs to subtract the
carry from the subtraction of 2^96. This should be able to produce a carry,
which is calculated, but not subtracted in w = t[3] - BIT(36). The carry
cc is either 0 or 1, with the shift of uint64_t w being a logical shift.

The bug was reported, and quickly fixed afterwards. The carry is now cor-
rectly subtracted from the fourth limb, as shown in Figure 4.2.
The cause of the bug is likely human error, as the carry is propagated cor-
rectly for the other limbs. The bug seems like a mistake that should generate
a compiler warning, but it does not in GCC. The following command com-
piles the file without any warnings whatsoever:

gcc -Wall -Wextra -Isrc -Iinc \

-c -o build/obj/ec_p256_m62.o src/ec/ec_p256_m62.c

Clang does not warn about the unused carry either, with -Weverything

enabled.
Another issue that prevents the bug from being detected more easily is the
fact that it only causes a wrong result for very specific inputs. Randomized
tests have an estimated chance of 2−78 to both trigger the bug and to carry
on using the incorrect result.

- w = t[3] - BIT(36);

+ w = t[3] - BIT(36) - cc;

Figure 4.2: The carry propagation bugfix [27]
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l i b r a r y /bignum . c : 1 3 8 7 : e r r o r : DEAD STORE
The value wr i t t en to &t ( type unsigned long ) i s never used .
1385 . #end i f /∗ MULADDCHUIT ∗/
1386 .
1387 . > t++;
1388 .
1389 . do {

Listing 4.2: A report about a dead store in mbed TLS, generated by Infer.

The code is located in the mpi_mul_hlp function, a helper function for
mbedtls_mpi multiplication.
mbedtls_mpi_uint c = 0, t = 0 is used to initialize c and t. Both are
used in the assembler instructions from bn_mul.h; separate routines are
used depending on whether MULADDC_HUIT (in bn_mul.h) is defined. The
type definition for mbedtls_mpi_uint is either
typedef uint64_t mbedtls_mpi_uint or
typedef uint32_t mbedtls_mpi_uint, as specified in bignum.h.
Using a post-increment on a local, non-static variable seems unnecessary.
The bug is not harmful and the line is likely a code remnant.

ecdsa . c : 3 0 0 : 1 3 : warning : Out o f bound memory ac c e s s ( a c c e s s
exceeds upper l im i t o f memory block )

i f ( ∗ p s i g n t r i e s++ > 10 )
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜
ecdsa . c : 3 0 0 : 1 4 : warning : Po inter a r i thmet i c on non−array

v a r i a b l e s r e l i e s on memory layout , which i s dangerous
i f ( ∗ p s i g n t r i e s++ > 10 )
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜
ecdsa . c : 3 1 3 : 1 7 : warning : Out o f bound memory ac c e s s ( a c c e s s

exceeds upper l im i t o f memory block )
i f ( ∗ p k e y t r i e s++ > 10 )
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜
ecdsa . c : 3 1 3 : 1 8 : warning : Po inter a r i thmet i c on non−array

v a r i a b l e s r e l i e s on memory layout , which i s dangerous
i f ( ∗ p k e y t r i e s++ > 10 )
ˆ˜˜˜˜˜˜˜˜˜˜˜˜
4 warnings generated .

Listing 4.3: A report about out of bound memory access in mbed TLS,
generated by the Clang Static Analyzer.

The code is located in the ecdsa_sign_restartable function. The pointer
p_sign_tries = &rs_ctx->sig->sign_tries is within bounds in the first
do-while iteration. However, the order of the left operand of the > oper-
ator seems to be illogical. *p_sign_tries++ increments the address that
p_sign_tries points to for the next iteration of the do-while loop; it then
dereferences the pointer. The author likely meant to do (*p_sign_tries)++,
in which case it acts as a counter. (*p_sign_tries)++ would increment the
value *p_sign_tries every do-while iteration.
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The bug seems like another human error, repeated multiple times for simi-
lar code. The conditions that trigger a second do-while loop, which causes
undefined behavior, are enumerated below:

1. r = xR mod n = 0.

2. s = (e + r * d) / k = t (e + rd) / (kt) mod n = 0.

The chance of one of these conditions evaluating to true is incredibly small.
Even if these were to evaluate to true, accessing the exceeding memory may
trigger one of two events:

1. If the exceeding memory causes *p_key_tries++ > 10 to evaluate to
true, an early exit/cleanup is triggered.

2. Otherwise another attempt to generate a valid ephemeral secret is
made.

If the whole signature needs to be repeated, a similar scenario occurs.
Just like the carry-propagation omission, the odds of triggering the bug in
ordinary usage are incredibly low. Randomized tests are unlikely to catch
it, but specifically testing for edge cases could help.
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4.3 Common reports

In this section, the frequencies of the several types of reports are shown for
Infer and the Clang Static Analyzer. Additionally, coding practices that
lead to the bulk of these reports are listed. Code examples are provided for
most of the report types.

4.3.1 Infer

The frequency of all of the report types that where found by Infer can be
found in Table 4.1 on the next page. Note that the --no-uninit flag was
used. Figures that show simplified examples of code segments that trigger
the reports, are shown on the next pages. The following are general coding
practices leading to a cluttered Infer report:

Dead store

1. Moving a pointer one final time after reaching the end of a buffer.
An example is shown in Figure 4.3.

2. Assigning values to return variables that are guaranteed to be
overwritten. An example is shown in Figure 4.4.

3. Storing but not using return values. An example is shown in
Figure 4.5.

4. Zeroing storage after usage. An example is shown in Figure 4.6.

Memory leak

1. Data with uncommon lookup schemes (e.g. named data). An ex-
ample is shown in Figure 4.7. In this example, const char *oid

is used to look up specific memory addresses.

Null Dereference

1. Possibly calling functions like memcpy with arguments that are
(potentially both) null, whilst the memcpy size argument is 0.
This is undefined behavior according to section 7.24.1.2 of the
C11 draft [18]. An example is shown in Figure 4.8.

2. Not checking for null arguments, e.g. in functions that are only
called a few times with safe arguments. An example is shown in
Figure 4.9.
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Report BearSSL mbed TLS Libsodium TweetNaCl

Dead store 6 42 5 0

Memory leak 0 8 1 0

Null dereference 8 2 0 0

Total 14 52 6 0

Table 4.1: Frequency of the reports from Infer.

1 // Assuming s is initialized and

2 // both contain at least 2 integers.

3 void cpytwo(int *d, int *s){

4 *d++ = *s++;

5 *d++ = *s++;

6 }

Figure 4.3: The value written to &s (type int*) in line 5 is never used.

1 int func(int x){

2 int ret = EXIT_FAILURE;

3 switch (x)

4 {

5 case 1:

6 ret = otherfunc();

7 break;

8 case 2:

9 ret = EXIT_SUCCESS;

10 break;

11 default:

12 ret = EXIT_FAILURE;

13 }

14 return ret;

15 }

Figure 4.4: The value written to &ret (type int) in line 2 is never used.
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1 void func(int x){

2 int i = function_with_side_effects(&x);

3 for(i = 0; i < x; ++i)

4 ;

5 // etc

6 }

Figure 4.5: The value written to &i (type int) in line 2 is never used.

1 static inline int

2 crypto_verify_n(const unsigned char *x_,

3 const unsigned char *y_,

4 const int n)

5 {

6 const __m128i zero = _mm_setzero_si128();

7 volatile __m128i v1, v2, z;

8 /*

9 * Verification using v1, v2 and z

10 * (implementation left out)

11 */

12 v1 = zero; v2 = zero; z = zero;

13 return (int) (((uint32_t) m + 1U) >> 16) - 1;

14 }

Figure 4.6: A simplified example derived from the crypto_verify_n func-
tion in Libsodium, located in the file verify.c. The value written to &v1

(type void) in line 12 is never used.
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1 /**

2 * \brief Create or find a specific named_data entry for

3 * writing in a sequence or list based on the OID.

4 * If not already in there, a new entry is added

5 * to the head of the list.

6 * \return A pointer to the new / existing entry on success.

7 * \return NULL if if there was a memory allocation error.

8 */

9 mbedtls_asn1_named_data *mbedtls_asn1_store_named_data(

10 mbedtls_asn1_named_data **list,

11 const char *oid, size_t oid_len,

12 const unsigned char *val,

13 size_t val_len

14 );

Figure 4.7: A simplified function declaration derived from the
mbedtls_asn1_store_named_data function in mbed TLS, located in the file
asn1_write.c.

1 #include <string.h>

2 int main(int argc, char *argv[]){

3 memcpy(NULL, NULL, 0);

4 }

Figure 4.8: Null argument where non-null required (line 3).
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1 typedef enum {A, B} AB;

2 extern const int a;

3 extern const int b;

4

5 static const int *

6 id_to_int_ref(AB c)

7 {

8 switch (c) {

9 case A:

10 return &a;

11 case B:

12 return &b;

13 }

14 return NULL;

15 }

16

17 int func(AB c)

18 {

19 const int *d;

20

21 d = id_to_int_ref(c);

22 return *d;

23 }

Figure 4.9: A function similar to the api_generator function in BearSSL,
located in the file ec_prime_i15.c. Pointer d last assigned on line 21 could
be null and is dereferenced at line 22.
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4.3.2 Clang Static Analyzer

Table 4.2 on the next page shows the frequency of reports from the Clang
Static Analyzer. Figures that show simplified examples of code segments
that trigger the reports, are shown on the next pages. The following are
general coding practices leading to a cluttered report by the Clang Static
Analyzer:

Unreachable code

1. Checking the return value of functions that handle errors by
themselves (through an early exit). An example is shown in Fig-
ure 4.10.

2. Code guarded by a conditional statement that depends on a
volatile integer. Such cases are not easily reproduced, and the
simple ones such as the case depicted in Figure 4.11 are inter-
preted correctly. However, cases such as the ones shown on pages
71 and 76 in the appendix do show up.

Dead Assignment

1. Writing values to a return status variable that is guaranteed to
be overwritten. An example is shown in Figure 4.4.

2. Storing the result of a function without using it. An example is
shown in Figure 4.5.

Cast from non-struct type to struct type
Casting a <pointer to a <pointer to a structure> to a <pointer to
another structure>. This is common practice in object oriented C
code and safe, but the Clang Static Analyzer acts as if both types are
struct. An example is shown in Figure 4.12.

Out-of-bounds access

1. This report was triggered a lot by automatically generated code,
which manages resources differently than code written by hu-
mans. Cases in the appendix that contain examples of this report
can be found on pages 57 and 61.

2. Constructions in which the size of an array is not immediately
clear to the analyzer. For example, saving leftover bytes, an
amount lower than the block size, until a new block can be filled.
The analyzer does not recognize there is an implicit size constraint
on the leftover byte-array parameter. Examples of this report can
be found on the pages 74 and 64 in the appendix.
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Uninitialized argument value
The analyzer does not detect implicit bounds to arguments that are
either presented in documentation or in comments. This causes the
analyzer to skip loop iterations, among other conditional construc-
tions. If these contain variable initialization(s), they are marked as
potentially uninitialized. Using these variables as function arguments
causes this report. An example of this report can be found in the
appendix on page 57.
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API Argument with ’nonnull’
attribute passed null

1 1 0 0

Dead code Unreachable code 6 14 8 0

Dead store Dead assignment 3 12 0 0

Dead increment 0 1 0 0

Logic error

Cast from non-struct type
to struct type

30 0 0 0

Dangerous pointer
arithmetic

5 2 2 0

Division by zero 2 0 0 0

Out-of-bound access 18 21 6 0

Potential unintended use of
sizeof() on pointer type

0 0 1 0

Result of operation is
garbage or undefined

0 3 0 0

Uninitialized argument value 6 14 0 0

Unix API malloc() size overflow 0 0 1 0

Memory error Bad free 0 1 0 0

Total 71 69 18 0

Table 4.2: Frequency of the reports from the Clang Static Analyzer.
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1 #include <stdlib.h>

2

3 void early_exit(){

4 // possibly cleanup code

5 exit(1);

6 }

7

8 int func2(int a, int b)

9 {

10 if(a) early_exit();

11 // code that can run safely now

12 if(b) early_exit();

13 // etc...

14 return 0;

15 }

16

17 int func(int a, int b)

18 {

19 if(func2(a, b) != 0)

20 early_exit();

21 // normal execution

22 return 0;

23 }

Figure 4.10: The statement on line 20 is never executed.

1 static volatile int a = 0;

2

3 int main(){

4 if(a == 0) {

5 exit(1);

6 }

7 return 0;

8 }

Figure 4.11: No bugs found.
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1 typedef struct class_ class;

2 struct class_{

3 int x;

4 };

5

6 typedef struct{

7 class *c;

8 } class_ext;

9

10 void get_ext(class **ctx){

11 class_ext *xc = (class_ext *)ctx;

12 }

Figure 4.12: Casting a non-structure type to a structure type and accessing
a field can lead to memory access errors or data corruption (line 11). The
example is derived from the kk_get_pkey function in BearSSL, located in
the file x509_knownkey.c.

4.3.3 Splint

Splint report frequencies are intentionally excluded from this section. This
is due to the high amount of reports generated by Splint on unannotated C
code. The amount would not do justice to Splint when it is used continuously
throughout the development process with annotations.
In a study comparing static analyzers including Splint, similar results were
obtained. The study includes tests that were ran with several flags, filtering
out uninteresting output. A statement regarding the performance of Splint
is made in this study by Moerman et al. [25]:

”Splint’s analysis resulted in output that is time-consuming to analyze and
it failed to parse several system library headers rendering it useless in

many real-world scenarios.”

The following are general coding practices leading to a cluttered Splint re-
port. Figures that show simplified examples of code segments that trigger
the reports, are shown on the next page.

1. Not specifying every value inside an initialization block. An example
is shown in Figure 4.13.

2. Not checking whether the right operand of a bit shift might be nega-
tive. An example is shown in Figure 4.14.

3. Using masks to assure variables are in a safe range before usage. An
example is shown in Figure 4.15.
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These are the reports that should still occur if annotations were used (but
flags can be used to inhibit warnings).

1 int main(){

2 int a[10] = {0};

3 return 0;

4 }

Figure 4.13: Initializer block for a has 1 element, but declared as int [10]

1 // assuming this function is called very rarely

2 // with values that are safe.

3 int func(unsigned int a, int c){

4 return a << c;

5 }

Figure 4.14: The right operand to a shift operator may be negative (behavior
undefined).

1 #include <limits.h>

2

3 int main(){

4 signed int a = -10;

5 unsigned char b = 1 << (a & 7);

6 return 0;

7 }

Figure 4.15: The right operand to a shift operator may be negative (behavior
undefined).
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4.4 Cryptography code challenges

The previous section shows coding practices that lead to the bulk of the false
positives that were encountered. The reports contain a few false positives
that one would encounter less in regular C code. These contain – but are
not limited to – the following practices:

Zeroing storage
Zeroing storage previously used for (semi) sensitive values is especially
important in cryptography libraries. Surprisingly, reports on this issue
were relatively low, as zeroing storage after usage could be reported
as a dead assignment.

Argument safety assumption
Some functions are not made to be reused, and therefore assume a cer-
tain safety in terms of the arguments it might expect. More concretely,
functions tend not to check each argument for being in the right/ex-
pected range, as they are only ever called by functions from which the
argument value ranges are known. To a static analyzer such as the
Clang Static Analyzer, these functions are especially prone to false
positives. An example is the window_to_affine function in BearSSL.
The Clang Static Analyzer assumes any int num argument may be
supplied, while the author clearly commented the following:
”This function works for windows up to 32 elements”.
Not only does this generate a lot of false positives, but the types of false
positives produced by wrongfully assuming certain branches can be
skipped varies greatly. This results in output that is time-consuming
to process.

Volatile integers
Volatile integers are definitively not specific to cryptography code,
but they do play a role in some libraries. In the Clang Static Ana-
lyzer reports, the qualifier seems to cause branches to be wrongfully
deemed unreachable at times. Similarly, certain SIMD vector instruc-
tions cause reports about dangerous pointer arithmetic.

Static analysis of regular C code seems generally as effective as the static
analysis of cryptography code. Both Infer and the Clang Static Analyzer
have found true positives that relate to simple human error, rather than an
obscure edge case that may be specific to cryptography code.
The extra reports specific to cryptography code do not mean cryptography
code necessarily generates more false positives than any other type of C code.
More important are the true positives, which can possibly have far greater
consequences than a small error in a regular C program. For the amount
of true positives generated, one could reasonably say these are worth going
over the high amount of false positives.
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Chapter 5

Related Work

Static analysis is a field concerned with analyzing code without running it.
There are a lot techniques to do this, as well as problems to solve using
static analysis. Formal methods includes data-flow analysis [20] and Hoare
logic [16]. Separation logic [30] is an extension to Hoare logic that supports
reasoning about pointer data structures and transfer of ownership in con-
current programs.
Static-analysis tools using these techniques can be applied to cryptography
in a number of ways. For one, there is a work that proves the functional
equivalence of two AES implementations using CBMC [28]. The work fo-
cuses on cryptographic primitives and their equivalence, unlike this thesis,
which analyzes complete libraries and does not try to prove the functional
equivalence of implementations.
There are works comparing the static analysis tools that are used in this
study, such as the Clang Static Analyzer and Facebook Infer, against each
other [3] [25]. These studies do not limit the code that is analyzed to code
found in cryptography libraries, like in this thesis. The studies use test
suites, whilst this thesis uses real-world code.
A work that attempts to address the misuse of cryptographic primitives
through static analysis exists [29]. The study introduces a static taint anal-
ysis engine called TaintCrypt. TaintCrypt aims to detect dangerous flows.
The study is not concerned with detecting a specific bug like the type mis-
match bug that is analyzed in this thesis.
It is worth mentioning that around the time of writing this, NIST held the
sixth Static Analysis Tool Exposition (SATE). Due to the report not being
published yet, the edition V is the most recent report accessible [10]. The
SATE reports use test suites for static analyzer comparison, whereas this
thesis uses real-world code.
Articles that perform static analysis on cryptography libraries in a non-
academic setting are also noteworthy [21] [5]. These works mainly use source
code with other purposes, or popular cryptography libraries like OpenSSL.
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This thesis uses some less popular cryptography libraries, does not focus on
only a single library/static analyzer, and contains (likely) explanations for
most of the reports (found in the appendix).

The Sans t plugin uses techniques categorized as data-flow analysis. How-
ever, at the time of implementing these techniques in Sans t, this was not
apparent. Most techniques naturally followed from what was theorized in
the strategy and basic notions from control-flow analysis. The fundamen-
tals of control flow analysis, such as basic blocks and directed graph, can be
found in [1]. An approach for transforming abstract syntax trees to control
flow graphs is presented in [32], albeit more focused on logical operators in
C than this study. This study uses a similar technique to achieve a model
that is helpful for analysis. The usage of the GCC plugin system for static
analysis can be traced back to tools such as Dehydra [14]. It should be noted
this project has been abandoned in favour of a Clang-based analyzer.
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Chapter 6

Conclusions

Facebook Infer and the Clang Static Analyzer have proven to be helpful
tools for finding bugs in C cryptography libraries. Specialized functions
that are only called with implicitly safe arguments are the root cause for
extra false positives using the Clang Static Analyzer. Such constructions
are commonly used in cryptography libraries. The three true positives de-
tected in this study are clear human error, and one would expect these to
be caught by a compiler. The amount of false positive for these two tools is
acceptable. Using them is recommendable for major-release candidates.
Sans t is able to detect the bug in TweetNaCl. The GCC plugin reports
a couple of false positives for other cryptography libraries. Special inter-
actions for masking and ternary operators could fix these. Lastly, certain
C constructions are not parsed correctly by Sans t, possibly lowering the
amount of reports. The source code of Sans t is available at
https://github.com/Sanstee/Sans_t.
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checker. In E Ábrahám and K Havelund, editors, TACAS 2014
(ETAPS), volume 8413 of LNCS, pages 389–391. Springer, Heidel-
berg, 2014.

[24] Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan
Nienhuis, David Chisnall, Robert N.M. Watson, and Peter Sewell.
Into the depths of C: elaborating the de facto standards. ACM SIG-
PLAN Notices, 51(6):1–15, 2016.

[25] Jonathan Moerman. Evaluating the performance of open source static
analysis tools. Bachelor’s thesis, Radboud University Nijmegen,
Nijmegen, The Netherlands, 2018.

[26] NaCl: Networking and Cryptography library: Validation and ver-
ification. version 2016.06.17 of the valid.html web page. https:
//nacl.cr.yp.to/valid.html (accessed 2019-09-18).

[27] Thomas Pornin. Fixed carry propagation bug in P-256 ’m62’ imple-
mentation, Dec 2019. https://bearssl.org/gitweb/?p=BearSSL;a=
commitdiff;h=252dba914912e694d0e69754f0167060fc4d2ba6 (ac-
cessed 2020-01-01).

[28] Hendrik Post and Carsten Sinz. Proving functional equivalence of two
AES implementations using bounded model checking. In 2009 Inter-
national Conference on Software Testing Verification and Validation,
pages 31–40. IEEE, 2009.

[29] Sazzadur Rahaman and Danfeng Yao. Program analysis of crypto-
graphic implementations for security. In 2017 IEEE Cybersecurity
Development (SecDev), pages 61–68. IEEE, 2017.

[30] John C Reynolds. Separation logic: A logic for shared mutable data
structures. In Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science, pages 55–74. IEEE, 2002.

[31] scan-build: running the analyzer from the command line.
https://clang-analyzer.llvm.org/scan-build.html (accessed
2019-09-11).

[32] Naftali Schwartz. Steering clear of triples: Deriving the control flow
graph directly from the Abstract Syntax Tree in C programs. Techni-
cal report, New York University New York United States, 1998.

43
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Appendix A

Appendix

A.1 Static Analyzer Output

A.1.0 Report format

The format that is used for the reports is:

Tool output for which no complete ly s im i l a r case has
been presented .

[FP/FP] With a comment underneath summarizing why something is re-
ported and/or what happens. To personally verify any of the reports, it is
advised to check the source code, as only small snippets will be added in the
comments, which are meant to provide guidance through the source code. A
couple of additional notes on the reports:

• Some reports may seem out of place, for instance the ones on code
that is not in the library. These are included for completeness.

• TP stands for True Positive and FP stands for False Positive. These
terms are not completely applicable to some reports, especially to the
reports that hint something could be wrong (e.g. using sizeof() on a
pointer). In these cases, such a statement will be treated as a claim in
order to label it, but it should be noted that the tool is not necessarily
wrong in these scenarios.
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A.1.1 Infer

BearSSL

t o o l s / f i l e s . c : 6 2 : e r r o r : NULL DEREFERENCE
po in t e r `vbuf . buf ` l a s t a s s i gned on l i n e 37 could be nu l l and

i s de r e f e r enc ed by c a l l to `xblobdup ( ) ` at l i n e 62 , column
10 .

60 . return NULL;
61 . }
62 . > buf = VECTOARRAY( vbuf ) ;
63 . ∗ l en = VEC LEN( vbuf ) ;
64 . VEC CLEAR( vbuf ) ;

FP: Line 37: The initialization bvector vbuf = VEC_INIT correctly initial-
izes the vector of bytes using the macro #define VEC_INIT { 0, 0, 0 }.
The first member of a bvector struct is the pointer type *buf. The value
could be null when the function xblobdup is called. The function xblobdup

makes the following calls:

buf = xmalloc(len);

memcpy(buf, src, len);

Note that the xmalloc implementation contains the following check:

if (len == 0) {

return NULL;

}

Assuming that the len argument, which is also stored in the bvector struct,
is correct (meaning 0 when vbuf.buf is null), the vbuf.buf struct member
should not be dereferenced. Technically this is undefined behavior.

s r c / codec /pemenc . c : 1 7 0 : e r r o r : DEAD STORE
The value wr i t t en to &d ( type char∗) i s never used .
168 .
169 . /∗ Fina l zero , not counted in re turned l en g t h .

∗/
170 . > ∗d ++ = 0x00 ;
171 .
172 . return dlen ;

FP: The pointer unsigned char *d is used to write bytes to void *dest.
The final post-increment is for consistency and possibly for future additions
to the code.
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s r c / int/ i62 modpow2 . c : 1 6 8 : e r r o r : DEAD STORE
The value wr i t t en to &lo ( type unsigned long ) i s never used .
166 . f = MUL62 lo (d [ 0 ] + MUL62 lo (x [ u ] , y [ 0 ] )

, m0i ) << 2 ;
167 .
168 . > FMA2( hi , lo , xu , y [ 0 ] , f , m[ 0 ] , d [ 0 ] <<

2 , 0) ;
169 . r = hi ;
170 .

FP: The low word uint64_t lo is indeed discarded in another FMA2 call
four lines later, whilst the high word is saved in uint64_t r. This the carry
to be used for the multiplication of y[v + 0] for size_t v = 1. This way,
the author does not need to write a separate function just because one of
the results from the function FMA2 is not needed in this single instance.

s r c / r sa / r s a i 1 5 keygen . c : 5 6 6 : e r r o r : DEAD STORE
The value wr i t t en to &t l e n ( type unsigned long ) i s never used .
564 . q [ p len ] = 0 ;
565 . t ++;
566 . > t l e n −−;
567 . }
568 . b r i 1 5 z e r o ( t , p [ 0 ] ) ;

FP: uint16_t *t is the pointer that was last assigned t = q + 1 + qlen.
q[plen] = 0 is written to t, requiring the variable tlen to reposition/de-
crease. Doing so is good practice and keeps the possibility of future additions
to the code in mind.

s r c / r sa / r s a i 3 1 k e yg en i nn e r . c : 5 9 1 : e r r o r : DEAD STORE
The value wr i t t en to &t l e n ( type unsigned long ) i s never used .
589 . q [ p len ] = 0 ;
590 . t ++;
591 . > t l e n −−;
592 . }
593 . b r i 3 1 z e r o ( t , p [ 0 ] ) ;

FP: Same report for the ”i31 engine”. Henceforth, similar reports for differ-
ent engines will be skipped.

t o o l s / skey . c : 4 8 3 : e r r o r : DEAD STORE
The value wr i t t en to &r e t ( type int ) i s never used .
481 . return 0 ;
482 . }
483 . > r e t = 1 ;
484 . switch ( b r skey decode r key type (&dc ) ) {
485 . const b r r s a p r i v a t e k e y ∗ rk ;

FP: The variable int ret is always overwritten in one of the switch cases.
The variable ret is assigned 1 whenever the key type is recognized and the
print functions are successful. If the key is not recognized or printing went
wrong, 0 is returned. Initializing the automatic variable before usage is a
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good choice, as these have an indeterminate initial value. One might argue
0 would have been a better choice, as 1 signals a successful exit.

s r c / ec / ec p256 m62 . c : 5 8 2 : e r r o r : DEAD STORE
The value wr i t t en to &cc ( type unsigned long ) i s never used .
580 . w = t [ 2 ] − cc ;
581 . t [ 2 ] = w & MASK52;
582 . > cc = w >> 63 ;
583 . w = t [ 3 ] − BIT(36) ;
584 . t [ 3 ] = w & MASK52;

TP: The variable uint64_t cc acts as the carry for the subtraction of
2^192 + 2^96 from t, which uses four limbs of out five. t[2] only needs to
subtract the carry from the subtraction of 2^96. This should be able to pro-
duce a carry, which is calculated, but not subtracted in w = t[3] - BIT(36).
The carry cc is either 0 or 1, with the shift of uint64_t w being a logical
shift.

s r c / ec / e c p r ime i 15 . c : 7 0 5 : e r r o r : NULL DEREFERENCE
po in t e r `cd ` l a s t a s s i gned on l i n e 704 could be nu l l and i s

de r e f e r enc ed at l i n e 705 , column 9 .
703 .
704 . cd = i d t o c u r v e d e f ( curve ) ;
705 . > ∗ l en = cd−>g en e r a t o r l e n ;
706 . return cd−>generato r ;
707 . }

FP: This code is for the API, and the pointer cd will be null if one supplies
an unrecognized curve to id_to_curve_def.

s r c / ec / e c p r ime i 15 . c : 7 1 5 : e r r o r : NULL DEREFERENCE
po in t e r `cd ` l a s t a s s i gned on l i n e 714 could be nu l l and i s

de r e f e r enc ed at l i n e 715 , column 9 .
713 .
714 . cd = i d t o c u r v e d e f ( curve ) ;
715 . > ∗ l en = cd−>o rd e r l e n ;
716 . return cd−>order ;
717 . }

FP: The same issue as in the previous report, but for requesting the order
of the curve definition.

t o o l s /names . c : 9 8 1 : e r r o r : NULL DEREFERENCE
po in t e r ` s u i t e s . buf ` l a s t a s s i gned on l i n e 950 could be nu l l

and i s de r e f e r enc ed by c a l l to `xblobdup ( ) ` at l i n e 981 ,
column 6 .

979 . f p r i n t f ( s tde r r , ”ERROR: no c iphe r s u i t e
provided \n” ) ;

980 . }
981 . > r = VECTOARRAY( s u i t e s ) ;
982 . ∗num = VEC LEN( s u i t e s ) ;
983 . VEC CLEAR( s u i t e s ) ;
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FP: Line 950: VECTOR(cipher_suite) suites = VEC_INIT.
A report similar to the first one. The vector initialization using the VEC_INIT
macro initializes the struct member suites.buf as null, but the pointer
is not dereferenced if the len struct member is also 0 when the function
xblobdup is called.

mbed TLS

programs/x509/ req app . c : 7 5 : e r r o r : DEAD STORE
The value wr i t t en to &r e t ( type int ) i s never used .
73 . int main ( int argc , char ∗argv [ ] )
74 . {
75 . > int r e t = 1 ;
76 . int e x i t c od e = MBEDTLS EXIT FAILURE;
77 . unsigned char buf [ 1 0 0 0 0 0 ] ;

FP: The line int ret = 1 is used to store the return values of two functions,
to check these for errors. ret is an automatic variable, meaning explicit
initialization is wise. Cases that branch into early exits are ret != 0 and
ret == -1. A potentially more suitable initial value would be -1, as this
value triggers both early exits unless it is overwritten.

l i b r a r y /base64 . c : 1 2 3 : e r r o r : DEAD STORE
The value wr i t t en to &s r c ( type unsigned char const ∗) i s

never used .
121 . {
122 . C1 = ∗ s r c++;
123 . > C2 = ( ( i + 1 ) < s l e n ) ? ∗ s r c++ : 0 ;
124 .
125 . ∗p++ = base64 enc map [ ( C1 >> 2) & 0x3F ] ;

FP: The unencoded const unsigned char *src buffer is being read from.
The final post-increment is done for consistency.

l i b r a r y / x509 c r ea t e . c : 2 2 5 : e r r o r : MEMORYLEAK
memory dynamical ly a l l o c a t e d by c a l l to `

mbedt l s asn1 store named data ( ) ` at l i n e 218 , column 17 i s
not reachab l e a f t e r l i n e 225 , column 5 .

223 .
224 . cur−>va l . p [ 0 ] = c r i t i c a l ;
225 . > memcpy( cur−>va l . p + 1 , val , v a l l e n ) ;
226 .
227 . return ( 0 ) ;

mbedtls_asn1_named_data *cur is a local pointer. Its last assignment is

cur = mbedtls_asn1_store_named_data( head, oid, oid_len,

NULL, val_len + 1 )
As the name of the type suggest, this is named data. The named data is
looked up with the const char *oid parameter, the object id. The NULL

value causes the function
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mbedtls_asn1_named_data *

mbedtls_asn1_store_named_data( mbedtls_asn1_named_data **head,

const char *oid, size_t oid_len,

const unsigned char *val,

size_t val_len)
not to write the pointer val to cur->val.p. Thus, the memory is still avail-
able to the caller of the function mbedtls_x509_set_extension because all
of the arguments (including oid) are.

l i b r a r y / came l l i a . c : 4 9 4 : e r r o r : DEAD STORE
The value wr i t t en to &RK ( type unsigned int ∗) i s never used .
492 . ∗RK++ = ∗SK++;
493 . ∗RK++ = ∗SK++;
494 . > ∗RK++ = ∗SK++;
495 .
496 . e x i t :

FP: Again, a post-increment to advance to the non-copied part of the buffer
(reported two times as both pointers advance).

l i b r a r y / entropy . c : 4 6 6 : e r r o r : DEAD STORE
The value wr i t t en to &r e t ( type int ) i s never used .
464 . int mbed t l s e n t r o p y w r i t e s e e d f i l e (

mbedt l s ent ropy context ∗ ctx , const char ∗path )
465 . {
466 . > int r e t = MBEDTLS ERR ENTROPY FILE IO ERROR;
467 . FILE ∗ f ;
468 . unsigned char buf [MBEDTLS ENTROPY BLOCK SIZE ] ;

FP: The initialization int ret = MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR

is used to signal correct execution of the functions mbedtls_entropy_func

and fwrite. The initial value hints at this being a ’safe’ return value if
one were to add a conditional expression with a goto exit statement, but
forgot to overwrite the variable ret.

l i b r a r y / came l l i a . c : 5 5 9 : e r r o r : DEAD STORE
The value wr i t t en to &RK ( type unsigned int ∗) i s never used .
557 . X[ 3 ] ˆ= ∗RK++;
558 . X[ 0 ] ˆ= ∗RK++;
559 . > X[ 1 ] ˆ= ∗RK++;
560 .
561 . PUT UINT32 BE( X[ 2 ] , output , 0 ) ;

FP: Pointer advancement for consistency.
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l i b r a r y / c t r d rbg . c : 5 4 6 : e r r o r : DEAD STORE
The value wr i t t en to &r e t ( type int ) i s never used .
544 . int mbed t l s c t r d r b g w r i t e s e e d f i l e (

mbedt l s c t r d rbg cont ex t ∗ ctx , const char ∗path )
545 . {
546 . > int r e t = MBEDTLS ERR CTR DRBG FILE IO ERROR;
547 . FILE ∗ f ;
548 . unsigned char buf [ MBEDTLS CTR DRBGMAX INPUT ] ;

FP: Similar to the report in library/entropy.c. However, regarding code
consistency: the else-branch in this function was not present in the other
file, while they are almost identical. The else-branch:

else

ret = 0;

l i b r a r y / entropy . c : 6 4 6 : e r r o r : DEAD STORE
The value wr i t t en to &r e t ( type int ) i s never used .
644 . int mbed t l s e n t r o p y s e l f t e s t ( int verbose )
645 . {
646 . > int r e t = 1 ;
647 . #i f ! d e f i ned (MBEDTLS TEST NULL ENTROPY)
648 . mbedt l s ent ropy context ctx ;

FP: Return variable ret is assigned an exit failure value initially.

l i b r a r y / ecp curve s . c : 6 9 9 : e r r o r : MEMORYLEAK
memory dynamical ly a l l o c a t e d by c a l l to `mbedt l s mp i l s e t ( ) `

at l i n e 678 , column 5 i s not reachab l e a f t e r l i n e 699 ,
column 9 .

697 . c leanup :
698 . i f ( r e t != 0 )
699 . > mbedt l s e cp g roup f r e e ( grp ) ;
700 .
701 . return ( r e t ) ;

FP: Line 678: MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &grp->P, 1 ) ).
This sets grp->P->p[0] to 1. If ret != 0, then the function
mbedtls_ecp_group_free is called. This function frees the components of
the ecp group, leaving only the struct to be freed. This can still be done by
the caller, since it is passed via the mbedtls_ecp_group *grp parameter.

l i b r a r y / aes . c : 9 1 0 : e r r o r : DEAD STORE
The value wr i t t en to &RK ( type unsigned int ∗) i s never used .
908 . ( ( u i n t 32 t ) FSb [ ( Y1 >> 24 ) & 0xFF ] <<

24 ) ;
909 .
910 . > X3 = ∗RK++ ˆ \
911 . ( ( u i n t 32 t ) FSb [ ( Y3 ) & 0xFF ]

) ˆ
912 . ( ( u i n t 32 t ) FSb [ ( Y0 >> 8 ) & 0xFF ] <<

8 ) ˆ
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FP: uint32_t *RK is a 128-bit round-key added at the end of every en-
cryption round and before round 1. The above shows the final round key
addition. The last round does not perform MixColumns. The position in the
buffer is changed for consistency. One could argue this to be less justifiable
in code that is very unlikely to be changed anyway.

l i b r a r y / aes . c : 9 7 8 : e r r o r : DEAD STORE
The value wr i t t en to &RK ( type unsigned int ∗) i s never used .
976 . ( ( u i n t 32 t ) RSb [ ( Y3 >> 24 ) & 0xFF ] <<

24 ) ;
977 .
978 . > X3 = ∗RK++ ˆ \
979 . ( ( u i n t 32 t ) RSb [ ( Y3 ) & 0xFF ]

) ˆ
980 . ( ( u i n t 32 t ) RSb [ ( Y2 >> 8 ) & 0xFF ] <<

8 ) ˆ

FP: The report is similar to the previous one, but for decryption (symmetry
because MixColumns left out).

l i b r a r y /bignum . c : 1 3 8 7 : e r r o r : DEAD STORE
The value wr i t t en to &t ( type unsigned long ) i s never used .
1385 . #end i f /∗ MULADDCHUIT ∗/
1386 .
1387 . > t++;
1388 .
1389 . do {

TP: The line mbedtls_mpi_uint c = 0, t = 0 is used to initialize c and t.
Both are used in the assembler instructions from the file bn_mul.h. Separate
routines are used depending on whether MULADDC_HUIT is defined. The type
definition for mbedtls_mpi_uint is either
typedef uint64_t mbedtls_mpi_uint or
typedef uint32_t mbedtls_mpi_uint, as specified in the file bignum.h.
Using a post-increment on a local, non-static variable seems unnecessary.

l i b r a r y /ecp . c : 1 4 6 3 : e r r o r : NULL DEREFERENCE
po in t e r `&l−>p` l a s t a s s i gned on l i n e 1458 could be nu l l and

i s de r e f e r enc ed by c a l l to `mbedt l s mp i f i l l r andom ( ) ` at
l i n e 1463 , column 9 .

1461 . do
1462 . {
1463 . > MBEDTLS MPI CHK( mbedt l s mp i f i l l r andom ( &l ,

p s i z e , f rng , p rng ) ) ;
1464 .
1465 . while ( mbedtls mpi cmp mpi ( &l , &grp−>P ) >= 0

)

FP: Line 1458: mbedtls_mpi_init( &l ). This initializes X->p as NULL,
and the number of limbs is set to 0. The struct is defined in the file bignum.h
as:
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typedef struct mbedtls_mpi

{

int s; /*!< integer sign */

size_t n; /*!< total # of limbs */

mbedtls_mpi_uint *p; /*!< pointer to limbs */

} mbedtls_mpi;

In the function mbedtls_mpi_fill_random, located in the file bignum.c,
the function call mbedtls_mpi_grow( X, limbs ) ensures space is available
to store the pseudorandom numbers generated by the following lines:
Xp = (unsigned char*) X->p;

f_rng( p_rng, Xp + overhead, size );.
Hence, the NULL value is never actually dereferenced.

l i b r a r y / x509 c r t . c : 1 4 5 9 : e r r o r : DEAD STORE
The value wr i t t en to &sep ( type char const ∗) i s never used .
1457 . CERT TYPE( MBEDTLS X509 NS CERT TYPE SSL CA,

”SSL CA” ) ;
1458 . CERT TYPE( MBEDTLS X509 NS CERT TYPE EMAIL CA,

”Email CA” ) ;
1459 . > CERT TYPE(

MBEDTLS X509 NS CERT TYPE OBJECT SIGNING CA, ”Object
S ign ing CA” ) ;

1460 .
1461 . ∗ s i z e = n ;

FP: The separator, used in the macro PRINT_ITEM, called from the macro
CERT_TYPE, is overwritten from "" to "," for printing multiple items.

l i b r a r y / x509 c r t . c : 1 4 8 7 : e r r o r : DEAD STORE
The value wr i t t en to &sep ( type char const ∗) i s never used .
1485 . KEY USAGE( MBEDTLS X509 KU CRL SIGN, ”

CRL Sign ” ) ;
1486 . KEY USAGE( MBEDTLS X509 KU ENCIPHER ONLY, ”

Encipher Only” ) ;
1487 . > KEYUSAGE( MBEDTLS X509 KU DECIPHER ONLY, ”

Decipher Only” ) ;
1488 .
1489 . ∗ s i z e = n ;

FP: The macro KEY_USAGE uses the macro PRINT_ITEM in the same manner
as last segment.
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l i b r a r y /ecp . c : 1 8 2 0 : e r r o r : MEMORYLEAK
memory dynamical ly a l l o c a t e d by c a l l to `mbedt l s mp i l s e t ( ) `

at l i n e 1818 , column 9 i s not reachab l e a f t e r l i n e 1820 ,
column 13 .

1818 . MBEDTLS MPI CHK( mbedt l s mp i l s e t ( &R−>Z , 1 )
) ;

1819 . i f ( f r n g != 0 )
1820 . > MBEDTLS MPI CHK( ecp randomize jac ( grp , R

, f rng , p rng ) ) ;
1821 . }
1822 .

FP: The memory allocated in line 1818 comes from the function
mbedtls_mpi_grow, called by the function mbedtls_mpi_lset. This en-
larges to a specified number of limbs.
The call to the function ecp_randomize_jac calculates Z = l * Z for a
randomized mbedtls_mpi l struct in the range 1 < l < p.
Because mbedtls_ecp_point *R is a parameter, the allocated memory and
its size are still available to the caller.

l i b r a r y /bignum . c : 2 2 4 7 : e r r o r : MEMORYLEAK
memory dynamical ly a l l o c a t e d to `U1 . p` by c a l l to `

mbedt l s mp i l s e t ( ) ` at l i n e 2187 , column 5 i s not reachab l e
a f t e r l i n e 2247 , column 55 .

2245 . c leanup :
2246 .
2247 . > mbedt l s mpi f r ee ( &TA ) ; mbedt l s mpi f r ee ( &TU ) ;

mbedt l s mpi f r ee ( &U1 ) ; mbedt l s mpi f r ee ( &U2 ) ;
2248 . mbedt l s mpi f r ee ( &G ) ; mbedt l s mpi f r ee ( &TB ) ;

mbedt l s mpi f r ee ( &TV ) ;
2249 . mbedt l s mpi f r ee ( &V1 ) ; mbedt l s mpi f r ee ( &V2 ) ;

FP: The components of the mbedtls_mpi U1 are set to default values and
are deallocated by the mbedtls_mpi_free( &U1 ) function call. The struct
itself is not dynamically allocated, as it is initialized using the function call
mbedtls_mpi_init( &U1 ). This uses a reference to a local struct.

l i b r a r y /ecp . c : 2 1 8 1 : e r r o r : NULL DEREFERENCE
po in t e r `&l−>p` l a s t a s s i gned on l i n e 2176 could be nu l l and

i s de r e f e r enc ed by c a l l to `mbedt l s mp i f i l l r andom ( ) ` at
l i n e 2181 , column 9 .

2179 . do
2180 . {
2181 . > MBEDTLS MPI CHK( mbedt l s mp i f i l l r andom ( &l ,

p s i z e , f rng , p rng ) ) ;
2182 .
2183 . while ( mbedtls mpi cmp mpi ( &l , &grp−>P ) >= 0

)

FP: The do-while loop is entered with the mbedtls_mpi l struct being de-
fault initialized: mbedtls_mpi_init( &l ).
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The function mbedtls_mpi_fill_random incorporated the following guard
before filling the struct X (l in the above segment) with size bytes of ran-
dom:

if( X->n != limbs )

{

mbedtls_mpi_free( X );

mbedtls_mpi_init( X );

MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, limbs ) );

}

Since the initialization value for X->n is 0, this code will always grow the
mpi. Growing the mpi is done with the mbedtls_calloc function, causing
&l->p not to be null when the function f_rng is used to fill it.

l i b r a r y /bignum . c : 2 3 4 1 : e r r o r : DEAD STORE
The value wr i t t en to &i ( type unsigned long ) i s never used .
2339 . MBEDTLS MPI CHK( mbed t l s mp i sh i f t r ( &R, s ) ) ;
2340 .
2341 . > i = mbedt l s mp i b i t l en ( X ) ;
2342 .
2343 . for ( i = 0 ; i < rounds ; i++ )

FP: The variable size_t i is immediately overwritten. Most of the other
calls to the function mbedtls_mpi_bitlen in the same file explicitly store
the result as well. Doing so may be conventional.

l i b r a r y /ecp . c : 2 3 2 9 : e r r o r : DEAD STORE
The value wr i t t en to &r e t ( type int ) i s never used .
2327 . mbed t l s e c p r e s t a r t c t x ∗ r s c t x )
2328 . {
2329 . > int r e t = MBEDTLS ERR ECP BAD INPUT DATA;
2330 . #i f de f ined (MBEDTLS ECP INTERNAL ALT)
2331 . char i s g r p c apab l e = 0 ;

FP: The variable int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA is over-
written with the same value, meaning this is probably a matter of explicitly
providing initial values.

Libsodium

s r c / l ibsodium/ c r yp t o v e r i f y /sodium/ v e r i f y . c : 5 6 : e r r o r :
DEAD STORE

The value wr i t t en to &v1 ( type void ) i s never used .
54 . }
55 . m = mm movemask epi8 ( mm cmpeq epi32 ( z , ze ro ) ) ;
56 . > v1 = zero ; v2 = zero ; z = zero ;
57 .
58 . return ( int ) ( ( ( u i n t 32 t ) m + 1U) >> 16) − 1 ;
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FP: The function returns whether two byte arrays are equal, using SSE to
do 128-bit XOR- and ORs. volatile __m128i v1, v2, z are zeroed after
usage. This report is generated once for every zero assignment.

s r c / l ibsodium/crypto pwhash/ sc rypt sa l s a208sha256 /
pwhash scryptsa l sa208sha256 . c : 2 4 6 : e r r o r : DEAD STORE

The value wr i t t en to &r e t ( type int ) i s never used .
244 . char wanted [

crypto pwhash scryptsalsa208sha256 STRBYTES ] ;
245 . e s c r y p t l o c a l t e s c r y p t l o c a l ;
246 . > int r e t = −1;
247 .
248 . i f ( sod ium st rn l en ( s t r ,

crypto pwhash scryptsalsa208sha256 STRBYTES ) !=

FP: The variable int ret = -1 is initialized with an exit failure value.
Similar cases are reported too.

s r c / l ibsodium/crypto pwhash/argon2/argon2−core . c : 4 9 9 : e r r o r :
MEMORYLEAK

memory dynamical ly a l l o c a t e d by c a l l to `malloc ( ) ` at l i n e
493 , column 10 i s not reachab l e a f t e r l i n e 499 , column 9 .

497 . r e s u l t = al locate memory (&( ins tance−>r eg i on ) ,
ins tance−>memory blocks ) ;

498 . i f (ARGON2OK != r e s u l t ) {
499 . > a r g on2 f r e e i n s t an c e ( ins tance , context−>f l a g s ) ;
500 . return r e s u l t ;
501 . }

FP: An Argon2_instance_t struct has two memory region pointers that
require deallocation in case of an early exit, which are
block_region *region and uint64_t *pseudo_rands.
As seen before in the other libraries, only unallocating components without
directly unallocating the struct causes such a report. The memory regions
are correctly zeroed, freed and have their pointers set to NULL by the function
argon2_free_instance. The caller can still free the struct, as its address
is passed via the parameter.

TweetNaCl

TweetNaCl does not have a single reported issue, apart from 34 reports
about uninitialized values. These are all due to the expansion of the FOR
macro, in which the loop counter variable is assigned 0. The assignment
does not seem to be recognized.
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A.1.2 Clang Static Analyzer

BearSSL

s r c / codec /pemdec . c : 4 1 8 : 2 : warning : Out o f bound memory ac c e s s (
a c c e s s exceeds upper l im i t o f memory block )

T0 PUSH( t0 datab lock [ addr ] ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

s r c / codec /pemdec . c : 2 3 3 : 3 5 : note : expanded from macro 'T0 PUSH '
#define T0 PUSH(v ) do { ∗dp = (v ) ; dp ++; } while (0 )

ˆ˜˜
1 warning generated .

Skipped: In function br_pem_decoder_run. This reports was skipped be-
cause it concerns automatically generated code:
/* Automatically generated code; do not modify directly. */.
The code is hard to read and the report likely does not take into account
function usage guidelines.

s r c / ec / ec p256 m62 . c : 5 8 2 : 2 : warning : Value s to r ed to ' cc ' i s
never read

cc = w >> 63 ;
ˆ ˜˜˜˜˜˜˜

s r c / ec / ec p256 m62 . c : 1 4 3 5 : 2 : warning : 2nd func t i on c a l l argument
i s a po in t e r to u n i n i t i a l i z e d value

f 2 5 6 i n v e r t ( zt , z [ 0 ] ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

2 warnings generated .

1. TP: In function f256_final_reduce. As reported by Infer, the carry
uint64_t cc is not propagated.

2. FP: In function window_to_affine. The reportedly uninitilized value:
uint64_t z[16][5].
Code prior to the inversion:

for (i = 0; (i + 1) < num; i += 2) {

memcpy(zt, jac[i].z, sizeof zt);

memcpy(jac[i].z, jac[i + 1].z, sizeof zt);

memcpy(jac[i + 1].z, zt, sizeof zt);

f256_montymul(z[i >> 1], jac[i].z, jac[i + 1].z);

}

if ((num & 1) != 0) {

memcpy(z[num >> 1], jac[num - 1].z, sizeof zt);

memcpy(jac[num - 1].z, F256_R, sizeof F256_R);

}

As stated by comments in the function, whenever the argument
int num is uneven, the conditional statement ensures an extra
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F256_R (2^260 mod p) is inserted in the (num >> 1)th slot of z. This
ensures z[0] is initialized when num = 1.
For 32 >= num > 1, the first iteration of the for-loop will put the
result of f256_montymul in z[0].
Without any deallocations before the inversion call, and the caller
respecting the (0, 32] window element limit, z[0] should always be
initialized. The analyzer seems to freely pick a value for the variable
int num, whilst this parameter is restricted to certain values.

s r c / ec / ec p256 m64 . c : 1 4 0 0 : 2 : warning : 2nd func t i on c a l l argument
i s a po in t e r to u n i n i t i a l i z e d value

f 2 5 6 i n v e r t ( zt , z [ 0 ] ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: In function window_to_affine. The code is similar to the code in the
previous report, but for basis 264 instead of 252.

s r c / ec / e cd sa a t r . c : 1 3 2 : 2 : warning : 2nd func t i on c a l l argument i s
a po in t e r to u n i n i t i a l i z e d value

memcpy( s ig , tmp , s i g l e n ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: In function br_ecdsa_asn1_to_raw.
Line 129: memset(tmp, 0, sig_len). Additionally, integers r and s are
also copied into this temporary buffer. The analyzer only acknowledges s

being set.

s r c / ec / e cd sa r t a . c : 1 0 6 : 1 4 : warning : Out o f bound memory ac c e s s (
a c c e s s exceeds upper l im i t o f memory block )

tmp [ o f f ++] = 0x02 ;
˜˜˜˜˜˜˜˜˜˜˜˜ˆ˜˜˜˜˜

s r c / ec / e cd sa r t a . c : 1 0 6 : 1 4 : warning : Out o f bound memory ac c e s s (
acce s s ed memory precedes memory block )

tmp [ o f f ++] = 0x02 ;
˜˜˜˜˜˜˜˜˜˜˜˜ˆ˜˜˜˜˜

2 warnings generated .

FP: In function br_ecdsa_raw_to_asn1. The preceding conditional branches
apply either off = 3 or off = 2 as the variable off’s initial value. Next,
we may assume rlen <= 125 after the following code segment:

if (rlen > 125 || slen > 125) {

return 0;

}

This is followed by two off++ post-increments and off += rlen.
off is in the range 2 <= off <= 3 + rlen + 2 <= 130.
The size of unsigned char tmp[257] is 257 bytes.
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The warning is odd, as it implies the same line accesses memory proceeding-
and exceeding the upper limit of the memory block. This would be less
strange if the variable off took on the value of a freely chosen parameter,
or if off was positioned in a loop with a condition depending on a freely
chosen parameter. Neither of these are the case.

s r c / r sa / rsa oaep pad . c : 9 0 : 2 3 : warning : Out o f bound memory
ac c e s s ( a c c e s s exceeds upper l im i t o f memory block )

buf [ k − s r c l e n − 1 ] = 0x01 ;
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ˆ˜˜˜˜˜

1 warning generated .

FP: In function br_rsa_oaep_pad.
On line 70, a conditional statement causes an early exit with the disjunction
operands being:

Disjunction operands Assumption afterwards

k < ((hlen << 1) + 2) (hlen << 1) + 1 <= k - 1

src_len > (k - (hlen << 1) - 2) (hlen << 1) + 1 <= k - src_len - 1

dst_max_len < k k <= dst_max_len

Since buf = dst and the arguments void *dst, size_t dst_max_len may
be assumed well-chosen, we know
k − src len− 1 < k <= dst max len.
The upper limit of memory should therefore not be accessible under these
conditions.
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s r c / symcipher / a e s x 8 6n i c t r . c : 7 1 : 8 : warning : Po inter a r i thmet i c
on non−array v a r i a b l e s r e l i e s on memory layout , which i s
dangerous

x0 = mm inser t ep i32 ( ivx , br bswap32 ( cc + 0) ,
3) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

/ usr / l i b / llvm −6.0/ l i b / c lang /6 . 0 . 0 / in c lude / smmintrin . h : 9 9 0 : 3 9 :
note : expanded from macro ' mm inser t ep i32 '

a [ (N) & 3 ] = ( I ) ;
\

ˆ˜˜˜˜˜˜˜˜˜˜˜
s r c / symcipher / a e s x 8 6n i c t r . c : 7 2 : 8 : warning : Po inter a r i thmet i c

on non−array v a r i a b l e s r e l i e s on memory layout , which i s
dangerous

x1 = mm inser t ep i32 ( ivx , br bswap32 ( cc + 1) ,
3) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

/ usr / l i b / llvm −6.0/ l i b / c lang /6 . 0 . 0 / in c lude / smmintrin . h : 9 9 0 : 3 9 :
note : expanded from macro ' mm inser t ep i32 '

a [ (N) & 3 ] = ( I ) ;
\

ˆ˜˜˜˜˜˜˜˜˜˜˜
s r c / symcipher / a e s x 8 6n i c t r . c : 7 3 : 8 : warning : Po inter a r i thmet i c

on non−array v a r i a b l e s r e l i e s on memory layout , which i s
dangerous

x2 = mm inser t ep i32 ( ivx , br bswap32 ( cc + 2) ,
3) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

/ usr / l i b / llvm −6.0/ l i b / c lang /6 . 0 . 0 / in c lude / smmintrin . h : 9 9 0 : 3 9 :
note : expanded from macro ' mm inser t ep i32 '

a [ (N) & 3 ] = ( I ) ;
\

ˆ˜˜˜˜˜˜˜˜˜˜˜
s r c / symcipher / a e s x 8 6n i c t r . c : 7 4 : 8 : warning : Po inter a r i thmet i c

on non−array v a r i a b l e s r e l i e s on memory layout , which i s
dangerous

x3 = mm inser t ep i32 ( ivx , br bswap32 ( cc + 3) ,
3) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

/ usr / l i b / llvm −6.0/ l i b / c lang /6 . 0 . 0 / in c lude / smmintrin . h : 9 9 0 : 3 9 :
note : expanded from macro ' mm inser t ep i32 '

a [ (N) & 3 ] = ( I ) ;
\

ˆ˜˜˜˜˜˜˜˜˜˜˜
4 warnings generated .
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FP: The macro, which is NOT part of the BearSSL library:

#define _mm_insert_epi32(X, I, N) (__extension__ \

({ __v4si __a = (__v4si)(__m128i)(X); \

__a[(N) & 3] = (I); \

(__m128i)__a;}))

The only pointer arithmetic is the addition of (N) & 3 to the base address
__a. The typedef for the cast of __a can be found in xmmintrin.h (by
following the include chain):
typedef int __v4si __attribute__((__vector_size__(16)));.
The Clang Static Analyzer does not seem to pick up on the array of (usually)
four 32-bit integers, but treats it as a non-array variable.

In f i l e inc luded from s r c / symcipher / chacha20 sse2 . c : 2 6 :
In f i l e inc luded from s r c / inner . h : 2 5 2 7 :
In f i l e inc luded from /usr / l i b / llvm −6.0/ l i b / c lang /6 . 0 . 0 / in c lude /

x86 i n t r i n . h : 2 9 :
In f i l e inc luded from /usr / l i b / llvm −6.0/ l i b / c lang /6 . 0 . 0 / in c lude /

immintrin . h : 3 2 :
In f i l e inc luded from /usr / l i b / llvm −6.0/ l i b / c lang /6 . 0 . 0 / in c lude /

xmmintrin . h : 2 9 6 9 :
/ usr / l i b / llvm −6.0/ l i b / c lang /6 . 0 . 0 / in c lude /emmintrin . h : 4 3 1 2 : 2 6 :

warning : Po inter a r i thmet i c on non−array v a r i a b l e s r e l i e s on
memory layout , which i s dangerous

return (unsigned short ) b [ imm & 7 ] ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: __b is defined as: __v8hi __b = (__v8hi)__a with the typedef:
typedef short __v8hi __attribute__((__vector_size__(16))).
This is almost the same issue as last report. Again, these are reports re-
garding llvm code rather than BearSSL code.

s r c /x509/ skey decoder . c : 5 0 4 : 1 3 : warning : Out o f bound memory
ac c e s s ( a c c e s s exceeds upper l im i t o f memory block )

i f ( l en == a2 [ 0 ] ) {
ˆ˜˜˜˜

1 warning generated .

Skipped (automatically generated code):
In function br_skey_decoder_run.
Line 500: const unsigned char *a2 = &t0_datablock[T0_POP()].
The macro T0_POP is defined as #define T0_POP() (*-- dp) and
t0_datablock is a constant byte-array filled with 40 bytes. The code
is located inside a repeated switch, stopping only when switch variable
uint32_t t0x, assigned t0x = T0_NEXT(&ip), takes on the value 0, the
ret instruction. Due to the size of the function, it is very hard to judge the
correctness of the report.
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s r c /x509/ x509 decoder . c : 4 7 9 : 1 3 : warning : D iv i s i on by zero
T0 PUSHi( a % b) ;

˜˜ˆ˜˜
s r c /x509/ x509 decoder . c : 3 8 9 : 4 7 : note : expanded from macro '

T0 PUSHi '
#define T0 PUSHi(v ) do { ∗( i n t 3 2 t ∗)dp = (v ) ; dp ++; } while

(0 )
ˆ

s r c /x509/ x509 decoder . c : 5 2 0 : 1 3 : warning : D iv i s i on by zero
T0 PUSHi( a / b) ;

˜˜ˆ˜˜
s r c /x509/ x509 decoder . c : 3 8 9 : 4 7 : note : expanded from macro '

T0 PUSHi '
#define T0 PUSHi(v ) do { ∗( i n t 3 2 t ∗)dp = (v ) ; dp ++; } while

(0 )
ˆ

s r c /x509/ x509 decoder . c : 6 3 9 : 2 : warning : Out o f bound memory
ac c e s s ( a c c e s s exceeds upper l im i t o f memory block )

T0 PUSH( t0 datab lock [ addr ] ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

s r c /x509/ x509 decoder . c : 3 8 8 : 3 5 : note : expanded from macro '
T0 PUSH '

#define T0 PUSH(v ) do { ∗dp = (v ) ; dp ++; } while (0 )
ˆ˜˜

s r c /x509/ x509 decoder . c : 6 6 0 : 1 3 : warning : Out o f bound memory
ac c e s s ( a c c e s s exceeds upper l im i t o f memory block )

i f ( l en == a2 [ 0 ] ) {
ˆ˜˜˜˜

4 warnings generated .

• 1. & 3. Skipped (again, automatically generated).
In function br_x509_decoder_run. The first division by zero is la-
beled the /* %25 */ instruction, whilst the second is normal division
(/* / */). It is probable that the provided void *t0ctx argument
needs to ensure the second operands are not 0. The Clang Static
Analyzer does not know about usage guidelines like this.

s r c /x509/x509 knownkey . c : 8 9 : 7 : warning : Cast ing a non−s t r u c tu r e
type to a s t r u c tu r e type and ac c e s s i n g a f i e l d can lead to
memory ac c e s s e r r o r s or data co r rupt i on

xc = ( const br x509 knownkey context ∗) ctx ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: In function kk_get_pkey.
const br_x509_class *const *ctx is converted to type
const br_x509_knownkey_context *. First of all, scan-tool does not seem
to acknowledge the fact that both cast types are pointers, meaning the
memory layout is only reinterpreted. This should never cause data corrup-
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tion by itself. The structure that is pointed to in the cast type, found in
bearssl_x509.h:

typedef struct {

/** \brief Reference to the context vtable. */

const br_x509_class *vtable;

#ifndef BR_DOXYGEN_IGNORE

br_x509_pkey pkey;

unsigned usages;

#endif

} br_x509_knownkey_context;

The cast lowers the pointer from a
<pointer to a <constant pointer to a constant br_x509_class struct>>, to
a <constant pointer to a br_x509_knownkey_context struct>.
The pointer const br_x509_class *vtable is the first member, causing
it to correctly line up with the cast. The caller needs to ensure the other
members also line up correctly. This causes the br_x509_pkey pkey struct
member to be returnable by reference. If this is done carefully, the cast
should not result in problems. This type of pointer casting is common in
object oriented programming in C.

t o o l s / c e r t s . c : 1 3 6 : 2 : warning : Nul l po in t e r passed as an argument
to a ' nonnul l ' parameter

VECADDMANY(∗ dst , &VEC ELT( tas , 0) , num) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

t o o l s / b r s s l . h : 1 2 6 : 3 : note : expanded from macro 'VECADDMANY '
memcpy( ( vec ) . buf + ( vec ) . ptr , \
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

t o o l s / c e r t s . c : 1 6 6 : 8 : warning : Cast ing a non−s t r u c tu r e type to a
s t r u c tu r e type and ac c e s s i n g a f i e l d can lead to memory
ac c e s s e r r o r s or data cor rupt i on

xwc = ( x509 noanchor context ∗) ctx ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

===[4 more r epo r t s o f the same type l e f t out]===

to o l s / c e r t s . c : 2 1 6 : 8 : warning : Cast ing a non−s t r u c tu r e type to a
s t r u c tu r e type and ac c e s s i n g a f i e l d can lead to memory
ac c e s s e r r o r s or data cor rupt i on

xwc = ( x509 noanchor context ∗) ctx ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

7 warnings generated .

• 1: FP: In function read_trust_anchors.
anchor_list *dst is a parameter. The macro definition without its
body is VEC_ADDMANY(vec, xp, num). The report is another instance
of the case where a function like memcpy can be called with a null

63



argument and a 0 argument that specifies the length. The first report
by Infer on BearSSL is similar.

• 2-7: FP: More instances of the pointer casting report.

t o o l s / skey . c : 4 8 3 : 2 : warning : Value s to r ed to ' r e t ' i s never read
r e t = 1 ;
ˆ ˜

1 warning generated .

FP: In function decode_key. The value assigned to the variable ret will be
overwritten in any switch case.

mbed TLS

aes . c : 1 2 5 6 : 3 1 : warning : The r i gh t operand o f ' ˆ ' i s a garbage
value

tmp [ i ] = input [ i ] ˆ t [ i ] ;
ˆ ˜˜˜˜

1 warning generated .

FP: In function: mbedtls_aes_crypt_xts.

unsigned char *t =

mode == MBEDTLS_AES_DECRYPT ? prev_tweak : tweak

This assigns the buffer to be the previous tweak for decryption with leftover
bytes. The leftover bytes are the start of the ciphertext before it, meaning
the previous tweak is needed for decryption (XOR’d). tweak_prev is con-
ditionally defined, whenever the following holds:
leftover && ( mode == MBEDTLS_AES_DECRYPT ) && blocks == 0

(where blocks is the amount of full blocks left). tweak is updated every block
before handling the leftover: mbedtls_gf128mul_x_ble( tweak, tweak ).
t could contain a garbage value if the function would run without a full block,
but this is prevented by a condition in one of the first lines: length < 16.
Therefore, the XOR should not be having a right operand garbage value.
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asn1wr i te . c : 4 9 : 1 7 : warning : Out o f bound memory ac c e s s ( a c c e s s
exceeds upper l im i t o f memory block )

∗−−(∗p) = (unsigned char ) l en ;
˜˜˜˜˜˜˜˜ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

===[S im i l a r e n t r i e s l e f t out]===
asn1wr i te . c : 2 4 3 : 1 3 : warning : Out o f bound memory ac c e s s ( a c c e s s

exceeds upper l im i t o f memory block )
∗−−(∗p) = va l ;
˜˜˜˜˜˜˜˜ˆ˜˜˜˜

asn1wr i te . c : 2 4 5 : 2 2 : warning : This statement i s never executed
i f ( va l > 0 && ∗∗p & 0x80 )

ˆ
asn1wr i te . c : 2 4 8 : 2 1 : warning : This statement i s never executed

return ( MBEDTLS ERR ASN1 BUF TOO SMALL ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

. . / i n c lude /mbedtls /asn1 . h : 5 7 : 6 0 : note : expanded from macro '
MBEDTLS ERR ASN1 BUF TOO SMALL '

#define MBEDTLS ERR ASN1 BUF TOO SMALL −0
x006C /∗∗< Buf fer too sma l l when wr i t i n g ASN.1 data
s t r u c t u r e . ∗/

ˆ˜˜˜˜˜

===[Two more e r r o r s l i k e the f i r s t one l e f t out]===
13 warnings generated .

1. FP: In function mbedtls_asn1_write_len. The function is meant
to write a length field to a buffer in ASN.1 format. Doing so involves
specifying the length of the length field, and its value, inside the buffer
pointed to by the location the pointer unsigned char **p is pointing
to.
The pointer unsigned char *start points to the start of the buffer.
Before any writing of 1 <= x <= 5 bytes is done (a 32-bit integer and
one byte), not passing the check *p - start < x causes an early exit.
This counters out of bounds memory access, assuming the arguments
are valid.

3. FP: In function mbedtls_asn1_write_int. Before the conditional,
the assignment *--(*p) = val is done. Both are parameters:
unsigned char **p, unsigned char *start, int val.
The claim that **p would never be executed stems from the first
operand of the && operator. This would imply val <= 0 all the time,
which should not be the case.

4. FP: The statement is located in the then-branch of the conditional in
(3), guarded by a length check. If the right operand in (3) is though to
be unreachable, this implies the conditional is always considered false
(because of the && operator). Extending the same (incorrect) logic,
the statement in (4) will never execute either.
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bignum . c : 7 2 1 : 1 5 : warning : Out o f bound memory ac c e s s ( acce s s ed
memory precedes memory block )
s [ s l e n++] = ' \n ' ;
˜˜˜˜˜˜˜˜˜˜ˆ˜˜˜˜˜

bignum . c : 1 1 6 0 : 1 5 : warning : Out o f bound memory ac c e s s ( a c c e s s
exceeds upper l im i t o f memory block )

z = ( ∗d < c ) ; ∗d −= c ;
ˆ˜

bignum . c : 1 1 6 6 : 1 5 : warning : Out o f bound memory ac c e s s ( a c c e s s
exceeds upper l im i t o f memory block )

z = ( ∗d < c ) ; ∗d −= c ;
ˆ˜

bignum . c : 2 3 4 1 : 5 : warning : Value s to r ed to ' i ' i s never read
i = mbedt l s mp i b i t l en ( X ) ;
ˆ ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

4 warnings generated .

FP: In function mbedtls_mpi_write_file. The char buffer initialized as
char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ] is indexed using a
post-incremented version of the variable slen = strlen( s ). The macro
determining the size of the buffer incorporates extra bytes
(for ”the newline * characters and the '\0'”), but the strlen func-
tion counts until the \0 (excluded).

chacha20 . c : 5 5 5 : 2 2 : warning : 1 s t func t i on c a l l argument i s a
po in t e r to u n i n i t i a l i z e d value

ASSERT( 0 == memcmp( output , t e s t ou tpu t [ i ] ,
t e s t l e n g t h s [ i ] ) ,

ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
chacha20 . c : 5 2 5 : 1 7 : note : expanded from macro 'ASSERT '

i f ( ! ( cond ) ) \
ˆ˜˜˜

1 warning generated .

FP: In function mbedtls_chacha20_self_test. output is an array contain-
ing the result of the function mbedtls_chacha20_crypt with test param-
eters. This function uses the function mbedtls_chacha20_update, which
initializes the output array if it was not initialized already.

c iphe r . c : 1 0 1 8 : 1 7 : warning : This statement i s never executed
return ( r e t ) ;

ˆ˜˜
1 warning generated .

FP: In function mbedtls_cipher_crypt. The statement is conditionally ex-
ecuted whenever ret = mbedtls_cipher_reset( ctx ) ) != 0 evaluates
to true.
mbedtls_cipher_reset can be non-zero if ctx->cipher_info == NULL

(pointer argument with same name).
This check is actually unneeded, as the original function already did the fol-
lowing check: CIPHER_VALIDATE_RET( ctx != NULL ). In the meantime,
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only the members of ctx->cipher_info have changed, but it it not set to
NULL. With this type of code, this could still be considered a feasible check
for safety.

ecdsa . c : 3 0 0 : 1 3 : warning : Out o f bound memory ac c e s s ( a c c e s s
exceeds upper l im i t o f memory block )

i f ( ∗ p s i g n t r i e s++ > 10 )
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜

ecdsa . c : 3 0 0 : 1 4 : warning : Po inter a r i thmet i c on non−array
v a r i a b l e s r e l i e s on memory layout , which i s dangerous

i f ( ∗ p s i g n t r i e s++ > 10 )
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜

ecdsa . c : 3 1 3 : 1 7 : warning : Out o f bound memory ac c e s s ( a c c e s s
exceeds upper l im i t o f memory block )

i f ( ∗ p k e y t r i e s++ > 10 )
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜

ecdsa . c : 3 1 3 : 1 8 : warning : Po inter a r i thmet i c on non−array
v a r i a b l e s r e l i e s on memory layout , which i s dangerous

i f ( ∗ p k e y t r i e s++ > 10 )
ˆ˜˜˜˜˜˜˜˜˜˜˜˜

4 warnings generated .

TP: In function ecdsa_sign_restartable. The pointer
p_sign_tries = &rs_ctx->sig->sign_tries is within bounds in the first
do-while iteration. However, the order of the left operand of the > oper-
ator seems to be wrong. *p_sign_tries++ increments the address that
p_sign_tries points to for the next iteration of the do-while loop; it then
dereferences the pointer. The author likely meant to do (*p_sign_tries)++,
in which case it acts as a counter. (*p_sign_tries)++ would increment
*p_sign_tries every do-while iteration.

gcm . c : 8 2 5 : 1 8 : warning : 1 s t func t i on c a l l argument i s a po in t e r
to u n i n i t i a l i z e d value

i f ( memcmp( buf , c t [ j ∗ 6 + i ] , p t l e n [ i ] ) != 0 | |
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: In function mbedtls_gcm_self_test. unsigned char buf[64] is ini-
tialized with a call to the function mbedtls_gcm_crypt_and_tag, calling
the function mbedtls_gcm_update which treats buf as its output.
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hkdf . c : 1 5 3 : 1 5 : warning : 2nd func t i on c a l l argument i s a po in t e r
to u n i n i t i a l i z e d value

r e t = mbedtls md hmac update ( &ctx , t , t l e n ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: In function mbedtls_hkdf_expand. The function ends up calling

/** Digest update function */

int (*update\_func)( void *ctx,

const unsigned char *input,

size\_t ilen );

with unsigned char t[MBEDTLS_MD_MAX_SIZE] as the input argument and
its size as the ilen argument. update is a function pointer for an opaque
struct. The following calls are used to set up ctx, which determines the
update function, called from line 153:

mbedtls_md_init( &ctx );

if( (ret = mbedtls_md_setup( &ctx, md, 1) )

This means that the update function, which is supplied as the first argument
in line 153, is dependent on supplying the right
const mbedtls_md_info_t *md argument to the function. If this md sup-
plies an update function supporting/overwriting uninitialized buffers, there
is no problem.

pem . c : 4 7 3 : 9 : warning : Nul l po in t e r passed as an argument to a '
nonnul l ' parameter

memcpy( p , c , l en ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: In function mbedtls_pem_write_buffer.
The assignment c = encode_buf is used, but if encode_buf were NULL, this
would cause an early exit by the following conditional:

if( ( ret = mbedtls_base64_encode( encode_buf, use_len,

&use_len, der_data, der_len ) ) != 0 )

This returns the non-zero
return( MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL ) in case the destina-
tion (encode_buf) is NULL.
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pkcs12 . c : 2 0 5 : 1 7 : warning : 2nd func t i on c a l l argument i s a
po in t e r to u n i n i t i a l i z e d value
i f ( ( r e t = mbedt l s c i phe r s e tk ey ( &c iphe r c tx , key , 8 ∗

keylen , ( mbedt l s ope ra t i on t ) mode ) ) != 0 )
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

pkcs12 . c : 2 0 8 : 1 7 : warning : 2nd func t i on c a l l argument i s a
po in t e r to u n i n i t i a l i z e d value
i f ( ( r e t = mbed t l s c i p h e r s e t i v ( &c iphe r c tx , iv ,

c i ph e r i n f o−> i v s i z e ) ) != 0 )
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

2 warnings generated .

FP: In function mbedtls_pkcs12_pbe. Again, the arguments are the buffers
to be filled, which may be uninitialized.

pkcs5 . c : 3 8 6 : 1 3 : warning : 2nd func t i on c a l l argument i s a po in t e r
to u n i n i t i a l i z e d value

memcmp( r e s u l t k e y [ i ] , key , key l en [ i ] ) != 0 )
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: In function mbedtls_pkcs5_self_test, a test function. key is the
output of mbedtls_pkcs5_pbkdf2_hmac, one of the functions that is being
tested.

pkwrite . c : 2 2 7 : 1 0 : warning : Out o f bound memory ac c e s s ( a c c e s s
exceeds upper l im i t o f memory block )
∗−−c = 0 ;
˜˜˜˜˜ˆ˜˜

pkwrite . c : 3 7 0 : 1 4 : warning : Out o f bound memory ac c e s s ( a c c e s s
exceeds upper l im i t o f memory block )

∗−−c = 0 ;
˜˜˜˜˜ˆ˜˜

2 warnings generated .

FP: In function mbedtls_pk_write_pubkey_der. Checks are in place to
prevent going out of bounds: the assignment c = buf + size is followed
by the segment:

if( c - buf < 1 )

return( MBEDTLS_ERR_ASN1_BUF_TOO_SMALL );
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r sa . c : 1 8 2 8 : 5 : warning : 2nd func t i on c a l l argument i s a po in t e r
to u n i n i t i a l i z e d value
memcpy( p , s a l t , s l e n ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

r sa . c : 1 9 8 6 : 1 0 : warning : Out o f bound memory ac c e s s ( acce s s ed
memory precedes memory block )
∗p++ = (unsigned char ) ( 0x08 + o i d s i z e + hashlen ) ;
˜˜˜˜˜ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

r sa . c : 2 2 0 8 : 1 6 : warning : The l e f t operand o f '>> ' i s a garbage
value
i f ( buf [ 0 ] >> ( 8 − s i g l e n ∗ 8 + msb ) )

˜˜˜˜˜˜ ˆ
3 warnings generated .

1. FP: In function mbedtls_rsa_rsassa_pss_sign. This is initialized
in:

/* Generate salt of length slen */

if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )

2. FP: In function rsa_rsassa_pkcs1_v15_encode.
The pointer unsigned char *p = dst has a length passed by the
size_t dst_len parameter. This is saved in the assignment
size_t nb_pad = dst_len, and checked before writing to p.

3. FP: In function mbedtls_rsa_rsassa_pss_verify_ext.
unsigned char buf[MBEDTLS_MPI_MAX_SIZE] is overwritten in any
of the two ternary operator expressions in:

ret = ( mode == MBEDTLS_RSA_PUBLIC )

? mbedtls_rsa_public( ctx, sig, buf )

: mbedtls_rsa_private( ctx, f_rng, p_rng, sig, buf );

This report seems to happen when an array size is specified by a macro,
such as #define MBEDTLS_MPI_MAX_SIZE 1024 (defined in bignum.h).
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t iming . c : 4 4 2 : 2 1 : warning : This statement i s never executed
m i l l i s e c s = mbedt l s t im ing ge t t imer ( &h i r e s , 0 ) ;

ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
t iming . c : 4 9 4 : 1 3 : warning : This statement i s never executed

i f ( verbose != 0 )
ˆ˜˜˜˜˜˜

t iming . c : 5 1 0 : 1 8 : warning : This statement i s never executed
c y c l e s = mbedt l s t iming hardc lock ( ) ;

ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
3 warnings generated .

The second and third explanations for the above reports are hand-wavy. One
cannot reasonably expect a static analyzer to handle these cases correctly.
These reports are merely included for completeness.
In function mbedtls_timing_self_test:

1. FP: The previous statements:

mbedtls_set_alarm( (int) secs );

while( !mbedtls_timing_alarmed )

;

The condition is based on a volatile integer:
volatile int mbedtls_timing_alarmed = 0, thus the value may
change at any time. This could be an oversight in the way volatile
integers are interpreted.

2. Skipped: This code is accessible, but only after a goto statement has
been taken. The variable int hardfail = 0 has not changed before
the conditional guarding this code is reached, which is

hard_test:

if( hardfail > 1 )

Afterwards, the following code segment can actually reach the
hard_test label:

hardfail++;

goto hard_test;

This should only happen in when the cycle counter wraps twice during
the test. A detailed explanation on this behavior is provided in the
source code.

3. Skipped: The Clang Static Analyzer making abstractions (for this
rather specialized function/test) seems like the most plausible expla-
nation.
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x509 c r ea t e . c : 1 7 2 : 1 7 : warning : 4 th func t i on c a l l argument i s a
po in t e r to u n i n i t i a l i z e d value

mbedt l s asn1 store named data ( head , oid , s t r l e n
( o id ) ,

ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
x509 c r ea t e . c : 3 1 1 : 1 3 : warning : Out o f bound memory ac c e s s (

a c c e s s exceeds upper l im i t o f memory block )
∗−−(∗p) = 0 ;
˜˜˜˜˜˜˜˜ˆ˜˜

2 warnings generated .

1. FP: In function mbedtls_x509_string_to_names. The entire state-
ment:

mbedtls_asn1_named_data* cur =

mbedtls_asn1_store_named_data( head, oid, strlen( oid ),

(unsigned char *) data,

d - data );

data contains data that may be stored, d - data is the amount of data
that will be stored. The difference between d and data is initially 0,
as char *d = data. This is safely expanded in later iterations of the
outer loop (while( c <= end )) by the assignment *(d++) = *c.

2. FP: In function mbedtls_x509_write_sig. Again, a statement guarded
by length checks.

aes / crypt and hash . c : 4 5 2 : 1 3 : warning : 2nd func t i on c a l l argument
i s a po in t e r to u n i n i t i a l i z e d value

mbedtls md update ( &md ctx , key , key len ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: In function main. The secret key is read from the command line or from
a file, both of which can be passed via argv[6]. If argc != 7, the program
will exit.

hash/ gener ic sum . c : 2 2 7 : 9 : warning : Value s to r ed to ' r e t ' i s
never read

r e t |= gene r i c che ck ( md info , argv [ 3 ] ) ;
ˆ ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: In function main. The initialization int ret = 1 is solely used to sig-
nify a couple of functions have return values (which may be used in the
future), but is never read or returned.
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pkey/ pk decrypt . c : 1 4 1 : 1 7 : warning : 2nd func t i on c a l l argument i s
a po in t e r to u n i n i t i a l i z e d value
i f ( ( r e t = mbedt l s pk decrypt ( &pk , buf , i , r e s u l t , &olen ,

s izeof ( r e s u l t ) ,
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: In function main. unsigned char buf[512] is the buffer read from a
text file, containing the RSA data that needs to be decrypted. Its length,
stored in the variable size_t i, is incremented for every byte written to
buf, meaning everything within this size is initialized.

pkey/ r s a v e r i f y . c : 1 4 4 : 1 7 : warning : 8 th func t i on c a l l argument i s
a po in t e r to u n i n i t i a l i z e d value
i f ( ( r e t = mbed t l s r s a pk c s 1 v e r i f y ( &rsa , NULL, NULL,

MBEDTLS RSA PUBLIC,
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1 warning generated .

FP: In function main. Same scenario as the last warning.

Libsodium

c rypto gene r i cha sh /blake2b / r e f /blake2b−r e f . c : 1 2 0 : 2 0 : warning : 1
s t func t i on c a l l argument i s a po in t e r to u n i n i t i a l i z e d value

S−>h [ i ] ˆ= LOAD64 LE(p + s izeof (S−>h [ i ] ) ∗ i ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

. / in c lude /sodium/ pr i va t e /common . h : 6 1 : 2 4 : note : expanded from
macro 'LOAD64 LE '

#define LOAD64 LE(SRC) l o ad64 l e (SRC)
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜

c rypto gene r i cha sh /blake2b / r e f /blake2b−r e f . c : 3 5 8 : 1 3 : warning :
This statement i s never executed

sodium misuse ( ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜

c rypto gene r i cha sh /blake2b / r e f /blake2b−r e f . c : 3 6 2 : 1 3 : warning :
This statement i s never executed

sodium misuse ( ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜

c rypto gene r i cha sh /blake2b / r e f /blake2b−r e f . c : 3 9 7 : 1 3 : warning :
This statement i s never executed

sodium misuse ( ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜

c rypto gene r i cha sh /blake2b / r e f /blake2b−r e f . c : 4 0 1 : 1 3 : warning :
This statement i s never executed

sodium misuse ( ) ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜

5 warnings generated .

1. FP: In function blake2b_init_param. Part of the operands are pa-
rameters (these are blake2b_state *S, const blake2b_param *P
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where p = (const uint8_t *) (P)) and size_t i is the loop counter
variable starting from 0.

2. - 5. (same scenario)
FP: In function blake2b. A helper function has its return value
checked for values smaller than 0 in a conditional statement, with
sodium_misuse() as its then-branch. The helper function either re-
turns 0 signaling normal execution, or it calls the function
sodium_misuse itself (causing the program to quit).

crypto hash / sha256/cp/ hash sha256 cp . c : 1 6 2 : 3 1 : warning : Out o f
bound memory ac c e s s ( acce s s ed memory precedes memory block )

s ta te−>buf [ r + i ] = PAD[ i ] ;
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ˆ˜˜˜˜˜˜˜

crypto hash / sha256/cp/ hash sha256 cp . c : 1 6 6 : 3 1 : warning : Out o f
bound memory ac c e s s ( acce s s ed memory precedes memory block )

s ta te−>buf [ r + i ] = PAD[ i ] ;
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ˆ˜˜˜˜˜˜˜

2 warnings generated .

FP: In function SHA256_Pad.
r = (unsigned int) ((state->count >> 3) & 0x3f), so
0 <= r <= 63. The struct crypto_hash_sha256_state has the member
uint8_t buf[64]. The first warning is in the then-branch, the second in
the else branch, which contain similar code.

1. If r < 56, i will be in 0 <= i < 56 − r <= 56, so that r + i <
r + (56− r) = 56. This will not go out of range.

2. If !(r < 56), then 56 <= r <= 63. Then i will be in 0 <= i <
64− r <= 64, so that r + i < r + (64− r) = 64. This will not go out
of range.

Both of the reports claim memory preceding the memory block is accessed,
but since 56 - r and 64-r will always be at least 1, there is no way for i

to be treated as a negative value in the index expression r + i.

crypto onet imeauth /poly1305 /donna/poly1305 donna . c : 5 2 : 4 2 :
warning : Out o f bound memory ac c e s s ( acce s s ed memory precedes
memory block )

st−>bu f f e r [ st−>l e f t o v e r + i ] = m[ i ] ;
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ˆ˜˜˜˜˜

1 warning generated .

FP: In function poly1305_state_internal_t. The struct associated with
the parameter poly1305_state_internal_t *st has two relevant mem-
bers:

unsigned long long leftover;

unsigned char buffer[poly1305_block_size];
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The function has three parts:

1. Handle leftover stored in the Poly1305 state. If the previous leftover
and the new amount of bytes is smaller than
#define poly1305_block_size 16 (from the file
poly1305_donna64.h), return without calculating a MAC.

2. Handle a total of (bytes & ~(poly1305_block_size - 1)) full blocks.

3. Store any leftover, which should be less than 16 bytes.

Since buffer is of size poly_1305_block_size, and leftover is reduced to 0

in the first stage, storing up to
poly_1305_block_size - 1 bytes in buffer will not go out of bounds. The
variables i and st->leftover can not be negative, ruling out the access of
memory preceding the block.

crypto pwhash/argon2/argon2−core . c : 1 0 2 : 2 8 : warning : The code
c a l l s s izeof ( ) on a po in t e r type . This can produce an
unexpected r e s u l t
memcpy(&memory , &base , s izeof memory) ;

ˆ ˜˜˜˜˜˜
crypto pwhash/argon2/argon2−core . c : 4 9 3 : 3 4 : warning : the

computation o f the s i z e o f the memory a l l o c a t i o n may over f l ow
mal loc ( s izeof ( u i n t 64 t ) ∗ in s tance−>segment length ) ) ==

NULL) {
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

2 warnings generated .

1. FP: In function allocate_memory. The sizeof of a pointer is used
to determine the size needed to store the address of base.

2. FP: In function argon2_initialize. The caller needs to ensure that
the variable uint32_t segment_length in
typedef struct Argon2_instance_t is not too large.

crypto pwhash/ crypto pwhash . c : 1 7 1 : 1 3 : warning : This statement i s
never executed
return −1;

ˆ
1 warning generated .

FP: In function crypto_pwhash_str_alg. This is expected:

sodium_misuse();

/* NOTREACHED */

return -1;
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sodium/ core . c : 3 5 : 2 1 : warning : This statement i s never executed
return −1; /∗ LCOV EXCL LINE ∗/

ˆ
sodium/ core . c : 5 0 : 1 7 : warning : This statement i s never executed

return −1; /∗ LCOV EXCL LINE ∗/
ˆ

sodium/ core . c : 2 1 1 : 1 7 : warning : This statement i s never executed
return −1; /∗ LCOV EXCL LINE ∗/

ˆ
3 warnings generated .

FP: These depend on integers marked volatile:

static volatile int initialized;

static volatile int locked;

The Clang Static Analyzer does not always seem to treat these right.

crypto pwhash/ sc rypt sa l s a208sha256 / crypto sc rypt−common . c : 4 2 : 1 8 :
warning : Po inter a r i thmet i c on non−array v a r i a b l e s r e l i e s on
memory layout , which i s dangerous

∗dst++ = itoa64 [ s r c & 0 x3f ] ;
ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

crypto pwhash/ sc rypt sa l s a208sha256 / crypto sc rypt−common . c
: 2 1 9 : 1 4 : warning : Po inter a r i thmet i c on non−array v a r i a b l e s
r e l i e s on memory layout , which i s dangerous
∗dst++ = itoa64 [ N log2 ] ;

ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜
2 warnings generated .

FP: This is a pointer, and the pointer arithmetic should be alright.

static const char *const itoa64 =

"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";

This seems like an oversight in the Clang Static Analyzer, as this is common
practice. In the second warning, itoa64[N_log2] is functionally equivalent
to *(itoa64 + N_log2).

[A nonalarming l ibsodium warning was removed here because i t
conta in s unicode cha ra c t e r s ]

crypto onet imeauth /poly1305 / s s e2 / po ly1305 s s e2 . c : 8 1 3 : 2 9 : warning
: Out o f bound memory ac c e s s ( a c c e s s exceeds upper l im i t o f
memory block )

f i n a l [ l e f t o v e r ] = 1 ;
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ˆ˜˜

1 warning generated .

FP: In function poly1305_finish_ext. The array
CRYPTO_ALIGN(16) unsigned char final[32] = { 0 } has a size of 32
bytes. The caller must ensure the argument passed as
unsigned long long leftover is smaller than 32, as this is meant to be
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the final block. This is done by the
poly1305_update function, which stores any leftover bytes after processing
full blocks.

TweetNaCl

The Clang Static Analyzer did produce any warnings whilst analyzing Tweet-
NaCl.
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A.1.3 Splint

BearSSL

i n c / b ea r s s l h a sh . h : 1 1 6 6 : 2 7 : Storage ∗ ctx reachab l e from
parameter conta in s 1 undef ined f i e l d : impl

Storage de r i v ab l e from a parameter , return value or g l oba l i s
not de f ined .

Use /∗@out@∗/ to denote passed or returned s to rage which need
not be de f ined .

FP: The reports suggest to use an /*@out@*/ annotation. The Splint man-
ual [12] covers an example usage of this annotation for a setter. The out

annotation is used for ”a pointer to storage that may be undefined”. This
is not useful for a getter function like in BearSSL.
The check is useful, given one inserts annotations used by Splint that ex-
press the intent of the programmer. From a Splint perspective, it could be
interesting to try to adapt detection to one or more C coding styles. For
example, the Google C style guide [37] provides guidelines on where to place
input and output parameters.

As the output produced by Splint is repetitive and long, here follows a quick
summary of the other report types:

1. Many reports are due to the Splint specific annotations missing:

(a) /*@out@*/ for pointers possibly pointing to undefined storage.

(b) /*@null@*/ for parameters that may be null.

(c) /*@only@*/ to ”indicate a reference is the only pointer to the
object it points to” [34], thus it also needs to be freed from this
reference.

2. Integers directly used as booleans.

3. Implicit type conversions.
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mbed TLS

Firstly, with Splint, running splint filename.c with the -preproc flag is
necessary. Without this flag, a simple program such as the following will
error, by treating the CHAR_BIT definition from limits.h as 0:

1 #include <limits.h>

2 #include <stdio.h>

3 int main(int /*@unused@*/ argc, char /*@unused@*/ *argv[]){

4 printf("%d\n", CHAR_BIT);

5 #if (CHAR_BIT == 0)

6 #error (CHAR_BIT == 0)

7 #endif

8 return 0;

9 }

With the flag, no warnings are produced.
The flag is only needed for mbed TLS, as it checks limits in check_config.h,
included from config.h.

i n c lude /mbedtls / c iphe r . h : 4 3 0 : 1 9 : Statement has no e f f e c t : do { {
} } } whi . . .

Statement has no v i s i b l e e f f e c t −−− no va lue s are modi f i ed .

FP: This is the alternative definition of the
MBEDTLS_INTERNAL_VALIDATE_RET macro, which is meant to have no effect.
The definition without effect is used when MBEDTLS_CHECK_PARAMS is not
defined, protecting it from external usage.

l i b r a r y /ccm . c : 2 0 0 : 1 3 : Le f t operand o f << may be negat ive (
boolean ) :

( add len > 0) << 6
The l e f t operand to a s h i f t operator may be negat ive ( behavior

i s
implementation−de f ined ) .

The relational operators will only ever return 0 or 1, meaning the left
operand of the left shift can not be negative [18], as defined in section 6.5.8
of the C11 draft.

l i b r a r y /ccm . c : 2 0 6 : 4 3 : Operand o f ++ i s non−numeric (unsigned
char ) : i

l i b r a r y /ccm . c : 2 0 7 : 1 1 : Incompat ib le types for − ( int , unsigned
char ) : 15 − i

Reports such as the above generate a lot of noise in the output of Splint, at
least while dealing with cryptography code.

1. FP: Unsigned char is a common way of representing bytes, for which
a post-increment can be feasible.
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2. FP: The types are dealt with by promoting the unsigned char to an
integer, to then subtract this from the integer 15. As the unsigned
char stays within the positive range of signed integers, no problems
occur.

Splint offers several flags to deal with less of these reports, for instance:

1. The match-any-integral flag is used to make an arbitrary integral
type match any integral type. This flag causes no warnings to be
generated whilst running Splint on the code in Figure A.1, although
there are more specific rules that can do the same.

2. Several flags for setting the types of /*@integraltype@*/,
/*@unsignedintegraltype@*/ and /*@signedintegraltype@*/ to
(unsigned) long. An example is the flag
long-unsigned-unsigned-integral, which is more specific than the
match-any-integral, but effective for silencing the warning shown in
Figure A.2 on the next page.

3. Flags such as charint --- char and int are equivalent.
One of the consequences of using this flag is that post-incrementing a
character will not generate a warning.

Other report types that occur frequently:

1. Array fetch using non-integer, unsigned char.

2. Incompatible types for - (unsigned char, int) (other variations
occur for different integer types).

3. Assignment of int to unsigned char (multiple variations).

The frequency of these reports can be reduced if one uses a carefully chosen
set of flags, in line with the content of the file that is analyzed. Secondly,
some of the reports could be avoided if Splint looked at (constant) variable
ranges when a type conversion happens.

1 #include <stddef.h>

2 int main(int /*@unused@*/ argc, char /*@unused@*/ *argv[]){

3 size_t a = 4711;

4 unsigned long /*@unused@*/ b = 64ul + a;

5 return 0;

6 }

Figure A.1: unsigned long is assigned an arbitrary unsigned integral type.
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splint luui.c

Splint 3.1.2 --- 20 Feb 2018

luui.c: (in function main)

luui.c:4:36: Variable b initialized to type arbitrary

unsigned integral type,

expects unsigned long int: 64ul + a

To ignore type qualifiers in type comparisons use +ignorequals.

Finished checking --- 1 code warning

Figure A.2: Splint report on the code in A.1.

Libsodium

s r c / l ibsodium/ inc lude /sodium/ crypto aead chacha20poly1305 . h
: 8 9 : 6 1 :

Function parameter k dec l a r ed as mani f e s t array ( s i z e constant
i s

meaning less ) A formal parameter i s dec l a r ed as an array with
s i z e . The s i z e o f the array i s ignored in t h i s context ,
s i n c e the array formal parameter i s t r ea t ed as a

po in t e r .

FP: This report occurs in TweetNaCl and Libsodium. It is a matter of
style, but nevertheless a good check for which a toggle is a desirable. Other
similarities in the reports between Libsodium and TweetNaCl are the rotate
functions ”possibly using a negative right operand”, and initializer blocks
not explicitly specifying every array variable.

s r c / l ibsodium/ crypto aead /xchacha20poly1305 /sodium/
aead xchacha20poly1305 . c : 3 8 : 5 : Statement has no e f f e c t : (void
) nsec

Statement has no v i s i b l e e f f e c t −−− no va lue s are modi f i ed .

FP: Casting parameters to void is a common way of expressing the intention
to not use an argument.

s r c / l ibsodium/ crypto aead /xchacha20poly1305 /sodium/
aead xchacha20poly1305 . c : 3 9 : 5

2 : Function c r yp t o s t r e am chacha20 i e t f e x t expect s arg 2 to be
unsigned

long long ge t s s i z e t : s izeof ( b lock0 )
To a l low a rb i t r a r y i n t e g r a l types to match long unsigned , use
+l ongun s i gn ed in t e g r a l .

Example: The long-unsigned-integral flag would have been useful, as
suggested by Splint.
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1 #include <stdint.h>

2 int main(int /*@unused@*/ argc, char /*@unused@*/ *argv[]){

3 uint32_t /*@unused@*/ a = 1U;

4 return 0;

5 }

Figure A.3: Assignment of an unsigned int to a fixed width 32-bit unsigned
int.

splint fixedwidth.c

Splint 3.1.2 --- 20 Feb 2018

fixedwidth.c: (in function main)

fixedwidth.c:3:31: Variable a initialized to type unsigned int,

expects uint32_t: 1U

To allow arbitrary integral types to match any integral type,

use +matchanyintegral.

Finished checking --- 1 code warning

Figure A.4: Splint report on the code in A.3.

s r c / l ibsodium/ crypto aead /xchacha20poly1305 /sodium/
aead xchacha20poly1305 . c : 4 6 : 6

2 : Function c r yp t o s t r e am cha cha 2 0 i e t f e x t x o r i c expect s arg 5
to be

u in t 32 t ge t s unsigned int : 1U

Example: fixed width integers also require additional flags whenever they
are assigned such as in this report.
The same assignment but isolated, shown in Figure A.3, generates the re-
port in Figure A.4. A separate instance is helpful, as Splint only suggest a
specific flag once.
The suggestion is to use the match-any-integral flag. This case is inter-
esting, as you generally would not want to match fixed width integers to the
standard ones.
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TweetNaCl

tweetnac l . c : 1 4 : 1 2 : I n i t i a l i z e r b lock for 9 has 1 element , but
dec l a r ed as u8

[ 3 2 ] : 9
I n i t i a l i z e r does not d e f i n e a l l e lements o f a dec l a r ed array .
tweetnac l . c : 1 4 : 1 3 : I n i t i a l va lue o f 9 [ 0 ] i s type int , expect s

u8 : 9
Types are incompat ib le .

1. FP: One of many reports that have to do with the fact that TweetNaCl
is intended to be as short as possible. Without this restriction, one
could explicitly assign the other 31 bytes to be 0. Doing so is not
required, as this behavior is documented in C11, section 6.7.9, as ”the
remainder of the aggregate shall be initialized implicitly the same as
objects that have static storage duration” [18].

2. Example: As shown before, unless one uses the charint flag, only
character assignments do not generate warnings.

tweetnac l . c : 2 5 : 4 4 : Right operand o f << may be negat ive ( int ) : x
<< c

The r i gh t operand to a s h i f t operator may be negat ive ( behavior
undef ined ) .

tweetnac l . c : ( in func t i on ts64 )
tweetnac l . c : 5 7 : 1 4 : Operands o f < have incompat ib le types ( u32 ,

int ) : i < n

1. FP: The rotate is only used in four lines with constants for c. In other
types of projects (e.g. with diverse rotate usage or more contributors),
a mask may be preferred.

2. FP: The report is useful for finding the type mismatch bug discussed
in section 3.1. The types by themselves generally show whether some-
thing might be wrong.

tweetnac l . c : 9 7 : 7 : Test exp r e s s i on for i f not boolean , type int :
h

Test exp r e s s i on type i s not boolean or int .
tweetnac l . c : 1 2 3 : 2 9 : S t r ing l i t e r a l with 17 cha ra c t e r s i s

a s s i gned to u8 [ 1 6 ]
( no room for nu l l te rminator ) : ”expand 32−byte k”
tweetnac l . c : 1 3 3 : 3 1 : Passed s to rage x not complete ly de f ined (∗x

i s undef ined ) :
c r yp t o c o r e s a l s a 2 0 twe e t (x , . . . )
Storage de r i v ab l e from a parameter , return value or g l oba l i s

not de f ined .
Use /∗@out@∗/ to denote passed or returned s to rage which need

not be de f ined .
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A couple more warnings pointing out cases that are infeasible to circumvent
in TweetNaCl due to the character limit:

1. FP: The hsalsa flag is not checked by h == 0, but is instead directly
used as a boolean. The flag pred-bool-int may be used to silence
this warning.

2. FP: The ending '\0' is cut off (Not part of the Salsa20 constant
words).

3. FP: u8 x[64] is not initialized in the caller, a common warning.

An important takeaway, especially from the last report, is that Splint is
supposed to be continuously integrated in the development process, if used
at all. A project should be partially shaped conform the way Splint reports,
especially if one used the standard or strict checking mode. Splint could
become usable as a non-continuous usage checker if it provided more control
over the checkers. For instance, only reporting a subset of all comparisons,
without matching the types for any other expressions, would be helpful.
Current comparison control offers ignoresigns and ignorequals (ignores
type qualifiers).

tweetnac l . c : 3 0 4 : 1 0 : Array element t [ 0 ] used be f o r e d e f i n i t i o n
An rva lue i s used that may not be i n i t i a l i z e d to a value on some

execut ion
tweetnac l . c : 6 3 8 : 2 1 : Right operand o f >> may be negat ive ( int ) :
s [ i / 8 ] >> ( i & 7)
tweetnac l . c : 6 9 9 : 5 : Assignment o f i 64 to u8 : r [ i ] = x [ i ] & 255

1. FP: t[0] is initialized on line 299: FOR(i,16) t[i]=n[i]. The ini-
tialization is likely not detected due to the typedef i64 gf[16] or
the FOR macro.

2. FP: The mask prevents the right operand from being negative.

3. FP: A mask within u8 range is used for safe conversion.
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A.1.4 Sans t

BearSSL

s r c / symcipher / a e s x 8 6n i c t r . c : In func t i on ' b r a e s x 8 6n i c t r r un
' :

s r c / symcipher / a e s x 8 6n i c t r . c : 1 8 6 : 1 : warning : Loop c t r var
suspected range mismatch . [−Wall ]

186 | }
| ˆ
s r c / symcipher / a e s x 8 6n i c t r . c : 1 7 9 : 1 8 : warning : Loop c t r var

suspected range mismatch . [−Wall ]
179 | buf [ u ] ˆ= tmp [ u ] ;
| ˜˜˜ˆ˜˜

The for-loop surrounding line 179:
for (u = 0; u < len; u ++). The types are unsigned u and size_t len.
Line 179 is in the else-branch of the conditional (len >= 64), so we may
assume len < 63. Thus the wider integer is guaranteed to have a value in
the range of the byte.

s r c / symcipher / a e s x 86n i c t r c b c . c : In func t i on '
b r a e s x 8 6 n i c t r c b c c t r ' :

s r c / symcipher / a e s x 86n i c t r c b c . c : 2 5 2 : 1 : warning : Loop c t r var
suspected range mismatch . [−Wall ]

252 | }
| ˆ
s r c / symcipher / a e s x 86n i c t r c b c . c : 2 0 6 : 1 8 : warning : Loop c t r var

suspected range mismatch . [−Wall ]
206 | buf [ u ] ˆ= tmp [ u ] ;
| ˜˜˜ˆ˜˜

Exactly the same scenario.
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mbed TLS

ccm . c : In func t i on ' ccm auth crypt ' :
ccm . c : 1 4 6 : 3 6 : warning : Loop c t r var suspected range mismatch . [−

Wall ]
146 | ( dst ) [ i ] = ( s r c ) [ i ] ˆ b [ i ] ;

\
| ˜ˆ˜˜
ccm . c : 2 8 7 : 9 : note : in expansion o f macro 'CTRCRYPT '
287 | CTRCRYPT( dst , src , u s e l e n ) ;
| ˆ˜˜˜˜˜˜˜˜

The for-loop surrounding line 146: for( i = 0; i < (len); i++ ), in-
side the macro. The types are unsigned char i and size_t tag_len. The
macro argument use_len is kept smaller or equal to 16 in line 278, by the fol-
lowing statement: size_t use_len = len_left > 16 ? 16 : len_left.
Thus the wider integer is guaranteed to have a value in the range of the
byte.

c iphe r . c : In func t i on ' add pkcs padding ' :
c i phe r . c : 6 0 2 : 1 5 : warning : Loop c t r var suspected range mismatch .

[−Wall ]
602 | output [ da ta l en + i ] = (unsigned char ) padding len

;
| ˜˜˜˜˜˜ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜
c iphe r . c : In func t i on ' add one and zeros padding ' :
c i phe r . c : 6 4 3 : 1 5 : warning : Loop c t r var suspected range mismatch .

[−Wall ]
643 | output [ da ta l en + i ] = 0x00 ;
| ˜˜˜˜˜˜ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜
c iphe r . c : In func t i on ' add ze ro s and l en padd ing ' :
c i phe r . c : 6 8 1 : 1 5 : warning : Loop c t r var suspected range mismatch .

[−Wall ]
681 | output [ da ta l en + i − 1 ] = 0x00 ;
| ˜˜˜˜˜˜ˆ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

1. The for-loop surrounding line 602:
for( i = 0; i < padding_len; i++ ). The types are
unsigned char i and size_t padding_len. padding_len is assigned
output_len - data_len, with both operands being type size_t.
Thus, the value will always be smaller than the block length. Unless
28 byte blocks are used, the wider integer will have a value in the range
of the byte.

2. Same scenario with i starting at 1, as the first pad bit is set to 1.

3. Same scenario with i starting at 1. The last byte is set to the padding
length.
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Libsodium

No warnings were generated for Libsodium.

TweetNaCl

. / tweetnacl−usab le / tweetnac l . c : In func t i on '
c rypto s i gn ed25519 twee t ' :

. / tweetnacl−usab le / tweetnac l . c : 7 2 3 : 2 6 : warning : Loop c t r var
suspected range mismatch . [−Wall ]

723 | FOR( i , n ) sm[64 + i ] = m[ i ] ;
| ˜ˆ˜˜
. / tweetnacl−usab le / tweetnac l . c : 7 2 3 : 1 4 : warning : Loop c t r var

suspected range mismatch . [−Wall ]
723 | FOR( i , n ) sm[64 + i ] = m[ i ] ;
| ˜˜ˆ˜˜˜˜˜˜˜

The FOR(i,n) macro is expanded to for (i = 0;i < n;++i). The types
are i64 i and u64 n. The message size would have to be 263 or longer,
which is unadvised and ’unlikely’ to ever occur.

. / tweetnacl−usab le / tweetnac l . c : In func t i on '
c rypto s i gn ed25519 twee t open ' :

. / tweetnacl−usab le / tweetnac l . c : 7 9 0 : 2 1 : warning : Loop c t r var
suspected range mismatch . [−Wall ]

790 | FOR( i , n ) m[ i ] = sm [ i ] ;
| ˜˜ˆ˜˜
. / tweetnacl−usab le / tweetnac l . c : 7 9 0 : 1 3 : warning : Loop c t r var

suspected range mismatch . [−Wall ]
790 | FOR( i , n ) m[ i ] = sm [ i ] ;
| ˜ˆ˜˜
. / tweetnacl−usab le / tweetnac l . c : 8 0 2 : 1 5 : warning : Loop c t r var

suspected range mismatch . [−Wall ]
802 | FOR( i , n ) m[ i ] = 0 ;
| ˜ˆ˜˜
. / tweetnacl−usab le / tweetnac l . c : 8 0 6 : 2 1 : warning : Loop c t r var

suspected range mismatch . [−Wall ]
806 | FOR( i , n ) m[ i ] = sm [ i + 6 4 ] ;
| ˜˜ˆ˜˜˜˜˜˜˜
. / tweetnacl−usab le / tweetnac l . c : 8 0 6 : 1 3 : warning : Loop c t r var

suspected range mismatch . [−Wall ]
806 | FOR( i , n ) m[ i ] = sm [ i + 6 4 ] ;
| ˜ˆ˜˜

All three lines come from the same function, using the same loop counter
variable. n is a parameter, which should hold a value corresponding to the
size of the signed message parameter, const u8 *sm. The same FOR loop
macro as before is used, this time with the types int i and u64 n. A
message length of 231 bytes is unadvised but reachable.
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