
Bachelor thesis
Computing Science

Radboud University

The Impact Of Sorts On
Non-Termination Analysis Of

Term Rewriting Systems

Author:
Bob Ruiken
s4721306

First supervisor/assessor:
dr. C.L.M. (Cynthia) Kop

c.kop@cs.ru.nl

Second assessor:
prof. dr. H. (Hans) Zantema

h.zantema@cs.ru.nl

January 16, 2020

Abstract

Many techniques for detecting non-termination in term rewriting systems
exist. None of these techniques, however, are adapted to work for many-
sorted term rewriting systems. In this paper the unfolding technique is
adapted to be able to work with those systems and implemented into a new
tool called Mara (MAny-sorted Rewriting Analyser). We will see that we
do not need many large changes to make the existing technique work. We
have also conducted a number of experiments with variations and limitations
to the unfolding technique. From these experiments we were even able to
detect non-termination in an example where no other tool has.

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Unsorted Term Rewriting Systems 6
2.2 Many-Sorted Term Rewriting System 9
2.3 Cora . 13

3 Analysers 15

4 Matching and Unification 16
4.1 Matching . 16
4.2 Unification . 18

5 Semi-Unification 20
5.1 Algorithm 1 . 21
5.2 Algorithm 2 . 26

6 Unfolding 30
6.1 Concrete Unfolding . 30
6.2 Augmented Term Rewriting System 32
6.3 Implementation . 34

7 Abstract Unfolding 35
7.1 Useful Pairs . 35
7.2 Probably Useful Pairs . 37
7.3 Adaptations made for types 44

8 Experiments 45
8.1 Competitions . 45
8.2 Experiments . 46
8.3 Results . 46
8.4 Transformed from Higher Order Problems 49

1

9 Related Work 51
9.1 Dependency Pair Framework 51
9.2 Finite Automata . 52
9.3 Non-looping Non-Termination 52
9.4 Some Termination Techniques 53
9.5 Tools . 54

10 Conclusions 56
10.1 Adaptations . 56
10.2 Experiments . 56

11 Future Work 58

A Test Framework 62

B Results 63

2

Chapter 1

Introduction

Term rewriting systems are simple yet powerful tools used in for example
definitions of functional languages and other calculi. The rewriting systems
have been around for decades and most definitely will be around for many
more. They are still actively researched.

The basic notion of term rewriting systems can be seen as a set of rules.
These rules can be used to “translate” terms into other terms. Terms, in
their place, consist of functions and variables. An example could be as
follows.

r1 : f(x) → g(x)

r2 : 0 → 1

Here, f , g, 0 and 1 are functions, and x is a variable. These rules define
how terms can be rewritten. If we were to have a term such as g(f(1)), we
can use r1 to rewrite the term to g(g(1)). We can do this because in r1 the
argument of f is a variable. So if we set x to be 1, then we should rewrite
f(1) to g(1). Which is exactly what we did with g(f(1)). While 0 and 1
might not seem like functions, they are. We can also write them down as
0() and 1(). They are functions with no arguments, so they can be seen as
constants. When using constants we usually omit the parenthesis.

One of these many branches of research focuses on termination and non-
termination of term rewriting systems. Termination and non-termination
are actively researched since they are properties we want to know about: we
can for example translate (functional) languages into term rewriting systems
to then look at the termination properties of that code. Even though we
know that (non-)termination of programs is generally undecidable, we are
increasing the class of programs of which we can prove those properties
further and further.

3

Previous research focused on unsorted term rewriting systems, where
variables and functions do not have specific type definitions. In many-sorted
term rewriting systems, variables and functions do have specific type defi-
nitions, specifically first-order types.

For example, without types we could create a term such as add(5, red).
This can be done since we have never said what type of input the add
function gets. We of course know that 5 is a number and red is a colour, but
by default rewriting systems do not. By adding types, we can define that
the add function gets two numbers as arguments.

In previous work, many techniques for detecting (non-)termination have
been created. These techniques are not made for (many-)sorted terms, and
therefore will not work for them without adaptations. Certain steps in the
techniques or algorithms might be illegal when working in a sorted rewriting
system, since they do not account for types by design. Think for exam-
ple about the add function. Some technique might create a term such as
add(4, blue), but we do not want those anymore.

These adaptations, even though they might only be small, can have
impact on the strength of the technique. For example, a technique that
focuses on creating as many rules as possible might create much fewer rules
when they have type bounds. This could be an improvement to the tech-
nique but it might also result in a decrease of its effectiveness. With fewer
rules to analyse the analyser runs faster but gets fewer opportunities to find
non-termination in a system. It is also worth mentioning that some term
rewriting systems are non-terminating without types and terminating with
types.

We will take a look at a number of techniques to prove non-termination
and adapt them to make them work for many-sorted rewriting systems.
The adaptations will be implemented in an analyser in Java called Mara.
Mara stands for MAny-sorted Rewriting Analyser. As a basis for parsing
and basic functionality Cora will be used. Cora is an open source tool and
stands for COnstrained Rewriting Analyser. Cora focuses on higher order
term rewriting but still can be used as a basis for Mara since it also contains
parsing and typing for many-sorted terms.

In chapter 2 the necessary preliminaries will be given. Chapter 3 gives
some more information on the analysis methods that will be implemented.
Then chapters 4 through 7 are about transforming a number of existing
techniques to make them work in the many-sorted rewriting setting. These
are matching and unification in chapter 4. Then semi-unification, concrete
unfolding and abstract unfolding for the chapters 5 through 7 respectively.
Experiments are given in chapter 8. These experiments are mainly to as-

4

sess the strength of different techniques, but we can also compare it to the
existing tools in competitions. Then chapter 9 gives some background infor-
mation on existing techniques and tools. Finally chapter 10 concludes the
work and experiments and chapter 11 covers future work.

5

Chapter 2

Preliminaries

2.1 Unsorted Term Rewriting Systems

Before we can talk about the non-termination of term rewriting systems,
we first need to know what exactly they are. We will consider two types
of rewriting systems: the “normal” Term Rewriting Systems and secondly
Many-Sorted Term Rewriting Systems. They are both needed in order to be
able to alter existing non-termination techniques (for the “normal” systems)
into the many-sorted case. Note that this section is called “Unsorted Term
Rewriting Systems”, this is done for clarity, in the literature these are usually
called “Term Rewriting Systems”. We will start off with the definition of
the ordinary term rewriting system. For more details, see for example [18].

2.1.1 Alphabet

Intuitively, a term rewriting system (TRS) is a set of rewriting rules that
can be applied on terms, which in its place can be seen as either variables or
functions with terms as arguments. More formally it can be seen as a tuple
containing an alphabet (Σ) and a set of rewriting rules (R). Σ typically
contains an infinite set of variables (V) combined with a set of function
symbols (F). Every function symbol has an arity, which is the number of
arguments it takes. The arity may be zero, in which case it can also be seen
as a constant term.

Definition 2.1. An alphabet Σ is the union of two disjoint sets V and F .
These are the variables and functions respectively.

6

2.1.2 Terms

We define the possible terms in an alphabet Σ as Ter (Σ). This set firstly
contains the variables in Σ. Secondly, any function in Σ of which all its
arguments are in Ter (Σ), is also added to the set. More formally:

Definition 2.2. The set Ter (Σ) is inductively defined as follows:

- each variable v ∈ V is in Ter (Σ)
- if f ∈ Σ has arity n and s1, . . . , sn are in Ter (Σ), then f(s1, . . . , sn) ∈

Ter(Σ)

2.1.3 Positions

Positions can be seen as pointers to specific subterms within a term. We
define these positions by Pos (t):

Definition 2.3. for t ∈ Ter (Σ) we define

Pos(t) =

{
{ε} , if t ∈ V
{ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}, if t = f(t1, . . . , tn)

We denote t|p when we want to indicate the position p within term t.
The identity case is t|ε = t.

Example 2.1: Suppose we have variables {x, y} ⊆ V and function sym-
bols F = {plus, suc, 0} with arities of 2, 1 and 0 respectively. With these
variables and function symbols we can create an alphabet Σ = V ∪ F , then
we can create terms from Ter(Σ). Possible terms include t1 = x, t2 = 0,
t3 = plus(x, y), t4 = suc(plus(0, x)). Positions of these terms are as fol-
lows: Pos(t1) = {ε}, Pos(t2) = Pos(t1),Pos(t3) = {ε, 1.ε, 2.ε} and Pos(t4) =
{ε, 1.ε, 1.1.ε, 1.2.ε}. We can for example take t3|2.ε = y.

We also denote t1 [t2]p when position p of term t1 gets replaced by t2.

2.1.4 Substitutions

Substitutions are mappings from variables to terms. This means that a
substitution applied to a function symbol is equal to a substitution applied
to the arguments of the function symbol separately:

7

Definition 2.4. A substitution is a mapping σ = {v1 ← t1, . . . , vn ← tn}
({v1, . . . , vn} ⊆ V, {t1, . . . , tn} ⊆ Ter(Σ)), which, when applied to a term,
replaces all instances in the term of vi with ti.

We can also write substitutions as tσ, which is the same as saying σ(t).

Example 2.2: Continuation of example 2.1. Let us say we want to cre-
ate a substitution σ1 = {x ← 0, y ← suc(y)}. We can apply this substitu-
tion to terms as follows: σ1(t1) = σ1(t2) = 0, σ1(t3) = plus(σ1(x), σ1(y)) =
plus(0, suc(y)) and σ1(t4) = suc(σ1(plus(0, x))) = suc(plus(0, σ1(x))) =
suc(plus(0, 0)).

Definition 2.5. Two given terms t1 and t2 are said to be matching, when
there exist a substitution σ for which holds that σ(t1) = t2.

2.1.5 Rewrite rules

We can now create a notion for rewrite rules. These rules have a left and
right side, the left side cannot be a variable, otherwise the rule could be
applied to any term. Also, the right side cannot contain any variables that
do not exist on the left side. This is because otherwise, the variable cannot
be given a value when applying the rule.

Definition 2.6. A rewrite rule is defined as ri : l → r. Here, l and r are
terms in Ter(Σ). ri is an optional name for the rule. Furthermore, l cannot
be a variable and if Var(t) defines the variables in a term t, Var(r) ⊆ Var(l).

Example 2.3: Continuation of example 2.1. We can now create rules
from terms generated by the alphabet Σ:

r1 : plus(x, 0) → x

r2 : plus(x, suc(y)) → suc(plus(x, y))

These rules define simple addition. Examples of rules that are not allowed
are:

r3 : x → s(x)

r4 : plus(x, 0) → plus(x, y)

The first rule has a variable as a left-hand side, which is disallowed. The
second rule has a variable on the right-hand side that is not used in the
left-hand side. Apart from valid rules that make sense and rules that are
disallowed there also are nonsensical rules:

r5 : plus(x, x) → plus(s(x), s(x))

r6 : suc(x) → suc(0)

8

These rules are valid, but still do not make a lot of sense.

2.1.6 Rewrite relation

We can now define how these rules can be used to rewrite terms. Intuitively,
we can apply a rule to some term when there is a subterm of that term that
matches the left side of a given rule. Then the resulting term is the original
term where the chosen subterm gets replaced by the right side of the rule.

Definition 2.7. We denote t1 →R t2 if a term t1 can be rewritten, using
a set of rules R, to a term t2. A term t1 can be rewritten using the rule
l → r ∈ R to t2, if there exist a position p of t1 and a substitution σ such
that t1|p = σ(l). Then t2 = t1 [σ(r)]p.

Example 2.4: Continuation of example 2.3 Suppose we have a term
rewrite system with the rules r1 and r2 we defined previously. We can repre-
sent 1+2 in a term t as plus(suc(0), suc(suc(0))). We can rewrite t using r2.
We choose position p = ε. Then σ = {x← suc(0), y ← suc(0)}. The result-
ing term then becomes t [σ(suc(plus(x, y)))]ε = t [suc(plus(suc(0), suc(0)))]ε =
suc(plus(suc(0), suc(0))). We then get:

plus(suc(0), suc(suc(0)))

→R suc(plus(suc(0), suc(0)))

→R suc(suc(plus(suc(0), 0)))

→R suc(suc(suc(0)))

2.1.7 Term Rewriting System

Formally, a TRS is a pair (Ter(Σ),→R) of a set of terms and a relation on
that set. We will usually refer to a TRS as the pair (Σ, R) (the alphabet and
the set of rewrite rules) generating it, or just the set R, leaving Σ implicit.

2.2 Many-Sorted Term Rewriting System

2.2.1 Many-Sorted or First-Order

Many-Sorted term rewriting systems are much like the previously explained
term rewriting systems. The difference is that in many-sorted term rewriting

9

systems, all elements of the alphabet Σ have types. More precisely, they are
first-order typed.

A first-order type is an identifier that puts terms in classes. We define
arrow types and base types. Arrow types are used to give types to function
symbols. A function symbol f could be typed as α → β → γ. We say that
γ is the output type of f . We can also see that f has two arguments, the
first one must be of type α, the second one of type β. Base types are types
that do not contain arrows.

First-order types constrict variables to use base types. Functions must
have a base type as their output type and all of their arguments must be
first-order typed.

Definition 2.8. First-order types are defined as follows:
Arrow types are defined as τ1 → · · · → τn. Here, τi is a base type for
i ∈ [1, n]. Base types are types without arrow types.

We could for example have the function plus typed as nat→ nat→ nat,
denoted plus :: nat → nat → nat. Now plus is a function that takes two
arguments of type nat and gives back a term of type nat. Another function
eq could be typed as follows: eq :: nat → nat → bool. This function takes
two arguments of type nat and gives back a term of type bool.

2.2.2 Changes to the definitions of unsorted rewriting sys-
tems

We do not need to change many of the previous definitions, we just need
to make sure that every element of the alphabet gets a type and that all
operations defined are not allowed to break the typing. For example, a term
of type α may not be substituted with one of type β.

Alphabet

We define the alphabet of a many-sorted TRS as Σ, containing the set of
variables V and the set of function symbols F as before. Now we extend
this by saying that every variable has a base type. The function symbols
are extended such that every function gets first-order types as well.

Definition 2.9. An alphabet Σ is the union of two disjoint sets V of typed
variables, and F of typed function symbols, satisfying the requirements below:

- each variable v ∈ V has a base type τ

10

- each function f ∈ F has type τ1 → · · · → τn+1

We say that a fu;nction symbol of type τ1 → · · · → τn+1 has arity n. Some-
times we refer to variables and functions without the type notation.

Terms

We redefine the possible terms over an alphabet Σ as Ter (Σ) for many-
sorted term rewriting systems. This definition is much like definition 2.2
but contains extra typing checks:

Definition 2.10. The set Ter (Σ) is inductively defined as follows:

- each variable v ∈ V is in Ter (Σ)
- if f :: α1 → · · · → αn+1 ∈ Σ, s1, . . . , sn are in Ter (Σ) and αi =
Type(si) for i ∈ [1, n] , then f(s1, ..., sn) ∈ Ter(Σ)

For each typed variable v :: τ ∈ V : Type(v) = τ , for each typed function
f :: τ1 → · · · → τn+1 ∈ F : Type(f(s1, . . . , sn)) = τn+1.

2.2.3 Substitutions and rewrite rules

As previously explained, we also need to make sure that when using substi-
tutions, both sides of the substitution have the same type. When it comes
to rules, it is much like the case in the substitutions, both sides of the rules
must have the same type.

Definition 2.11. A substitution is a mapping σ = {v1 ← t1, . . . , vn ← tn}
({v1, . . . , vn} ⊆ V, {t1, . . . , tn} ⊆ Ter(Σ)), which, when applied to a term,
replaces all instances in the term of vi with ti. Type(ti) = Type(vi) for all
i ∈ [0, n].

Definition 2.12. A rewrite rule in a many-sorted TRS is defined as ri :
l → r. Here, l and r are terms in Ter(Σ). ri is an optional name for the
rule. Furthermore, l cannot be a variable and if Var(t) defines the variables
in a term t, Var(r) ⊆ Var(l) and Type(l) = Type(r).

Example 2.5: Let us create an alphabet Σ consisting of the variables
V = {x, y, z}. The types of these variables are as follows: x and z have
type nat and y has type bool. Now we create the set of function symbols
F = {eq, suc, true}. eq has type nat→ nat→ bool, suc has type nat→ nat

11

and true is of type bool. Substitutions such as σ1 = {y ← true} and
σ2 = {y ← eq(suc(x), x)} are possible, but we cannot create a substitution
like σ2 = {x← y}, since the type of x (α) does not match the type of y (β).

Example 2.6: Continuation of Example 2.5. To create an entire TRS,
we also need some rewriting rules. With the alphabet we just created we
can create the following rule:

r1 : eq(x, x) → true

r2 : eq(suc(x), suc(z)) → eq(x, z)

These rules are correctly typed as the output type of eq is bool and the types
of true is also bool. Also the arguments supplied to eq all have type nat.

2.2.4 Unifiers

A unifier of two terms is a substitution σ such that, when applied to two
(or more) terms, the resulting terms are all equal.

Definition 2.13. Given two terms t1 and t2, a unifier σ is a substitution
such that σ(t1) = σ(t2).

We will omit types in the following example. In further examples we
always talk about many-sorted systems, but sometimes types are omitted.

Example 2.6 Let us take two terms t1 = f(g(x), y) and t2 = f(z, g(z)).
To unify these two terms, we can use a unifier σ1 = {y ← g(z), z ← g(x)}.

Most General Unifiers

We will now look at what happens when we apply multiple substitutions on
one term. If we have multiple substitutions to apply to t, for example σ1
and σ2, we denote it as tσ1σ2. If we see the substitution as a function we
can write σ2 (σ1(t)).

Example 2.7: Let us take a term t = f(x, g(y)) and substitutions
σ1 = {f(x, x) ← x}, σ2 = {y ← x, 0 ← y}. If we want to know tσ1σ2, or
equivalently, σ2(σ1(t)), we can first take tσ1 = f(f(x, x), g(y)). Then from
there we apply σ2, which brings us to σ2(f(f(x, x), g(y))) = f(f(x, x), g(0)).

We can also create a definition for a most general unifier:

Definition 2.14. Given two terms t1 and t2, a most general unifier σ is a
substitution such that:

12

- σ unifies t1 and t2
- given any other unifier σ′ that unifies t1 and t2, σ′ can be created using

a substitution ω on σ

If a unifier for two terms exist, then there also exists a most general
unifier[4]. The most general unifier is also unique under variable renaming.

Example 2.8: Take terms s = f(x, h(y, z)) and t = f(z, h(0, x)), it is
clear that we can create a substitution that will unify these terms: σ1 =
{x← z, y ← 0}, then sσ1 = tσ1. This substitution is also the most general
unifier of these terms. To illustrate this, we can take another substitution
σ2 = {x ← f(x, x), z ← f(x, x), y ← 0}. Note that we can create σ2 using
σ1: σ2 = σ1ω1, take ω1 = {z ← f(x, x)}.

2.3 Cora

Cora, standing for COnstrained Rewriting Analyser[21], will be used as the
basis of the non-termination analyser resulting from this paper. Cora is a
work in progress analysis tool for various kinds of TRSs. Mara uses Cora
mainly as a parser for TRSs. The only usable parts for Mara in Cora is
what is defined in section 2.1. Cora is written in Java and uses ANTLR[25]
as its parsing tool.

2.3.1 Terms

Perhaps the most important feature we can use in Cora are the predefined
Term types. The terms come in two major types: variables and functions.
Each implementation of the Term interface has to provide the following
(listed are the most interesting ones) functionality:

1. Getting (all possible) subterms,

2. (for non variables) obtaining the function symbol,

3. Equality comparison against other terms,

4. Replacing a position with a term,

5. Substitutions,

6. Matching a term to another term.

All of these functionalities have typing checks within them.

13

2.3.2 Rules

To create rules for use in rewriting systems, Cora has an interface Rule. The
most interesting functionalities are:

1. Getting the left or right side of the rule,

2. Checking if the rule can be applied to some term,

3. Actually applying the rule to some term.

Just as with the terms, all of these actions have typing checks.

2.3.3 Term rewriting system

Within Cora, a term rewriting system is basically just a list of rules. Cora
can import term rewriting systems using three file formats: .mstrs (Many-
Sorted TRSs), .trs (untyped TRSs) and .cora (an internal file type, also
sorted).

14

Chapter 3

Analysers

Before we can implement the non-termination analysers into Mara, we need
a basis to implement them onto. This will of course be done as an extension
of Cora. Mara can be found on Github:

https://www.github.com/BornoBob/Mara

The analysers we will implement all have the same task and will get
as an input only a term rewriting system. The task in our case obviously
is checking non-termination. The implementations will only cover many-
sorted rewriting systems. The possible results of the analysers come down
to four situations: YES, NO, MAYBE and TIMEOUT. These results are also used in
competitions where term rewriting systems are analysed[10]. Note that even
though we ask the question “Does this TRS non-terminate” in the analysis
techniques, the results answer the question “Does this TRS terminate”. I.e.
when a TRS does not terminate, the analyser will result in NO. Also note
that after our analysis is done, we cannot just return YES, because there is
no technique that encompasses all (non-)termination.

Since our analysis will only return NO, MAYBE and TIMEOUT, the analyser
will use NONTERMINATES instead of NO for clarity.

15

https://www.github.com/BornoBob/Mara

Chapter 4

Matching and Unification

The first non-termination detection techniques we will look at are matching
and unification. These two techniques have the same core idea, namely to
check for all the rules if the left side matches or unifies with any non-variable
position on the right side. We will see that if this is the case, we can already
conclude non-termination of the rewriting system.

4.1 Matching

Unlike unification, we have not looked at matching yet. Matching can be
seen as a more restricted form of unification. A term t1 matches with another
term t2, if there exists a substitution σ1 such that σ1(t1) = t2. Instead of
applying the substitution to both terms, it only is applied to one.

Matching can be used to detect non-termination, if for some rule, the
left side matches with a non variable subterm on the right, we know it is
non-terminating. This is because we can repeatedly apply the rule on the
chosen subterm.

Example 4.1: Consider the rule r1 : f(x) → g(1, f(h(x))). We can
take the subterm t1 = f(h(x)) and check if there is a σ1 for which holds
that σ1(f(x)) = f(h(x)). Choose σ1 = {h(x) ← x} and this holds. The
infinite reduction then looks like (for example) f(1) →R g(1, f(h(1))) →R

g(1, g(1, f(h(h(1)))))→R So we conclude that r1 is non-terminating.

Cora already has matching built into it since it is also required to check
if a rule can be applied to a term. Note that when applying a rule, you
match the left hand side of the rule with the term you want to apply it on,

16

and finally apply the resulting substitution on the right hand side of the
rule.

The algorithm to match two terms is given in Algorithm 1 on page 17.
This is the algorithm as implemented in Cora. Note that this algorithm
does not mention any types. The type checks are embedded in comparisons
between terms. Also note that when recursively calling match on line 19,
σ is not initialised to ∅ in the new call. The given substitution from the
recursive call is used instead.

As noted above, the matching algorithm was already built into Cora,
but it was not implemented as an analyser yet. In Mara it is, called the
MatchingAnalyser.

Algorithm 1 Matching

1: Input terms t1 and t2, initialise σ = ∅
2: if t1 is a variable then
3: if σ contains t1 then
4: if σ(t1) 6= t2 then
5: throw Failure
6: end if
7: else
8: σ(t1) := t2
9: return σ

10: end if
11: else if t1 is in the form of f(x1, . . . , xn), n being the arity of f then
12: if t2 is a variable then
13: throw Failure
14: else if t2 is in the form of g(y1, . . . , ym), m being the arity of g then
15: if f 6= g then
16: throw Failure
17: end if
18: for all i ∈ [1, n] do
19: match xi with yi using σ
20: return σ
21: end for
22: end if
23: end if

17

4.2 Unification

Similarly to matching, we can also apply unification to detect non-termination
of term rewriting systems. Recall that unification of two terms t1 and t2 is
possible when we can find a σ such that σ(t1) = σ(t2). We know that if the
left hand side of a rule unifies with some non variable subterm of the right
hand side, the TRS is non-terminating, for the following reason: suppose
that we have a rule r1 : l→ r, and that there is some non-variable subterm
r′ of r and that there is a substitution σ such that σ(l) = σ(r′). We can
now create an infinite loop: apply r1 to σ(l), then apply r1 to the result of
that and repeat this process. . . .

Example 4.2: Take the rule r1 : f(g(x), z, y) → f(y, g(x), y). To try
to unify the left side with some non-variable subterm on the right, the
most sensible subterm to choose is the entire right side. We can unify
these two sides by taking σ = {g(x) ← y, g(x) ← z}. If we apply r1 to
σ(f(g(x), z, y)) = f(g(x), g(x), g(x)), we get f(g(x), g(x), g(x)) back, which
can immediately be applied to r1 again; this clearly keeps looping indefi-
nitely.

Implementing the unification algorithm that works for many-sorted terms
does not require many adaptations from an existing algorithm such as the
one from Martelli and Montanari.[23] The algorithm in pseudocode can be
found in Algorithm 2 on page 19. Unlike earlier, type checks are included,
but they are not explicitly noted in the comparison between terms and func-
tion symbols.

This algorithm is implemented and can be used in an analyser. The
only thing the analyser needs to do is check for every rule, whether the left
side unifies with some non-variable subterm of the right hand side. This is
implemented in the UnificationAnalyser.

18

Algorithm 2 Unification

1: Input terms t1 and t2, initialise σ = ∅
2: if t1 is a variable then
3: if t2 is a variable then
4: if t1 6= t2 then
5: if Type of t1 6= type of t2 then
6: throw Failure
7: else
8: σ(t2) := t1
9: end if

10: end if
11: return σ
12: else
13: return unify t2, t1
14: end if
15: else if t1 is in the form of f(s1, . . . , sn), n being the arity of f then
16: if t2 is a variable then
17: if t1 contains t2 or type of t1 6= type of t2 then
18: throw Failure
19: else
20: σ(t2) := t1
21: return σ
22: end if
23: else if t2 is in the form of g(u1, . . . , um), m being the arity of g then
24: if f 6= g then
25: throw Failure
26: end if
27: for all i ∈ [1, n] do
28: γ := unify σ(si) with σ(ui)
29: for all Variable v in domain of γ do
30: if v in domain of σ and σ(v) 6= γ(v) then
31: throw Failure
32: else
33: σ(v) := γ(v)
34: end if
35: end for
36: end for
37: return σ
38: end if
39: end if

19

Chapter 5

Semi-Unification

Semi-unification is yet another way to detect non-termination. As its name
suggests, it is somewhat like unification. It is actually a technique that
encompasses both matching and unification. If we take two terms t1 and
t2, matching creates a substitution ρ such that ρ(t1) = t2 and unification
creates a substitution σ such that σ(t1) = σ(t2). If we combine these, we
get semi-unification:

Definition 5.1. Given two terms t1 and t2, t1 and t2 semi-unify if we can
create two substitutions ρ and σ such that ρ(σ(t1)) = σ(t2).

It is clear that this encompasses both matching (take σ = ∅) and unifi-
cation (take ρ = ∅).

An algorithm to compute semi-unification for two input terms is given
in for example Kapur et al[16]. In the same paper a proof is also given how
semi-unification can detect non-termination:

The idea is the same as with matching and unification, we will try to
semi-unify the left hand side of a rule with some non-variable subterm on
the right hand side. Suppose we have some rule r1 : l → r. And r′ is a
non-variable subterm of r. Now say that semi-unification is successful on
r′, such that ρ(σ(l)) = σ(r′). If we were to apply both the substitutions on
the rule r1 we would get r′1 : ρ(σ(l)) → ρ(σ(r)), for which we know there
is some subterm ρ(σ(r′)) of ρ(σ(r)). This subterm is in its place equal to
ρ(ρ(σ(l))), because of the substitution we started with. Now we can rewrite
this term to ρ(ρ(σ(r))) and further repeat the last two steps indefinitely.

The notion of semi-unification above is actually called left-unification.
Right-unification can be calculated using an algorithm for left-unification

20

if we swap the two input terms, so we would get σ(t1) = ρ(σ(t2)). Semi-
unification captures both left- and right-unification. In the case for non-
termination we use left-unification. This is also what we refer to when
further speaking of semi-unification.

Semi-unification can detect non-termination of term rewriting rules, but
also has other use cases, for example in type inference in Milner-Mycroft
calculus[13]. This calculus is used in some polymorphic functional program-
ming languages. In the general case, semi-unification is undecidable[17]. In
our case we are dealing with two input terms, for which semi-unification is
decidable.

We will implement the algorithm described by Kapur et al for many-
sorted term rewriting systems. The implementations are two separate algo-
rithms. The first algorithm is sufficient to decide semi-unifiability, and as a
result will generate a set of rewriting rules. But to obtain the substitutions,
we need the second algorithm. It takes as an input the result from the first
algorithm, then extracts the solution from it.

5.1 Algorithm 1

In the algorithm we will be looking for two substitutions σ and ρ, such
that for two terms t1 and t2, ρ(σ(t1)) = σ(t2). We have a special symbol
sx for each variable x. sx represents σ(x). This mapping is captured in
a substitution θ, so we have for each variable x in t1 and t2: θ(x) = sx.
Note that θ = σ, but we are able to create the inverse of θ using the extra
elements sx. This is because these elements make it so that the mapping
and the inverse of the mapping both are bijective.

Before we can implement the algorithm itself, we need two notions of
rewriting that are used within it. These are a notion of distributivity and a
notion of cancellativity.

5.1.1 Distributivity

Distributivity can be seen as “pushing down” the ρ in a term. We know
that ρ is a substitution, so it will only have effect on variables. This means
that we can “push down” the ρ symbol in a term to the variable level:

ρ(f(x1, . . . , xn)) = f(ρ(x1), . . . , ρ(xn))

Note that this notion does not need adaptations for many-sorted terms, as
the output type of the ρ function is always the type of its argument.

21

5.1.2 Cancellativity

Cancellativity of functions can be applied when we have two terms with the
same root function symbol. When this is the case, we can cancel out the
function symbol and result in n new equations comparing the arguments
(for n arguments):

f(x1, . . . , xn) = f(y1, . . . , yn) =⇒ x1 = y1, . . . , xn = yn

As before, this does not need any adaptations for many-sorted terms, the
function symbol on the left is the exact same as on the right, so we do not
need any type checks.

5.1.3 Implementation

In Algorithm 3 on page 23 the pseudocode is given for the algorithm. Note
that the only places where we need to check for types is in line 6, comparing
two function symbols, and when rewriting the rules in line 17. The fact
that these checks are added means that the algorithm in some cases might
perform better, since there are fewer possible ways to rewrite the rules.

Also note that when rewriting the equations into rules (at line 14/15)
there might be situations where the ordering defined is not complete enough.
For example, f(g(x), y) = f(x, g(y)): both sides have two function symbols,
and the variables appear in the order y then x from right to left. In this case
we made the choice that the order does not matter. Another problem comes
into place comparing terms such as ρ(sx) and sx. Strictly speaking ρ is not
a function symbol of a TRS, so the terms would be equal. The problem
when writing into the rule sx → ρ(sx) is that this rule is non-terminating.
This would lead to the algorithm not terminating. To solve this, when the
comparison on function symbols does not help, another comparison is done
on the number of ρ symbols. The term with the highest number of ρ symbols
becomes the left-hand side.

The only ways the algorithm may report failure, is very close to the pre-
viously seen unification algorithm. Namely when either we reach a situation
where we try to unify two terms with different function symbols, or when we
try to unify some variable and non-variable term containing that variable.
The latter is referred to as the “occurs” check.

The proof of the full algorithm can be found in the paper[16]. Intuitively,
the idea is to show that the only reasons semi-unification can fail is when
either of the two “failure” situations arise. If these situations do not occur,

22

then the first algorithm can be used to obtain the reduced canonical rewrite
system. The second algorithm then can be used to extract σ and ρ.

The algorithm will succeed if semi-unification is possible and return fail-
ure if this is not the case.

5.1.4 Intuition

The algorithm works by starting with two terms. We keep trying to rewrite
the terms to try to find a counterexample of semi-unification. If this coun-
terexample cannot be found, then semi-unification is possible.

Algorithm 3 Semi-Unification (Algorithm 1)

1: Input terms t1 and t2
2: Define a total ordering >θ on the range of θ (all the sx terms)
3: Begin with the equation ρ(σ(t1)) = σ(t2)
4: Apply distributivity rules on both sides of the equation
5: Apply cancellativity rules on both sides of the equation
6: for all Equations resulting from the cancellativity do
7: if An equation in the form of f(x1, . . . , xn) = g(y1, . . . , yn) is encoun-

tered, with f 6= g or n 6= m then
8: Throw Failure
9: else if An equation in the form of ρi(sx) = f(. . . ρi+j(sx) . . .) is en-

countered, where the right side means that there is some subterm
ρi+j(sx) in it, with i, j ∈ N then

10: Throw Failure
11: end if
12: end for
13: {Now we rewrite the equations into rules}:
14: Terms containing function symbols are considered lower than ones that

do not.
15: Other terms are compared by their variables (in lexicographic order from

right to left) using >θ.
16: Replace each equation s = t by a rule s→ t with t lower than s.
17: Now, for each rule, try to rewrite both sides using other rules. If this

can be done, replace the rewritten rule by the result.
18: If this can be done, go back to to line 4 with this rule as the equation

(keep the others).
19: Otherwise, report semi-unifiability, and return the resulting rules.

23

5.1.5 Examples

Now we will look at some examples to see the workings of both of the
algorithms described above. The first example we will look at is the rule
r1 : f(y, g(1, x)) → f(h(y), g(x, 1)). The second example is the rule r2 :
g(f(x, y), h(y, z)) → g(z, x), which is an adaptation of an example from
[16].

Example 1

The first example we will look at is r1 : f(y, g(1, x)) → f(h(y), g(x, 1)),
which is an example that is semi-unifiable, typed as follows:

f :: a→ b→ c

g :: c→ c→ b

h :: a→ a

We start with two input terms which are the left and right side of the
rule: t1 = f(y, g(1, x)) and t2 = f(h(y), g(x, 1)).

We then “apply” the substitutions to get to the form ρ(σ(t1)) = σ(t2),
in our case this is ρ(σ(f(y, g(1, x)))) = σ(f(h(y), g(x, 1))). We can rewrite
the σ substitutions here using distribution of σ and the definition of the θ
substitution: ρ(f(sy, g(1, sx))) = f(h(sy), g(sx, 1)).

The next step of the algorithm tells us to apply the distributivity rules
to both sides of the equation, which in this case is only relevant on the left
side, as the right side does not contain any ρ symbols. “Pushing down” ρ,
we get: f(ρ(sy), g(1, ρ(sx))) = f(h(sy), g(sx, 1)).

Now that the ρ symbols are on just the variables we can apply the
cancellativity rules. This firstly results in two equations: ρ(sy) = h(sy) and
g(1, ρ(sx)) = g(sx, 1). But since we can apply cancellativity on the last
equation again, we have to do so. Doing that means we replace it with the
following two equations: 1 = sx and ρ(sx) = 1.

We did not reach a situation where the occurs check was positive nor did
we find a mismatching function symbol, so we can continue with the algo-
rithm. In the next step we have to create rules from the obtained equations.
In this situation we can get away with using the fact that terms containing
function symbols should be on the right. This gives us the following three

24

rules:
r1,1 : ρ(sy) → h(sy)

r1,2 : sx → 1

r1,3 : ρ(sx) → 1

Since we can rewrite r1,3 using r1,2, we are not done yet. Doing this rewrit-
ing results in ρ(1) → 1, which we will replace rule r1,3 by. But before we
can possibly do more rewritings, we need to apply distributivity and can-
cellativity to them and finally create a rule from it. Distributivity gives us
1 = 1 and then cancellation gives us an empty set of equations (meaning
that we do not add any rule). We now have the following two rules:

r1,1 : ρ(sy) → h(sy)

r1,2 : sx → 1

There is no way to rewrite this further which means that the first algo-
rithm succeeded with as result r1,1 and r1,2.

Example 2

Now we show an example where semi-unification fails. We do this with
the rule r2 : g(f(x, y), h(y, z)) → g(z, x), which is a slight variation of an
example taken from [16]. In that paper, there was no typing, so we introduce
it as follows:

f :: b→ c→ a

g :: a→ b→ b

h :: c→ a→ b

As before, we start with the left and right sides as the two input terms.
After introducing the substitutions and pushing down, we get:

g(f(ρ(sx), ρ(sy)), h(ρ(sy), ρ(sz))) = g(sz, sx)

After applying cancellation, we get two equations: f(ρ(sx), ρ(sy)) = sz and
h(ρ(sy), ρ(sz)) = sx; rewriting these into rules gives us the following two
rules:

r2,1 : sz → f(ρ(sx), ρ(sy))

r2,2 : sx → h(ρ(sy), ρ(sz))

We can rewrite r2,1 using r2,2 and obtain sz = f(ρ(h(ρ(sy), ρ(sz))), ρ(sy)).
Now note that after applying distributivity rules, we get:

sz = f(h(ρ(ρ(sy)), ρ(ρ(sz))), ρ(sy))

25

This gives us a problem as the “occurs” check is positive: sz is contained
within the right side. This means that the semi-unification algorithm has
failed.

5.2 Algorithm 2

Even though the first algorithm described above suffices to detect semi-
unification, we will still implement the second algorithm to extract the sub-
stitutions from the resulting rules. We will do this because, even though we
are certain the algorithm is correct, it is still a rather complex algorithm
in which small mistakes could easily be made. By implementing the second
algorithm, we have a double check to ensure that the result is actually cor-
rect. If, after applying the second algorithm, the terms do not semi-unify
with the substitutions, we can deny semi-unifiability.

5.2.1 Implementation

The algorithm can be found in Algorithm 4 on page 27. Note that here as
well, not many changes need to be made in order to make the algorithm
work for many-sorted terms. The most important points are in lines 4 and
17, where new fresh variables are created. These variables need to have the
correct typing. On line 4, this means that the variable u should have the
same type as variable x. On line 17, this means that all the fresh variables
need to have the same type as term t. This algorithm is also implemented
in Mara as an analyser called SemiUnificationAnalyser.

5.2.2 Intuition

The algorithm will return substitutions ρ and σ on an input system returned
from the first algorithm. The algorithm has three general steps to it. In the
first step (the first for loop), ρ symbols on the right hand sides are replaced
by new variables. This replacement is reflected in all the rules. After this
step there are no ρ symbols left in any right side of any rule.

The second step takes care of the rules where the left side does not have
a ρ symbol. In this case the rule basically describes a substitution of σ:
the left side is in the form of sx, which means σ(x). So after we replace the
instances of sy with y on the right side using θ−1 we can create a substitution
step.

26

Algorithm 4 Semi-Unification (Algorithm 2)

1: Input: rules resulting from algorithm 1
2: Initialise ρ = ∅, σ = ∅ and V = V
3: for all Subterms of the form ρ(sx) in all right hand sides do
4: Create fresh variable u with type(u) = type(x) and special symbol su
5: Extend θ with θ(u) = su
6: V = V ∪ {u}
7: Extend ρ with ρ(x) = u
8: Replace ρ(sx) with su in all rules
9: end for

10: for all Rules sx → r where ρ does not occur in r do
11: if Right hand side does not contain sx then
12: Extend σ with σ(x) = θ−1(r)
13: end if
14: end for
15: for all Rules in which ρ does occur do
16: Rule is in the form ρi(sx)→ t with i ∈ Z+

17: Introduce fresh variables u1, . . . , ui−1 all with the type equal to type(x)

18: Extend ρ with: ρ(x) = u1, ρ(u1) = u2, . . . , ρ(ui−1) = θ−1(t)
19: end for
20: return ρ and σ

27

The last step of the algorithm takes care of the left sides that do contain
ρ symbols. Note that this left hand side may contain any number of ρ
symbols. For this reason we create a new fresh variable for each symbol.
This may lead to unnecessary variables. In the end the idea is the same as
in step 2 but instead of extending σ, we extend ρ.

5.2.3 Examples

We will now look at two examples for the second algorithm. The first ex-
ample is a continuation on the first example of the first algorithm:

Example 1

Because the first algorithm succeeded we can now use the second algorithm
to extract the solution from the resulting rules.

The rules we got from the first algorithm are the following two:

r1,1 : ρ(sy) → h(sy)

r1,2 : sx → 1

In the first step we have to deal with all the ρ(sx) terms on the right
hand sides, but in our rules there are none.

In the second step we have to look at all the rules in which ρ does not
occur, this is r1,2. The left hand side is sx, since the right hand side does
not contain sx, we extend σ with σ(x) = θ−1(1) = 1.

In the last step we look at all the rules that do contain ρ, which is r1,1.
The rule is in the form ρi(sy) → t with i = 1 and t = h(sy), so we do not
need any fresh variables and set ρ(y) = θ−1(t) = h(y).

That concludes the second algorithm, the resulting substitutions are ρ =
{y ← h(y)} and σ = {x ← 1}. It is clear that these substitutions lead to
equal terms, namely to f(h(1), g(1, 1)).

Example 2

To show the workings of all steps of the second algorithm, we take a hy-
pothetical result that we could get from the first algorithm and extract the

28

solution from it. Suppose we got the following two rules from the first algo-
rithm (note that these rules cannot be an actual outcome, as r2,2 could be
rewritten with r2,1):

r2,1 : ρ(sx) → g(sy)

r2,2 : ρ(ρ(sy)) → g(ρ(sx))

In the first step, we have to deal with the ρ(sx) on the right side of rule
r2,2. We create a fresh variable u with the corresponding special symbol
su where θ(u) = su. We also extend ρ with ρ(x) = u. Finally we have to
replace ρ(sx) with su in all rules, resulting in:

r2,1 : su → g(sy)

r2,2 : ρ(ρ(sy)) → g(su)

Now we can go on to the next step: processing all rules in which ρ does
not occur. For us this means that we have to process r2,1. Since su is not
a subterm of the right side, we have to extend σ with σ(u) = θ−1(g(sy)) =
g(y).

Lastly, we have to process the rules in which ρ does occur. In our case
this is only r2,2. The rule is in the form ρi(sy)→ t where i = 2 and t = g(su).
Since we have i = 2, we should create one fresh variable v. We then extend
ρ with ρ(y) = v and ρ(v) = θ−1(t) = g(u).

The two resulting substitutions are ρ = {x ← u, y ← v, v ← g(u)} and
σ = {u← g(y)}.

29

Chapter 6

Unfolding

Unfolding is yet another method to detect non-termination. However, this
time the method does not detect non-termination by itself. Rather it makes
use of our previously defined method semi-unification. The unfolding tech-
nique, as it name suggests, unfolds a term rewriting system in such a way
that we can use semi-unification on the resulting rules. Intuitively, we can
see this as creating existing rules where we apply rules on the right hand
sides. We will follow Payet’s paper[27], and adapt the technique where
needed for many-sorted terms.

The paper defines two main techniques: firstly a “normal” unfolding
(which we will refer to as concrete unfolding), then an improved version
upon that called abstract unfolding. We will look at both of these and also
implement them into analysers.

6.1 Concrete Unfolding

The concrete unfolding technique has one main operator: the unfolding
operator. The definition as in [27] is as follows:

Definition 6.1.

TR(X) =


(
l→ r

[
r′
]
p

)
θ

∣∣∣∣∣∣∣∣∣∣
l→ r ∈ X,
p ∈ NPos(r),

l′ → r′ ∈ R renamed with fresh variables,

θ ∈ mgu(r|p , l′)


Where NPos(r) gives back all the non variable positions and r [r′]p means
replacing position p in r with r′.

30

From this an unfolding sequence can be created. The idea is to feed the
result of an unfolding into the next step as follows.

Definition 6.2. The unfolding sequence is inductively defined as follows:

TR ↑ 0 = R

TR ↑ (n+ 1) = TR(TR ↑ n) where n ∈ N

This operator by itself works as a non-termination analyser. Obviously
a limit has to be set on the maximum number of unfoldings. To use this as
an analyser, we can first do an unfolding step, then do the same thing as we
did with semi-unification: for each non-variable subterm on the right hand
side, check if it semi-unifies with the left hand side.

We can use this operator and do our analysis on the result because it
retains the non-termination property of a rewriting system. Intuitively, all
we are doing is applying rules on some subterms of right hand sides. And
applying rules does retain the non-termination property.

Example 6.1 We will omit types in this example. Take the following
rewriting system:

r1 : f(x) → g(x)

r2 : g(x) → f(x)

Clearly, this system is non-terminating: we can indefinitely apply the rules
given a term that contains either of the functions f or g. Note that the semi-
unification analyser will not be able to detect this, as there exist no non-
variable subterms on right hand sides that semi-unify with the left hand side.
Now let us see what happens when we apply a step of unfolding. We take as
(l→ r) = r1, the position p = ε, l′ → r′ with fresh variables = g(x′)→ f(x′).
Now we have a most general unifier mgu(g(x), g(x′)) = {x ← x′}. So our
resulting rule is f(x) → f(x). We do not have to look any further as the
left hand sides semi-unifies with the right hand side: we can take empty
substitutions for both ρ and σ.

Example 6.2 (The same example as in [27], from [32], types are omit-
ted). Take the following rewrite system:

r1 : f(0, 1, x) → f(x, x, x)

r2 : g(x, y) → x

r3 : g(x, y) → y

We know this system is non-terminating (take the term f(0, 1, g(0, 1))), but
as we will see, our current definition of unfolding is not strong enough to

31

prove non-termination for this example. We start with the first level of
unfolding, TR ↑ 0 = R. At this level we cannot prove non-termination using
semi-unification as there is no non-variable position on a right hand side
that semi-unifies with the left hand side of that rule. When we try to unfold
to the next level, we see that it is not possible to unfold rules r2 and r3,
since they do not have a non-variable subterm on the right hand side. r1 also
cannot be unfolded, the only non-variable subterm on the right is f(x, x, x).
And there is no left hand side of a rule that semi-unifies with that term. So
at the first level we already have no terms left.

As we have just seen, we need some way to pre-process the rules in order
to get useful unfoldings. For this, we can use the Augmented TRS (also
from [27]).

6.2 Augmented Term Rewriting System

An augmented trs, denoted R+, is a extension of an existing TRS R. The
idea is to substitute variables in rules with left hand sides from other rules.
This way, we know that we will be able to apply rules when unfolding. More
precisely:

Definition 6.3. For all rules l→ r ∈ R, create rules (l→ r)θ in R+. Here
θ is a substitution in the form of {x1 ← t1, . . . , xn ← tn}, where n ∈ N,
{x1, . . . , xn} ∈ Var(l) and ti is a left hand side in R that is variable disjoint
from l→ r and all other tj in θ.

Again we need to make an adaptation to make this work for many-
sorted terms. In particular, we only want to replace a variable with some
left-hand side if they have the same type. So a substitution {xi ← ti} can
only be made if type(xi) = type(ti). Also, note that this augmented system
retains the non-termination property of the original TRS. We are basically
just creating extra rules where variables are already replaced with terms on
which we know we can apply rules.

To use this augmented TRS in an analyser, we only have to change our
initial unfolding step. We defined this as TR ↑ 0 = R, now we adapt this to
R+, such that TR ↑ 0 = R+. The other step stays the same: TR ↑ (n+ 1) =
TR(TR ↑ n).

Example 6.3 (Example 6.2 continued): To create the augmented rewrite
system using a rewrite system with the rules r1, r2 and r3, we consider the
rules one by one. If we look at the first rule, there is only one variable: x.
We can either not change this variable (leaving us with an empty substitu-

32

tion), replace it with the left hand side of r1, or replace it with the left hand
side of r2 (we can ignore r3 as its left hand side is equal to that of r2). So
for r1 we have:

θr1,0 = ∅, θr1,1 = {f(0, 1, x′)← x}, θr1,2 = {g(x′, y′)← x}.

The substitutions for the other two rules are going to be equal as their left
sides are equal:

θr2,0 = ∅ θr2,5 = {f(0, 1, x′)← y, f(0, 1, x′′)← x}
θr2,1 = {f(0, 1, x′)← x} θr2,6 = {g(x′, y′)← y, f(0, 1, x′′)← x}
θr2,2 = {g(x′, y′)← x} θr2,7 = {f(0, 1, x′)← y, g(x′′, y′)← x}
θr2,3 = {f(0, 1, x′)← y} θr2,8 = {g(x′, y′)← y, g(x′′, y′′)← x}
θr2,4 = {g(x′, y′)← y}

The resulting augmented rewrite system then consists of all the substitutions
applied on the rules.

Example 6.4 (Example 6.3 continued): We can now prove using the
augmented rewriting system combined with the unfolding operator, that
the rewriting system is non-terminating. Take the rule resulting from the
substitution θr1,2 on r1:

f(0, 1, g(x′, y′))→ f(g(x′, y′), g(x′, y′), g(x′, y′))

At the first unfolding level we can take position 1.ε of the right hand side
and the rule g(x′′, y′′)→ x′′ to get to the rule:

f(0, 1, g(x′, y′)→ f(x′, g(x′, y′), g(x′, y′))

Then, on the next unfolding level, we can do the same using positon 2.ε and
the rule g(x′′, y′′)→ y′′. This leads to the rule:

f(0, 1, g(x′, y′))→ f(x′, y′, g(x′, y′))

Now note that we can semi-unify the two sides by taking ρ = ∅ and σ =
{0← x′, 1← y′}. Therefore, the TRS does not terminate.

Example 6.4 (Example 6.2 continued): Let us now take a look at the
same rules with typing. We will type the functions as follows:

f :: α→ α→ α→ α

0 :: α

1 :: α

g :: β → β → β

33

Note that the previous example which was non-terminating does not exist
anymore, as we cannot use g in an argument of f . Furthermore, the rewriting
system with these rules is terminating. Let us take a look at the augmented
system from the rules. It is clear that the new augmented system will have
a subset of the rules of the previous example. We just need to cross out all
of the substitutions where g is used in f and vice versa:

θr1,0 = ∅ θr1,1 = {f(0, 1, x′)← x}
θr2,0 = ∅ θr2,1 = {g(x′, y′)← x}
θr2,2 = {g(x′, y′)← y} θr2,3 = {g(x′, y′)← y, g(x′′, y′′)← x}

These augmented rules will result in 11 rules after the first unfolding, then
6 after the second and third, to finally result in 0 resulting rules after the
fourth. None of these resulting rules are semi-unifiable.

6.3 Implementation

The unfolding analyser is implemented in the ConcreteUnfoldingAnalyser.
This implementation also includes pre-processing the given TRS into an
augmented TRS.

34

Chapter 7

Abstract Unfolding

The abstract unfolding analyser is an improvement upon the concrete vari-
ant. The abstract unfolding tries to prevent useless rules from persisting
through the unfolding operator. It also prevents as many calls to the semi-
unification check as possible by first processing all the rules l→ r into rules
l → r′, where r′ is some subterm of r. The calls to semi-unification are re-
duced by only applying the semi-unification algorithm on the root positions
of r′.

7.1 Useful Pairs

Definition 7.1. We call a pair of terms (l, r) useful when either l and r
semi-unify, or when the pair can be unfolded to a pair of terms (l′, r′) such
that l′, r′ semi-unify.

Notice that when we find a useful pair, we have exactly what we need.
Because then we know we can unfold to a pair of terms that semi-unify,
thus non-terminate. We know that this is a property that is undecidable.
For this reason, we create the notion of “is probably useful”. The set of
probably useful terms is an overestimation of the actual useful terms. To
increase clarity, we sometimes use the term “definitely useful” to describe
useful terms. We will integrate this notion into an abstract domain:

35

7.1.1 Abstract Domain

The abstract domain is much like a normal domain for a TRS, consisting
of pairs of terms (l, r). Except the abstract domain also knows two special
elements, namely true and false. Here, true denotes pairs of terms that
semi-unify and false denotes non-useful pairs of terms.

7.1.2 Abstraction

The abstraction function is a function that creates an abstract TRS using a
concrete TRS. Note how it applies the flattening step as described before:

Definition 7.2.

α(R) =
⋃

l→r∈R
{αR(l, r|p) | p ∈ Pos(r) ∧ type(l) = type(r|p)}

αR(l, r) =


true if (l, r) semi-unify

(l, r) if (l, r) is probably useful for R

false otherwise

7.1.3 Unfolding operator

The unfolding operator is a lot like the operator we defined for the con-
crete unfolding, only this time we will apply the abstraction function on the
resulting pairs of terms:

Definition 7.3.

T#
R (X#) =

αR
(
lθ, r [r′]p θ

)
∣∣∣∣∣∣∣∣∣∣
l→ r ∈ X#,

p ∈ NPos(r),

l′ → r′ ∈ R renamed with fresh variables,

θ ∈ mgu(r|p , l′)


Note that this takes as input an abstract domain, so also the special

elements true and false. The element false can always be ignored, as
it only represents non-useful terms. The element true needs its own case,
however. If true ∈ X#, then T#

R (X#) = {true}.

With this operator we can define the unfolding sequence just as before.
We do this by replacing the previous operator TR with T# and by applying
the abstraction function on the augmented TRS in the first level.

36

Definition 7.4. The abstract unfolding sequence is inductively defined as
follows:

T#
R ↑ 0 = α(R+)

T#
R ↑ (n+ 1) = T#

R (T#
R ↑ n), with n ∈ N

With this definition we can prove non-termination: if there exists an
unfolding such that true is an element of that unfolding, the TRS does not
terminate.

7.2 Probably Useful Pairs

As mentioned before, the definition of useful terms is exactly what we want
to find. Thus we created the notion of probably useful terms, for us to
use in our analyser. In this section we will look at how we can define the
probably useful terms. We will follow Payet in his steps and again adapt
it where needed. We start off with a lemma about definitely useful terms.
This lemma will lead us to a definition for probably useful pairs that is good
enough for us to use in our analyser.

Lemma 7.1 If (l, r) is a pair of definitely useful terms, then either l and
r semi-unify, or (l, r) can be unfolded to a pair of terms (l′, r′), such that
root(l) = root(l′) and root(r′) ∈ {type(l), root(l)}. Where root(r) gives us
either the function symbol of r if it is a function, or type(r) if it is a variable.

This notion of the root of a term is different from the one specified
by Payet. We need a different notion to be able to compare types of terms.
Payet’s definition gave back ⊥ when applying the root function to a variable.
If we would do the same, we lose the information of the type of the variable.

We will now split up the lemma into two parts and analyse how we can
use them for a definition of probably useful terms.

For a given (definitely) useful pair of terms (l, r), there are two possibil-
ities:

1. l and r already semi-unify,

2. the pair can be unfolded to a pair of terms (l′, r′) that do semi-unify.

The first case uses semi-unification, we already defined this so we will be
able to use this as a criterion.

37

In case 2, we know that r cannot be variable, since it needs at least one
step of unfolding. So we say that r is in the form of f(t1, . . . , tn). Then we
have two possible ways to go from r to r′:

2.1 There is no unfolding step at the root position, so r′ is in the form of
f(t′1, . . . , t

′
n) and each ti is unfolded to t′i.

2.2 There is an unfolding step at the root position. Here, we first un-
fold each ti to a term t′i to get f(t′1, . . . , t

′
n). Then we apply a rule

f(s1, . . . , sn)→ r1 where r1 will further lead to r′.

We will first look at case 2.1 where l is not a variable. We know that r′ is
not a variable. So by lemma 7.1 we know that root(r′) = root(l) and thus l
must have the form f(s1, . . . , sn). Again by lemma 7.1, we know that l′ is in
the form f(s′1, . . . , s

′
n). Now notice that ti unfolds to t′i and s′i semi-unifies

with t′i. We thus know that (si, ti) is a useful pair.

Now we take a look at the next case: case 2.2, also where l is not a
variable. We notice the following:

Let f(t1, . . . , tn) be a term where each ti can be unfolded to t′i in any
number of steps. Now suppose we have a term f(s1, . . . , sn) such that:

mgu(f(t′1, . . . , t
′
n), f(s1, . . . , sn) with fresh variables) 6= ∅

Then we know that for each argument ti either:

2.2.1 ti unifies with any variable disjoint variant of si,

2.2.2 or ti can be unfolded in at least one step to some term whose root is
equal to the root of si or type(si).

We also know that the right hand side of the rule we apply to f(t′1, . . . , t
′
n),

r1 (from case 2.2), has to lead to r′. So using lemma 7.1 we can say that
the root symbol of r1 should be equal to the root symbol of l or type(l). We
define this “leading to” as a path in the graph of functional dependencies as
criterion 2.3. The graph will be used to create a definition in which cases
2.2.1 and 2.2.2 are handled. The graph of functional dependencies is defined
as follows:

7.2.1 Graph of Functional Dependencies

The graph of functional dependencies is a three-tuple consisting of the edges
E, vertices V and initial vertices I 〈E, V, I〉. The initial vertices are a subset

38

of the vertices and will be used in a later definition. We denote a functional
dependency graph as GR, where R is the TRS from which the graph is
generated.

The algorithm to compute the graph is divided into two steps. The first
step generates part of the edges from the input TRS R and all the (initial)
vertices. The second step possibly generates more edges.

Definition 7.5.

l→ r ∈ R
〈E, V, I〉 7→ 〈E ∪ {l→ root(r)}, V ∪ {l, root(r)}, I ∪ {l}〉

l→ f ∈ E ∧ l′ → g ∈ E ∧
l ∈ I ∧ l′ ∈ I ∧

(root(l′) = f ∨ f = type(l′))

〈E, V, I〉 7→ 〈E ∪ {f → l′}, V, I〉

Note that this definition differs from the one given in [27]. Our definition
of the root function gives back the type of the term if that term is a variable.
In the case where the term is not a variable it still gives back the function
symbol of the term. Also, in the second rule, we check “root(l′) = f ∨ f =
type(l′)”. The second part of this check differs from the existing definition.
The definition by Payet for this was “root(l′) = f ∨ f = ⊥”, but we cannot
just check for some ⊥ (which was used to define the root of a variable), as
the variable that created that ⊥ vertex in the graph might have a different
type. This way we can check if edges do not break typing rules.

Example 7.5 (Example 6.2 continued). This example also comes from
[27]. We will first cover this example and then do the same but with a
typed system, as in example 6.4. When we create the graph of functional
dependencies from the system, we get:

f ←→ f(0, 1, x)←− α←→ g(x, y)

Note that the initial vertices are f(0, 1, x) and g(x, y) (underlined for clarity).
The edge from f(0, 1, x) to f is there because of the first rule. The same holds
for the edge from g(x, y) to α. The other edges are created with the second
rule as follows. The edge from f to f(0, 1, x) can be created in the case of
l → f ∈ E = l′ → g ∈ E = f(0, 1, x)→ f , then root(l′) = f . The edge α to
g(x, y) can be created in the case of l→ f ∈ E = l′ → g ∈ E = g(x, y)→ α,
then f = type(l′) = α. The last edge from α to f(0, 1, x) can be created
in the case l → f ∈ E = g(x, y) → α, l′ → g ∈ E = f(0, 1, x) → f , then
f = type(l′) = α.

39

Example 7.6 (Example 7.5 continued). We again type the system cre-
ated as follows:

f :: α→ α→ α→ α

0 :: α

1 :: α

g :: β → β → β

After applying the rules, we get the following graph:

f ←→ f(0, 1, x)

β ←→ g(x, y)

Note how, compared with the previous example, we miss the edge from α
to f(0, 1, x). This is because the type of g is now β, which means that the
criterion for creating the edge does not hold anymore. This results in a
disconnected graph.

7.2.2 The Relation
+−−→
GR

The initial vertices in the graph are exactly the left hand sides of the rules
in the input TRS. So a path in GR from some initial vertex s to a func-
tion symbol (or type) f means that for any term s′ for which holds that
mgu(s, s′) 6= ∅, we may be able to rewrite s′, using the rules from the TRS,
to a term whose root equals f . The first step of the unfolding is done at the
root position of s′. Note that we say that we may be able to. This is where
the overestimation comes into place, as this is not always the case. We can
now create the following definition for case 2.2.

Definition 7.6. We create a relation
+−−→
GR

. We take as input the graph GR

of a TRS R, a term f(t1, . . . , tn) and a function symbol (or type) g. We can

write f(t1, . . . , tn)
+−−→
GR

g if there is a path in GR from an initial vertex in

the form of f(s1, . . . , sn) to g (Criterion 2.3) and for each i ∈ [1, n], either
of the following three statements holds:

- mgu(ti, si renamed with fresh variables) 6= ∅ (Case 2.2.1),

- ti
+−−→
GR

root(si) (Case 2.2.2 part 1),

- ti
+−−→
GR

type(ti) (Case 2.2.2 part 2)

40

We again have adapted Payet’s definition in the third case. The original

definition is as follows: ti
+−−→
GR

⊥. Since we used the type of the variable

instead of ⊥ when looking at the root, we have changed this.

Example 7.7 (Example 7.5 continued). Recall the TRS and functional
dependency graph:

r1 : f(0, 1, x) → f(x, x, x)

r2 : g(x, y) → x

r3 : g(x, y) → y

f ←→ f(0, 1, x)←− α←→ g(x, y)

We will look at a number of examples whether or not the relationship
GR−−→
+

holds.

- g(v, w)
+−−→
GR

α: this holds, we can take the initial vertex g(x, y), there

exists a path from g(x, y) to α, and both mgu(v, x) and mgu(w, y) are
non-empty.

- g(v, w)
+−−→
GR

f : this also holds, we again take the initial vertex g(x, y),

then there exists a path from g(x, y) to f , and both the arguments can
unify with x and y respectively.

- f(0, 1, x)
+−−→
GR

α: this does not hold, there does not exist an ini-

tial vertex in the form of f(s1, s2, s3) such that there is a path from
f(s1, s2, s3) to α.

- f(0, x, 0)
+−−→
GR

f : this does hold, we take initial vertex f(0, 1, x), then

there exists a path from f(0, 1, x) to f . Then 0 unifies with 0 (the first
argument), 1 unifies with x (the second argument) and lastly 0 unifies
with x as well (the third argument).

Example 7.8 (Example 7.6 continued). If we were to use the typed
system and do the same checks as in Example 7.7, the second statement

(g(v, w)
+−−→
GR

f) does not hold anymore. This is because the path from

g(x, y) to f is no longer there. The third statement then also does not hold
anymore, since the vertex α we used now is replaced with β (the type of g).

7.2.3 The relation usefulR

We can now capture all of our cases (labelled for clarity) in one definition.

41

Definition 7.7. We create a relation called usefulR. For any given TRS R
and two input terms l and r, this relation overestimates whether they are
useful for R. One of the following conditions has to hold:

- l semi-unifies with r (Case 1),

- l is in the form f(s1, . . . , sn), r is in the form f(t1, . . . , tn) and for
each i ∈ [1, n], usefulR(si, ti) (Case 2.1),

- l is in the form f(s1, . . . , sn), r is in the form g(t1, . . . , tm) and r
+−−→
GR

g

or r
+−−→
GR

type(r) (Case 2.2 the sub-cases and the criterion are defined

within the
+−−→
GR

definition)

We can use this definition of useful in our abstraction function to be
used in the analyser.

Example 7.9 (Example 6.4 continued). Let us take a look at an example
of the abstraction function now that we have a notation for the usefulness
of two terms for a TRS. First, recall the TRS, the types and the resulting
graph of functional dependencies:

r1 : f(0, 1, x) → f(x, x, x)

r2 : g(x, y) → x

r3 : g(x, y) → y

f :: α→ α→ α→ α

0 :: α

1 :: α

g :: β → β → β

f ←→ f(0, 1, x)

β ←→ g(x, y)

Also recall the abstraction function:

α(R) =
⋃

l→r∈R
{αR(l, r|p) | p ∈ Pos(r) ∧ type(l) = type(r|p)}

αR(l, r) =


true if (l, r) semi-unify

(l, r) if (l, r) is useful for R

false otherwise

We will apply the abstraction function to the TRS with rules r1 through
r3. First take the rule r1 : f(0, 1, x)→ f(x, x, x). The right side of this rule
has two unique positions, namely ε and 1.ε. For these two positions we will
apply the αR(l, r|p) function.

42

- ε: First we check if (f(0, 1, x), f(x, x, x) semi-unify, which is not the
case. Then we have to check if this tuple is useful for R, then ei-
ther the terms need to semi-unify, which they do not, or each sub-
term needs to be useful for R. This does hold, since 0 semi-unifies
with x, 1 semi-unifies with x and x semi-unifies with x. We get
αR(f(0, 1, x), f(x, x, x)) = (f(0, 1, x), f(x, x, x)).

- 1.ε: Again, we first check if (f(0, 1, x), x) semi-unify, which is not the
case. Then in our check for usefulness, we note that the we can only
do the first check, since x is not in the form of f(s1, . . . , sn). This
first check is semi-unification, which we already checked and resulted
negatively. So we get αR(f(0, 1, x), x) = false.

Now we will look at the second rule r2, this rule only has one position on
the right hand side: ε.

- ε: We first check if (g(x, y), x) semi-unify, which fails. Then we go to
the second case and check if the terms are useful for R. The first check
of semi-unification obviously fails. The second and third check again
require the terms to not be variables, which is not the case, so we get
αR(g(x, y), x) = false.

The third rule r3 is much like the second rule, again we have one position on
the right hand side: ε. The checks for this rule in the abstraction function
are the same and get the same result. So we also get αR(g(x, y), y) = false.

The only useful rule we got is f(0, 1, x) → f(x, x, x). If we were to analyse
this further, we first have to look if there already is a non-variable position
on the right hand side that semi-unifies with the left hand side. This is
not the case as the only non-variable position on the right hand side is
f(x, x, x). In the unfolding operator we take this rule, then choose a non-
variable right hand side position (so f(x, x, x)). Then we have to find a
rule in the original TRS l′ → r′ (with fresh variables) for which holds that
mgu(f(x, x, x), l′) 6= ∅. The only rule that could be used keeping types in
account, is f(0, 1, x′) → f(x′, x′, x′). And this does not work as we cannot
unify f(x, x, x) and f(x′, x′, x′). This means that we have no rules left and
the analyser failed in detecting non-termination.

Note that we did not use an augmented TRS as input as per the definition
for simplicity.

43

7.3 Adaptations made for types

Due to the length of this (and the previous) chapter, we list the adaptations
we made once more.

First off, for both the unfolding operators, we assume that the most
general unifier calculated respects the types in the terms. Otherwise there
can be replacements of positions by terms which are invalid when looking
at the types (definitions 6.1 and 7.3).

Then we adapted the notion for the Augmented TRS, this meant that
we had to add an extra typing check to prevent illegal typing when creating
extra rules 6.3.

In the abstract unfolding technique, the first adaptation was in definition
7.2, where we added an extra typing check to prevent illegal pairs from being
created.

The most important change in the abstract unfolding was the one to the
root(t) function. The corresponding definition in [27] returns ⊥ when given
a variable, now it gives back the type of the variable when given one. This
basically meant that all previous instances of ⊥ had to be replaced with a
form of type(t). It is important that these replacements are given the correct
term as an argument. These changes can be found in Lemma 7.1, Definition
7.5, Definition 7.6 and Definition 7.7.

44

Chapter 8

Experiments

8.1 Competitions

To benchmark tools that analyse term rewriting systems, there exist com-
petitions. Tools can be submitted to such competitions and will be tested
on a (usually large) number of examples. The results are open to everyone
and allow us to see which tools perform best.

These competitions are useful for us too, since the set of benchmark
TRSs is freely available. We can use these to test our analyser and then also
compare results.

We will look at benchmark sets from three different competitions. Firstly
we will run our analyser on the TPDB (Termination Problem Data Base)[10].
This database contains all the problems used in the (non-)termination com-
petition. In this competition the idea is to classify as many input TRSs as
either terminating or non-terminating as possible.

Another competition we will take benchmarks from is the confluence
competition[1]. This competition focuses on another property of term rewrit-
ing systems: confluence. The main reason we will also test our tool on this
set is because this set contains many-sorted TRSs, where the termination
competition does not contain many-sorted examples.

The last set of benchmark TRSs come from the higher order competition.
The tool WANDA[19] was adapted to isolate the first order parts from the
original higher order TRSs so that they could be used for our experiments.
This is possible because the higher order competition does have types.

45

8.2 Experiments

The testing was mostly limited to the unfolding technique, because it encom-
passes all the other techniques before. We did however, test the examples
on both the concrete and abstract analyser. All the experiments were run
with a time limit of ten seconds and at most ten unfolding steps.

These are not the only tests we can run. Recall that the unfolding
technique uses the semi-unification algorithm. We can also swap in the
unification in its place. This will not give us incorrect results as we have
seen that unification and semi-unification are both capable of detecting non-
termination. The unification algorithm is a faster algorithm than semi-
unification, though. It is interesting to find out if using semi-unification over
unification is significantly better at finding solutions. It could for example
be the case that for a TRS, unfolding with unification is enough to prove
non-termination. If this is combined with the fact that the TRS is very large
and unfolding with semi-unification results in a timeout, it might actually be
useful to run the analyser with unification too. Note that semi-unification is
still a technique that is theoretically stronger, unification will most definitely
find less results.

Another test is to run the analyser without augmenting the TRS as a
pre-processing step. Even though the augmenting step might increase the
chance of finding non-termination, it also can increase the number of rules
significantly, which in its place increases the running time of the algorithm.

To run the tests and visualise the results, a small framework was created
in Python to which the link can be found in the appendices. The tests were
run on a Windows machine with an i7-8565U CPU and 16GB of RAM.

8.3 Results

8.3.1 TPDB

The first results (Table 8.1 and Table 8.2) are the results of running our
analyser on the Termination Problem Data Base[10] with a timeout of ten
seconds. Note that these examples are all untyped and thus not what our
tool is created for. These tables show concrete and abstract unfolding re-
spectively. Both of these tables show the results of augmenting versus not
augmenting and using semi-unification versus using unification.

We also ran the examples on pure semi-unification (so no unfolding

46

steps). We can do this by taking the concrete unfolder and setting the max-
imum unfoldings to zero. Doing this, we found 64 out of the 1259 examples
to be non-terminating.

Augmented Non Augmented

Semi-Unification Unification Semi-Unification Unification

Non Terminating 118 79 120 76

Maybe 159 169 441 464

Timeout 982 1011 698 719

Total Time (HH:MM:SS) 2:51:55 2:52:13 2:06:44 2:09:17

Avg. without timeouts (sec) 1.79 0.65 1.11 1.05

Table 8.1: TPDB: Concrete unfolding analyser results

Augmented Non Augmented

Semi-Unification Unification Semi-Unification Unification

Non Terminating 123 85 117 73

Maybe 235 259 561 610

Timeout 901 915 581 576

Total Time (HH:MM:SS) 2:35:29 2:38:13 1:46:02 1:45:46

Avg. without timeouts (sec) 0.89 1.00 0.81 0.86

Table 8.2: TPDB: Abstract unfolding analyser results

Results unfolding

The results from the experiments are consistent. It is clear that choosing
semi-unification instead of unification is always a good idea. Semi-unification
finds about 50% more systems that are non-terminating in about the same
time. However, the comparison on the total time is not completely fair.
Since unification finds fewer non-terminating systems, it more often needs
to go on for the entire timeout limit (or until the analysis is done). This can
be seen in the last row of each result table. Note that this difference is not
seen when the difference in timeouts is small.

The most important observation we can make is that augmenting the
term rewriting system as a pre-processing step is expensive. However, it is
still worthwhile: we have already seen an example where not augmenting
would result in a MAYBE result but with augmenting we were able to find

47

a loop. This occurs many more times in systems we have analysed. In
the results of the abstract analyser we find more non-terminating TRSs
when augmenting (123 instead of 117). But there are also systems where
augmenting would result in a timeout and not augmenting would find the
non-termination. There were 19 cases where augmenting found a result
where not augmenting would not and 15 cases where not augmenting would
find a result where augmenting would not.

Comparing the abstract unfolding and concrete unfolding matches ex-
pectations. There is no example where the concrete unfolder was able to
find non-termination and where the abstract unfolder returned MAYBE. There
are cases, however, where the abstract unfolder timed out and the concrete
unfolder was able to find non-termination. Overall, the abstract unfolder
detected more cases of non-termination.

There is one special example, using the concrete unfolder and by not
augmenting the system as a pre-processing step, we were able to detect non-
termination in an example where the other tools in the most recent termi-
nation competition were not. It is Zantema 15\s.xml from the Termination
Problem Data Base. It is the following TRS:

r1 : a(a(a(S, x), y), z) → a(a(x, z), a(y, z))

Non-termination is proven by unfolding on the positions in the following
order: ε, 2.ε, 2.2.ε, 2.2.2.ε and finally 2.2.2.2.ε. Then semi-unification is
possible between the left hand side and position 1.ε on the right hand side.

Results pure semi-unification

Pure semi-unification is not able to find any new results on top of what we
already knew. This is because the setup is embedded into concrete unfolding
with more than zero unfoldings.

8.3.2 Confluence Problem Database

We applied our analyser to a number of problems from the confluence
database. Since these examples are labelled, we can extract all rewrit-
ing systems labelled as non-terminating or terminating. These labels were
mainly a way to test our analyser. Note that these systems labelled as
(non-)terminating are all untyped.

We tested the 418 term rewriting systems labelled as non-terminating
with the abstract unfolding technique using semi-unification. Even without

48

augmenting all of the 418 systems come out as non-terminating in 12 sec-
onds. When augmenting is used as a pre-processing step, a few timeouts (at
ten seconds) occurred. When we use unification instead of semi-unification
we are not able to find all the results (both with and without augmenting).

For 95 rewriting systems labelled as terminating, we found none of
them being non-terminating.

There are also some many-sorted benchmarks in this database. For these
examples, we ran the same tests as we did with the TPDB. This means that
we tried both the concrete and abstract analyser on augmenting versus not
augmenting and semi-unification versus unification. The results from these
tests can be found in tables 8.3 and 8.4.

Augmented Non Augmented

Semi-Unification Unification Semi-Unification Unification

Non Terminating 34 33 34 33

Maybe 5 5 8 9

Timeout 16 17 13 13

Total Time (HH:MM:SS) 0:03:00 0:03:11 0:02:15 0:02:13

Table 8.3: COPS: Concrete unfolding analyser results

Augmented Non Augmented

Semi-Unification Unification Semi-Unification Unification

Non Terminating 34 33 34 33

Maybe 8 9 10 11

Timeout 13 13 11 11

Total Time (HH:MM:SS) 0:02:39 0:02:30 0:01:53 0:01:52

Table 8.4: COPS: Abstract unfolding analyser results

The results are all very much the same, there is only one example
which could not be solved using unification. Augmenting the TRS as a
pre-processing step did not have much impact besides taking slightly longer
to analyse.

8.4 Transformed from Higher Order Problems

Lastly, we have the benchmark set that WANDA[19] could extract from the
higher order database. We will again run these benchmarks with the same

49

configurations as before: both concrete- and abstract unfolding both with
augmenting versus without and with semi-unification versus unification. The
results of these tests can be found in table 8.5 for the concrete unfolding tests
and in table 8.6 for the abstract unfolding tests. Note that most of these
examples are terminating.

Augmented Non Augmented

Semi-Unification Unification Semi-Unification Unification

Non Terminating 7 7 4 4

Maybe 43 44 75 75

Timeout 59 58 30 30

Total Time (HH:MM:SS) 0:11:28 0:10:57 0:05:31 0:05:25

Table 8.5: Transformed: Concrete unfolding analyser results

Augmented Non Augmented

Semi-Unification Unification Semi-Unification Unification

Non Terminating 7 7 4 4

Maybe 51 52 87 88

Timeout 51 50 18 17

Total Time (HH:MM:SS) 0:09:08 0:08:54 0:03:47 0:03:34

Table 8.6: Transformed: Abstract unfolding analyser results

In this case, there was no difference between using semi-unification or
unification. There was, however, a difference between not augmenting and
augmenting. In particular, not augmenting lead to not detecting non-
termination in three examples. There are no examples where not augmenting
was successful and augmenting was not.

50

Chapter 9

Related Work

A lot of related work in the analysis of term rewriting systems is done
specifically on the termination side. It should be noted that this work is
also relevant to the non-termination analysis. Non-termination is disproven
by proving termination and the other way around. Many tools use both
termination and non-termination techniques to get as complete an answer as
possible. The techniques implemented in this paper might determine when
a TRS is non-terminating, but they cannot decide if TRS is terminating,
i.e. Mara never answers TERMINATING. In this chapter a number of relevant
techniques and tools are discussed.

9.1 Dependency Pair Framework

One of the most popular techniques for proving both termination and non-
termination is the Dependency Pair Framework[29]. Traditionally it was
created for unsorted term rewriting systems. But there are already variants
including higher-order TRSs, context-sensitive TRSs and constrained TRSs.
The higher-order and constrained TRSs both contain types so a definition for
sorted TRSs should also be clear. The dependency pair framework is built
upon the dependency pair approach[2]. In the dependency pair framework
a set DP (R) is generated from “rules” that identify the function calls in
R. For example, from a rule f(x) → g(f(x), 0), the set DP (R) becomes
DP (R) = {F (x) → G(f(x), 0), F (x) → F (x)}. This is because in the rule,
there is a call to f and one to g on the right-hand side.

Now the idea is to let both non-termination and termination techniques
operate on the dependency pairs instead of on the TRS itself. This way,
the problems are smaller and thus easier to solve. Techniques that operate

51

on dependency pairs are called dependency pair processors or Proc. The
processor can either return a set of dependency pair problems, or no.

The unfolding technique could be implemented as a DP processor and
that way be used in the dependency pair framework.

9.2 Finite Automata

A very recent technique for proving non-termination is by using finite au-
tomata [7]. Here, the goal is not to directly look for an infinite reduction
in a TRS. Instead, a regular language is sought with properties from which
non-termination follow. Then these properties are defined in a propositional
formula. This formula can be analysed by a SAT solver, if the formula can
be satisfied, the original TRS is non-terminating. A tree automaton is used
to represent the language that is sought after, in a run of the algorithm, it
has a fixed number of states.

9.3 Non-looping Non-Termination

The most common way to detect non-termination in a TRS is to find a
loop. This is done by finding a finite sequence of rewriting steps such that
the first term is a subterm of the last term. Loops are not the only way to
detect non-termination, though. Another way is to find non-looping non-
termination, as for example in [6]. Non-looping, as its name suggests, does
not have a loop, but is able to create an infinite rewriting sequence. We use
an example from [6]:

r1 : isNat(0) → true

r2 : isNat(s(x)) → isNat(x)

r3 : f(true, x) → f(isNat(x), s(x))

This rewriting system does not loop, but also is non-terminating:

f(true, sn(0)) → f(isNat(sn(0)), sn+1(0))

→n+1 f(true, sn+1(0))

→ f(isNat(sn+1(0)), sn+2(0))

→n+2 f(true, sn+2(0))

. . .

Here, →n means n steps of rewriting and sn(0) denotes n s symbols. It
is clear that the last two rewriting steps can be repeated indefinitely. But

52

it is not looping: the rewriting steps needed to translate the isNat(sn(0))
terms into true increases every iteration. In [6] a way to detect non-looping
termination is presented.

9.4 Some Termination Techniques

In this section a few old but very powerful methods are discussed to detect
termination, but these are certainly not all of the popular methods.

9.4.1 Polynomial Interpretations

Polynomial interpretations [3] can be used as a way to detect termination of
term rewriting systems. Here, the goal is to give polynomial interpretations
for each function symbol and then prove that for each left side is greater
than the right side using the interpretations.

This technique has been extended and improved over time for example
in [15], to extend the class of rewriting systems of which termination can be
detected using negative coefficients. And in [9], to extend the technique to
be able to work in higher order term rewriting systems. The latter can be
useful because it is already typed, but for higher order systems.

An interesting find is also done in [30]. Here, there are no polynomial
interpretations, just interpretations. The suggestion is to give different types
different sets. For example, a type nat (the natural numbers) can be given
the set of the natural numbers, bool (booleans) can be given the set {0, 1}.
This way, the typing is saved.

9.4.2 Path Orderings

In Dershowitz [5] a number of orderings are given to prove termination. One
of these orderings is called the recursive path ordering. This well known
technique works by defining a ordering over the function symbols of a TRS,
if the ordering respects the recursive path ordering, the TRS is terminating.
In [8] a higher order variant is defined called Computability Path Ordering
(CPO). Since CPO already uses types (higher order types), it might be
useful in the first-order TRSs.

53

9.5 Tools

At the time of writing, there is no clear sign of any existing tool to detect
non-termination in many-sorted term rewriting systems. This is not really
surprising as there also were no techniques for this. There are, however, a lot
of (non-)termination tools out there for different kinds of rewriting systems.
Some examples are NTI, AProVE, NaTT, TTT2 , WANDA and TORPA.

9.5.1 NTI

NTI[28] stands for Non Termination Inference, it is a tool to prove non-
termination of term rewriting systems. The prover uses guided unfoldings,
which is a reconsideration of the unfolding analyser we have adapted[27].
The first implementation of NTI is open source and written in C++, the
newest version (which is currently participating in competitions), is not open
source[26].

9.5.2 AProVE

AProVE[11] is a tool that can prove both termination and non-termination.
AProVE is built upon the Dependency Pair Framework and contains at least
22 processors. These include processors for proving non-termination[12].
AProVE is not open-source.

9.5.3 NaTT

The Nagoya Termination Tool (NaTT) is a closed source termination prover[31].
It was the first tool to implement the weighted path order[31]. NaTT, like
AProVE, is built upon the Dependency Pair Framework. The tool does have
some non-termination techniques, but is specialised on termination.

9.5.4 TTT2

TTT2 is the Tyrolean Termination Tool 2[22]. It is the open-source successor
of the non open-source TTT[14]. The tool is a termination analyser for first-
order term rewriting systems. Just like AProVE, it is based on the Depen-
dency Pair Framework, with processors such as increasing interpretations,
a modular match-bound technique, uncurrying and outermost loops[22]. As

54

with many other tools, it does have some non-termination techniques but is
specialised on termination.

9.5.5 WANDA

WANDA is an open-source higher-order termination tool[19]. The tool fea-
tures a number of techniques which include the Dependendy Pair Frame-
work, polynomial interpretations and higher-order recursive path ordering.
The theory of WANDA is based upon[20]. WANDA has very limited non-
termination techniques. WANDA also uses a dedicated tool for the first
order part of a higher-order system, currently AProVE. When AProVE an-
swers NO, WANDA checks if this untyped answer (since it is the first-order
part) can be correctly typed for the higher order system. Mara could be used
to detect non-termination instead, because then WANDA does not have to
do any type checks (since Mara can work with first-order types). This may
also hold for other higher-order tools.

9.5.6 TORPA

TORPA is a termination analysis tool that focuses on string rewriting sys-
tems [33], TORPA is closed source. It includes a number of techniques,
such as: polynomial interpretations, recursive path ordering, the Depen-
dency Pair Framework, RFC-match-bounds and semantic labelling.

55

Chapter 10

Conclusions

We have to look at two separate points in our conclusions. First off, we
adapted a number of techniques to work for many-sorted rewriting systems.
The second point we can look at is how they perform on examples.

10.1 Adaptations

The main techniques we have adapted to work for many-sorted term rewrit-
ing systems are Concrete unfolding and Abstract unfolding. The impact
that the sorts have on the techniques were small but certainly not negligi-
ble. Most of the adaptations made were extra checks for types, for example
when substituting some position with another term.

Apart from the extra type checks, there have been more changes. A per-
tinent example in the graph of functional dependencies, where the definition
had to be altered altogether to make it work for types.

10.2 Experiments

The results from all of the experiments match expectations. Semi-unification
is often stronger than unification. It, together with the abstract unfolding
technique, is the best at finding non-termination. What is not directly
obvious, is if augmenting as a pre-processing step is always worth it. It
usually leads to better results but it also takes considerably more time to
calculate for problems that can be solved without augmenting, which may
lead to timeouts.

56

We were also able to find non-termination in one example where no other
tool could. This was not with the “strongest” setup; rather with the concrete
unfolding with semi-unification and without augmenting beforehand. This
might also be the reason the other tools are not able to find this as they
probably do not use concrete unfolding combined with unification.

57

Chapter 11

Future Work

In future work, many other techniques for proving non-termination could
be adapted for many-sorted term rewriting systems, most notably the De-
pendency Pair Framework. The work in this thesis could be translated into
a DP processor. It could also be interesting to look at existing termination
techniques and adapt them for many-sorted TRSs.

A second class of rewriting systems to look at, are the string rewriting
systems. It could be interesting to look at how sorts impact the (non-
)termination analysis on them.

Of course, the current implementations of the algorithms could also be
improved. The implementation for semi-unification is worst case exponen-
tial, while polynomial time algorithms exist[16][24]. These have not been
used here for the sake of complexity. Also, the abstract unfolding analysis
has gotten an improvement in [26] which could be implemented alongside
the existing concrete and abstract unfolders.

58

Bibliography

[1] Cops: Confluence problems database. http://cops.uibk.ac.at/. Ac-
cessed: 2019-12-11.

[2] T. Arts and J Giesl. Termination of term rewriting using dependency
pairs. Theoretical computer science, 236(1-2):133–178, 2000.

[3] A. Ben Cherifa and P. Lescanne. Termination of rewriting systems by
polynomial interpretations and its implementation. Science of Com-
puter Programming, 9(2):137 – 159, 1987.

[4] S. R. Buss. Chapter i - an introduction to proof theory. In Handbook
of Proof Theory, volume 137 of Studies in Logic and the Foundations
of Mathematics, pages 1 – 78. 1998.

[5] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Com-
puter Science, 17(3):279 – 301, 1982.

[6] F. Emmes, T. Enger, and J. Giesl. Detecting non-looping non-
termination. In 12th International Workshop on Termination (WST
2012), page 49, 2012.

[7] J. Endrullis and H. Zantema. Proving non-termination by finite au-
tomata. In 26th International Conference on Rewriting Techniques and
Applications, RTA 2015, volume 36, pages 160–176, 2015.

[8] Blanqui F., Jouannaud J.P., and Rubio A. The computability path
ordering. Logical Methods in Computer Science, 11(4), 2015.

[9] C. Fuhs and C. Kop. Polynomial interpretations for higher-order rewrit-
ing. Leibniz International Proceedings in Informatics, LIPIcs, 15, 2012.

[10] J. Giesl. Termination portal. http://termination-portal.org/

wiki/. Accessed: 2019-11-20.

[11] J. Giesl, P. Schneider-Kamp, and R. Thiemann. Aprove 1.2: Automatic
termination proofs in the dependency pair framework. In U. Furbach
and N. Shankar, editors, Automated Reasoning, pages 281–286, 2006.

59

http://cops.uibk.ac.at/
http://termination-portal.org/wiki/
http://termination-portal.org/wiki/

[12] J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving
termination of higher-order functions. In Proceedings of the 5th Inter-
national Conference on Frontiers of Combining Systems, FroCoS’05,
pages 216–231, 2005.

[13] F Henglein. Type inference and semi-unification. In Proceedings of the
1988 ACM Conference on LISP and Functional Programming, LFP ’88,
pages 184–197, 1988.

[14] A. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques
and features. Information and Computation, 205(4):474 – 511, 2007.

[15] N. Hirokawa and A. Middeldorp. Polynomial interpretations with neg-
ative coefficients. In B. Buchberger and J. Campbell, editors, Artificial
Intelligence and Symbolic Computation, pages 185–198, 2004.

[16] D. Kapur, D. Musser, P. Narendran, and J. Stillman. Semi-unification.
In K. V. Nori and S. Kumar, editors, Foundations of Software Technol-
ogy and Theoretical Computer Science, 1988.

[17] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. The undecidability of the
semi-unification problem. Information and Computation, 102(1):83 –
101, 1993.

[18] J. W. Klop. Handbook of logic in computer science (vol. 2). In Hand-
book of Logic in Computer Science (Vol. 2), chapter Term Rewriting
Systems, pages 1–116. 1992.

[19] C. Kop. Wanda: A higher-order termination tool. http://wandahot.

sourceforge.net/. Accessed: 2019-11-20.

[20] C. Kop. Higher Order Termination: Automatable Techniques for Prov-
ing Termination of Higher-Order Term Rewriting Systems. PhD thesis,
Vrije Universiteit Amsterdam, 2012.

[21] C. Kop. Cora. https://github.com/hezzel/cora, 2019.

[22] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean termi-
nation tool 2. In R. Treinen, editor, Rewriting Techniques and Appli-
cations, pages 295–304, 2009.

[23] A. Martelli and U. Montanari. An efficient unification algorithm. ACM
Trans. Program. Lang. Syst., 4(2):258–282, 1982.

[24] A. Oliart and W. Snyder. Fast algorithms for uniform semi-unification.
Journal of Symbolic Computation, 37(4):455 – 484, 2004.

[25] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Book-
shelf, 2nd edition, 2013.

60

http://wandahot.sourceforge.net/
http://wandahot.sourceforge.net/
https://github.com/hezzel/cora

[26] E. Payet. Non-terminatnion inference. http://lim.univ-reunion.

fr/staff/epayet/Research/NTI/NTI.html. Accessed: 2019-11-20.

[27] E. Payet. Detecting non-termination of term rewriting systems using
an unfolding operator. In Logic-Based Program Synthesis and Trans-
formation, pages 194–209, 2006.

[28] E. Payet. Guided unfoldings for finding loops in standard term rewrit-
ing, 2018.

[29] R. Thiemann. The DP framework for proving termination of term
rewriting. PhD thesis, RWTH, Department of Computer Science, 2007.

[30] Jaco van de Pol. Termination of Higher-order Rewrite Systems. PhD
thesis, Universiteit Utrecht, 1996.

[31] A. Yamada, K. Kusakari, and T. Sakabe. Nagoya termination tool. In
RTA-TLCA, 2014.

[32] T. Yoshihito. Counterexamples to termination for the direct sum of
term rewriting systems. Information Processing Letters, 25(3):141 –
143, 1987.

[33] H. Zantema. Termination of string rewriting proved automatically.
Journal of Automated Reasoning, 34:105–139, 01 2005.

61

http://lim.univ-reunion.fr/staff/epayet/Research/NTI/NTI.html
http://lim.univ-reunion.fr/staff/epayet/Research/NTI/NTI.html

Appendix A

Test Framework

The test framework created and used is written in Python and can be found
at https://github.com/bornobob/MaraRunner. It consists of two parts:
the runner and the visualiser. The runner takes configurations and tests
files, then outputs a JSON file with all the results. The visualiser creates an
HTML page with all the results in a table, where the different configurations
are split up in columns.

62

https://github.com/bornobob/MaraRunner

Appendix B

Results

The results from all the experiments were converted to HTML files using
the previously mentioned test framework. There are four files: one for the
experiments on the termination problem database, two for the confluence
database and the last one is for the problems transformed from the higher
order database.

63

	Introduction
	Preliminaries
	Unsorted Term Rewriting Systems
	Many-Sorted Term Rewriting System
	Cora

	Analysers
	Matching and Unification
	Matching
	Unification

	Semi-Unification
	Algorithm 1
	Algorithm 2

	Unfolding
	Concrete Unfolding
	Augmented Term Rewriting System
	Implementation

	Abstract Unfolding
	Useful Pairs
	Probably Useful Pairs
	Adaptations made for types

	Experiments
	Competitions
	Experiments
	Results
	Transformed from Higher Order Problems

	Related Work
	Dependency Pair Framework
	Finite Automata
	Non-looping Non-Termination
	Some Termination Techniques
	Tools

	Conclusions
	Adaptations
	Experiments

	Future Work
	Test Framework
	Results

