
Bachelor thesis
Computing Science

Radboud University

Information Technology Support for the
Arterial Thoracic Outlet Syndrome

Author:
Dave Artz
s4475712

First supervisor/First assessor:
dr. P.W.M. (Pieter) Koopman

pieter@cs.ru.nl

Second assessor:
M. (Mart) Lubbers

m.lubbers@cs.ru.nl

June 26, 2020

Abstract

A person is diagnosed with the arterial thoracic outlet syndrome when an
arterial compression occurs in the space between the first rib and the collar-
bone called the thoracic outlet. A first rib resection can relieve the pressure
in the thoracic outlet, but this surgery is not suitable for every patient.
In this thesis we research how information technology can support patients
with ATOS who suffer from a complete compression of the subclavian artery
in certain physical positions. With a microcontroller, a photoplethysmogra-
phy sensor and an accelerometer we develop a prototype with three features.
First the prototype detects a compression and activates an alarm so that
the patient can change position for decompression. Secondly the prototype
captures the rotation of the upper arm to give the patient some insight in
critical physical positions. Thirdly the prototype sends a distress signal to
a server over Wi-Fi when the patient does not respond to the alarm within
an extended period of time.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Photoplethysmography . 4
2.2 Components . 5
2.3 Output . 7

3 Compression alarm 9
3.1 Heartbeat detection . 9
3.2 Verification . 11
3.3 Alarm . 14

4 Orientation capture 17
4.1 Accelerometer . 18
4.2 Calculation . 20

5 Distress signal 22
5.1 Client . 22
5.2 Server . 24
5.3 Verification . 25

6 Prototype 26
6.1 Orientation information at compression 26
6.2 Distress signal at compression 28
6.3 Verification . 29

7 Related Work 30

8 Conclusions 33

A Compression alarm 36

B Position capture 39

C Distress signal 41

D Prototype 43

1

Chapter 1

Introduction

The thoracic outlet is the space between the collarbone and the first rib.
With the Thoracic Outlet Syndrome (TOS) this space can get narrowed
which places pressure on nerves and blood vessels as is illustrated in figure
1.1. 95% of all cases of TOS concerns the compression of nerves, only 3 to
5 percent the compression of veins and only 1 to 2 percent concerns arterial
compression.[6] In the latter case the subclavian artery is compressed which
is known as the Arterial Thoracic Outlet Syndrome (ATOS).

Figure 1.1: Thoracic Outlet Syndrome1

The compression of the subclavian artery can have serious complications. It
can cause thrombosis where the entire limb may be diffusely swollen.[9] In
the worst case the clot dislodges and causes a pulmonary embolism, a stroke
or a heart attack. In other cases ATOS can lead to Critical Limb Ischaemia

1Thoracic Outlet Syndrome [Online image]. Sport Med School.
http://sportmedschool.com/thoracic-outlet-syndrome/

2

(CLI) as blood flow is markedly reduced to the hands.[3] Left untreated, the
complications of CLI may result in the amputation of the affected limb.

A patient can be diagnosed with Doppler ultrasonography, X-ray or
CTA.[2] Provocation tests are also used for diagnosing. Here physical posi-
tions are tested with the Roos, Elvey and Adson’s test to find compressions
of the subclavian artery.[8] A patient with ATOS can be treated with a first
rib resection, which relieves the pressure in the thoracic outlet.[7]

Due to the lack of consensus for diagnostic testing the incidence of TOS
is unknown. Some authors claim that 3 to 80 out of 1000 people can suffer
from TOS.[5] Approximately of all TOS patients only 1 percent suffers from
ATOS. Not all patients qualify for the first rib resection as it is a drastic
surgery. The patients who do undergo the surgery would not be operated
immediately. Thus at least at some point all patients with ATOS are at risk
for complications after they are diagnosed.

In this thesis we research how information technology can support a pa-
tient with ATOS. As with other syndromes the causal factors and symptoms
may vary per patient. For this research we assume there is only an arterial
compression in certain physical positions and we only focus on a complete
compression of the subclavian artery. The information technology support
in this research is a prototype in the form of a microcontroller. With this
microcontroller, a photoplethysmography sensor and an accelerometer we
develop three features.

The first feature is an alarm that informs the patient that the subcla-
vian artery is completely compressed. The moment of compression is of most
interest because then the patient is at risk for complications. If the proto-
type detects the compression and activates the alarm then the patient can
change position for decompression. Avoiding positions in which complete
compression takes place will minimize some risks on complications. The
second feature is the orientation capture of the upper arm. If the prototype
captures the orientation at the time of compression then this information
helps the patient recognize critical physical positions to avoid. The third
feature is a distress signal to a server over a Wi-Fi. This message can alarm
others when the patient does not respond to the compression alarm.

The features that we develop in this thesis are not remarkable on their
own. However, combined they can result in a product that solves an unique
problem. Others have used similar technologies to solve different problems.
Thus in this thesis we do not develop a new technology, but we demonstrate
how one can use existing technologies to tackle a specific problem.

In the preliminaries we describe the techniques and components that we
use for the prototype. Then the research section of chapters 3, 4, and 5
contain the features of compression alarm, position capture and the distress
signal respectfully. In chapter 6 we combine the features into a single pro-
totype. Chapter 7 covers the related work and in chapter 8 we describe our
conclusions.

3

Chapter 2

Preliminaries

This chapter introduces the basic concepts that are necessary to compre-
hend other components of the research. First we explain the technique
photoplethysmography. Then we list the components of the prototype and
finally we show which outputs we are use and how we initialize them.

2.1 Photoplethysmography

Photoplethysmography (PPG) is an optical technique that measures light
absorption. A simple PPG sensor will shine some light on a surface and find
out how much light this surface has absorbed by monitoring the amount
of reflected light. In this research we place an infrared light-emitting diode
(LED) on tissue as is illustrated in figure 2.1. Concurrently the photodiode
monitors how much light is reflected from the tissue and converts it to an
electric current. We can use this technique to monitor the pulse because the
infrared light is absorbed by the blood. Therefore the voltage signal from
the sensor is proportional to the quantity of blood flowing through the blood
vessels.

Figure 2.1: Photoplethysmography[4]

4

2.2 Components

For the prototype we use the following 5 components.

1. Wemos D1 Mini V3
This is a mini breakout board with 4MB flash memory and a ESP8266
microchip. The ESP8266 is a Wi-Fi microchip with a full TCP/IP
stack. It is compatible with MicroPython, Arduino and Nodemcu.

(a) front (b) back

Figure 2.2: Wemos D1 Mini V3

2. MAX30105 Breakout
The MAX30105 breakout from Pimoroni is a heart rate, oximeter,
and particle sensor. The sensor has photodetectors and a green, red
and infrared LED. We use the sensor to monitor the heart rate with
the infrared LED and a photodiode. Unfortunately this PPG sensor
does not meet the requirements to be used for medical diagnosing.
Therefore it is important to keep in mind that we only use the sensor
for educational purposes.

(a) front (b) back

Figure 2.3: MAX30105 Breakout

5

3. Wemos D1 Mini OLED shield
This 0.66 inch OLED has a screen size of 64 x 48 pixels. We use
the OLED to display the state of the program, the average beats per
minute and the rotation dimensions of the upper arm.

(a) front (b) back

Figure 2.4: Wemos D1 Mini OLED shield

4. Wemos D1 Mini Buzzer shield
This shield has a passive buzzer. We use the buzzer for the compres-
sion alarm which is set at the time of a complete compression of the
subclavian artery.

5. MPU-9265
The MPU-9265 contains a MPU-6500 (accelerometer and a gyroscope)
and a HMC5883L (magnetometer) chip. We use the accelerometer to
determine two dimensions of the upper arm rotation in chapter 4.

(a) Wemos D1 Mini Buzzer shield (b) MPU 9265

Figure 2.5: Wemos D1 Mini Buzzer shield and MPU 9265

6

Figure 2.6 contains an image of the assembled prototype. The ESP8266 is
not visible on the image as it is below the OLED shield. The prototype is
sewn on a black wrist brace so that it can be carried around easily.

Figure 2.6: Prototype

2.3 Output

In this research we use the Arduino programming language, which is C++
with some domain-specific libraries.2 The prototype uses three kinds of
output. We use the OLED, the buzzer and Wi-Fi.

To demonstrate the use of the OLED we include an ”Hello World!”
example in listing 2.1. We use the Adafruit SSD1306.h library for a 128x64
OLED(1).3 This is not a problem for our 66 inch OLED as we take the
difference into account. We use the Adafruit GFX.h library to display letters
and numbers(2).4 In order to display something we initialize the display with
the width, height and the reset pin(3). Before we print, we clear the display
and set the text color and size(5-7). Then we set the cursor and define
the string to be printed(8-9). Finally we set the display to print the string
”Hello World!”(10).

2Arduino. 2020. Language Reference. https://www.arduino.cc/reference/en
3Adafruit. 2019. Adafruit SSD1306. https://github.com/adafruit/AdafruitSSD1306
4Adafruit. 2020. Adafruit GFX. https://github.com/adafruit/Adafruit-GFX-Library

7

Listing 2.1: OLED

1 #inc lude <Adafruit SSD1306 . h>
2 #inc lude <Adafruit GFX . h>
3 Adafruit SSD1306 d i sp l ay (128 , 48 , &Wire , −1) ;
4 d i sp l ay . begin (SSD1306 SWITCHCAPVCC, 0x3C) ;
5 d i sp l ay . c l e a rD i sp l ay () ;
6 d i sp l ay . setTextColor (WHITE) ;
7 d i sp l ay . s e tTextS i z e (1) ;
8 d i sp l ay . se tCursor (32 , 0) ;
9 d i sp l ay . p r i n t l n (”He l lo World ! ”) ;

10 d i sp l ay . d i sp l ay () ;

We use the buzzer to alarm the user. An example of the buzzer can be found
in listing 2.2. On the Wemos D1 Mini the default buzzer pin is D5(1). To
activate the buzzer we use the function tone() with a frequency of 1000 to
our pin(2). This frequency is chosen for no particular reason. We use the
function noTone() to deactivate the buzzer(3).

Listing 2.2: buzzer

1 const i n t buzzerPin = D5 ;
2 tone (buzzerPin , 1000) ;
3 noTone (buzzerPin) ;

In chapter 5 we send a distress signal over Wi-Fi. In listing 2.3 is an example
of how we connect with an access point. We use the ESP8266WiFi.h library
to connect with a network that requires authentication(1).5 We define the
local SSID and PSK and use them in Wifi.begin()(2-4). In the setup the
program waits for the connection to be completed before entering the main
loop(5-6).

Listing 2.3: Wi-fi

1 #inc lude <ESP8266WiFi . h>
2 #de f i n e SSID ”network−name”
3 #de f i n e PSK ”network−password”
4 WiFi . begin (SSID , PSK) ;
5 whi l e (WiFi . s t a tu s () != WLCONNECTED)
6 delay (500) ;

5Arduino. 2019. ESP8266WiFi.
https://github.com/esp8266/Arduino/blob/master/libraries/ESP8266WiFi/src/ESP8266WiFi.h

8

Chapter 3

Compression alarm

In this research we assume that the patient with ATOS is only at risk for
complications when there is a complete compression in certain physical po-
sitions. This rules out the patients who suffer from a partial compression or
a full-time compression of the subclavian artery. One of the complications
we like to prevent is thrombosis, which can be the result of a long lasting
complete compression. Therefore a patient with ATOS can get thrombosis
overnight by sleeping in the wrong position. In this chapter we want to
alarm the patient when there is a complete compression, so that the patient
can change position for decompression.

At the moment of a complete compression the blood can not flow to the
arm through the artery, which means that there is no pulse. We choose
to focus on the complete compression because we can detect the heartbeat
with a PPG sensor. If the sensor doesn’t detect a heartbeat for an extended
period of time then we alarm the patient.

In section 3.1 we explain how we detect a heartbeat, in section 3.2 we
verify the correctness of this method and in section 3.3 we set the alarm
upon compression.

3.1 Heartbeat detection

PPG can be used to detect a heartbeat as we explained in section 2.1. Of the
sensor we only use the infrared LED and the photodiode. Tissue scatters
and absorbs infrared wavelengths so that, in order to have a measurable
signal, a thin part of the body must be used. Therefore we place the sensor
on the index finger.

To find a heartbeat we retrieve the immediate infrared value from the
PPG sensor. This values represents the amount of reflected infrared light by
a surface. The code snippet for retrieving the value can be found in listing
3.1. For the sensor we use the MAX30105.h library of

9

SparkFun(1).6 Some parts of the code in this chapter are directly extracted
from the libraries heart rate example.7 The initialization takes places in the
function initPPGSensor(). Here we turn the red LED to low to indicate
that the sensor is running(7) and the green LED is turned off because it has
no use in this research(8). After the setup is done we retrieve the immediate
infrared value with the function getIR()(10).

Listing 3.1: PPG sensor

1 #inc lude ”MAX30105 . h”
2 MAX30105 ppgSensor ;
3 void initPPGSensor ()
4 {
5 ppgSensor . begin (Wire , I2C SPEED FAST) ; // 400KHz speed
6 ppgSensor . setup () ;
7 ppgSensor . setPulseAmplitudeRed (0x0A) ; // turn red LED to low
8 ppgSensor . setPulseAmplitudeGreen (0) ; // turn o f f green LED
9 }

10 long i rVa lue = ppgSensor . getIR () ;

We can use the immediate infrared value to detect a heartbeat with the func-
tion checkForBeat() from Sparkfun’s heartRate.h library.8 The function
contains an implementation of the peripheral beat amplitude algorithm of
Maxim Integrated Products Inc., which detects a heartbeat based on zero
crossing(5).9 The code snippet for this can be found in listing 3.2. As we
need to monitor the heart rate constantly we retrieve the infrared value at
the start of the loop(4).

With the functionality to recognize a heartbeat we have the potential
to set an alarm upon complete compression if we add the element of time.
Before we do that in section 3.3 we verify the correctness of the function
checkForBeat() with the input of the immediate infrared value in section
3.2.

Listing 3.2: heartbeat

1 #inc lude ”heartRate . h”
2 void loop ()
3 {
4 long i rVa lue = ppgSensor . getIR () ;
5 i f (checkForBeat (i rVa lue))
6 . . .
7 }

6Sparkfun. 2018. MAX30105 library.
https://github.com/sparkfun/SparkFun MAX3010x Sensor Library/blob/master/src/MAX30105.h

7 Sparkfun. 2018. Heart rate example.
https://github.com/sparkfun/SparkFun MAX3010x Sensor Library/tree/master/examples/Example5 HeartRate

8Sparkfun. 2016. Heart rate library.
https://github.com/sparkfun/MAX30105 Particle Sensor Breakout/blob/master/Libraries/Arduino/src/heartRate.h

9Maxim Integrated Products, Inc. 2016. MAX30105 Evaluation Kit.
https://datasheets.maximintegrated.com/en/ds/MAX30105ACCEVKIT.pdf

10

3.2 Verification

We need to verify that the function checkForBeat() with the input of the
immediate infrared can detect a heartbeat correctly before we use it in the
prototype. We do this by calculating the beats per minute (BPM) and
comparing the results with another heart rate device.

We calculate the BPM by keeping track of the interval between heart-
beats. Most of the code in this section is copied from Sparkfun’s heart rate
example and can be found in listing 3.3.7 We calculate the average BPM
in the function bpm() after a heartbeat is detected(5). The variable wave

represents the interval since the last heartbeat. To calculate the beats per
minute we simply divide 60 seconds by the value of wave. We store that
value in the variable beatsPerMinute(10).

The patient must apply constant pressure to receive reliable data from
the PPG sensor. When the patient moves around the sensor may give di-
vergent readings. To handle this we calculate the average BPM out of the
last 8 beats. To filter out erroneous values we check if the beatsPerMinute

value is within the possible range of 30 to 255(13). Then the value is stored
in an array and from that array the average BPM is calculate(16-23).

Listing 3.3: beats per minute

1 const byte RATE SIZE = 8 ; // number o f bpm f o r average
2 byte r a t e s [RATE SIZE] ; // array o f l a s t 8 bpm
3 byte rateSpot = 0 ; // index
4 long checkpo int = m i l l i s () ;
5 void bpm()
6 {
7 // save checkpo int
8 long wave = m i l l i s () − checkpo int ;
9 r e s e t () ;

10 beatsPerMinute = 60 / (wave / 1000 .0) ;
11
12 // f i l t e r e r roneous va lue s
13 i f (beatsPerMinute < 255 && beatsPerMinute > 30)
14 {
15 // s t o r e bpm in array
16 r a t e s [rateSpot++] = (byte) beatsPerMinute ;
17 rateSpot %= RATE SIZE ;
18
19 // c a l c u l a t e average
20 beatAvg = 0 ;
21 f o r (byte x = 0 ; x < RATE SIZE ; x++)
22 beatAvg += ra t e s [x] ;
23 beatAvg /= RATE SIZE ;
24 }
25 }

11

To compare the average BPM of the prototype with another device we dis-
play the value on the OLED. This other heart rate device is the Medisana
pulse oximeter PM 100.10 In figure 3.1 the technical details of this device
are included. The accuracy of the pulse between 30 and 99 BPM is approx-
imately 2.

Figure 3.1: Medisana Pulse Oximeter PM 100

To compare the average BPM we measure the pulse of the same arm on
both devices at the same time. The setup can be seen in figure 3.2. The
index finger is placed on the PPG sensor and the middlefinger in placed in
the Medisana pulse oximeter. The middlefinger is placed inside the device
as the Medisana pulse oximeter is a transmissive instead of reflective sensor.
This means that the the LED is on one side and the photodiode is on the
other.

Figure 3.2: BPM test setup

To collect the values we record a video of 100 seconds. As all recorded values
are between the 70 and 86 BPM we convert the video to images by 2 frames
per second. This way we do not miss any changes because 86

60 < 2. The
results are plotted below in figure 3.3 and 3.4.

10Medisana. 2019. Pulse Oximeter PM 100.
https://www.medisana.com/en/Health-control/Pulsoximeter/PM-100-
Pulseoximeter.html?force sid=0ikdo4jt9jm8m18cd97bfusj96

12

Figure 3.3: Average BPM at 2 fps

Figure 3.4: Frames per deviation

13

In figure 3.3 the average BPM per frame is plotted of both the prototype
and the Medisana pulse oximeter. Around 50 seconds in, at frame 100, we
move the upper arm around to test if both devices respond equivalently to
the rise of the pulse. From the graph we can clearly see that the average
BPM of the prototype is nearly equivalent to the BPM of the Medisana
pulse oximeter.

For figure 3.4 the deviation per frame is calculated in order to find out
how accurate the prototype is in comparison to the Medisana pulse oximeter.
We find that 26% of the frames have exact the same BPM, 65% of the frames
have a deviation of 1 BPM and only 9% of the frames have a deviation of 2
BPM. As the Medisana pulse oximeter has an accuracy of approximately 2
between 30 and 99 BPM we can conclude that the prototype has an accuracy
of approximately 4 between 30 and 99 BPM.

With an accuracy of approximately 4 between 30 and 99 BPM we can
conclude that the function checkForBeat() with the immediate infrared
value is a reliable source to detect a heartbeat.

3.3 Alarm

As we have verified the correctness of the heartbeat detection we can use it
to set an alarm. The prototype sets the buzzer as alarm when it does not
receive a heartbeat within an extended period of time. In this thesis we set
this threshold to 30 seconds.

The alarm will be set wrongfully when there is not a finger on the sensor.
We use the PPG sensor to prevent these false positives. As not all objects
absorb the same amount of infrared light as tissue, the PPG sensor can
detect tissue like surface. This helps with the distinction between the state
in which a patient is not using the device and the state in which the patient
is using the device, but there is no heartbeat detected. Therefore we divide
the program into four states, which are illustrated in figure 3.5.

Figure 3.5: State diagram compression alarm

14

When a patient is not using the device the sensor has no contact with tissue
and the program will be in state 0. When the patient places a finger on the
sensor, the sensor will recognize tissue and the program will jump to state
1. When the program recognizes a heartbeat it goes into state 2. If the
sensor recognizes tissue, but not a heartbeat within the given threshold, the
program is in state 3. In this state a compression is detected and the alarm
is activated. The alarm will be deactivated by returning to either state 0 or
state 1.

The four states of the program are mostly determined by the functions
alarm() and oled() which are included in listing 3.4. In order to recognize
tissue the infrared value needs to be at least greater than 50000(13). Thus
if the value is lower than 50000 the program knows it is in state 0. In this
state the program prints ”no contact” on the OLED and the checkpoint
resets(15-16). We reset the checkpoint because it represents the time of the
last detected heartbeat. If the infrared value is greater than 50000 then the
program is in state 1. As the prototype might not recognize a heartbeat
during movement of the user, the average BPM is displayed on the OLED
in both state 1 and 2(21). To check if the program is in state 3 we calculate
the downtime(3). The downtime is the interval since the last checkpoint. As
the checkpoint is reset in both state 0 and 2, the downtime represents the
interval in which the sensor recognizes tissue, but not a heartbeat. If the
downtime is greater than the threshold then the alarm will be set to true
and the buzzer turns on(6-7).

Listing 3.4: alarm and oled

1 void alarm ()
2 {
3 downTime = (m i l l i s () − checkpo int) / 1000 . 0 ;
4 i f (downTime > ALARMTHRESHOLD)
5 {
6 alarmOn = true ;
7 tone (BUZZER PIN, 1000) ;
8 }
9 }

10 void o l ed ()
11 {
12 // s e t message
13 i f (i rVa lue < 50000) // s t a t e 0
14 {
15 r e s e t () ;
16 output = ”no contact ” ;
17 }
18 e l s e i f (alarmOn) // s t a t e 3
19 output = ”no pu l s e ” ;
20 e l s e // s t a t e 1 or 2
21 output = St r ing (beatAvg) ;
22 d i sp l ay . p r i n t l n (output) ;
23 }

15

In this chapter we managed to detect a heartbeat with an accuracy of ap-
proximately 4 between 30 and 90 BPM. We used the heartbeat detection to
keep track of the interval since the last heartbeat. If this interval is greater
than the threshold of 30 seconds then a compression of the subclavian artery
is detected. In this state the alarm is set to warn the patient to change po-
sition. We managed to create a program flow that resets the alarm and the
heartbeat interval, when a heartbeat is detected or when the device is not
actively used.

The complete source code of this feature is included in appendix A.
Note that the calculation of the average BPM will be excluded in the final
version of the prototype. The BPM is included in this appendix to verify
the correctness of the function checkForBeat() with the immediate infrared
value.

16

Chapter 4

Orientation capture

In this chapter we aid the patient with knowledge about critical upper arm
orientations. In chapter 6 the prototype needs to log the orientation of the
upper arm at the time of compression. This information gives the patient
insight on dangerous orientations to avoid. Therefore in this chapter we cap-
ture two dimensions of the upper arm orientation using the accelerometer.
To measure the orientation the prototype is attached to the outside of the
upper arm. This is the right side for the right arm and the left side for the
left arm.

For the three dimensional orientation of the upper arm we use the Euler
angles. To visualize this we imagine that the tail of an airplane is attached
to the shoulder and the nose to the elbow. We then need three rotations
to determine the orientation of the upper arm. As illustrated in figure 4.1
these rotations are also known as the roll, pitch and yaw.

Figure 4.1: Rotations11

With the accelerometer we can only calculate the roll and pitch. The yaw
can’t be calculate with the accelerometer due to the lack of change in gravity
in the z-axis. One can try to calculate the pitch, roll and yaw with a sensor
fusion algorithm for 3D orientation using the accelerometer, gyroscope and
magnetometer, but in this research we will limit ourselves with the roll and
pitch.[1]

11An image showing all three axes [Online image]. Wikipedia. 2010.
https://en.wikipedia.org/wiki/File:Yaw Axis Corrected.svg

17

In section 4.1 we describe how we retrieve the values from the accelerometer.
Section 4.2 then covers how we use these values to calculate the roll and
pitch.

4.1 Accelerometer

For the computation of the roll and pitch we need the three axes units from
the accelerometer. With a bit of imagination figure 4.2 contains a three
dimensional sketch to visualize what results the accelerometer returns. To
keep it simple we image that the red balls are attached to a string. When
the accelerometer moves in a direction the red balls move forward or back-
ward. A string notices if the ball moves forward or backward and saves this
acceleration in two registers. An accelerometer is good for calculating the
roll and pitch because there is enough gravity involved as both movements
are vertical. The accelerometer is not suitable to calculate the yaw as this
movement is only horizontal.

Figure 4.2: 3-axis accelerometer sketch

We activate the accelerometer and read the values of the three axes x, y
and z. To do this we implement two functions with the help of the MPU-
6500 register map and the Arduino Playground.12 13The first function void

initPositionSensor() starts the accelerometer of the MPU(3). From the
register map follows that the values of x, y and z are saved in register
0x3B up to 0x40 respectively. With that knowledge the second function
getAcceleration() reads the values from the registers and stores these is
in variables ax, ay and az(4-13).

12InvenSense Inc. 2013. MPU-6500 Register Map and Descriptions Revision 2.1
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6500-Register-Map2.pdf

13Arduino Playground. 2018. MPU-6050 Accelerometer + Gyro.
https://playground.arduino.cc/Main/MPU-6050/

18

Listing 4.1: accelerometer

1 #de f i n e MPUADDR 0x68
2 #de f i n e ACCADDR 0x3B
3 void i n i tPo s i t i o nS en s o r ()

4 void g e tAcc e l e r a t i on (i n t 1 6 t &ax , i n t 1 6 t &ay , i n t 1 6 t &az)
5 {
6 Wire . beg inTransmiss ion (MPUADDR) ;
7 Wire . wr i t e (ACCADDR) ;
8 Wire . endTransmission () ;
9 Wire . requestFrom (MPUADDR, 6) ;

10 ax = Wire . read () << 8 l Wire . read () ; // 0x3B & 0x3C
11 ay = Wire . read () << 8 l Wire . read () ; // 0x3D & 0x3E
12 az = Wire . read () << 8 l Wire . read () ; // 0x3F & 0x40
13 }

We noticed some high frequency values that could lead to a deceptive out-
come. To prevent these high values corrupt the result we add a filter which
is included in listing 4.2. The filter calculates the x, y and z values with 99
percent of their previous value. The filtering factor of 0.01 cuts out all high
frequency values as it can only influence the current value with a factor of
0.01.

Listing 4.2: filtering

1 const f l o a t F CONST = 0 . 9 9 ;
2 const f l o a t F DEVIATION = 0 . 0 1 ;
3 void loop ()
4 {
5 ge tAcc e l e r a t i on (xi , yi , z i) ;
6 x = F CONST ∗ x + F DEVIATION ∗ f l o a t (x i) ;
7 y = F CONST ∗ y + F DEVIATION ∗ f l o a t (y i) ;
8 z = F CONST ∗ z + F DEVIATION ∗ f l o a t (z i) ;
9 }

With the filter factor of 1 percent we need multiple retrievals and updates of
the values for a good representation of the acceleration. Therefore we use a
counter with threshold 100 and a short delay of 100 milliseconds. The code
for this is included below in listing 4.3.

Listing 4.3: counter and delay

1 void loop ()
2 {
3 counter++;
4 i f (counter == 100)
5 {
6 counter = 0 ;
7 // c a l c u l a t e r o l l and p i t ch
8 }
9 de lay (100) ;

10 }

19

4.2 Calculation

Now we have gathered filtered acceleration values x, y and z we can calculate
the roll and pitch. The roll is the rotation about the x-axis between -180
and 180 degrees. The pitch is the rotation about the y-axis between -90 and
90 degrees. We calculate the roll and pitch in the function setPosition()

which is included in listing 4.1. The formula is based on rotation matrices,
which transform a vector under a rotation by angels in the roll and pitch.14

Listing 4.4: calculation roll and pitch

1 const f l o a t CONVERT = 180.0 / M PI ; // rad ians to degree
2 void s e tPo s i t i o n ()
3 {
4 r o l l = in t (atan2 (y , z) ∗ CONVERT) ;
5 p i t ch = in t (atan2 (x , s q r t (y ∗ y + z ∗ z)) ∗ CONVERT) ;
6 }

We test the accuracy of the orientation by attaching the prototype to a
rectangular object. As can be seen in figure 4.3 we use a 4 by 4 rubix cube
on a table. The results of the rotation can be found below in table 4.1. The
first row represents the expected degrees. We see that the roll and pitch have
a maximum deviation of 5 degrees. The deviation might originate from poor
calibration.

Figure 4.3: Orientation test setup

Table 4.1: Results roll and pitch

Degrees 0 90 -90

Roll 0 84 -89

Pitch 1 85 -86

14https://www.nxp.com/docs/en/application-note/AN3461.pdf, roll = equation 25,
pitch = euqation 26

20

In this chapter we managed to use the x, y and z values from the accelerom-
eter to calculate the roll and pitch with a maximum deviation of 5 degrees.
This feature can be used to calculate two dimensions of the upper arm ro-
tation. The complete source code of this feature can be found in appendix
B. Note that we only calculate the roll and pitch at the time of compression
in the final version of the prototype. In this version we display the roll and
pitch continually to verify the correctness of the calculation.

21

Chapter 5

Distress signal

In chapter 3 we implemented the compression alarm. This alarm turns off
by itself when a heartbeat is detected. The patient can also disable the
alarm by removing the finger from the sensor. If there is no response to the
alarm within an extended period of time we assume that the patient is in
danger. Therefore in this chapter the prototype sends a signal to a server
over Wi-Fi. This can function as a distress signal which will be send when
the patient does not respond to the alarm within an extended period of time.
The server could then potentially warn others to aid the patient. However,
in this thesis we limit the server by only receiving data. Processing and
redirecting the data is outside the scope.

In section 5.1 we describe how the prototype sends a signal, in section
5.2 we describe how the server receives this signal and we verify this process
in section 5.3.

5.1 Client

The prototype has a ESP8266 Wi-Fi microchip with a full TCP/IP stack.
This means that it can connect to a Wi-Fi network and use the Hyper
Text Transfer Protocol (HTTP) for requests. The microchip supports IEEE
802.11 standards b, g and n. Therefore it it can operate in both the 5 GHz
and the 2.4 GHz band. The microchip can connect to open networks and
networks that require WEP or WPA/WPA2 authentication. The upside of
using Wi-Fi is that it is easy to implement and it is hard to find a building
without Wi-Fi anno 2020. The downside is that the prototype needs to be
connected to a network to be able to send a signal. With this prototype
the user can only connect to 1 access point as there is no interface for
authentication. Therefore in this thesis we assume that the prototype is
connected to the same Wi-Fi network at all times.

22

The signal we send to the server is a HTTP post request. HTTP is used
for communication between a client and a server. A post request is used to
submit data to a server to be processed. The post data contains a message
in JSON format. An example is included in listing 5.1. In this thesis the
message contains a user identification number, the timestamp and the two
dimensions of the upper arm orientation. We include the orientation because
the server could be used to send a message to the patient with a visualization
of critical upper arm orientations.

Listing 5.1: JSON message example

1 {
2 ” u s e r i d ” : ”1” ,
3 ”timestamp” : ”2017−04−04 19 : 28 : 23 ” ,
4 ” po s i t i o n ” : ”65−21”
5 }

In section 2.3 we showed how we connect to a network with authentication.
We use that connection to send a HTTP request. For this we use the function
send signal() which is included in listing 5.2. We craft the request with
the help of the ESP8266HTTPClient.h library(1).15 A post requests requires
a destination(6). This destination is a domain name or IP address. In
section 5.2 we describe how we craft the destination of our local server. In
the header we specify what kind of content we send along. The content is
of type "application/json" as we want to send JSON data(7). To send
JSON in a string format we include the backslashes that function as escape
characters for the quotes(8). As we do not have any data collected in this
version we only send the empty string.

After we send the POST request we save the response value in a variable
httpCode(9). We use this value in chapter 6 to check if the post request was
successful. If the request is unsuccessful then we try again.

Listing 5.2: HTTP post request

1 WiFiClient c l i e n t ;
2 HTTPClient http ;
3 void sendS igna l ()
4 {
5 i f ((WiFi . s t a tu s () == WLCONNECTED))
6 {
7 // Send data with http post r eque s t
8 http . begin (c l i e n t , ” http :// ” SERVER IP) ; //HTTP
9 http . addHeader (”Content−Type” , ” app l i c a t i o n / j son ”) ;

10 St r ing data = ”{\” u s e r i d \” :\”1\” ,\” timestamp \” :\”\” ,\”
po s i t i o n \”:\”\”} ” ;

11 i n t httpCode = http .POST(data) ;
12 }
13 }

15Arduino. 2020. ESP8266 HTTP Client library.
https://github.com/esp8266/Arduino/tree/master/libraries/ESP8266HTTPClient

23

5.2 Server

We use a web server to receive the prototypes HTTP post request data. In
this thesis we use the built-in web server of PHP, version 7.5.3.16 We choose
to use this server because it saves the trouble of installing and configuring a
full-featured web server like Apache or Nginx. Note that the PHP built-in
web server is useful for testing purposes, but it should not be used on a
public network. There we run this server on a computer a local network.

To start the server we use the command php -S 0.0.0.0:8000. With
the address 0.0.0.0 the host is reachable at all it’s IP addresses. The server
is in the same local network as the prototype operates. Therefore the desti-
nation of the client will be the local IP of the server with the specified port,
in our case this is port 8000.

When the server receives a post requests it processes the data in order to
store it. We process the post request in a PHP script named process.php,
which is included in listing 5.3. This script store the data in a JSON file
named data.json. First the data from the request is stored in a variable
post(2). Then the data from the JSON file is stored in another variable
data(3). Next we set the timestamp of the request(4). We do this on the
server because the client would need a real time clock unit to determine
the time. Finally we add the data from the POST request and save it in
data.json(6-7). This way the JSON file contains all messages send by the
prototype.

Listing 5.3: process.php

1 <?php
2 $post = j son decode (f i l e g e t c o n t e n t s (’ php :// input ’) , t rue) ;
3 $data = json decode (f i l e g e t c o n t e n t s (”data . j son ”)) ;
4 $post [’ timestamp ’] = date (”Y−m−d H: i : s ”) ;
5 array push ($data , $post) ;
6 $update = j son encode ($data) ;
7 f i l e p u t c o n t e n t s (’ data . j son ’ , $update) ;
8 ?>

16PHP. (n.d.). built-in web server
https://www.php.net/manual/en/features.commandline.webserver.php

24

5.3 Verification

We verify that the prototype sends the HTTP post request and that the
server stores the data correctly. For this we run a test in which the prototype
sends 5 messages with a 5 second interval. As can be seen in listing 5.5
the server received the requests successfully. The process.php stores the
values correctly in data.json, of which the content is included in listing 5.6.
Therefore we can conclude that the prototype successfully sends a signal to
a server over Wi-Fi.

Listing 5.4: server

1 [Jun 22 15 : 50 : 11 2020] x . x . x . x :49392 Accepted
2 [Jun 22 15 : 50 : 12 2020] x . x . x . x :49392 [2 0 0] : POST / proce s s . php
3 [Jun 22 15 : 50 : 12 2020] x . x . x . x :49392 Clos ing
4 [Jun 22 15 : 50 : 17 2020] x . x . x . x :61023 Accepted
5 [Jun 22 15 : 50 : 17 2020] x . x . x . x :61023 [2 0 0] : POST / proce s s . php
6 [Jun 22 15 : 50 : 17 2020] x . x . x . x :61023 Clos ing
7 [Jun 22 15 : 50 : 22 2020] x . x . x . x :52575 Accepted
8 [Jun 22 15 : 50 : 22 2020] x . x . x . x :52575 [2 0 0] : POST / proce s s . php
9 [Jun 22 15 : 50 : 22 2020] x . x . x . x :52575 Clos ing

10 [Jun 22 15 : 50 : 27 2020] x . x . x . x :54005 Accepted
11 [Jun 22 15 : 50 : 27 2020] x . x . x . x :54005 [2 0 0] : POST / proce s s . php
12 [Jun 22 15 : 50 : 27 2020] x . x . x . x :54005 Clos ing
13 [Jun 22 15 : 50 : 32 2020] x . x . x . x :52523 Accepted
14 [Jun 22 15 : 50 : 32 2020] x . x . x . x :52523 [2 0 0] : POST / proce s s . php
15 [Jun 22 15 : 50 : 32 2020] x . x . x . x :52523 Clos ing

Listing 5.5: data.json

1 [
2 {” u s e r i d ” : ”1” , ” timestamp” : ”2020−06−22 15 : 50 : 11 ” , ” p o s i t i o n ” : ”” } ,
3 {” u s e r i d ” : ”1” , ” timestamp” : ”2020−06−22 15 : 50 : 17 ” , ” p o s i t i o n ” : ”” } ,
4 {” u s e r i d ” : ”1” , ” timestamp” : ”2020−06−22 15 : 50 : 22 ” , ” p o s i t i o n ” : ”” } ,
5 {” u s e r i d ” : ”1” , ” timestamp” : ”2020−06−22 15 : 50 : 27 ” , ” p o s i t i o n ” : ”” } ,
6 {” u s e r i d ” : ”1” , ” timestamp” : ”2020−06−22 15 : 50 : 32 ” , ” p o s i t i o n ” : ””}
7]

In this chapter we managed to send a signal over Wi-Fi to a server with
the prototype. The signal is the form of a HTTP post request and carries
data in JSON format. The server ran on a local network and processed the
request successfully. The complete source code of this feature is included in
appendix C. Note that a request is send every 5 seconds and the file requires
a service set identifier, password and the destination of the server.

25

Chapter 6

Prototype

In this chapter we merge the compression alarm, orientation capture and
distress signal into a single prototype. The combination of these feature
result into a prototype that can support a patient with ATOS in three
ways. First the prototype sets the buzzer alarm when there is no heartbeat
detected within the threshold of 30 seconds. This alarm informs the patient
to change position for decompression. After a compression is detected the
position data of two dimensions of the upper arm orientation are displayed on
the OLED. The patient can use this information to gain insight on critical
orientations to avoid. When a patient does not respond to the alarm for
60 seconds a distress signal is send to the server. The server could then
potentially alarm others.

There are two conditions for the prototype in order to work correctly.
First to monitor the heart rate we assume that the patient places constant
pressure on the PPG sensor with the index finger. Secondly to send a
message to a server we assume the prototype is connected to a Wi-Fi network
and the destination of the server is defined.

In section 6.1 we merge the functionality of the compression alarm with
the orientation capture. In section 6.2 the functionality of the distress signal
is added and in section 6.3 we reflect on the prototype as a whole.

6.1 Orientation information at compression

In this section we merge the functionality of the compression alarm with
the orientation capture. We can omit the functionality that we needed to
verify the correctness. Therefore the code related to the BPM calculation of
chapter 3 and the constant calculation and displaying of the roll and pitch
of chapter 4 will be omitted.

From the alarm compression we use the functionality for heart rate de-
tection and for setting the alarm. From the orientation capture we use the
functionality that keeps track of the acceleration and the roll and pitch cal-

26

culation. For this we initialize the PPG sensor, accelerometer, display and
buzzer. The code snippet for this is included in listing 6.1.

Listing 6.1: setup

1 void setup ()
2 {
3 initPPGSensor () ;
4 i n i tPo s i t i o nS en s o r () ;
5 d i sp l ay . begin (SSD1306 SWITCHCAPVCC, 0x3C) ;
6 pinMode (BUZZER PIN, OUTPUT) ;
7 // I n i t a l i z e checkpo int and alarm
8 r e s e t () ;
9 }

The program flow can be found in listing 6.2. Each iteration we request
the infrared value and we use it to detect a heartbeat as in chapter 3(3-4).
When a heartbeat is detected we reset all values as the heartbeat interval
needs to be reset and all alarms can be turned off(5). We also retrieve the
x, y and z acceleration values each iteration and filter these as in chapter
4(7-9). In the function alarm() we check if the alarm must be activated. If
that is the case then we also call the function setPosition() of chapter 4,
which calculates the roll and pitch.

Listing 6.2: loop

1 void loop ()
2 {
3 i rVa lue = ppgSensor . getIR () ;
4 i f (checkForBeat (i rVa lue))
5 r e s e t () ;
6 g e tAcc e l e r a t i on (xi , yi , z i) ;
7 x = F CONST ∗ x + F DEVIATION ∗ f l o a t (x i) ;
8 y = F CONST ∗ y + F DEVIATION ∗ f l o a t (y i) ;
9 z = F CONST ∗ z + F DEVIATION ∗ f l o a t (z i) ;

10 alarm () ;
11 o l ed () ;
12 }

In listing 6.3 we include the new set message part of the function oled().
We print ”no contact” when the sensor does not recognize a tissue like
surface as in chapter 3(4). In any other state we print the values of the last
captured roll and pitch, which are zero initially(7). This way the patient can
view the data of the critical orientation on the OLED after a compression
is detected.

Listing 6.3: set message

1 i f (i rVa lue < 50000)
2 output = ”no contact ” ;
3 e l s e
4 output = St r ing (r o l l) + ” ” + St r ing (p i t ch) ;
5 d i sp l ay . p r i n t l n (output) ;

27

6.2 Distress signal at compression

In this section we merge the functionality of the previous section with the dis-
tress signal of chapter 5. When a patient does not respond to the alarm for 60
seconds a distress signal will be send to the server. We only send one distress
signal per compression. To assure this we add a boolean distressSignal

which represents whether the signal has been send or not. We also add a
constant SIGNAL THRESHOLD that represents the threshold of the amount of
allowed downtime before a distress signal is send. In this thesis this thresh-
old is 60 seconds.

We use these additions in the function alarm(). This function is included
in listing 6.4 together with the updated function sendSignal(). We send
the distress signal as soon as the threshold is met(10-11). The boolean
distressSignal is set to true in the function sendSignal() when the signal
is send successfully(22). Therefore the signal can only be send once per
detected compression. We add the roll and pitch to the string data to
include the position data in the message(20).

Listing 6.4: alarm and signal

1 void alarm ()
2 {
3 downTime = (m i l l i s () − checkpo int) / 1000 . 0 ;
4 i f (downTime > ALARMTHRESHOLD)
5 {
6 i f (! alarmOn)
7 s e tPo s i t i o n () ;
8 alarmOn = true ;
9 tone (BUZZER PIN, 1000) ;

10 i f (downTime > SIGNAL THRESHOLD && ! d i s t r e s s S i g n a l)
11 sendS igna l () ;
12 }
13 }
14 void sendS igna l ()
15 {
16 i f ((WiFi . s t a tu s () == WLCONNECTED))
17 {
18 http . begin (c l i e n t , ” http :// ” SERVER IP) ;
19 http . addHeader (”Content−Type” , ” app l i c a t i o n / j son ”) ;
20 St r ing data = ”{\” u s e r i d \” :\”1\” ,\” timestamp \” :\”\” ,\”

po s i t i o n \” :\” ” + St r ing (r o l l) + ”−” + St r ing (p i t ch) + ”
\”}” ;

21 i n t httpCode = http .POST(data) ;
22 d i s t r e s s S i g n a l = httpCode == HTTP CODEOK;
23 }
24 }

The complete source code of the prototype can be found in appendix D. Note
that the file requires a service set identifier, password and the destination
of the server.

28

6.3 Verification

We verified the correctness of the features in sections 3.3, 4.2 and 5.3. There-
fore we do not repeat the verification process for the combined features in
this section. Instead we describe our remarks on the limitations of the pro-
totype.

First of all we like to note that, although it is not a goal of this thesis,
in general the prototype is not user friendly for a patient with ATOS. As
can be seen in figure 2.6 the assembled prototype is uncomfortable to carry
around due to the wires, the powerbank and all the shields.

Secondly the PPG sensor works as expected when the index finger places
constant pressure, but with the prototype this is hard to do while moving.
An elastic can be used to keep the prototype in place, but we can only assure
correct heartbeat detection when the user is inactive.

Another remark on the PPG sensor has to do with the threshold of 50000
we chose for the infrared value to detect a tissue like surface in chapter 3.
With this method the prototype is able to detect whether a finger is on the
sensor or not. However, the use of the value 50000 can give false positives.
This is due to the fact that the PPG sensor can receive values greater than
50000 on other surfaces as well. If the sensor is placed on such a surface
then the program can not detect a heartbeat, which results in the activation
of the alarm. This can only occur when the patient is not actively using the
device. Therefore in order to prevent this, the user must either deactivate
the prototype or make sure the sensor is not placed close to a surface.

One of the limitations of the prototype is that it only captures 2 out of 3
dimensions of the upper arm rotation. Solely the information about the roll
and pitch will not help the patient with identifying the upper arm positions.
The improve this the yaw must be calculate, preferably with a sensor fusion
algorithm using an accelerometer, gyroscope and magnetometer. In this
thesis we limited ourselves to the roll and pitch due to time limitation.

Lastly, the use of Wi-Fi has great possibilities, but also important lim-
itations. The most important limitation is that the prototype needs to be
connected to a network at all times to be able to send a distress signal.
This means that the patient can not leave the network. If the prototype is
started without an available network then the program will not even leave
the setup. At this point the prototype is limited to connect with only one
network. Although this can be extended manually, the device would need
an interface for flexibility.

29

Chapter 7

Related Work

In this research we developed a prototype that detects a heartbeat, activates
an alarm, captures two orientation dimensions and sends a distress signal.
On its own none of these feature are remarkable, but combined they result
in a product that solves a specific problem. Others have used similar tech-
nologies to solve different problems. There are different ways to relate to
other work. As we did not develop a new technology, but rather combined
existing ones, we will compare how others have used similar technologies
and implemented similar features. In this chapter we will discuss some of
these products and compare them with our prototype.

The first set of products we encountered that uses PPG sensors to mon-
itor the heart rate are the watches from the Apple Watch Series. The Apple
WatchOS 6 is the operating system designed to run on the Apple Watch Se-
ries 1 and later. The system checks the users heart rate with a PPG sensor
and sends an alert if it notices anything abnormal.17 The sensor can be seen
on the inside of the watch in figure 7.1. A user can also set its own beats
per minute upper and lower bounds for an alert.

The Apple Watch has similar features as the prototype: detect a heart-
beat and activate an alarm. The main difference is that the watch uses a
green LED to measure the heart rate instead of an infrared LED. This is
due to the fact that green light does not travel as deep into tissue as infrared
light. Therefore green light is more suitable for a reflective PPG sensor on
the wrist.

Figure 7.1: Apple Watch

17Apple Support. 2020. Heart health notifications on your Apple Watch.
https://support.apple.com/en-us/HT208931

30

Another device that monitors the heart rate is the Pulse Companion heart
rate monitor from Epilepsy Alarms UK.18 This device is developed to detect
epileptic seizures and sends a distress signal to a pager so that others can
come to aid. The pulse companion has similar features as the prototype:
detect a heartbeat and send a distress signal. The main difference with this
device is the protocol for the distress signal. As can be seen in figure 7.2
the Pulse Companion comes with three devices: the sensor, a smartbox and
the pager. The sensor is connected to the smartbox within a range of 10
meters. If a seizure is detected the smart box sends an alert to the pager
with a maximum range of 450 meters. The benefit of this approach is that
there is no need for an internet connection. The downside is that the user
needs to carry around an extra object and the distress signal is limited to
450 meters.

Figure 7.2: Pulse Companion

The last device we discuss is the emergency watch of 100plus.19 The emer-
gency watch monitors the heart rate and when it detects a problem it asks
the user if it should call for help as can be seen in figure 7.3. Two notable
differences with respect to the prototype are the option for a distress signal
and the cell network connectivity. Asking the user if a distress signal must
be send can reduce the amount of false positives, but it can also be fatal
when the user is not able to request help. The use of cell network connec-
tivity is a better option than connection by Wi-Fi, as the latter requires an
access point.

Figure 7.3: Emergency watch

18Epilepsy Alarms UK. 2019. Pulse Companion.
https://www.epilepsyalarms.co.uk/product/pulse-companion/

19100Plus. 2019. Emergency Watch
https://www.100plus.com/emergency-watch/

31

Although these products have similar functionality as the prototype, the
methods vary. The usability of the prototype can be improved with a PPG
sensor on the wrist with a green LED like the Apple Watch. This way the
patient would not need to actively place constant pressure on the sensor.
Also the cell network connectivity of the emergency watch can improve the
usability as Wi-Fi connection would not be a requirement anymore.

What makes the prototype unique is the merge of different features. The
combination of heart rate monitoring and orientation capture is very rare.
Therefore products that capture a orientation upon compression and send
this data to a web server are very hard to find.

32

Chapter 8

Conclusions

In this thesis we researched how information technology can support pa-
tients with ATOS who suffer from a complete compression of the subclavian
artery in certain physical positions. With a microcontroller, a photoplethys-
mography sensor and an accelerometer we managed to develop a prototype
with three features that can support a patient with ATOS.

The first feature supports a patient by minimizing compression time.
With a photoplethysmography sensor we detected a heartbeat with an ac-
curacy of approximately 4 between 30 and 90 beats per minute. We assume
there is a compression of the subclavian artery when no heartbeat is de-
tected for 30 seconds. The buzzer is then activated to alarm the patient to
change positions for decompression.

The second feature captures two dimensions of the upper arm orienta-
tion. With an accelerometer we managed to capture the orientation with
a maximum deviation of 5 degrees. The capture of the upper arm rotation
supports the patient by giving knowledge about critical physical positions.

The final feature supports a patient in critical situations. When a patient
does not respond to the compression alarm we assume the patient is in
danger. In that case the prototype sends a signal over Wi-Fi to a server.
The signal is the form of a HTTP post request and carries data about the
patient in JSON format.

All the features we implemented can be improved and extended. The
first feature can be improved by using a sensor that can be carried on the
wrist using a green LED to increase usability. The second feature can be
improved by using an accelerometer, gyroscope and magnetometer to cal-
culate 3 dimensions of the upper arm orientation instead of 2. The third
feature can be improved by proving an interface for network connection, so
that the patient is not limited to one network.

33

Bibliography

[1] Fatemeh Abyarjoo, Armando Barreto, Jonathan Cofino, and Fran-
cisco R. Ortega. Implementing a sensor fusion algorithm for 3d orienta-
tion detection with inertial/magnetic sensors. In Tarek Sobh and Khaled
Elleithy, editors, Innovations and Advances in Computing, Informatics,
Systems Sciences, Networking and Engineering, pages 305–310. Springer
International Publishing, Cham, 2015.

[2] Catharina Hospital. Thoracic Outlet Syndroom, Eindhoven, Netherlands,
2019.

[3] Lukasz Dzieciuchowicz, Wojciech W lodarczyk, and Grzegorz Oszkinis.
Critical upper limb ischemia caused by initially undiagnosed thoracic
outlet syndrome - case report. Polski przeglad chirurgiczny, 84:158–62,
2012.

[4] Figure 2.1. Photoplethysmography. Reprinted from Bilgaiyan A. Affiq
M. Shim C. H. Ishidai H. Hattori R. Elsamnah, F. Biosensors, 9(3):87.,
2019. Copyright 2019 by the authors.

[5] Jason H. Huang and Eric L. Zager. Thoracic outlet syndrome. Neuro-
surgery, 55(4):897–902, 2004.

[6] Mark R. Jones, Amit Prabhakar, Omar Viswanath, Ivan Urits, Jeremy B.
Green, Julia B. Kendrick, Andrew J. Brunk, Matthew R. Eng, Vwaire
Orhurhu, Elyse M. Cornett, and et al. Thoracic outlet syndrome: A com-
prehensive review of pathophysiology, diagnosis, and treatment. Pain
and therapy, 8(1):5–18, 2019.

[7] Sofoklis Mitsos, Davide Patrini, Sara Velo, Achilleas Antonopoulos, Mar-
tin Hayward, Robert S George, David Lawrence, and Nikolaos Pana-
giotopoulos. Arterial thoracic outlet syndrome treated successfully with
totally endoscopic first rib resection. Case reports in pulmonology, 2017.

[8] Sebastian Povlsen and Bo Povlsen. Diagnosing thoracic outlet syndrome:
Current approaches and future directions. Diagnostics (Basel, Switzer-
land), 8(1):21., 2018.

34

[9] Asa J. Wilbourn. Thoracic outlet syndromes. Neurologic Clinics,
17(3):477–497, 1999.

35

Appendix A

Compression alarm

Listing A.1: Compression detection

1 #inc lude ”MAX30105 . h” // PPG senso r
2 #inc lude ”heartRate . h” // PBA algort ihm
3 #inc lude <Adafruit SSD1306 . h> // OLED 128x48
4 #inc lude <Adafruit GFX . h> // OLED chars
5
6 // PPG senso r
7 MAX30105 ppgSensor ;
8 long i rVa lue ;
9

10 // OLED
11 Adafruit SSD1306 d i sp l ay (128 , 48 , &Wire , −1) ;
12 St r ing output ;
13
14 // buzzer
15 const i n t BUZZER PIN = D5 ;
16
17 // beats per minute
18 const byte RATE SIZE = 8 ; // number o f bpm f o r average
19 byte r a t e s [RATE SIZE] ; // array o f l a s t 8 bpm
20 byte rateSpot = 0 ; // index
21 f l o a t beatsPerMinute ;
22 i n t beatAvg ;
23
24 // alarm
25 bool alarmOn ;
26 long checkpo int = 0 ; // timestamp o f l a s t beat
27 long downTime ; // on t i s s u e without heartbeat
28 const i n t ALARMTHRESHOLD = 30 ; // amount o f a l lowed downTime
29
30 void setup ()
31 {
32 initPPGSensor () ;
33
34 // I n i t i a l i z e OLED d i sp l ay
35 d i sp l ay . begin (SSD1306 SWITCHCAPVCC, 0x3C) ;

36

36 // I n i t i a l i z e buzzer
37 pinMode (BUZZER PIN, OUTPUT) ;
38 }
39
40 void loop ()
41 {
42 i rVa lue = ppgSensor . getIR () ;
43 i f (checkForBeat (i rVa lue))
44 bpm() ;
45 alarm () ;
46 o l ed () ;
47 }
48
49 // Extracted from Sparkfun ’ s MAX30105 heartRate example
50 void initPPGSensor ()
51 {
52 ppgSensor . begin (Wire , I2C SPEED FAST) ; // 400KHz speed
53 ppgSensor . setup () ;
54 ppgSensor . setPulseAmplitudeRed (0x0A) ; // turn red LED to low
55 ppgSensor . setPulseAmplitudeGreen (0) ; // turn o f f green LED
56 }
57
58 // Extracted from Sparkfun ’ s MAX30105 heartRate example
59 void bpm()
60 {
61 // save checkpo int
62 long wave = m i l l i s () − checkpo int ;
63 r e s e t () ;
64 beatsPerMinute = 60 / (wave / 1000 .0) ;
65
66 // f i l t e r e r roneous va lue s
67 i f (beatsPerMinute < 255 && beatsPerMinute > 30)
68 {
69 // s t o r e bpm in array
70 r a t e s [rateSpot++] = (byte) beatsPerMinute ;
71 rateSpot %= RATE SIZE ;
72
73 // c a l c u l a t e average
74 beatAvg = 0 ;
75 f o r (byte x = 0 ; x < RATE SIZE ; x++)
76 beatAvg += ra t e s [x] ;
77 beatAvg /= RATE SIZE ;
78 }
79 }
80
81 void r e s e t ()
82 {
83 checkpo int = m i l l i s () ;
84 noTone (BUZZER PIN) ;
85 alarmOn = f a l s e ;
86 }

37

87 void alarm ()
88 {
89 downTime = (m i l l i s () − checkpo int) / 1000 . 0 ;
90 i f (downTime > ALARMTHRESHOLD)
91 {
92 alarmOn = true ;
93 tone (BUZZER PIN, 1000) ;
94 }
95 }
96
97 void o l ed ()
98 {
99 // s e t d i sp l ay

100 d i sp l ay . c l e a rD i sp l ay () ;
101 d i sp l ay . setTextColor (WHITE) ;
102 d i sp l ay . s e tTextS i z e (1) ;
103 d i sp l ay . se tCursor (32 , 0) ;
104
105 // s e t message
106 i f (i rVa lue < 50000) // s t a t e 0
107 {
108 r e s e t () ;
109 output = ”no contact ” ;
110 }
111 e l s e i f (alarmOn) // s t a t e 3
112 output = ”no pu l s e ” ;
113 e l s e // s t a t e 1 or 2
114 output = St r ing (beatAvg) ;
115 d i sp l ay . p r i n t l n (output) ;
116
117 // d i sp l ay message
118 d i sp l ay . d i sp l ay () ;
119 }

38

Appendix B

Position capture

Listing B.1: Position capture

1 #inc lude <Adafruit SSD1306 . h> // OLED 128x48
2 #inc lude <Adafruit GFX . h> // OLED chars
3
4 // po s i t i o n senso r
5 #de f i n e MPUADDR 0x68
6 #de f i n e ACCADDR 0x3B
7 const f l o a t CONVERT = 180.0 / M PI ; // rad ians to degree
8 const f l o a t F CONST = 0 . 9 9 ;
9 const f l o a t F DEVIATION = 0 . 0 1 ;

10 f l o a t x , y , z ;
11 i n t 1 6 t xi , yi , z i ;
12 i n t r o l l , p i t ch ;
13 i n t counter = 0 ;
14
15 // OLED
16 Adafruit SSD1306 d i sp l ay (128 , 48 , &Wire , −1) ;
17 St r ing output ;
18
19 void setup ()
20 {
21 i n i tPo s i t i o nS en s o r () ;
22
23 // I n i t i a l i z e OLED d i sp l ay
24 d i sp l ay . begin (SSD1306 SWITCHCAPVCC, 0x3C) ;
25 }
26
27 void loop ()
28 {
29 ge tAcc e l e r a t i on (xi , yi , z i) ;
30 x = F CONST ∗ x + F DEVIATION ∗ f l o a t (x i) ;
31 y = F CONST ∗ y + F DEVIATION ∗ f l o a t (y i) ;
32 z = F CONST ∗ z + F DEVIATION ∗ f l o a t (z i) ;

39

33 counter++;
34 i f (counter == 100)
35 {
36 counter = 0 ;
37 s e tPo s i t i o n () ;
38 o l ed () ;
39 }
40 de lay (100) ;
41 }
42
43 void i n i tPo s i t i o nS en s o r ()
44 {
45 Wire . beg inTransmiss ion (MPUADDR) ;
46 Wire . wr i t e (0x6B) ;
47 Wire . wr i t e (0) ;
48 Wire . endTransmission () ;
49 }
50
51 void g e tAcc e l e r a t i on (i n t 1 6 t &ax , i n t 1 6 t &ay , i n t 1 6 t &az)
52 {
53 Wire . beg inTransmiss ion (MPUADDR) ;
54 Wire . wr i t e (ACCADDR) ;
55 Wire . endTransmission () ;
56 Wire . requestFrom (MPUADDR, 6) ;
57 ax = Wire . read () << 8 l Wire . read () ; // 0x3B & 0x3C
58 ay = Wire . read () << 8 l Wire . read () ; // 0x3D & 0x3E
59 az = Wire . read () << 8 l Wire . read () ; // 0x3F & 0x40
60 }
61
62 void s e tPo s i t i o n ()
63 {
64 r o l l = in t (atan2 (y , z) ∗ CONVERT) ;
65 p i t ch = in t (atan2 (x , s q r t (y ∗ y + z ∗ z)) ∗ CONVERT) ;
66 }
67
68 void o l ed ()
69 {
70 // s e t d i sp l ay
71 d i sp l ay . c l e a rD i sp l ay () ;
72 d i sp l ay . setTextColor (WHITE) ;
73 d i sp l ay . s e tTextS i z e (1) ;
74 d i sp l ay . se tCursor (32 , 0) ;
75
76 // s e t message
77 output = St r ing (r o l l) + ” ” + St r ing (p i t ch) ;
78 d i sp l ay . p r i n t l n (output) ;
79
80 // d i sp l ay message
81 d i sp l ay . d i sp l ay () ;
82 }

40

Appendix C

Distress signal

Listing C.1: Client

1 #inc lude <ESP8266WiFi . h> // Wi−Fi
2 #inc lude <ESP8266HTTPClient . h> // HTTP
3
4 // Wi−Fi
5 #de f i n e SERVER IP ”x . x . x . x : xxxx/ proce s s . php”
6 #de f i n e SSID ” s s i d ”
7 #de f i n e PSK ”password”
8
9 // d i s t r e s s s i g n a l

10 WiFiClient c l i e n t ;
11 HTTPClient http ;
12
13 void setup ()
14 {
15 // I n i t i a l i z e Wi−Fi
16 i n i tW i f i () ;
17 }
18
19 void loop ()
20 {
21 sendS igna l () ;
22 de lay (5000) ;
23 }
24
25 void i n i tW i f i ()
26 {
27 WiFi . begin (SSID , PSK) ;
28 whi l e (WiFi . s t a tu s () != WLCONNECTED)
29 delay (500) ;
30 }

41

31 void sendS igna l ()
32 {
33 i f ((WiFi . s t a tu s () == WLCONNECTED))
34 {
35 // Send data with http post r eque s t
36 http . begin (c l i e n t , ” http :// ” SERVER IP) ;
37 http . addHeader (”Content−Type” , ” app l i c a t i o n / j son ”) ;
38 St r ing data = ”{\” u s e r i d \” :\”1\” ,\” timestamp \” :\”\” ,\”

po s i t i o n \”:\”\”} ” ;
39 i n t httpCode = http .POST(data) ;
40 }
41 }

Listing C.2: Server: process.php

1 <?php
2 $post = j son decode (f i l e g e t c o n t e n t s (’ php :// input ’) , t rue) ;
3 $data = json decode (f i l e g e t c o n t e n t s (”data . j son ”)) ;
4 $post [’ timestamp ’] = date (”Y−m−d H: i : s ”) ;
5 array push ($data , $post) ;
6 $update = j son encode ($data) ;
7 f i l e p u t c o n t e n t s (’ data . j son ’ , $update) ;
8 ?>

Listing C.3: Server: data.json

1 [
2 {
3 ” u s e r i d ” : ”1” ,
4 ”timestamp” : ”2017−04−04 19 : 28 : 23 ” ,
5 ” po s i t i o n ” : ”65−21”
6 }
7]

42

Appendix D

Prototype

Listing D.1: Prototype

1 #inc lude ”MAX30105 . h” // PPG senso r
2 #inc lude ”heartRate . h” // PBA algort ihm
3 #inc lude <Adafruit SSD1306 . h> // OLED 128x48
4 #inc lude <Adafruit GFX . h> // OLED chars
5 #inc lude <ESP8266WiFi . h> // Wi−Fi
6 #inc lude <ESP8266HTTPClient . h> // HTTP
7
8 // PPG senso r
9 MAX30105 ppgSensor ;

10 long i rVa lue ;
11
12 // OLED d i sp l ay
13 Adafruit SSD1306 d i sp l ay (128 , 48 , &Wire , −1) ;
14 St r ing output ;
15
16 // buzzer
17 const i n t BUZZER PIN = D5 ;
18
19 // alarm
20 bool alarmOn ;
21 long checkpo int = 0 ; // timestamp o f l a s t beat
22 long downTime ; // on t i s s u e without heartbeat
23 const i n t ALARMTHRESHOLD = 30 ; // amount o f a l lowed downTime
24
25 // po s i t i o n senso r
26 #de f i n e MPUADDR 0x68
27 #de f i n e ACCADDR 0x3B
28 const f l o a t CONVERT = 180.0 / M PI ; // rad ians to degree
29 const f l o a t F CONST = 0 . 9 9 ;
30 const f l o a t F DEVIATION = 0 . 0 1 ;
31 f l o a t x , y , z ;
32 i n t 1 6 t xi , yi , z i ;
33 i n t r o l l , p i t ch ;

43

33 // Wi−Fi
34 #de f i n e SERVER IP ”x . x . x . x : xxxx/ proce s s . php”
35 #de f i n e SSID ” s s i d ”
36 #de f i n e PSK ”password”
37
38 // d i s t r e s s s i g n a l
39 WiFiClient c l i e n t ;
40 HTTPClient http ;
41 bool d i s t r e s s S i g n a l ;
42 const i n t SIGNAL THRESHOLD = 60 ;
43
44 void setup ()
45 {
46 // I n i t i a l i z e PPG senso r
47 initPPGSensor () ;
48
49 // I n i t i a l i z e p o s i t i o n senso r
50 i n i tPo s i t i o nS en s o r () ;
51
52 // I n i t i a l i z e Wi−Fi
53 i n i tW i f i () ;
54
55 // I n i t i a l i z e OLED d i sp l ay
56 d i sp l ay . begin (SSD1306 SWITCHCAPVCC, 0x3C) ;
57
58 // I n i t i a l i z e buzzer
59 pinMode (BUZZER PIN, OUTPUT) ;
60
61 // I n i t a l i z e va lue s
62 r e s e t () ;
63 }
64
65 void loop ()
66 {
67 i rVa lue = ppgSensor . getIR () ;
68 i f (checkForBeat (i rVa lue))
69 r e s e t () ;
70
71 ge tAcc e l e r a t i on (xi , yi , z i) ;
72 x = F CONST ∗ x + F DEVIATION ∗ f l o a t (x i) ;
73 y = F CONST ∗ y + F DEVIATION ∗ f l o a t (y i) ;
74 z = F CONST ∗ z + F DEVIATION ∗ f l o a t (z i) ;
75
76 alarm () ;
77 o l ed () ;
78 }

44

79 // Extracted from Sparkfun ’ s MAX30105 heartRate example
80 void initPPGSensor ()
81 {
82 ppgSensor . begin (Wire , I2C SPEED FAST) ; // 400KHz speed
83 ppgSensor . setup () ;
84 ppgSensor . setPulseAmplitudeRed (0x0A) ; // turn red LED to low
85 ppgSensor . setPulseAmplitudeGreen (0) ; // turn o f f green LED
86 }
87
88 void i n i tPo s i t i o nS en s o r ()
89 {
90 Wire . beg inTransmiss ion (MPUADDR) ;
91 Wire . wr i t e (0x6B) ;
92 Wire . wr i t e (0) ;
93 Wire . endTransmission () ;
94 }
95
96 void i n i tW i f i ()
97 {
98 WiFi . begin (SSID , PSK) ;
99 whi l e (WiFi . s t a tu s () != WLCONNECTED)

100 delay (500) ;
101 }
102
103 void g e tAcc e l e r a t i on (i n t 1 6 t &ax , i n t 1 6 t &ay , i n t 1 6 t &az)
104 {
105 Wire . beg inTransmiss ion (MPUADDR) ;
106 Wire . wr i t e (ACCADDR) ;
107 Wire . endTransmission () ;
108 Wire . requestFrom (MPUADDR, 6) ;
109 ax = Wire . read () << 8 l Wire . read () ; // 0x3B & 0x3C
110 ay = Wire . read () << 8 l Wire . read () ; // 0x3D & 0x3E
111 az = Wire . read () << 8 l Wire . read () ; // 0x3F & 0x40
112 }
113
114 void alarm ()
115 {
116 downTime = (m i l l i s () − checkpo int) / 1000 . 0 ;
117 i f (downTime > ALARMTHRESHOLD)
118 {
119 i f (! alarmOn)
120 s e tPo s i t i o n () ;
121 alarmOn = true ;
122 tone (BUZZER PIN, 1000) ;
123 i f (downTime > SIGNAL THRESHOLD && ! d i s t r e s s S i g n a l)
124 sendS igna l () ;
125 }
126 }

45

127 void r e s e t ()
128 {
129 checkpo int = m i l l i s () ;
130 noTone (BUZZER PIN) ;
131 alarmOn = f a l s e ;
132 d i s t r e s s S i g n a l = f a l s e ;
133 }
134
135 void sendS igna l ()
136 {
137 i f ((WiFi . s t a tu s () == WLCONNECTED))
138 {
139 http . begin (c l i e n t , ” http :// ” SERVER IP) ;
140 http . addHeader (”Content−Type” , ” app l i c a t i o n / j son ”) ;
141 St r ing data = ”{\” u s e r i d \” :\”1\” ,\” timestamp \” :\”\” ,\”

po s i t i o n \” :\” ” + St r ing (r o l l) + ”−” + St r ing (p i t ch) + ”
\”}” ;

142 i n t httpCode = http .POST(data) ;
143 d i s t r e s s S i g n a l = httpCode == HTTP CODEOK;
144 }
145 }
146
147 void o l ed ()
148 {
149 // s e t d i sp l ay
150 d i sp l ay . c l e a rD i sp l ay () ;
151 d i sp l ay . setTextColor (WHITE) ;
152 d i sp l ay . s e tTextS i z e (1) ;
153 d i sp l ay . se tCursor (32 , 0) ;
154
155 // s e t message
156 i f (i rVa lue < 50000)
157 {
158 r e s e t () ;
159 output = ”no contact ” ;
160 }
161 e l s e
162 output = St r ing (r o l l) + ” ” + Str ing (p i t ch) ;
163 d i sp l ay . p r i n t l n (output) ;
164
165 // d i sp l ay message
166 d i sp l ay . d i sp l ay () ;
167 }

46

