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Abstract

In the past decades, a great number of studies have proposed pointer anal-
yses for source code written in high-level languages. Pointer analysis, some-
times referred to as points-to analysis, is commonly used in compilers for
optimization or detecting security vulnerabilities. However, users often have
no access to the (high-level) source code. Consequently, researchers have re-
cently started advocating pointer analysis for lower-level code. When aiming
to detect security vulnerabilities or for tasks such as binary re-optimization,
there exists a need for analyzing lower-level code. In fact, in some cases,
pointer analysis on assembly-level code can yield more accurate results than
analyzing the higher-level equivalent [14]. Despite the many advantages of
analyzing lower-level code, there is currently no tool available that allows
one to perform pointer analysis on low-level code such as assembly or binary
executables.

We present a prototype for assembly-level pointer analysis. Since the x86
mov instruction is Turing complete, the extensive x86 instruction set can
be reduced to this one instruction. For this reason, we have designed a
pointer analysis for the x86 mov instruction only, providing a proof of con-
cept for assembly-level pointer analysis in general. Furthermore, our open-
source implementation makes us the first to publish a tool for performing
an inclusion-based pointer analysis on lower-level code.
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Chapter 1

Introduction
Pointer analysis, also referred to as points-to analysis, is a static analysis
that determines the set of memory locations a pointer variable can point to
during runtime. This type of analysis is widely used in compilers to optimize
code and to statically detect security vulnerabilities.

We present a prototype implementation of pointer analysis for lower-level
code. To be specific, our tool performs pointer analysis on assembly pro-
grams consisting of only the x86 mov instruction. It has been proven by
Stephen Dolan that the mov instruction is Turing complete [51]. This im-
plies that the whole x86 instruction set can be reduced to this single instruc-
tion. Hence, an implementation of pointer analysis for the mov instruction
functions as a proof of concept for assembly-level pointer analysis in gen-
eral. Our implementation is based on Andersen’s subset-based algorithm
[49]. This algorithm provides relatively precise pointer information, whilst
its flow-insensitivity makes it scalable as well.

Most existing pointer analyses are performed on high-level programs writ-
ten in Java or C. However, in recent years, there has been a growing need
for tools that analyze lower-level code. Pointer analysis on lower-level code
can even yield more precise results than analysis of higher-level code [14].
Whereas some algorithms for lower-level pointer analysis have been pro-
posed [14, 9, 11, 3]. There seems to be a general trend in the research field
of pointer analysis where implementations of proposed algorithms are not
available to the public. This makes that, to the best of our knowledge, there
is currently no tool available that allows us to execute pointer analysis for
lower-level programs.

The x86 instruction set for assembly consists of a great number of instruc-
tions. Still, no formal definition of its semantics exists. Besides, assembly
lacks the concept of variables and type-information. This makes it challeng-
ing to statically determine which variables are pointers. Hence, a pointer
analysis for assembly is forced to sacrifice some precision by overestimating
the memory locations that are considered pointer variables.

In Chapter 2 we will elaborate on the theory behind pointer analysis. Chap-
ter 3 provides a discussion on the current state-of-the-art pointer analyses.
In Chapter 4 we extensively discuss the challenges associated with assembly-
level analysis. In Chapter 5 we will explain our prototype implementation
and its results. Finally, Chapter 6 consists of the conclusions and recom-
mendations for future research.

2



Chapter 2

Background
2.1 What is pointer analysis?

Pointer analysis is a static code analysis technique that determines what
memory locations or objects a pointer variable or expression can refer to.
Because it is a static technique, the code is analyzed without executing it.
The result of a pointer analysis is for each variable and expression, the set of
objects it can point to during runtime. This result is represented as a set of
‘points-to’-relations. For this reason, pointer analysis is sometimes referred
to as ‘points-to analysis’ [20, 33]. The precise solution of a pointer analysis
of the code in Listing 2.1 would be that the pointer variable p points to x.
Throughout this work, we will use the notation pts(p)={x} to denote this
type of points-to information.

1 int x;

2 int *p = &x;

Listing 2.1: C code with the use of pointers

2.1.1 Alias Analysis

A specific form of pointer analysis is alias analysis. It determines which
variables or expressions can alias, meaning that they point to the same
memory location. For an alias analysis, the result is all sets of pointer
expressions that alias each other. The precise solution of an alias analysis
of the example in Listing 2.1 would be that x and *p alias. This can be
denoted as the alias set <*p,x>. Note that this alias set yields the same
information as the points-to relation mentioned before. This is why the term
alias analysis and pointer analysis are often used interchangeably. Accessing
pointer addresses directly using the reference operator ‘&’, as done in Listing
2.1, is very common in the programming languages C and C++, but this is
not possible in every language. Still, aliasing can occur in other languages,
for example by accessing a specific element in an array or by referencing
objects, which is common in Java. In Listing 2.2, we see an example in
which aliasing can occur due to an array. Because i equals 3, a[i] and
a[3] will alias and the value 12 will be overwritten by 13.

1 int i = 3;

2 int a[10];

3 a[3] = 12;

4 a[i] = 13;

Listing 2.2: Pointer example in C
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2.2 What is pointer analysis used for?

In general, pointer analysis is not used as a stand-alone task. The set of
points-to relations resulting from a pointer analysis is usually the input for
another client analysis [15]. This client analysis is often an interprocedural
analysis of the whole program. We will discuss the most important uses of
pointer analysis.

Optimization

Pointer analysis is an essential part of the optimization process in a compiler
[8, 1]. A pointer analysis can detect ambiguous memory references to form
a more accurate view of program behavior [15, 13]. For instance, a pointer
analysis can be used to create a definition-use chain, which lists for each
definition of a variable, all uses of that definition. This can be of use for
minimizing the number of operations and memory accesses by detecting dead
code [26]. Listing 2.3 shows us an example of code that can be optimized by
performing a pointer analysis. We might want to write y=1 instead of first
x=1 and then y=x. But as long as we are unsure if p is pointing to x, we
cannot optimize this piece of code. A pointer analysis on the whole program
might be able to determine that p does not point to x.

1 x = 1;

2 *p = 12;

3 y = x;

Listing 2.3: Code that can be optimized by a pointer analysis

Detecting security vulnerabilities

Another important purpose of pointer analysis is detecting security vulnera-
bilities in code [26, 15, 13, 42, 43]. For instance, it can be used for detecting
buffer overflow or format string vulnerabilities. Especially for detecting se-
curity vulnerabilities, a static analysis is appropriate because errors can
be detected early in the development process whereas fixing errors in later
stages can be very expensive. The code in Listing 2.4 shows an example of
a buffer overflow vulnerability. In C, array references are defined as point-
ers (buff[n] is defined as *(buff + n)). Therefore a pointer analysis can
determine that when executing this code, buffer[3] points to input[3].
Because we know that the size of buffer is 3, we know that buffer[3] is
outside of our buffer and we should not write to this address.

1 void copyString(char *input) {

2 char buffer [3];

3 for (int i=0; i<=3; i++)

4 buffer[i] = input[i];

5 }

6 }

Listing 2.4: Code containing a buffer overflow vulnerability
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2.3 How is a pointer analysis performed?

Pointer analysis is generally undecidable [24, 29]. Hence, pointer analysis
algorithms try to approximate the outcome of an analysis. In this section,
we will discuss in which ways pointer analysis can be performed. We discuss
the dimensions that can affect accuracy and efficiency and we elaborate on
the most fundamental algorithms for pointer analysis.

2.3.1 Must and May analysis

A distinction is made between Must and May points-to sets [25]. The
former over-approximates actual program behavior while the latter reports
points-to relations only when they are guaranteed to hold. Generally, pointer
analysis is a May-analysis because Must-analysis is more expensive [33].

Soundness

A sound Must pointer analysis will return only those points-to relations
that will definitely hold in each possible execution of the program [23]. This
might yield an under-approximation of all the Must point-to relations that
hold. A Must pointer analysis returning no points-to sets is still sound but
very imprecise.

A sound May analysis reports at least all points-to relations that may
occur. The drawback of this overestimation is that besides all true rela-
tions, some superfluous relations are returned that might be false [27]. For
a May analysis, this means that every true May points-to relation is re-
turned, but some extra points-to relations might be returned that will never
occur in practice. In fact, a May analysis reporting that all variables point
to all other variables is perfectly sound but too imprecise.

Thus, soundness for a Must analysis means avoiding spurious inferences,
whereas soundness for a May analysis means not missing true inferences
[33]. The precision of an analysis is the degree to which it avoids such spu-
rious results [27]. Pointer analyses are usually sound, so for the results to
be useful, the results must be relatively precise as well.

An interesting result can be obtained by negating the result of a May
pointer analysis (i.e., taking the complement of its output). This would
result in a Must-Not point-to analysis [33]. However, one must be careful
when drawing conclusions. These Must-Not point-to relations are true,
but they are still an under-estimation. To be more precise, there might
be more Must-Not point-to relations that are not determined because the
May points-to relations overestimate the locations a pointer may refer to.
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2.3.2 Dimensions affecting efficiency and accuracy

Because pointer analysis is undecidable, algorithms need to make a trade-
off between efficiency and accuracy. There are several dimensions that
can be considered in this trade-off, namely flow-sensitivity, path-sensitivity,
context-sensitivity and field-sensitivity [31, 20]. In this section, we will ex-
plain the most important dimensions and the effect they have on the pre-
cision and efficiency of a pointer analysis algorithm. For a thorough explo-
ration of existing pointer analyses and how they address these dimensions,
we refer the reader to Chapter 3 on related work.

Flow-sensitivity

In a flow-sensitive pointer analysis, the possible pointer values are computed
after each statement, that is after each assignment, function call or if-else
statement. Whereas a flow-insensitive pointer analysis computes the set of
values a pointer variable will have throughout the execution of the whole
program. In flow-insensitive analysis, the order of statements is not im-
portant e.g., analysis of two statements S1;S2; will be the same as S2;S1;.
Performing a flow-insensitive pointer analysis on the code example in List-
ing 2.5, would yield that p points to a and b during the execution of the
program. A flow-sensitive pointer analysis would produce the more specific
result that in program-point (4), p points to a and in program-point (5), p

points to b.

1 int a;

2 int b;

3 int* p;

4 p = &a;

5 p = &b;

Listing 2.5: Example of flow-sensitivity

This makes flow-sensitive analysis usually more precise but less efficient
than flow-insensitive analysis. Flow-sensitive pointer analysis is (tradition-
ally) too expensive to perform for whole programs [49]. This is why whole-
program analyses typically use flow-insensitive pointer analyses, although
more recent research has shown certain optimizations that make flow-sensitive
analysis possible for large programs as well [16].

In a flow-insensitive analysis, when a pointer variable is reassigned with
a new value many times throughout the program, the points-to set of this
variable can become very large. Accordingly, partial flow-sensitive algo-
rithms exist, where a flow-insensitive approach is used to compute pointer
values of a smaller piece of the program, for example within a method.
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Path-sensitivity

A second dimension is path-sensitivity. A path-sensitive analysis considers
the fact that paths are exclusive [40]. This implies that only one of the
multiple paths can be chosen. When we take a look at Listing 2.6 for ex-
ample, we see that a flow-insensitive analysis would conclude that p may
point to either a, b, c or d. This result is sound but very imprecise. A
path-sensitive analysis produces the result that p may point to b, c, or d,
whereas a path-sensitive analysis would consider the fact that only one of
two paths can be chosen and would result in the more precise solution that p
may only point to c or d.

1 int a;

2 int b;

3 int c;

4 int* p;

5 p = &a

6 p = &b;

7 if (s){

8 p = &c;

9 }

10 else {

11 p = &d;

12 }

Listing 2.6: Example of path-sensitivity

Context-sensitivity

Another dimension that affects a pointer analysis’ efficiency and precision is
context-sensitivity. In a context-sensitive analysis, the caller of a function
is considered when calculating results [33]. Consider the code example in
Listing 2.7. The function id is called two times. Once with constant 1 as
input and once with 2. A context-insensitive analysis concludes that the
function id might return either 1 or 2. Hence, it will report that c can have
values 2, 3, or 4. A context-sensitive analysis, on the other hand, would
distinguish between id(1) and id(2). It yields the more precise solution
that c is constant and must equal 3. Note that this is also an example
in which a pointer analysis can help the compiler to optimize the code by
replacing a+b by 3.

1 int a = id(1);

2 int b = id(2);

3 int c = a + b;

4

5 int id(int x){

6 return x;

7 }

Listing 2.7: Example of context-sensitivity
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Field-sensitivity

Field-sensitivity means that the individual elements of an aggregate are dis-
tinguished, rather than regarding the aggregate as a whole. In general, an
aggregate is a piece of data composed of smaller pieces that form one unit.
We see this in object-oriented programming, where a class can contain multi-
ple other classes. In such object-oriented programming languages like Java
and C++, a class would be an aggregate. Similarly, in the programming
language C a struct data type would be an aggregate since it is one piece of
data that consists of multiple values. Other examples of aggregates are lists
and arrays.

In a pointer analysis, these type of structures can be modeled in two differ-
ent ways. Either the entire structure as one single object or each element in
the structure as an individual memory location. The former is called field-
insensitive while the latter is referred to as field-sensitive. In a field-sensitive
analysis of a C program, each field of a struct is treated as a separate vari-
able. That is why the concept of field-sensitivity is sometimes referred to as
struct-modeling [21]. Since field-insensitivity simplifies the data structure,
a field-insensitive analysis will gain efficiency but lose accuracy.

A third option is a field-based analysis, which distinguishes fields but only
identifies points-to relations by the heap object’s type and not its full iden-
tity. For instance, struct objects of the same name are merged but the fields
are kept separate unlike in a field-insensitive analysis [33, 18]. We will discuss
the resulting points-to sets of these different approaches to field-sensitivity
the program snippet in Listing 2.8 to further clarify their differences.

1 struct point {

2 int x;

3 int y;

4 }

5 struct point p1, p2;

6 int * a, b, c;

7 p1.x = &a;

8 p1.y = &b;

9 p2.x = &c;

Listing 2.8: Example of field-sensitivity

A field-sensitive analysis would yield the precise result that pts(p1.x)={a},
pts(p1.y)={b} and pts(p2.x)={c}. A field-insensitive analysis would not
distinguish between the different fields of the struct. It would, therefore,
conclude that pts(p1)={a, b} and pts(p2)={c}. On the other hand, a
field-based analysis distinguishes between the fields of the struct but is not
able to tell apart different instances of the struct and would therefore yield
pts(x)={a,c} and pts(y)={b}.
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2.3.3 Fundamental pointer analyses

Although plenty of research has been done and many algorithms have been
proposed, two pointer analyses remain as being the most fundamental and
well-known approaches: Andersen’s [49] and Steensgaard’s [37]. Many pointer
analyses base their algorithm on one of these fundamental algorithms. For
a more elaborate description of how these algorithms are used as a basis for
new algorithms, we refer to Chapter 3.

Steensgaard-style pointer analysis is known as unification-based and uses
equality constraints, whereas Andersen’s approach is inclusion-based and
uses subset constraints. Both algorithms are flow-insensitive and context-
insensitive and produce May points-to relations. Steensgaard’s algorithm
is less precise than Andersen’s. However, its higher precision makes An-
dersen’s approach less scalable [32]. Although Andersen’s approach is more
precise, both analyses yield sound results. In this section, we will explain
Andersen’s algorithm into more detail. For a more detailed explanation of
Steensgaard’s algorithm, including many examples and a comparison with
Andersen’s algorithm we refer to Smaragdakis’ tutorial [33].

Andersen-style Analysis

Andersen-style analysis is a flow- and context-insensitive algorithm for pointer
analysis [49]. The algorithm is represented by a set of rules of the form ‘If x
points to y then the points-to set of x must be a subset of the points-to set
of y‘. This set of translations from statement to subset constraint defines
the algorithm. The following table shows which constrain is inferred from
which C statement in Andersen’s analysis. In this table pts(a) refers to the
points-to set of a.

C code constraint

referencing a = &b {b}⊆ pts(a)

aliasing a = b pts(b) ⊆ pts(a)

dereferencing read a = *b pts(*b) ⊆ pts(a)

dereferencing write *a = b pts(b) ⊆ pts(*a)

9



For each statement in the program, the resulting subset constraints are de-
termined. These constraints are solved by representing them in an inclusion
graph, where each node represents a variable. This means that the constraint
pts(b) ⊆ pts(a) results in an edge from node b to node a. This way, for
each variable, its points-to set consists of the variables represented by its
successive nodes in the graph. After going through the list of constraints
and adding the resulting edges to the graph, the algorithm iteratively con-
tinues to solve the list of constraints until solving the constraints yields no
new edges. At this point, the graph is finished and we can easily determine
the resulting points-to sets of the variables by taking the adjacency list of the
node corresponding to that variable. We apply an Andersen-style analysis
on the following simple code example to demonstrate the algorithm.

1 p = &a; // Add edge from p to a

2 q = p; // Add edge from q to all nodes p has outgoing edge to

Listing 2.9: Andersen-style analysis: precise results

Figure 2.1: Graph resulting from Andersen-style analysis

The constraint graph resulting from this piece of code is shown in Figure
2.1. Solving each constraint once will give us pts(p)=pts(q)={a}, meaning
that p and q may alias. Iteratively solving the constraints does not change
this outcome. In this case, the analysis yields a precise result. Note that
since Andersen’s algorithm is flow-insensitive, it does not typically yield fully
precise results. Listing 2.10 provides another example to demonstrate this.

1 p = &a; // Add edge from p to a

2 q = p; // Add edge from q to all nodes p has outgoing edge to

3 p = &b; // Add edge from p to b

4 s = &p; // Add edge from s to p

5 r = *s; // For each node x with incoming edge from s,

6 // add edge from r to all nodes x has outgoing edge to

Listing 2.10: Andersen-style analysis: imprecise results

10



This second example will result in the constraint graph shown in Figure
2.2. In this example, we need two iterations of the algorithm to finish. The
single edge resulting from the second iteration is drawn as a dotted line in
the figure. This result yields pts(p)=pts(q)=pts(r)={a,b}. In terms of
aliasing, this would mean that we have the May alias set <p,q,r>. We can
conclude this because p, q and r have equal points-to sets.

This result is an overestimation because, after line (3), p does not point
to a anymore, so r will never point to a. This overestimation is caused by
the flow-insensitivity of Andersen’s algorithm. In this type of analysis, the
order of the statements does not influence the result. This implies that there
is no way to know if p points to a or b when statements p=&b and r=*s are
executed. The precise result of a pointer analysis would be that q points
to a, p points to a and b, r points to b and s point to p. So in practice, q
and r will not alias.

Figure 2.2: Graph resulting from Andersen-style analysis

Andersen’s algorithm can require O(n3) time (where n is the number of nodes
in the inclusion graph). This is because, for a dereferencing statement such
as p=*q, the algorithm might have to visit n2 nodes. Specifically, q may
point to n nodes, and these may again point to n other nodes. The algo-
rithm adds n2 edges from p to all of these nodes. We may have n of these
statements, which yields a worst-case complexity of n3. However, Sridharan
and Fink have shown that, in practice, its runtime complexity is O(n2) [36].
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Chapter 3

Current state-of-the-art pointer
analysis
Many papers have been written about pointer analysis. Some of them date
back more than twenty years. Nonetheless, the topic remains relevant today.
Many papers have addressed the importance of accurate pointer analysis for
detecting security issues [26, 15, 13, 42, 43]. Other papers discuss how we
can use pointer analyses for optimization in compilers [8, 1]. In 2001, Hind
extensively described the current status of research and the problems that
remain in his paper ”Pointer analysis: Haven’t we solved this problem yet?”
[20]. He categorizes a large number of different approaches and proposes
improvements that can make pointer analysis results more useful. Now,
almost twenty years later, numerous new papers have appeared, in this
chapter, we evaluate the state of the current field of research.

3.1 Reproducibility

Although lots of work has been done on pointer analysis, the majority of pa-
pers do not provide an actual implementation of their algorithm. Although
these papers formally describe their algorithm and include test results in
which running times are compared with other algorithms, there is no source
code available. Let alone there is a tool that can be downloaded easily to
test and compare the algorithm. This is concerning because the results of
scientific research are supposed to be reproducible. However, the solutions
proposed by most pointer analysis papers can be implemented in many dif-
ferent ways that might affect the running time results. The problem has
been addressed before by Hind, still, papers rarely contain an implementa-
tion of their analyses [20]. ACM has addressed the problem by assigning an
‘artifact available’ badge to papers that include an artifact that has been
made permanently available. This encourages researchers to publish the im-
plementation of their algorithm together with their paper.

Figure 3.1: The ACM ’artifact available’ badge
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3.2 Different approaches

The two most famous classic examples of approaches to pointer analysis
are Andersen-style analysis [49], also referred to as inclusion-based analysis
and Steensgaard-style analysis [37], referred to as unification-based analysis.
Many papers propose improvements and optimizations to make one of these
classical approaches more precise or faster [18, 30, 12, 32, 45, 16]. Other
research proposes completely different and new pointer analysis algorithms.
We will discuss a selection of these different approaches in this section.

Probabilistic pointer analysis

One example is probabilistic pointer analysis [46, 7, 6, 11]. Where a classic
pointer analysis determines whether a points-to relation may or must exist,
this type of analysis estimates the probability that a certain points-to rela-
tion holds. Da Silva and Steffan even show with their probabilistic analysis
that many points-to relations that can occur are very unlikely to occur at
runtime [7]. This is especially useful for compilers to determine if certain op-
timizations are necessary. However, it is less appropriate for finding security
bugs since they might have a low probability of actually occurring.

BDD-based pointer analysis

Another completely different approach is binary decision diagram-based
(BDD-based) pointer analysis [47, 4, 44]. In this type of analysis, the results
are presented as a binary decision diagram. Binary decision diagrams are
known to be very effective for compactly representing large sets and solving
large state space problems. This approach is very suitable for scaling up
analysis for large programs but generally does not increase precision.

Demand-driven analysis

In his paper from 2001, Hind recommends demand-driven pointer analysis
[20]. Lots of demand-driven analyses have been proposed in response to this
[39, 35, 43, 26, 15, 42, 45, 17]. Demand-driven pointer analysis is based on
queries. It computes only the points-to information for the queried variables,
instead of returning points-to sets for all variables. This makes demand-
driven analysis faster and optimal in the sense that it does not compute
unnecessary information [17]. This type of analysis is not appropriate for
calculating a whole points-to graph since it would be much slower than the
alternative approaches.
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3.3 Different programming languages

Existing analyses differ greatly in the programming language they target.
Most pointer analyses are proposed for the language C. This is because C,
due to its lack of type safety [2], is prone to security vulnerabilities such as
buffer overflows, format string exploits, and memory leaks [41].

Other languages such as C++ and Java make use of pointers as well. In
Java, these pointers are mostly references to objects whereas in C and C++,
pointers can also arise from indirect memory accesses by using the derefer-
ence operator ‘*’ [38, 5, 42]. There are multiple pointer analyses for Java
and C++ too [10, 35, 28].

3.3.1 Lower-level pointer analysis

While most Pointer Analyses are designed for higher-level languages such
as C, C++, and Java. There have been a made a few efforts to develop
lower-level pointer analysis as well [14, 9, 11, 3, 50]. Multiple researchers
advocate performing pointer analysis on lower-level code such as assembly
or executable code over higher-level languages. Unfortunately, an imple-
mentation or tool that allows us to perform pointer analysis on lower level
code does not yet exist.

Guo et al. show that computing pointer information at the lower level
yields more precise results compared to propagating this information form a
high-level pointer analysis through subsequent code transformations. This
is caused by transformations performed by the compiler that conservatively
propagate dependence relations. We refer the reader to the paper by Guo
et al. [14] for a more elaborate explanation of this phenomenon.

Moreover, since pointer analysis is a type of static analysis, high-level pointer
analysis is only applicable when the source code is available. Therefore, tasks
such as binary re-optimization, link-time optimization, and run-time opti-
mization cannot benefit from it. Similarly, some resource-poor computers
such as smart cards or embedded processors in small devices do not sup-
port programs written in higher-level languages, meaning that all programs
should be written in assembly and no high-level source code is written.

Finally, lower-level pointer analysis can be used to analyze low-level software
such as binary executables. According to Balakrishnan and Reps, there has
been a growing need for tools that analyze executables in recent years [3].
This can be useful to decipher the behavior of worms and virus-infected
code. Security vulnerabilities in binary executables are often hard to detect,
pointer analysis can improve this process.
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3.4 Comparing pointer analyses

The vast differences between pointer analyses and the unavailability of im-
plementations make it difficult to compare different pointer analyses. Hind
and Pioli propose some dimensions that should be considered to conduct
a useful comparison of multiple pointer analyses [21]. They mention flow-
sensitivity, context-sensitivity and field-sensitivity. In another paper, they
use these metrics to compare six context-insensitive analyses [22]. Although
these dimensions help us categorizing the different types of analyses, qualita-
tive comparison remains difficult. One of the reasons for this is that analyses
are inconsistent in their returned information and query format [34].

Unavailability of benchmark suites

Another part of the problem is that there are no benchmarks suites that
are commonly used in pointer analysis research. We see that multiple re-
searchers have developed own benchmark suites to test and compare their
algorithms. But since these benchmark suites are again most of the time
unavailable for download, others cannot use their suites to compare new
algorithms. Some researchers have made efforts to create tools to compare
pointer analyses [48, 38].

Recently, Zyrianov et al. have developed SrcPtr, a framework to support
the implementation and comparison of pointer analysis algorithms [48]. The
framework is based upon SrcML, a tool that generates an XML representa-
tion for C++, Java, and C code. SrcPtr takes this XML representation as
input and performs pointer analysis on the XML file. Even though this tool
is one of the few tools that can be downloaded easily and allows us to test
different pointer analyses, it has some limitations. It doesn’t support all
types of analyses. For example, performing a flow-sensitive analysis is not
possible. Neither does it support all programming languages, making it im-
possible to test many pointer analyses that do not meet these requirements
using this tool.
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Chapter 4

Challenges for assembly-level
pointer analysis
In this chapter, we will discuss some of the challenges in developing a pointer
analysis for assembly. Note that throughout the remainder of this work,
when referring to ‘assembly’, we specifically target the Intel x86 instruction
set.

4.1 Identifying pointers in assembly

4.1.1 Lack of variables

By definition, pointer analysis computes for each variable, the memory lo-
cation it points to. However, the concept of variables in assembly is very
different from most higher-level programming languages. High-level lan-
guages make it easy for the programmer to access memory by using variable
names. Instead of ‘put the value 6 in memory at location 0x83f4110’, we
can just write ‘int number = 6’ and we can use the alias ‘number’ to later
refer to this memory location. This way the programmer does not need to
worry about the complicated memory address 0x83f4110.

4.1.2 Lack of type information

Moreover, the statement ‘int number = 6’ tells us something about the
type of the value stored in the memory location, namely that it is an integer.
Similarly, when we write int* p we know that on the memory location p is
referring to, an address will be stored, which makes p a pointer.

4.1.3 Registers and memory

Even though we do not have actual variables in assembly, we can store
values in memory and later read back the contents of this memory location.
Assembly distinguishes between registers and memory. A register is a small
storage location that can be accessed quickly by the CPU. Registers are
typically used to store values that the processor needs quick access to, such as
the instruction that is currently being processed and its operands. Memory,
on the other hand, is a slower but larger storage space where programs and
data are stored. Both a register and a memory location can hold a memory
address, that is ‘point to’ a location in memory. So in a pointer analysis for
assembly, we have to consider both registers and memory location as ‘pointer
variables’. But how do we know whether a register holds a memory address
or just an arbitrary value? We will explain the three different manners in
which we can make a register or memory location hold an address.
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1. Accessing the heap with the malloc function

First of all, we can use the malloc function. Even though this is not an
assembly instruction, malloc is a function that is commonly called from
assembly. It is used to allocate memory on the heap. For reference, the
heap is a specific part of memory that can be dynamically allocated during
runtime. Calling malloc will allocate a specific amount of bytes in memory
on the heap and returns the starting address of this space in eax (on 32-bit
systems). This function is relevant for a pointer analysis because after call-
ing malloc we know that register eax contains an address.

Since memory is dynamically allocated during runtime, this memory must
be ‘freed’ again when it is no longer needed. As long as memory is not freed,
it can’t be used by other processes. We call this a memory leak. We can
free the allocated memory by calling the free function, this way it can be
allocated for a different purpose again. Note that, even though this memory
is freed, we still have a pointer to that memory address on the heap and it
is still possible to write to it. We want to avoid this behavior since it might
cause a program to crash. This is where a pointer analysis for assembly
could come in useful. In the following example, we see how a pointer anal-
ysis can detect references to freed memory.

1 mov edi , 40 ; number of bytes to allocate

2 extern malloc

3 call malloc ; rax points to the allocated memory

4 mov DWORD PTR [rax],7; ; write a constant into the memory

5 mov rdi ,rax ; allocated memory address is argument

6 for free

7 extern free

8 call free ; memory is freed

9 mov [rax],8 ; write a constant into the freed memory

Listing 4.1: Accessing freed memory on the heap

A pointer analysis can conclude that after the execution of this program,
both rdi and rax point to the same memory location on the heap. This
result helps us notice that writing to or reading from either rdi or rax after
free is potentially harmful.
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2. Accessing the stack with stack and base pointer

A second way in which we can interact with memory in assembly is by ac-
cessing the stack. The stack is a part of memory in which local variables are
stored. In x86, two registers are used to keep track of the memory address of
the stack. Register esp holds the stack pointer, which is the address of the
current top of the stack. Register ebp holds the base pointer, the bottom
of the stack. Note that the stack grows downwards so the address of the
bottom will be higher than the address of the top of the stack. We can
access values in between these two pointers, that is, values on the stack, by
accessing addresses relative to the stack or base pointer.

Consider the simple C code in Listing 4.2, in which we declare three lo-
cal variables and assign values to them. Listing 4.3 contains a translation
of this C function into assembly. We see that in the assembly program, we
first equal the base pointer to the stack pointer such that it points to the
top of the stack. Then we decrease the stack pointer by 12. Accordingly,
there is now 12 bytes of space between the base and stack pointer, which
is perfect for three 4 byte integers. Consecutively, we can write values to
these locations by writing them to the locations relative to the base pointer.
mov [ebp-4], 10 takes the address in ebp and subtracts 4, then writes the
constant 10 in the resulting address.

A pointer analysis of this assembly code would yield that [esp] and [ebp-12]

alias. Note that when we would perform pointer analysis on the C code, we
would not find any aliases. This makes a good example of a pointer analysis
on assembly giving us more information on what is happening in memory
than the information we would get from analyzing the C code.

1 void foo() {

2 int a, b, c;

3 a = 10;

4 b = 5;

5 c = 2;

6 }

Listing 4.2: Declaring and assigning variables in C

1 push ebp ; save the value of the current base pointer

2 mov ebp , esp ; copy value of esp into ebp

3 sub esp , 12 ; allocate space on stack for local variables

4 mov [ebp - 4], 10 ; location of variable a

5 mov [ebp - 8], 5 ; location of b

6 mov [ebp - 12], 2 ; location of c

Listing 4.3: Declaring and assigning variables on the stack in assembly
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3. Absolute memory addresses

The third way to make a register or memory location hold an address is
by moving an absolute address as a constant into that register or memory
location using the mov instruction. The following example shows how we
can use the mov instruction to write an address into a register directly.

1 mov eax , 0x0000FFFF ; place ‘0x0000FFFF ’ into eax

2 mov ebx , DWORD PTR [eax] ; copy 32-bits in eax to ebx

3 mov ecx , DWORD PTR ds:0 x0000FFFF ; copy 32-bits in 0x0000FFFF to ecx

Listing 4.4: Memory addresses as constants

In the third line of code, the notation ds:0x0000FFFF is used. In this no-
tation, the prefix to the address ds: specifies the segment register, and
0000FFFF is the offset from the beginning of that segment register, in this
case, the data segment. Segment registers are used for memory segmenta-
tion, a technique in which the physical memory is separated into segments.
Memory in these segments can then be accessed by specifying the segment
together with an offset. This way a 16-bit system could use more than 216

bytes of memory. In modern operating systems, this mechanism is not used
anymore. Operating systems now use paging for virtual memory manage-
ment. Still, it is supported for backwards compatibility. Segment registers
are usually set to zero so it does not change the meaning of the code. In
this case, and throughout this work, the reader can assume that all seg-
ment registers are set to zero. The only difference between 0x0000FFFF

and ds:0x0000FFFF remains that the former is just a constant address, and
the latter accesses the contents of that memory location. This is similar to
putting square brackets around a register.

In general, programmers writing in assembly will not use absolute addresses
like this in their code. When writing the code, we are not sure which specific
memory locations we can access. This virtual address space is determined
by the linker. When a program is compiled and linked, the memory accesses
in the program will be linked to specific memory locations. Hence, when
we disassemble a compiled and linked executable binary program, we will
see many accesses to absolute (virtual) addresses. We can extract the exact
range of virtual addresses assigned to the executable from the binary. On
Linux systems, for example, this can be done using the readelf command.

As discussed in Section 3.3.1, analyzing disassembled binary files is an im-
portant benefit of performing pointer analysis on lower-level code. A pointer
analysis that can recognize such absolute memory addresses can be very use-
ful for this purpose.
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4.2 The x86 instruction set

The x86 instruction set is an instruction set architecture developed by Intel.
In general, x86 refers to the 32-bit variant whereas the 64-bit variant is
specified as x86-64. As a so-called complex instruction set computer (CISC)
architecture, x86 consists of many instructions. The majority is complex
and executes more than one lower-level operation at once. The extensive
size of the instruction set together with the absence of a formal definition of
its semantics has been criticized by many [19][52]. In fact, in 2013, Stephen
Dolan has concluded that the whole x86 instruction set can be reduced to
only the mov instruction by proving this instruction to be Turing complete
[51]. Christopher Domas has supported this proof by developing a compiler
called ‘Movfuscator’ that allows the user to compile C code to valid x86
assembly consisting of mov instructions only1.

4.2.1 The mov instruction

The move instruction, denoted as mov, is used to copy data between registers
and memory. In a computer, a register holds the data that CPU is currently
processing whereas the memory holds program instruction and data that
the program requires for execution. With the move instruction, data can
be moved from one register to another register, from a register to memory
or from memory to a register. Note that because x86 is a load-store archi-
tecture, copying from memory directly to another location in the memory
is not allowed. The following table contains a snippet of the x86 reference
explaining the mov instruction and its syntax2.

mov <reg>, <reg> Copy value from register to register

mov <reg>, <const> Store constant in register

mov <reg>, <mem> Copy value from register to memory

mov <mem>, <reg> Copy value from memory to register

mov <mem>, <const> Store constant in memory

1Christopher Domas. Movfuscator. github.com/xoreaxeaxeax/movfuscator
2Microsoft Macro Assembler (MASM). docs.microsoft.com/cpp/assembler/masm.
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Chapter 5

Prototype assembly-level pointer
analysis
The main contribution of this thesis is a proof-of-concept implementation
of assembly-level pointer analysis. The purpose of this implementation is
to provide a prototype for assembly-level pointer analysis, rather than an
extensive tool that can be used for every assembly program. It is meant
to show the type of results one could expect from assembly-level pointer
analysis and how to conquer the challenges discussed in Section 4. It also
describes, for the first time, an approach for translating the constraints in
an Andersen-style pointer analysis into constraints for assembly. In this
chapter, we will discuss the design decisions that we made to implement
this pointer analysis. Furthermore, we will discuss the experimental results
of our tool and the limitations that our current implementation brings.

5.1 Movlang

From Section 4.2.1 we know that mov is Turing complete. In practice, we
can even use Domas’ Movfuscator 1 to compile each C program into valid
x86 assembly consisting of mov instructions only. This means that a pointer
analysis that works for the mov instruction can, in theory, analyse every C
program. For this reason, we decided to limit our scope to the x86 mov in-
struction. We have defined a small language named ‘Movlang’, consisting of
only this instruction. A definition of its grammar can be found in Appendix
A1. We have used the tool ANTLR 2 in our implementation to generate a
parser from this grammar. See Appendix A2 for the full implementation of
our pointer analysis using the parser generated by ANTLR.

5.2 Syntax

The x86 assembly language has two main syntax branches: Intel and AT&T
syntax. Multiple assemblers are using the Intel syntax. Two common assem-
blers are the Netwide Assembler (NASM) and the Microsoft Macro Assem-
bler (MASM). Even though these two assemblers both use the Intel syntax,
the syntax of the input assembly differs greatly between the two. For in-
stance, NASM is case sensitive whereas MASM is not. It is beyond the scope
of this thesis to go into further detail about the differences between the two.
That is why in this work, we will stick to x86 (32-bit) MASM syntax. This is
mainly because Movfuscator generates MASM syntax so this enables a user
of our tool to convert any MASM assembly program to a mov-only program
using Movfuscator, allowing this mov-only program as input for our pointer
analysis.

1Christopher Domas. Movfuscator. github.com/xoreaxeaxeax/movfuscator.
2ANTLR. www.antlr.org
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5.3 Implementation

We base our pointer analysis on Andersen’s algorithm (see Section 2.3.3).
The algorithm itself is the same but the difference is in the definition of the
constraints. In Andersen’s analysis, constraints were based on statements
in the programming language C. We have redefined these constraints for the
mov instruction.

5.3.1 Defining a pointer in Movlang

As discussed in Section 4.1.1, the concept of variables in assembly differs
greatly from that of higher-level languages. This makes it particularly dif-
ficult to statically recognize if the value in a register or memory location is
a valid address or just a value. Hence, to preserve simplicity, we will only
consider a memory location or register to be a pointer, whenever an absolute
address is written to that location. Our tool allows the user to provide a
range of values that will be considered valid addresses. For a disassembled
binary executable, the range of virtual addresses can be found by using the
readelf command as described in Section 4.1.3. If this range is not pro-
vided by the user, the tool will by default consider all hexadecimal values
valid addresses which will yield some overestimation in the points-to sets.

5.3.2 Defining subset-constraints for Movlang

We have redefined Andersen‘s subset-constraints such that they cover the
syntax and semantics of the mov instruction. The following table shows how
the constraints are defined.

x86 assembly statement constraint

mov <rega>, < regb > pts(regb) ⊆ pts(rega)

mov <reg>, <const> pts(const) ⊆ pts(reg)

mov <reg>, <mem> pts(mem) ⊆ pts(reg)

mov <mem>, <reg> pts(reg) ⊆ pts(mem)

mov <mem>, <const> if const is a valid address, const ∈ pts(mem)

else pts(const) ⊆ pts(mem)

Andersen’s subset-constraints are meant for the language C, in which deref-
erencing a pointer and storing it in another variable can happen in one
statement. For the mov instruction, that would take multiple moves. Since
complicated statements are split up, the constraints for our pointer analysis
are more simple than the original constraints.
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5.4 Experimental results

In this section, we will discuss some experimental results of our pointer
analysis. All code examples discussed in this section are included in the
tool as described in Appendix A2. The results will demonstrate the in-
and output that can be expected from our tool, as well as some important
characteristics of our analysis. A simple example to demonstrate our the
results of our analysis is given in Listing 5.1. The algorithm performs the
following steps after each program point. In the first iteration:

1. 0xFFFFFF08 ∈ pts(0xFFFFFF00)

2. pts(0xFFFFFF00) ⊆ pts(eax)

3. pts(eax) ⊆ pts(0xFFFFFF04)

4. 0xFFFFFF0C ∈ pts(0xFFFFFF00)

In the second iteration:

1. No changes to graph

2. pts(0xFFFFFF00) ⊆ pts(eax): add edge from eax to 0xFFFFFF0C

The rest of the steps have no impact on the graph anymore. The resulting
points-to set are shown in Listing 5.1.

1 Address range provided: 0xFFFFFF00 - 0xFFFFFFFF

2 Input:

3 mov ds:0xFFFFFF00 , 0xFFFFFF08

4 mov eax , DWORD PTR ds:0 xFFFFFF00

5 mov ds:0xFFFFFF04 , eax

6 mov ds:0xFFFFFF00 , 0xFFFFFF0C

7

8 Output:

9 Points -to set of 0xFFFFFF00 is

10 [ 0xFFFFFF08 0xFFFFFF0C ]

11 Points -to set of eax is

12 [ 0xFFFFFF08 0xFFFFFF0C ]

13 Points -to set of 0xFFFFFF04 is

14 [ 0xFFFFFF08 0xFFFFFF0C ]

Listing 5.1: Aliasing pointers in Movlang

The input code of this example is similar to the C code in Listing 5.2,
where pointer variables p and q would refer to the 32-bits at memory ad-
dresses 0xFFFFFF00 and 0xFFFFFF04 respectively. Similarly the integer vari-
ables a and b would refer to the 32-bits at memory addresses 0xFFFFFF08

and 0xFFFFFF0C

1 p = &a;

2 q=p;

3 p = &b;

Listing 5.2: Aliasing pointers in C

An Andersen-style alias analysis on this C code would result in the points-
to relations pts(p)={a,b} and pts(q)={a,b}, meaning that p and q alias.
Note that, when we compare the results of pointer analysis on the assembly
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code with the results of the same analysis of C code, the assembly-level
analysis results in one more points-to set, namely pts(eax)={0xFFFFFF08}.
As we know from Section 4.2.1, the mov instruction cannot copy data directly
from one memory location to another. Consequently, a C statement q=p; is
separated into two assembly statements. The value is first copied from one
memory location into a register and then copied from that register to the
other memory location.

5.4.1 Flow-insensitivity

As we know from Section 2.3.3, Andersen-style analysis is flow-insensitive.
We can compare the following code example to the example in Listing 5.1
and see that executing the same statements in a different order results in
the same points-to set.

1 Address range provided: 0xFFFFFF00 - 0xFFFFFFFF

2 Input:

3 mov eax , DWORD PTR ds:0 xFFFFFF00

4 mov ds:0xFFFFFF04 , eax

5 mov ds:0xFFFFFF00 , 0xFFFFFF0C

6 mov ds:0xFFFFFF00 , 0xFFFFFF08

7

8 Output:

9 Points -to set of 0xFFFFFF00 is

10 [ 0xFFFFFF08 0xFFFFFF0C ]

11 Points -to set of eax is

12 [ 0xFFFFFF08 0xFFFFFF0C ]

13 Points -to set of 0xFFFFFF04 is

14 [ 0xFFFFFF08 0xFFFFFF0C ]

Listing 5.3: Executing the statements in Listing 5.1 in a different order

Registers as intermediate storage location

In Listing 5.1 we have already seen an example in which the single C state-
ment q=p is translated into the following two separate assembly statements:
mov eax , DWORD PTR ds:0 xFFFFFF005 and mov ds:0xFFFFFF04 , eax.
Since x86 is a load-store architecture, registers are used continuously to store
values temporarily. The reason for this is that copying directly from memory
to memory is not allowed. Throughout execution of a program, one register
may have many values. Our algorithm iteratively updates the points-to sets
of all nodes pointing to a register by adding all values that specific register
has had to those points-to sets. This can cause the result that every variable
to which something has been moved from a register once, now points to ev-
ery address that has been stored in that register. Accordingly, the algorithm
might in the worst case conclude that everything points to everything.
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The following example shows how many imprecise points-to aliases arise
from using register eax as intermediate storage. This is a sound solution
but it is obviously very imprecise. In small programs, overestimates are
usually relatively small. But in larger programs, we cannot avoid using the
same register multiple times. This means we will see more superfluous vari-
ables in the points-to sets. Hence, our pointer analysis performs better on
small code fragments in which a register doesn’t change value too often.

1 Address range: 0xFFFFFF00 - 0xFFFFFF30

2 Input:

3 mov ds:0xFFFFFF10 , 0xFFFFFF00

4 mov ds:0xFFFFFF14 , 0xFFFFFF04

5 mov ds:0xFFFFFF18 , 0xFFFFFF08

6 mov eax , DWORD PTR ds:0 xFFFFFF10

7 mov ds:0 xFFFFFF20 , eax

8 mov eax , DWORD PTR ds:0 xFFFFFF14

9 mov ds:0 xFFFFFF24 , eax

10 mov eax , DWORD PTR ds:0 xFFFFFF18

11 mov ds:0 xFFFFFF28 , eax

12

13 Output:

14 Points -to set of 0xFFFFFF10 is

15 [ 0xFFFFFF00 ]

16 Points -to set of 0xFFFFFF14 is

17 [ 0xFFFFFF04 ]

18 Points -to set of 0xFFFFFF18 is

19 [ 0xFFFFFF08 ]

20 Points -to set of eax is

21 [ 0xFFFFFF00 0xFFFFFF04 0xFFFFFF08 ]

22 Points -to set of 0xFFFFFF20 is

23 [ 0xFFFFFF00 0xFFFFFF04 0xFFFFFF08 ]

24 Points -to set of 0xFFFFFF24 is

25 [ 0xFFFFFF00 0xFFFFFF04 0xFFFFFF08 ]

26 Points -to set of 0xFFFFFF28 is

27 [ 0xFFFFFF00 0xFFFFFF04 0xFFFFFF08 ]

Listing 5.4: Registers as intermediate storage

5.4.2 Time complexity

In Section 2.3.3 we have discussed that Andersen’s algorithm for C programs
has a theoretical runtime complexity of O(n3). This possible O(n3) complex-
ity is caused by C statements such as p=*q. Similar to what is discussed
earlier about the statement p=q in Listing 5.1 and Listing 5.2, translating
such a C statement into assembly will yield multiple mov statements. This
causes the set of constrains of our implementation to only contain ‘simple’
constraints, in contrasts to Andersen’s complex constraints for dereferencing.
As a result, the runtime complexity of our implementation is only O(n2).
However, effectively there will not be a significant difference between run-
times of the two since Sridharan and Fink have shown that, in practice,
Andersen’s analysis’ runtime complexity is O(n2) as well [36].
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5.5 Limitations

In this section, we discuss the limitations of our implementation. In addition,
we suggest improvements to solve current problems. These suggestions can
form a basis for future research to transform our prototype implementation
into a complete tool that can be widely used on x86 assembly programs.

5.5.1 The x86 mov instruction only

Our prototype analysis is only meant for the x86 mov instruction. Natu-
rally, this limits the set of real-world assembly programs can be analyzed.
However, we can think of some examples in which we can find security vul-
nerabilities in code consisting of the mov instruction only. See the example
in Listing 5.5.

1 mov DWORD PTR [eax], 0

2 mov DWORD PTR [ebx], 1

3 mov rdi , DWORD PTR [rax]

4 mov DWORD PTR[rsp -4+4* rdi], 0x11111111

Listing 5.5: Overwriting the return address

In this example, we assume registers eax and ebx are pointers. If eax and
ebx point to different locations, the instruction in line (4) just writes the
address 0x11111111 to its stack frame (at rsp-4). However, if eax and
ebx alias, the return address, which is usually stored in rsp, is overwritten.
Note that our pointer analysis itself does not compute the mathematical
operations in line (4) yet, so it will not recognize that rsp-4+4*rdi is equal
to rsp or rsp-4. But, as a part of a more extensive whole program analysis,
our pointer analysis can help in detecting these type of vulnerabilities.

5.5.2 Testing on a larger scale

There is no library or benchmark suite written in only mov instructions.
Hence, it is difficult to properly test our analysis on a larger scale and to
compare it to others. We should first extend the analysis to work for a larger
set of instructions. Alternatively, we could translate C programs into mov

instructions and test our analysis on the translation. In Section 4.2.1 we have
shortly discussed Christopher Domas’ ‘Movfuscator’ 3, a tool that can be
used to convert C code into x86 assembly containing only mov instructions.
If Domas‘ tool would provide a correct translation, that is, the result of each
translated instruction is exactly the same as the original instruction. Then,
taking C programs, using Movfuscator to convert them to assembly and
then performing our pointer analysis on it could yield interesting results.
However, Movfuscator does not claim to give a correct translation. Extra
operations are used on a memory location holding a state, to make the
execution of the program work. This obfuscates the result of the pointer
analysis.

3Christopher Domas. Movfuscator. github.com/xoreaxeaxeax/movfuscator
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5.5.3 Registers and flow-insensitivity

Because precise pointer analysis is undecidable, our pointer analysis results
in an overestimation of the actual points-to relations. Just like Ander-
sen’s algorithm for pointer analysis, our analysis is flow-insensitive. Flow-
insensitivity can lead to very large points-to sets when the same pointer
variable is reassigned with a new value many times throughout the code. In
assembly, it is common that a register holds many different values during
a program execution. As discussed in Section 5.4.1, this can cause a large
overestimation.

The precision of the algorithm can be improved by making the algorithm
flow-sensitive, or at least party flow-sensitive for the registers. In practise,
this means that for each new assignment of the value in a register, this reg-
ister is considered a new ‘variable’. As an example, we will show what the
results of an analysis of the code in Listing 5.4 would be if we would make
it partly flow-sensitive for the registers, see Listing 5.6.

1 Address range: 0xFFFFFF00 - 0xFFFFFF30

2 Input:

3 mov ds:0xFFFFFF10 , 0xFFFFFF00

4 mov ds:0xFFFFFF14 , 0xFFFFFF04

5 mov ds:0xFFFFFF18 , 0xFFFFFF08

6 mov eax , DWORD PTR ds:0 xFFFFFF10 ; new ’variable ’ eax0

7 mov ds:0 xFFFFFF20 , eax

8 mov eax , DWORD PTR ds:0 xFFFFFF14 ; new ’variable ’ eax1

9 mov ds:0 xFFFFFF24 , eax

10 mov eax , DWORD PTR ds:0 xFFFFFF18 ; new ’variable ’ eax2

11 mov ds:0 xFFFFFF28 , eax

12

13 Output:

14 Points -to set of 0xFFFFFF10 is

15 [ 0xFFFFFF00 ]

16 Points -to set of 0xFFFFFF14 is

17 [ 0xFFFFFF04 ]

18 Points -to set of 0xFFFFFF18 is

19 [ 0xFFFFFF08 ]

20 Points -to set of 0xFFFFFF20 is

21 [ 0xFFFFFF00 ]

22 Points -to set of 0xFFFFFF24 is

23 [ 0xFFFFFF04 ]

24 Points -to set of 0xFFFFFF28 is

25 [ 0xFFFFFF08 ]

Listing 5.6: Partly flow-sensitive analysis for Movlang

It is clear that the points-to sets are significantly more precise compared
to the example in Listing 5.4. Besides the shown output, this partial flow-
sensitivity would create multiple separate points-to sets for each register, in
this case eax0, eax1 and eax2. Note that we have omitted the points-to sets
of these registers in the output because these points-to sets are not useful
in itself. We are not interested in the values of the registers as they are
constantly overwritten.

27



Chapter 6

Conclusions
In the last 20 years, extensive research has been done in the field of pointer
analysis for code in high-level languages. However, lower-level pointer anal-
ysis has the benefit of being able to analyse software of which no source
code is available, such as binary executables [3]. In fact, research on pointer
analysis for lower-level code has shown that in some cases, pointer analy-
sis for assembly or executable code can provide more accurate results than
analysis of higher-level programs [14].

In Chapter 4, we have identified that the key challenges of applying pointer-
analysis to assembly code are the lack of variables, lack of typing information
and the complexity of the CISC style of the x86 instruction set.

Our contribution, a pointer analysis for the x86 mov instruction only, is the
first available open-source tool that performs Andersen-style [49] pointer
analysis on x86 assembly. As described in Chapter 5, our implementation
functions as a proof of concept for assembly-level pointer analysis in gen-
eral. The results of our analysis are relatively precise for small programs.
For larger programs in which registers change value multiple times through-
out the program, results are less precise but sound.

Our proof-of-concept implementation opens up the field for future researchers
to extend this prototype in many ways. As discussed in Section 5.5, extend-
ing our implementation to support the complete x86 instruction set would
greatly enlarge the set of real-world assembly programs can be analyzed.
Furthermore, making the algorithm flow-sensitive would greatly increase
precision and avoid overestimates caused by registers having many different
values throughout the program.
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Appendix
A1. Movlang grammar

1 grammar movlang;

2

3 program : statement +;

4

5 statement : regToReg | regToMem | memToReg | conToReg | conToMem ;

6

7 regToReg : ’mov ’ REG ’,’ REG;

8 regToMem : ’mov ’ mem ’,’ REG;

9 memToReg : ’mov ’ REG ’,’ mem;

10 conToReg : ’mov ’ REG ’,’ constant;

11 conToMem : ’mov ’ mem ’,’ constant;

12

13 mem : ’[’ location ’]’ | ’BYTE PTR [’ location ’]’ | ’WORD PTR [’

location ’]’ | ’DWORD PTR [’ location ’]’ | address | ’BYTE PTR ’

address | ’WORD PTR ’ address | ’DWORD PTR ’ address ;

14 location : REG | REG ’+’ constant | REG ’-’ constant | REG ’+’ REG |

REG ’-’ REG | REG ’+’ REG ’*’ constant | REG ’*’ constant ’+’

constant;

15 address : ’ds:’ HEX_NUMBER ;

16 constant : HEX_NUMBER | DEC_NUMBER ;

17

18 REG : ’eax ’| ’ebx ’ |’ecx ’ | ’edx ’ | ’esi ’ | ’edi ’ | ’esp ’ | ’ebp ’ | ’

ax’ | ’bx ’ | ’cx ’ | ’dx ’ | ’ah ’ | ’bh’ | ’ch’ | ’dh’ | ’al’ | ’bl’

| ’cl’ | ’dl’ ;

19 DEC_NUMBER : DIGIT+ ;

20 HEX_NUMBER : ’0x’ HEX_DIGIT+ | HEX_DIGIT +;

21 HEX_DIGIT : (’0’..’9’|’a’..’f’|’A’..’F’) ;

22 DIGIT : (’0’..’9’) ;

23 WS : [ \n\t]+ -> skip ;

Listing 6.1: The Movlang grammar in the format required by ANTLR

A2. Pointer analysis implementation

The full implementation of our pointer analysis can be found at
https://github.com/charbella/Movlang. All programs in the Section
4.2.4 are included in this tool in the folder ‘examples‘. We refer the reader
to the README for a user guide of our tool.
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