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Abstract

Infertility is an issue that affects roughly 186 million people worldwide. This
issue is partially overcome using fertility treatments that often produce in
vitro embryos, which undergo a visual morphology assessment to determine
embryo quality. The potential of using neural networks to aid this subjec-
tive process has barely been examined. In this thesis, we researched the
potential of using STORK, Inception V1 and Inception V3 as tools to aid
in the qualitative classification of embryos produced in vitro at the MCK
Fertility Center. We did this by analyzing how accurately these neural net-
works could predict whether embryos had been selected for transfer into the
uterine cavity. The analysis shows that Inception V1 and Inception V3 had
an accuracy of 68% and 78% respectively, while STORK lagged behind at
roughly 50%. In conclusion, neural networks are a potentially viable addi-
tion to the embryo quality assessment process, although further research is
required.
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Chapter 1

Introduction

The MCK Fertility Center (Medisch Centrum Kinderwens) is a fertility cen-
ter located in Leiderdorp. People who desire to have children but are unable
to do so without medical intervention can go there for help with conceiving a
child. Several techniques are possible, such as the well-known IVF (in vitro
fertilization) treatment or gamete donation. Many of these treatments result
in in vitro embryos: embryos created outside the womb. They are kept in
an incubator to monitor their first days. From the multiple embryos created
for a couple, an embryologist selects the embryo most likely to survive. This
choice is based on a visual morphological assessment, taking into account
several criteria such as cell division rate and symmetry. The selected embryo
is then transferred back into the mother, hopefully resulting in a successful
pregnancy.

This thesis will examine the possibility of automating the selection of
the most viable embryo. Specifically, it raises the question: is classifying
embryos using convolutional neural networks a viable option for the MCK
Fertility Center?

The dataset provided by the MCK Fertility Center is structured quite
unconventionally compared to the datasets that STORK is intended for.
Therefore, this thesis will not only test the accuracy of STORK. Instead, it
will compare different strategies for classifying the images provided by the
MCK Fertility Center. Firstly, we evaluate the accuracy of classifying the
embryos using STORK. Then, we show the accuracy obtained by retraining
the final layer of Inception V1, the neural network inside STORK. Then,
we retrain the final layer of another neural network, Inception V3, which is
known for higher accuracy compared to Inception V1.

This thesis contains explanations of the architectures of each strategy,
the complete methodology of the research, and its results. Then, we discuss
the meaning of those results and their limitations. This is followed by a dis-
cussion of related work, our conclusions, and recommendations for potential
future research. Finally, the appendix contains auxiliary information.
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Chapter 2

Preliminary knowledge

This chapter contains preliminary knowledge to help provide context for the
following chapters. In particular, we have provided a short explanation of the
process of in vitro fertilization, explaining why embryo quality assessment
is vital, what “embryo quality” actually means and which characteristics
embryologists usually use to determine it. In addition to this, we present
some background knowledge regarding the structure and functionality of
neural networks.

2.1 Embryo quality

The first “IVF baby” was born in 1978 [16]. The mother was infertile due to
blocked Fallopian tubes, which prevented sperm from reaching her oocytes.
An oocyte was retrieved from one of her ovaries using a needle and subse-
quently fertilized in a laboratory using her husband’s sperm. Two days later,
the embryo was transferred into the uterine cavity. The procedure turned
out to be successful: the embryo implanted, the woman became pregnant
and carried the pregnancy to term.

Nowadays, IVF treatments are used for couples suffering from subfertil-
ity due to a range of causes such as male subfertility, endometriosis, or tubal
problems. A second technique called ICSI (intra-cytoplasmatic sperm injec-
tion) was introduced in the early 1990s. ICSI is identical to IVF until the
laboratory phase; for ICSI, one motile sperm cell is injected into a mature
oocyte with a small glass needle. This technique can aid heterosexual cou-
ples in which the man has extremely poor sperm quality [13]. Worldwide,
an estimated 6+ million children have been born after a successful IVF or
ICSI treatment. In the Netherlands, this number is approximately 80.000.
Every year, more than 13.000 IVF and ICSI cycles are performed in the
Netherlands alone [1].

The first IVF treatments were performed in a natural menstrual cy-
cle. This means that only one oocyte could be retrieved: generally, in
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a natural cycle, only one oocyte matures at a time. This is why frater-
nal twins are rare. To increase the success rate of IVF/ICSI treatments,
follicle-stimulating hormone (FSH) is used to induce ovarian hyperstimula-
tion. Daily injections of FSH result in multi-follicular growth, which allows
a higher number of oocytes to be retrieved at once [11]. More oocytes rou-
tinely lead to the development of more embryos, which introduces a new
question: how does one choose which embryos to transfer, or to freeze?

Several morphological aspects of developing embryos factor into this se-
lection. These include the number of cells, the division rate, the variability
of sizes in cells, and the amount of fragmentation (small particles resulting
from the degeneration of a cell during the process of division).

After 30 years of research and fertility treatments, not a single mor-
phological marker has been identified that can predict the future success of
an embryo with real certainty. The recent development of time-lapse mi-
croscopy has made permanent record-keeping a reality, but reliable embryo
selection using a single parameter or algorithm applicable to all patients
remains elusive [6]. Recently, researchers have started to examine the possi-
bility of using automated image classification to determine embryo quality,
although this technique is still in its infancy.

2.2 Neural Networks

“...a computing system made up of a number of simple, highly
interconnected processing elements, which process information
by their dynamic state response to external inputs”

Dr. Robert Hecht-Nielsen, as quoted in [4]

The simplest definition of artificial neural networks, shown above, was
coined in 1989 by Robert Hecht-Nielsen, the neuro- and computer scientist
who authored one of the first textbooks on the subject. It cuts to the core
of what makes neural networks different from traditional computing. Where
traditionally, computing was done by a central processing unit with access to
all data and instructions, neural networks consist of many small processing
elements. Each performs a simple computation and passes on its output to
the next processing element. These networks are modeled on mammalian
brains, although they are much less complex; large neural networks consist
of perhaps thousands of neurons, human brains of 86 billion [8].

The main feature of neural networks is that they comprise several in-
terconnected layers. Neural networks typically consist of an input layer,
several ‘hidden layers,’ and an output layer. Of these, the hidden layers are
where the actual processing happens. See Figure 2.1 below for a simplified
example.

4



Figure 2.1: A simplified neural network.

In the figure above, the layers consist of multiple interconnected com-
ponents, shown in blue. These represent the layers’ processing elements,
called neurons. Generally, the input layer of a neural network distributes
the input to each neuron in the first hidden layer. Each new hidden layer
then receives input from the previous layer’s neurons, which is processed by
the current layer’s neurons to create an output, which it forwards to the
next layer. Eventually, the different outputs are merged into one conclusion
by the output layer.

The way the neurons in the hidden layers process the input they receive
and the ways different neurons connect both influence what happens to the
input received by that layer. This is how different layers can have different
effects on the data. The neural networks that this thesis focuses on consist
of several types of layers, the most important of which are explained below.

A key layer in image classification is the convolutional layer. Convo-
lutional layers are used to scan images for certain features. These layers
examine input images in small patches to determine the probability that
that patch contains a specific feature. The output consists of a feature
map with the respective probabilities of each patch containing that feature.
Patches may overlap. Convolutional layers are usually named after the size
of their feature filters. For example, a 5x5 convolutional layer will examine
patches of five by five pixels.
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Figure 2.2: Input and output of a 3x3 convolutional layer. From [14].

As shown in the figure above, convolutional layers reduce the dimensions
of the data, which reduces the number of operations necessary later in the
network. So too do pooling layers, another type of layer often used in image
classification. Pooling layers reduce the amount of information contained
in the feature maps they receive from convolution layers, keeping the most
important information. This lowers the resolution of the feature map to
reduce the dimensions of the data and the computational cost. There are
two types of pooling: average pooling and max pooling. Average pooling
outputs the average value of each patch on the input feature map, and max
pooling calculates the maximum value of each patch.

The third type of layer found in any neural network is the fully connected
layer, in which every neuron in a hidden layer connects to every neuron in the
next hidden layer (as in Figure 2.1). A drawback of these is that they have
a high computational cost. Therefore, these are used for specific purposes
such as “flattening” the output of convolution and pooling layers. The final
layer of a neural network is typically a fully connected layer which outputs a
single vector containing the respective probabilities that the image belongs
to each available class.
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Chapter 3

Related Work

The idea of embryo classification using neural network has some basis in the
existing literature, although it is a small and relatively new research field.
While a few different teams have researched the possibilities of automating
embryo classification, there is limited literature in which neural networks
are used for this challenge. Most of the works below, therefore, are related
due to similar subject matter rather than methodology.

The first article on the subject was published in 2012 by Filho et al [7]. It
detailed their work in assessing the viability of automating embryo grading,
based on one of the visual criteria used by embryologists. Their tactic was
to calculate the number of cells based on different characteristics extracted
from an image of the embryo, as cell number is an indicator of blastocyst
quality. They could calculate the number of cells with a reasonable 67-92%
accuracy. This is not good enough to be a heavyweight factor in embryo
grading, but it did open the door to using image analysis as a potential tool
for embryo analysis.

In recent years, it has been shown repeatedly that convolutional neural
networks, or CNNs, are an effective method for solving different medical
imaging problems. Examples are diagnosing breast cancer [15], detecting
diabetic retinopathy [2], and many others.

In 2019, before the start of this thesis, one major article was published on
the subject, detailing the development of the STORK framework for embryo
classification. STORK has an embryo classification accuracy of over 97%.
It consists of a collection of scripts built around GoogLeNet’s Inception V1
neural network. As described previously, STORK classifies several images
for each embryo, each image with a different focal layer. STORK then
averages out the grades for the different layers to conclude the embryo’s
final grade. It has been tested for robustness using images of embryos from
three fertility centers: two in the United States and one in Spain, and is
robust for those datasets [10].

In addition to this, a study published in April 2020 found a convolu-
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tional neural network to be significantly more consistent than a group of
embryologists. Both the neural networks and the embryologists were tasked
with grading a set of embryos on a scale of 1 (poor) to 5 (excellent). Un-
beknownst to the embryologists, each embryo was also rotated 90, 180 or
270°and presented along with the original images. Consistency is then de-
fined as the percentage of cases where the given grade did not depend on
rotation. The researchers observed 83.92% consistency for the neural net-
work, compared with 52.14-57.68% for the embryologists (likely due to the
subjective nature of visual morphological embryo grading). This shows that
generally, automated grading of embryo quality is viable as an addition to
manual grading, if not a complete replacement of it [3].
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Chapter 4

Tools

In this chapter, we provide more in-depth information regarding STORK,
and discuss the architectures of Inception V1 and Inception V3.

4.1 STORK

The STORK framework was developed in 2018 by Khosravi, Kazemi, Zhan
et al. Their article Deep learning enables robust assessment and selection of
human blastocysts after in vitro fertilization covers the development, struc-
ture, and results of the STORK framework [10].

In this article, they outline the design and developmental process of
STORK, and examine its accuracy in embryo quality classification.

STORK’s design followed several distinct phases. Firstly, embryologists
used the Veeck and Zaninovic grading system to grade a set of images of
human embryos, provided by an embryology lab. This system assigns em-
bryos different grades based on several morphological features [22]. The
researchers converted these grades into good-quality, fair-quality, or poor-
quality labels for each image. The good- and poor-quality embryos were
compiled into a training set and used to fully re-train Inception V1, which is
the convolutional neural network the research team decided to integrate into
STORK. Once Inception V1 was re-trained, it was tasked with classifying
the ‘fair-quality’ embryos, now as either good- or poor-quality.

Inception V1 was trained with 12001 black-and-white images of 500x500
pixels: 6000 images of 877 good-quality embryos, and 6001 images of 887
poor-quality embryos, captured at precisely 110 hours post insemination.
Each embryo was photographed with seven different focal depths, or ‘layers’.

Testing the resulting neural network, now called STORK, using a ran-
domly selected test set of good- and poor-quality embryos showed that
STORK could predict the quality of those embryos with an accuracy of
96.94% per image. This increased to 97.53% after averaging the predictions
of multiple layers of the same embryo.
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Attempting to classify the fair-quality embryos resulted in a skewed di-
vide: 82% of the fair-quality embryo images were labeled good-quality, while
only 18% were classified as poor-quality. Although skewed towards good-
quality, several factors do suggest that this divide is correct. For example,
the average patient age in each group fits: fair-quality images reclassified
as “good” came from younger patients, on average, than fair-quality images
reclassified as “poor”.

The project code and notes on how to implement and execute STORK
are available on the STORK GitHub [17].

4.2 Inception V1

Inception V1 was the name of a neural network developed in 2014 for the
ILSVRC14 (ImageNet Large-Scale Visual Recognition Challenge 2014) by
Szegedy et al. It is a convolutional neural network that is 22 layers deep.
The designers’ main goal was to attain a high accuracy while keeping the
computational cost constant. It is also known as GoogLeNet.

The main distinctive feature of Inception V1 is known as the “Inception
module”. These modules consist of six convolutional layers and a concatena-
tion layer to merge their outputs. Inception modules are designed to extract
features of different sizes on the same input image. To facilitate this, they
include 1x1, 3x3, and 5x5 convolutional layers, all receiving the same in-
put. The outputs of these convolutional layers are then stacked with the
output of a parallel pooling path, which the designers decided to add due
to the essential nature of pooling operations in neural networks [18]. The
architecture of the first iteration of these models is shown in Figure 3.1.

Figure 4.1: The naive structure of the V1 Inception modules. From [18].

The issue with this design is that merging the output of the pooling layer
directly with those of the convolutional layers leads to a computational cost
that was higher than acceptable. The number of outputs would increase
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between modules, leading to computational blow-up. Therefore, the design-
ers added 1x1 convolutional layers to reduce the dimensions of the data.
These were inserted before the expensive 3x3 and 5x5 convolutional layers,
as well as after the max-pooling layer. This choice kept computational costs
in check. The final V1 Inception module design is shown in Figure 3.2.

Figure 4.2: The new structure of the V1 Inception modules. From [18].

The architecture of Inception V1 consists of nine of these Inception mod-
ules in sequence, surrounded by some pre-processing and output processing
layers. There are also some max-pooling layers in between the Inception
modules to halve the dimensions of the data. There are two branches out-
side this sequence, which is shown in Figure 3.3. These branches are only
active during the training phase, not during testing. They calculate the pre-
diction error, commonly called the loss. The lower the loss, the better the
network’s current performance. The weights of the inputs into the neurons
are adjusted during training to obtain better performance by minimizing
the calculated loss.

Figure 4.3: The architecture of Inception V1. Adapted from [21].

A full-size version of this figure is available in the Appendix.
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4.3 Inception V3

Inception V1 was well-designed in terms of both speed and accuracy at the
time of its invention. However, improvements were made over the years,
and new insights reached. As a result, several iterations of Inception have
been released over time. One of these is Inception V3, which is known for
having a much lower computational cost than Inception V1. Inception V3
was presented in the same paper as Inception V2. The changes between V1
and V3 will, therefore, be presented without considering V2.

In Inception V3, the 5x5 convolutions inside several of the Inception
modules were replaced by two 3x3 convolutions. In addition to this, in
several Inception modules, the 3x3 convolutions were replaced by 3x1 and
1x3 convolutions in sequence. Both of these design changes were made to
reduce computational cost: a 5x5 convolution is 2.78 times more expensive
in terms of computational cost than a 3x3 convolution, so even two 3x3
convolutions are cheaper than a single 5x5 convolution. In addition to this,
factorizing a 3x3 convolution into 1x3 and 3x1 convolutions is roughly 33%
cheaper to compute [19].

Figure 4.4: The structure of one of the V3 Inception modules. Adapted from [18].

As illustrated in Figure 3.4, the new Inception modules were made wider
to avoid adding more depth; the 1x3 and 3x1 convolutions are positioned in
parallel rather than in sequence. This avoids reducing the dimensions of the
data too far, which would result in loss of information and lower accuracy.
It ensured that the accuracy of the new Inception V3 was as high as that of
V1, even with much fewer computations.

The architecture of Inception V3 consists of eleven Inception modules
and only a single auxiliary branch to calculate the loss. It has 42 layers,
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mostly due to the extra convolution layers in the Inception modules. Figure
3.5 shows a compressed schematic diagram of its architecture.

Figure 4.5: The architecture of Inception V3. From [12].

A full-size version of this figure is available in the Appendix.
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Chapter 5

Method

5.1 Compiling the Dataset

For this research, a total of 64 images of 40 different human embryos were
provided by the MCK Fertility Center. The dataset consisted of fully anony-
mous data. The images were captured using Geri®embryo incubators,
which create time-lapse videos of embryo development using an integrated
embryoscope. The images used were captured at 65 hours post-insemination
in three focal depths. Each image was labeled with “selected” or “discarded”
by embryologists employed at the MCK Fertility Center.

A note on reproducability: the dataset analyzed in this thesis is not and
will not be publicly available. Due to privacy and security concerns, the
data will not be redistributed. However, the methods discussed below are
not specific to this dataset and can be applied to any embryo imaging data.

The dataset provided by the MCK Fertility Center is structured quite
differently to the datasets for which STORK is intended. One difference is
that during this research, the MCK transferred embryos after three days of
in vitro incubation, rather than the more common five days. The datasets
STORK was trained with and tested on all contained five-day old blas-
tocysts. The MCK did switch to transferring embryos after five days of
incubation in May 2020, although the dataset only contained images of
three-day-old embryos for the sake of consistency.

A second notable difference was that in related literature, the quality-
classification datasets were divided into “good”, “fair” and “poor” quality
embryos. The dataset provided by the MCK Fertility Center was divided
into the more ambiguous “selected” (the embryos which were transferred into
the mother’s uterine cavity) and “discarded” (the embryos which were not
transferred). Sometimes, a couple produces several high-quality embryos,
only one of which will be selected (unless the couple decides to freeze the
others, so that they can use those in the future). Similarly, if there are only
poor-quality but potentially still viable embryos, the best one will still be
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transferred to the mother. Therefore, the “selected” dataset may contain
relatively poor quality embryos, and the “discarded” subset may contain
high-quality embryos.

In addition to this, the average age of the clientele of the MCK Fertility
Center is quite high compared to other Fertility Centers, which can be seen
from their relatively low success rate [1]. Age is a contributing factor to
embryo quality, meaning that the MCK Fertility Center’s patients do, on
average, produce lower quality embryos (which result in a successful preg-
nancy less often). Therefore, there is a chance for a poor-quality embryo to
be be transferred, introducing a degree of ambiguity to this split.

The images were cropped at 500x500 pixels, centered on the embryos.
The dataset contained a total of 64 images of 40 embryos, split equally into
good-quality and poor-quality.

5.2 STORK

Instructions on how to set up and work with STORK are available on the
GitHub of the development team behind STORK [17]. The framework in-
cludes scripts for the classification itself, training and different accuracy
measures. In order to work with STORK as intended by its creators, these
were used throughout the stage of research where we worked with STORK
without modification.

The framework came with a checkpoint of the Inception V1 network
that the creators used, and the instruction to train this network using the
provided training data (N = 90). The network was trained for a total of 500
iterations.

We first used STORK to classify the MCK Fertility Center embryos after
only training the neural network inside the framework with the STORK
training data. This was done in order to gain insight in the basic accuracy
of STORK as well as its compatibility with the dataset provided by the
MCK Fertility Center.

After this yielded a baseline (see Results for more information), we
moved to re-training the final layer of STORK with the data provided by
the MCK Fertility Center, to help account for the aforementioned differences
between the MCK dataset and the datasets STORK was trained with. In-
stead of doing this within the script provided in the STORK framework, we
decided to re-train the final layer of Inception V1 as a standalone network,
which allowed for more control over the training process. In addition to this,
it would enable us to more accurately compare the results of Inception V1
to those of Inception V3. Comparing Inception V3 as a standalone module
to Inception V1 through the lens of STORK would be skewed, since the
Inception V1 model used in STORK has been fully re-trained by the team
behind STORK.
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5.3 Standalone V1 and V3

For the purpose of testing the accuracy of both Inception V1 and Inception
V3, a script was created based on the retrain.py script available via the
Tensorflow GitHub [20]. It is available on the GitHub of the author of this
thesis [9].

The script was modified specifically to facilitate easy K-fold cross vali-
dation. This was necessary due to the small size of the dataset; using 15%
of the dataset for testing means a testing set of ten images. If even a single
embryo in that set is anomalous or simply ambiguous in quality, it can have
a significant impact on testing accuracy. The original retrain.py script
randomly selects a number of images in each class to be used as a testing
set; that was changed so that the original set is instead divided randomly
into ten folds. Retraining the final layer is then done using one of those
ten folds as a testing set, and the other nine as a training set. This can be
repeated for each fold, resulting in ten accuracy scores. Especially with such
small testing sets, these scores may vary wildly between folds. Therefore,
averaging those provides a more reliable measure of algorithm accuracy than
only executing the algorithm once, for a single randomly selected test set.

We continued training for 500 iterations each time, logging training and
testing accuracy every five iterations. 500 iterations is quite low in the world
of machine learning, but this already resulted in overfitting, and training for
any longer would not increase accuracy.
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Chapter 6

Results

The aim of this thesis is to evaluate the potential of using neural networks
to qualitatively classify embryos for the MCK Fertility Center. In order to
do so, we evaluated three variants for accuracy in embryo prediction: the
STORK framework, which utilises a modified Inception V1; Inception V1
as a standalone module; and Inception V3.

6.1 STORK

Testing the accuracy of STORK’s pre-trained Inception V1 without re-
training the final layer yielded the following results when tested on all the
data supplied by the MCK Fertility Center (see Figure 6.1). The accuracy
of using the trained model to predict STORK’s own test set has also been
included for contrast. The accuracy of classifying the MCK Fertility Cen-
ter’s dataset fluctuated around 0.5, no better than random. There was too
much discrepancy between the dataset used to train STORK and the dataset
provided by the MCK.

Figure 6.1: The accuracy of using STORK to classify STORK’s testing dataset
(orange) and the MCK’s dataset (blue) after 100, 200, 300, 400 and 500 training
iterations.
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Figure 6.2, below, shows the confusion matrices corresponding to the
results of attempting to predict the classes of the MCK Fertility Center’s
embryos. Interestingly, the majority of the incorrectly labeled embryos were
poor-quality (not transferred) embryos labeled as ‘good’ (transferred).

Figure 6.2: The confusion matrices showing the results of predicting the labels for
the MCK dataset after training with STORK’s training data. From top to bottom,
left to right, the confusion matrices are shown in order for every 100th iteration.
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6.2 Inception V1

Inception V1 as a standalone network was found to be both more accurate
and faster than STORK; re-training the final layer of the Inception V1 for
500 iterations took minutes rather than two hours.

Using 10-fold validation to evaluate the accuracy of the model yielded
accuracy scores which varied widely, as shown in Figure 5.1 below. The
average accuracy of the model was 68%.

Figure 6.3: The accuracy of each fold, with the number of training steps on the
x-axis and the accuracy on the y-axis. The orange lines represent training accuracy
at different stages of the training process, the blue lines represent testing accuracy.
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6.3 Inception V3

Inception V3 was more accurate than both STORK and Inception V1 as a
standalone network, although it was slightly slower than Inception V1.

Using 10-fold validation to evaluate the true accuracy of the model
yielded accuracy scores that varied widely, as shown in Figure 5.2 below.
The average accuracy of the model was 78%.

Figure 6.4: The accuracy of each fold, with the number of training steps on the
x-axis and the accuracy on the y-axis. The orange lines represent training accuracy
at different stages of the training process, the blue lines represent testing accuracy.
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6.4 Combined observations

We recorded the results of a second run of 10-fold cross validation, using
the same folds for both classifiers (see section A.3 of the Appendix). The
information obtained in this way was reorganized into several different tables
(see below), to show a number of statistical differences between Inception
V1 and Inception V3’s performances.

To examine whether the difference in accuracy between Inception V1
and Inception V3 was statistically significant, we performed McNemar’s test,
using the contingency table below (see Table 6.1).

V1 Correct V1 Incorrect Total

V3 Correct 35 14 49

V3 Incorrect 8 7 15

Total 43 21 64

Table 6.1: A contingency table showing the results of using Inception V1 and
Inception V3 to predict whether embryos were transferred or discarded.

The McNemar test statistic (Chi-square statistic value, with 1 degree
of freedom) is used most often to calculate the statistical significance of
the difference in performance between the two classifiers. However, if the
sum total of occasions where the classifiers disagree is less than 25, this
is inaccurate. Here, this sum total is 8+14=22. Therefore, we instead
used McNemar’s Chi-squared test with continuity correction, as proposed by
Edwards [5]. With a significance threshold α of 0.05, this test revealed that
the classifiers make errors in similar proportions, only on different instances
of the test set (χ2(1, N = 64) = 1.14, p > α).

However, the neural networks did respond differently to ‘poor-quality’
(not transferred) embryos, as shown in Table 6.2.

V1 Correct V3 Correct

good 21 22

poor 22 27

Table 6.2: A table showing the number of correctly classified images by both In-
ception V1 and Inception V3, per class.

Inception V1 and Inception V3 were similarly good at identifying a
‘good-quality’ (transferred) embryo correctly (66% and 69% accuracy, re-
spectively), but Inception V3 was better at identifying ‘poor-quality’ (not
transferred) embryos correctly, with 85% accuracy where Inception V1 had
67%.
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Overall, both networks created a slightly skewed divide. Inception V3
classified a total of 27 images as ‘good’, and 37 as ‘poor’. Inception V1
divided the embryos more evenly, with 31 being classified as ‘good’ and 33
as ‘poor’.

As shown in the contingency table (Table 6.1), Inception V1 and In-
ception V3 were both incorrect in seven cases. These seven embryos are
pictured in Figures 6.5 and 6.6. Notably, nearly half of these incorrectly
classified embryos were located at the edge of their petri dishes, resulting in
dark corners. This only occurred in 10.9% of the images in the dataset (7
out of 64).

Figure 6.5: The four embryos incorrectly labeled ‘poor’ by both Inception V1 and
Inception V3.

Figure 6.6: The three embryos incorrectly labeled ‘good’ by both Inception V1 and
Inception V3.
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Chapter 7

Discussion

Both Inception V1 and Inception V3 outperformed STORK, which was ex-
pected. STORK had been trained for a dataset containing images of five-
day-old embryos divided into ‘good-quality’ and ‘poor-quality’, where the
embryos in our dataset were labeled more ambiguously (‘transferred’ and
‘not transferred’) and were only three days old. The datasets were simply
too dissimilar for STORK to make accurate predictions. However, in May
2020, the MCK Fertility Center switched from transferring embryos back
to the intended mother after three days of incubation, to transferring them
after five days. As the STORK framework was intended for classifying five-
day-old embryos, and the dataset used for this thesis only contained three-
day-old embryos, it is possible that the accuracy of STORK will increase
when testing it on the embryos created after this switch. More research is
needed to evaluate the effects of this change on the performance of all three
of the networks used in this thesis.

Inception V3 had a higher accuracy than Inception V1, with 78% and
68%, respectively. However, they made similar mistakes, as shown by McNe-
mar’s test, meaning that this difference is not statistically relevant. There-
fore, their results will be discussed jointly.

Both Inception V1 and Inception V3 classified more embryos as ‘poor’
than ‘good’. This produces a skewed divide, although the original dataset
had an equal divide. However, this skewed result may not be as incorrect as
it seems at first glance. As mentioned before, the MCK Fertility Center’s
clientele is older than average, which suggests that the embryos they produce
will, on average, be lower-quality. Therefore, the likelihood of poor-quality
embryos being transferred is higher than that of high-quality embryos not
being transferred. It is possible that the high number of embryos being clas-
sified as poor is because they really are relatively poor in quality. However,
more research is required to investigate this possibility, potentially including
the patients’ age and/or whether the embryo transfer resulted in a successful
pregnancy.
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Keeping in mind that neural networks usually require several hundreds of
images when transfer training, like we did, and several thousands of images
when training from scratch, it can be safely said that our 64-image dataset
was very, very small to attempt this kind of research with. This means
that the results of our research have limited generalizability, which could be
improved with further research by including a larger dataset.

Although the 78% accuracy we obtained with Inception V3 is not as high
as the original developers of STORK obtained with their framework, it is
surprisingly good when taking the aforementioned difficulties into considera-
tion. Therefore, we conclude that using neural networks to classify embryos
is most likely a viable option for the MCK Fertility Center. Future research
is needed to observe the impact of having more data available, although we
expect accuracy to improve quickly if more training data is available.
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Chapter 8

Conclusions

The aim of this thesis was to examine the viability of using neural networks
to classify embryos based on quality for the MCK Fertility Center. Based on
the evaluation of the performance of three different structures (the STORK
framework, Inception V1 and Inception V3), it can be concluded that neural
networks are a potentially viable addition to the selection procedure.

The results indicate that Inception V3 is the most accurate, with an
accuracy of 78%. Although this is not accurate enough to be included in
the selection procedure as-is, obtaining such a high accuracy even with a
small dataset shows that there is the potential for better results. This re-
search raises the question of how accurate embryo classification using neural
networks could be, if a larger dataset were available.

To better understand the implication of this research, future studies
could address the comparative accuracy of these neural networks now that
the MCK Fertility Center has switched to using five-day-old embryos for
transfer. Especially STORK might be reconsidered, as that used five-day-
old embryos during its training phase.

The field of embryonic quality assessment using neural networks is still
in its infancy; there is little existing literature in this niche field of exper-
tise. This thesis is the first study to examine the potential of using neural
networks in this area in the Netherlands, although it will certainly not be
the last.

25



Bibliography

[1] Ivf cijfers 2018 per kliniek. https://www.degynaecoloog.nl/

wp-content/uploads/2019/12/IVF-cijfers-2018-per-kliniek.

pdf, December 2019.

[2] Michael David Abràmoff, Yiyue Lou, Ali Erginay, Warren Clarida,
Ryan Amelon, James C. Folk, and Meindert Niemeijer. Improved auto-
mated detection of diabetic retinopathy on a publicly available dataset
through integration of deep learning. Investigative Opthalmology & Vi-
sual Science, 57(13):5200, October 2016.

[3] Charles L. Bormann, Prudhvi Thirumalaraju, Manoj Kumar
Kanakasabapathy, Hemanth Kandula, Irene Souter, Irene Dimitriadis,
Raghav Gupta, Rohan Pooniwala, and Hadi Shafiee. Consistency and
objectivity of automated embryo assessments using deep neural net-
works. Fertility and Sterility, 113(4):781–787.e1, Apr 2020.

[4] Maureen Caudill. Neural networks primer, part i. AI Expert,
2(12):46–52, December 1987.

[5] Allen L. Edwards. Note on the “correction for continuity” in testing
the significance of the difference between correlated proportions. Psy-
chometrika, 13(3):185–187, September 1948.

[6] Craig Niederberger et al. Forty years of IVF. Fertility and Sterility,
110(2):185–324.e5, July 2018.

[7] E. Santos Filho, J.A. Noble, M. Poli, T. Griffiths, G. Emerson, and
D. Wells. A method for semi-automatic grading of human blastocyst
microscope images. Human Reproduction, 27(9):2641–2648, June 2012.

[8] Suzana Herculano-Houzel. The human brain in numbers: a linearly
scaled-up primate brain. Frontiers in Human Neuroscience, 3, 2009.

[9] Ilse Arwert GitHub. https://github.com/ilse-arwert/thesis.

[10] P. Khosravi, E. Kazemi, Q. Zhan, et al. Deep learning enables robust
assessment and selection of human blastocysts after in vitro fertiliza-
tion. npj Digital Medicine, 2(1), Apr 2019.

26



[11] Nick S. Macklon, Richard L. Stouffer, Linda C. Giudice, and Bart C.
J. M. Fauser. The science behind 25 years of ovarian stimulation for in
vitro fertilization. Endocrine Reviews, 27(2):170–207, April 2006.

[12] Masoud Mahdianpari, Bahram Salehi, Mohammad Rezaee, Fariba Mo-
hammadimanesh, and Yun Zhang. Very deep convolutional neural net-
works for complex land cover mapping using multispectral remote sens-
ing imagery. Remote Sensing, 10:1119, 07 2018.

[13] G PALERMO. Pregnancies after intracytoplasmic injection of single
spermatozoon into an oocyte. The Lancet, 340(8810):17–18, July 1992.

[14] PerceptiLabs. https://blog.perceptilabs.com/.

[15] Dina Ragab, Maha Sharkas, Stephen Marshall, and Jinchang Ren.
Breast cancer detection using deep convolutional neural networks and
support vector machines. PeerJ, 7:e6201, 01 2019.

[16] P.C. Steptoe and R.G. Edwards. BIRTH AFTER THE REIMPLAN-
TATION OF A HUMAN EMBRYO. The Lancet, 312(8085):366, Au-
gust 1978.

[17] STORK GitHub. https://github.com/ih-lab/STORK.

[18] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. 2014.

[19] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for com-
puter vision. CoRR, abs/1512.00567, 2015.

[20] TensorFlow GitHub. https://github.com/tensorflow/tensorflow.

[21] Sik-Ho Tsang. Review: Googlenet (inception v1)- winner of ilsvrc 2014
(image classification), Jun 2019.

[22] L.L. Veeck and Nikica Zaninovic. Grading criteria for human blasto-
cysts. An Atlas of Human Blastocysts, 118, 01 2003.

27



Appendix A

Appendix
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A.1 Inception V1 Architecture

Figure A.1: The architecture of Inception V1. Adapted from [21].
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A.2 Inception V3 Architecture

Figure A.2: The architecture of Inception V3. From [12].
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A.3 Results of V1 and V3

‘+’ indicates that the image was classified correctly, and ‘-’ the opposite.

Image ID V1 V3

goodA + +

goodB + +

goodC + +

goodD - -

goodF + +

goodG + -

goodH + +

goodI - -

goodJ + -

goodK + +

goodL + +

goodM - +

goodN + +

goodO - -

goodP + -

goodQ + +

goodR + +

goodS + +

goodT + -

goodU + +

goodV + -

goodW - +

goodX - +

goodY - +

goodZ + +

good1 + +

good2 - -

good3 + +

good4 + -

good5 - +

good6 - +

good7 - +

Image ID V1 V3

poorA + +

poorB - -

poorC + -

poorD - +

poorE + +

poorF + +

poorG + +

poorI + -

poorJ - +

poorK + +

poorL - -

poorM - +

poorN - +

poorO + +

poorP + +

poorQ + +

poorR + +

poorS + +

poorT + +

poorU + +

poorV + +

poorW + +

poorX + +

poorY + +

poorZ - -

poor1 - +

poor2 + +

poor3 + +

poor4 + +

poor5 - +

poor6 + +

poor7 - +
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