
Bachelor thesis
Computing Science

Radboud University

Security by design in Azure
DevOps pipelines, a case study at

SpendLab technology

Author:
Jesse van Son
s4601262

Company supervisor:
Msc. Stijn Oostdam
stijn.oostdam@spendlab.nl

First supervisor/assessor:
prof. dr. ir. Joost Visser

j.visser@cs.ru.nl

Second supervisor:
dr. ir. Erik Poll

erikpoll@cs.ru.nl

March 22, 2020

Abstract

This research investigates the impact of adding security tools in CI pipelines
on “security by design” in software development. There are multiple ways of
improving security by design in CI pipelines, and there is existing research
in this area. However, not much research is done about actually measuring
the improvements made.

This thesis starts off with a systematic review of existing approaches, where
we conclude that static application security testing and open source security
scanning are both methods used in CI pipelines to improve security by de-
sign. Secondly, we construct a Goal-Question-Metric model for measuring
security improvements achieved by such pipeline extensions.

Finally, we conduct a case study at SpendLab Technology to test the model
and evaluate how much security improved. For this case study software
applications written in the .NET framework were measured. Azure DevOps
was used for pipeline management. The software programs used for security
scanning were WhiteSource Bolt and SonarQube. We collected measurement
data generated by applying these tools to the software applications. We also
interviewed the developers using them. From the case study, we learned
that there are many practical obstacles that hinder the adoption of these
security tools. While security improvements were detected, quantification
of the improvements proved difficult, possible due to the limited scope and
duration of the case study.

Contents

1 Introduction 4
1.1 Problem statement . 4
1.2 Research goal . 5
1.3 Research questions . 5
1.4 Thesis outline . 6

2 Preliminaries 7
2.1 Build pipelines . 7
2.2 Azure DevOps . 7

2.2.1 Branches . 8
2.2.2 Commits and Pull Requests 8
2.2.3 Git Tag . 8

2.3 NuGet packages and dependencies 8

3 Systematic review of existing approaches 9
3.1 Options for improving security in CI pipelines 9

3.1.1 Static application security testing 9
3.1.2 Open source security vulnerabilities check 11
3.1.3 Dynamic application security testing 12
3.1.4 Unit testing . 12

3.2 Overview . 13

4 Measuring improvement of security 14
4.1 Goal question metric template 14
4.2 Goal . 15
4.3 Questions and corresponding metrics 15

4.3.1 Question: Are security problems detected with vul-
nerability scanning? 15

4.3.2 Question: Are security problems detected by the scan-
ning useful? . 17

4.3.3 Question: Do the security problems detected by the
scans have effect? . 18

4.4 Conclusion . 20

1

5 Case Study at SpendLab Technology 21
5.1 Research Methodology . 21
5.2 Evaluation of current pipelines in SpendLab Technology . . . 22
5.3 Setting up the case study . 22

5.3.1 Additions to pipelines 23
5.3.2 Final pipeline definitions 27
5.3.3 Timeline of case study 27
5.3.4 First Meeting - 21 November 2019 28
5.3.5 Second Meeting - 11 December 2019 28

5.4 Measuring Security by Design Improvement 29
5.4.1 Metrics from GQM model 29
5.4.2 Questions from GQM model 35
5.4.3 Goal from GQM model 37

5.5 Impact on productivity . 37
5.5.1 Time measurements from Azure 38
5.5.2 Interviewing developers 39
5.5.3 Conclusion . 39

5.6 Completeness of measurements 40

6 Related Work 41
6.1 Existing research on security in pipelines 41

6.1.1 Evaluation and comparisons of tools 41
6.1.2 Surveys on SAST . 42
6.1.3 Fault proneness SonarQube 42
6.1.4 Research on OSS . 43

6.2 Delayed issue effect . 43
6.3 Security of the pipeline itself 43

7 Conclusions 45
7.1 Methods for measuring security by design improvement . . . 45
7.2 Measuring security improvement at SpendLab 46
7.3 Recommendations for practitioners 47

8 Future Research 49
8.1 Performing more case studies 49
8.2 Dynamic Application Security Testing 49
8.3 Code quality improvement using SonarQube 49
8.4 Economics of security in CI pipelines 50
8.5 Optimizing SAST scanning 50

A Appendix: OWASP versus WhiteSource 53

B Appendix: Pipelines technical explanation 55
B.1 SpendLab Technology pipelines technical explanation 55

2

B.2 Final pipeline definitions . 56
B.2.1 APRA Quickbuild.yml 57
B.2.2 APRA BuildForRelease.yml 57
B.2.3 Build-Framework-Solution.yml 57

C Appendix: SonarQube setup 58
C.1 Configuration SonarQube . 58
C.2 Disabled rules in SonarQube 59

D Appendix: Interviews at SpendLab 60
D.1 SonarQube interviews . 60

D.1.1 Questions . 60
D.1.2 Developer 1 . 61
D.1.3 Developer 2 . 62
D.1.4 Developer 3 . 63
D.1.5 Developer 4 . 64
D.1.6 Developer 5 . 65

D.2 WhiteSource interview . 67
D.3 Extra interview questions . 68

3

Chapter 1

Introduction

1.1 Problem statement

SpendLab recovery has been conducting recovery audits for its public and
private clients for decades. Such recovery audits discover incorrect cash-
flows by manual analysis, involving large datasets with privacy sensitive
data. SpendLab Technology, a subsidiary of SpendLab Recovery, is cur-
rently automating the recovery process. This involves a substantial software
development effort. At SpendLab, Azure DevOps is used to manage the
software team. The pipelines are defined using YAML files and are also
managed from Azure DevOps.

Because of recent worldwide developments in privacy law and more general
awareness of cyber security, it is of utmost importance for software devel-
opment teams to develop secure software [10]. Developing secure software
is in itself a very broad statement, and there are many things that need
to be taken into account to make the claim that software is objectively
secure.

A trend in developing secure software is security by design. This means that
security should be taken into account while developing, and not in hindsight
after the development process. If for instance a security flaw is discovered
later on when the software has already been taken into production, this flaw
will bring significantly more risk because attackers have had time to exploit
it. A general rule of thumb has long been that issues that get solved later
on in the development cycle are more costly to fix, but this is not always
the case. More on this is discussed in section 6.2.

4

1.2 Research goal

Security by design can be implemented in many ways, and there are a mul-
titude of options for companies to assure their company adheres to security
by design principles. One of these options is extending the CI pipelines with
security scanning. The pipelines are used to continuously build and inte-
grate new parts of the software. An example of an extension in the pipeline
is scanning for security risks from outdated dependencies.

The goal of this research is to investigate how we can measure increases in
security by design when improving CI pipelines. There already has been
substantial research about trying to make software more secure by improv-
ing CI pipelines [7][11][19]. There is, to our knowledge, not much research
on to what extent additions in pipelines have effect. This thesis will be
about a research problem in design science. It aims to answer a knowledge
question about security by design in CI pipelines in the context of software
companies.

1.3 Research questions

At SpendLab technology, continuous integration tools like build pipelines
are used. The goal as stated in section 1.2 leads to the following research
question:

RQ: To what extent can security by design be improved through inserting
security checks into CI pipelines?

To answer this question, some way of measuring security improvements must
be developed. For this we have a sub-question:

RQ.a: How can security by design improvement through inserting security
checks in CI pipelines be measured?

We will also study whether such security checks are actually improving the
security using our measurement method developed in RQ.a.

RQ.b: Can increases in security by design through improving CI pipelines
actually be measured in practice?

RQ.b will be answered through a case study at SpendLab technology.

5

1.4 Thesis outline

In chapter 2, the preliminaries are discussed, which are needed to under-
stand this research. Then, in chapter 3 there will be a systematic review
of existing approaches, which will provide a lot of background information
and foundation for the research in measuring improvements. In chapter 4,
we provide research on how to measure improvement. Then, chapter 5 dis-
cusses a case study conducted at SpendLab technology using the findings of
chapter 4. Chapter 6 contains related work. Finally, chapter 7 finishes with
a conclusion and chapter 8 contains potential future research.

6

Chapter 2

Preliminaries

This chapter describes some terms used throughout this thesis that may not
be known to every reader. If you know about the terms this chapter can be
skipped.

2.1 Build pipelines

As mentioned in the introduction, Azure DevOps CI/CD (Continuous in-
tegration/Continuous Delivery) pipelines are used to manage building soft-
ware. Continuous integration means that new code is frequently integrated
with the existing code, for instance through Pull Requests which are ex-
plained later in this chapter. During this integration the code is compiled
to make sure nothing is broken, and sometimes running automated (integra-
tion) tests is also part of CI. Continuous Delivery means that there is always
a tested and working product ready to deploy. There are CD pipelines that
build and deploy the application to test servers automatically. Pipelines are
very powerful tools that can be extended to include much more functionality,
which is researched in this paper in the context of security.

2.2 Azure DevOps

Azure DevOps is software made by Microsoft to support software teams. It
is very similar to GitHub and is used by SpendLab Technology to manage the
team and the software they create. The functionalities used by SpendLab
include Git repositories, Pipelines, Agile Boards and Test Plans.

7

2.2.1 Branches

Within a Git project there is often one main branch of code where everybody
works from, this could be called develop. Developers can create new branches
based on this develop branch, and write new code there. When the new
code is done, they can merge their branch with the develop branch. This
is mainly done so multiple programmers can work simultaneously on one
application.

2.2.2 Commits and Pull Requests

Commits and Pull Requests are ways of uploading code to the Git server at
Azure DevOps. A commit is done to a branch, and you upload part of the
code to the server when you push the commit. Pull Requests are made to
merge two branches. If a developer wants to merge his branch with the main
develop branch, he creates a pull request. This pull request can be reviewed
by colleagues to check the work according to the four eye principle. If all
code is deemed correct the pull request can be accepted.

On every commit or pull request it is possible to run a pipeline, this pipeline
could for instance build and test the code.

2.2.3 Git Tag

Commits in Git can be tagged by a developer, this is mostly used to mark
the tagged point as important. Git Tags are used at SpendLab to mark a
release. A pipeline can be triggered on a specific commit by tagging that
commit.

2.3 NuGet packages and dependencies

In essence, NuGet is a platform for developers to create, share and consume
code and is created by Microsoft for .NET. In the context of this thesis,
NuGet is a package manager that manages dependencies for SpendLab Tech-
nology. If a package is installed for a project, NuGet automatically installs
other packages that are needed for the first package. All these packages are
dependencies of a project.

8

Chapter 3

Systematic review of existing
approaches

In this chapter, a systematic review of possibilities for inserting security
checks into CI pipelines will be conducted. The possibilities mentioned in
this chapter all have some relevance to security by design.

3.1 Options for improving security in CI pipelines

There are multiple ways to improve Security by Design, but in this thesis
the focus will be on security by design improvement in CI pipelines. In
figure 3.1 an overview is given of the options for security in the development
process, of which the CI pipeline is a part, at SpendLab Technology. At the
end of this chapter, a choice will be made between which security validation
methods will be included in this research.

First, static application security testing (SAST) will be discussed. Then
we will look at open source security vulnerabilities (OSS). We will also dis-
cuss the options for dynamic application security testing (DAST) and unit
testing. Integration testing is omitted because the relevance to security is
deemed low, and it is mostly used in the CD part of pipelines.

3.1.1 Static application security testing

Static Application Security Testing is one way of testing for application
security in CI pipelines. A SAST tool works on the principle of white box
testing, the tool has all the code and can analyse the given code to see if any
paths bring security risks with it. SAST scanners can help with discovering

9

Figure 3.1: Options for adding security validations in the development pro-
cess by Microsoft [1]

bugs or vulnerabilities early, so they can be resolved before releasing. These
scanners can be implemented in the pipelines, but can also be executed
within the IDE by a developer.

Disadvantages

One of the main disadvantages of scanner tools like these are false pos-
itives [11]. It is difficult to find a balance between showing all possible
errors, and not showing false positives. Naturally, a tool wants to give all
possible security flaws by showing as many potential errors as possible, but
this comes with a risk of showing more false positives. The danger in false
positives with a SAST tool might be that eventually developers take the
tool less serious. Weeding through false positives takes time and is a tedious
task.

Options

OWASP has a compiled list with all options for SAST Solutions [5]. For the
case study, Azure DevOps and C# will be used, so our main options are
limited to the following well known tools:

• Puma Scan

• SonarQube

10

• Checkmarx

• Veracode

For the case study, SonarQube was chosen as the SAST scanner.

3.1.2 Open source security vulnerabilities check

Open Source Software (OSS) has long been seen as very secure, because
everybody can check the source code. However, blind trust in Open Source
Software is never a good idea. In a study conducted by Guido Schryen [21]
it was concluded that: ”open source and closed source software development
do not significantly differ in terms of vulnerability disclosure and vendors’
patching behavior, a phenomenon that has been widely assumed, but hardly
investigated.” This makes clear that open source software is not necessarily
more secure than closed source software.

It is clear that open source software cannot be trusted blindly, this is why a
vulnerability check for open source software is an option for the development
cycle. These OSS security scanners work by looking at all the packages used
by an application, for instance NuGet packages in .NET, and compare the
versions to their databases. These databases contain known vulnerabilities
for dependencies. If there are known vulnerabilities, this is brought up by
the scanner.

Disadvantages

The biggest disadvantage with these scanners is again false positives. For
the same reasons as named in section 3.1.1, false positives are a big deciding
factor for determining the quality of an OSS tool. These false positives could
be that vulnerable packages are found, but the actual vulnerable parts are
never used in the code.

Another decision that has to be made when using this software is when to
scan for packages. One possibility is to scan the final built solution, where
a scanner will only find the libraries (.dll files) that will be used. Another
possibility is scanning the whole source directory of a project. If the whole
directory is scanned, the scanner will not be sure if all found dependencies
are actually used. This is because frameworks like .NET bring a lot of
dependencies and packages, which might in the end not be used by the
compiled code. If we scan the compiled solution, we will only find packages
that are actually used, but we will also miss a lot of other potential unsafe
dependencies. This is because the front end packages, for instance bootstrap,
are not added through .dll files. These front end JavaScript packages are

11

just added as files to the solution, and thus are not found when scanning
the compiled solution.

Options

SpendLab technology uses NuGet to manage packages. From the options
found there are two not too expensive possibilities that integrate with Azure
DevOps and support NuGet. These options are WhiteSource Bolt [6] and
OWASP dependency check[4]. In the case study we decided to go with
WhiteSource Bolt, for which a reasoning can be found in Appendix A. In
short, OWASP returned many false positives and found less true positives
than WhiteSource Bolt.

3.1.3 Dynamic application security testing

Dynamic application security testing (DAST) is a form of black box test-
ing. White box testing, for instance SAST scanners, have the source code
available to scan. DAST tools finds vulnerabilities by actually performing
attacks on the compiled code. DAST tools can make an addition to SAST
tools, to have a more complete automated security testing package.

Disadvantages

A DAST scan does not necessarily find all vulnerabilities, it just tries a
predefined list of attacks on the known attack surface by the scanner. From
recent research conducted in 2018, where tools were tested against a test
project from OWASP, we can see that not even close to all issues were
found by DAST scanners [16]. They do help with finding some issues and
make a start to developing a more secure application, as can be seen in the
cited research.

Options

There are a multitude of options listed by OWASP [2]. Almost all of them
are commercial, but we found the most documentation and research on the
OWASP Zed Attack Proxy (ZAP) project.

3.1.4 Unit testing

Unit testing can also be important for security. Unit tests make sure that
for every code path, the correct results are given. This could be relevant to

12

security, if for instance a user must have certain privileges to access data.
If an application does not have unit tests, it might be harder to fix security
issues because you do not know if you are breaking any functionality when
applying the fix.

Most companies have some policy that unit tests have to be written for spe-
cific parts of code, and the correctness and completeness is mostly checked
in the review process. The completeness of unit tests could however often
be overlooked, and that is where unit test coverage scanners come into play.
These scanners can analyse if all code paths are tested in some way. It can,
however, not tell if the method of testing shows that it is secure. Because of
this, and to limit the scope of this thesis, we decided not to take unit testing
into account.

3.2 Overview

Multiple options for security by design have been discussed. Table 3.1 gives
an overview of the possibilities and at which stage of the pipeline they can
be applied. The approval stage is the stage where the lead developer gives
the green light for the application to go to the test servers. The test servers
are used by the testers to test new functionality and report back with issues
before the application goes to production.

CI CD

Build pipeline Approval stage Test servers

Unit Tests x x

SAST x x

OSS vulnerability x x

DAST x

Table 3.1: Overview of security options in CI/CD pipeline

The build pipeline and approval stage are on the side of continuous integra-
tion, and the test servers are on the side of continuous delivery. Because
the scope of this thesis is only concerned with CI and security related tests,
we will only look at SAST and OSS vulnerabilities. Unit Tests are omitted
because only automated coverage testing is not deemed security relevant
enough.

Now that the ways of adding security to CI pipelines have been discussed,
the next chapter will concern itself with finding a way to measure security
improvement in our CI pipelines.

13

Chapter 4

Measuring improvement of
security

To be able to quantify security improvement, we first need to research a
method of measuring security improvements. There are multiple ways to
structure this, and we have chosen to create a Goal Question Metric (GQM)
model to show how improvement can be measured [8]. A GQM model
starts with a template to specify the goal, then questions are formulated
that can be used to answer the goal. Finally, metrics are coupled to these
questions.

4.1 Goal question metric template

For the GQM model, we will first create a template like given in [8]. The
template for our GQM model is given in table 4.1.

Purpose Improve

Issue the security by design

Object through security scanning in the CI pipeline

Viewpoint From the technical manager’s viewpoint

Table 4.1: GQM template

The purpose from the viewpoint of the technical manager within SpendLab
Technology is improving the security by design through security scanning
in the CI pipeline. The objective of this research is to measure if we are
actually improving security by design.

14

4.2 Goal

Using table 4.1, a goal can be formulated, from which the questions and met-
rics will origin. The goal of this model will be: Improvement of security
validation in CI pipelines. This will be looked at from the technical man-
ager’s viewpoint. At SpendLab, the technical manager is responsible for the
security of the delivered product. He must be able to defend that security by
design has been considered and has been improved by the implementation
of different tools in the CI pipelines.

4.3 Questions and corresponding metrics

To answer the main goal, several sub-questions are needed. These sub-
questions can be coupled to one of the extensions added to the CI pipeline
described in chapter 3. The questions are all described in subsections of this
chapter. To answer the questions, metrics are needed. The metrics needed
to answer one of the questions are described together with the question. A
graphical overview of the GQM model is given in in figure 4.1.

A symmetry between the first and last column can be seen, where the first
question row concerns vulnerable libraries, the second question row concerns
outdated libraries, and the final row concerns internal vulnerabilities.

4.3.1 Question: Are security problems detected with vulner-
ability scanning?

The first question might be obvious, but is necessary to say something about
security improvement. If no problems are caught by the scanner, we need
to evaluate if the application is perfect, or if there might be false nega-
tives.

Metric: Number of vulnerable libraries discovered by OSS scan-
ner

To say something about caught problems by scanning, we can look at the
number of vulnerable libraries found by the OSS scanner. A higher number
of vulnerable libraries would logically indicate that the scanned application
is less secure.

15

Figure 4.1: Goal Question Metric diagram

Metric: Number of outdated libraries discovered by OSS scan-
ner

Outdated libraries can also be a security risk. A study by Cox et al. shows
that systems with many outdated libraries are more than four times as likely
to contain security issues [12]. This is because outdated libraries are more
likely to have vulnerabilities for which exploits have been developed.

Metric: Number of vulnerabilities discovered by SAST scanner

For the SAST scanner to be perceived as useful, it must first actually find
vulnerabilities. If there are no vulnerabilities found, it might be that the
scanner does not do a proper job. It could also be that the application is
completely secure, which is highly unlikely.

16

4.3.2 Question: Are security problems detected by the scan-
ning useful?

The previous question in itself is not enough to answer the main goal. To
say something about actual improvement, we first have to determine if the
detected problems are useful. There are many metrics from the tools we
use which might be able to help answer this question, these are described
below.

Metric: Perceived usefulness of OSS scanning by developers

With this metric we want to measure how useful developers found OSS
scanning after using it for some amount of time. The metric will be answered
through a survey, using a Likert scale [18]. The statement is: ”OSS scanning
is useful within our company”, and the scale would have the options:

1. Strongly disagree

2. Disagree

3. Neither agree nor disagree

4. Agree

5. Strongly agree

Metric: Number of comments from SAST perceived useful by
developers

With this metric we want to measure how useful developers found SAST
scanning after using it for some amount of time. A SAST can place com-
ments on a pull request, which thus easily integrates with the CI process.
The usefulness could be answered by analyzing every comment from a SAST,
and having a developer evaluate the comment to useful or not useful. An-
other option is through a survey, using a Likert scale. This would be done in
the same fashion as above, but with the statement: ”The comments made
by the SAST are all useful”

Metric: General usefulness evaluation through interviewing devel-
opers

The two earlier metrics were part of a bigger interview, where some open
questions were asked to do qualitative research. This was done to obtain

17

more useful data, because there are only 6 developers working at the com-
pany used for the case study at the time of writing.

There are three options for conducting these interviews: structured inter-
views, semi-structured interviews and unstructured interviews. For the case
study in chapter 5, semi structured interviews will be conducted. this means
some questions will be prepared to spark discussion and get relevant feed-
back [18]. The asked questions are defined in Appendix D. The interview
starts with some questions about the experience and role of the interviewee,
and after that some more in depth questions about SonarQube or White-
Source Bolt.

4.3.3 Question: Do the security problems detected by the
scans have effect?

To answer the final goal, it is important to know if the detection of problems
leads to actual improvements. The first question answers if problems are
found and how many are found. From the second question, we know how
useful the found issues are. Finally, we need to look at the improvements
in the reports from OSS and SAST scans, and determine if the measures
taken in the CI pipelines have effect. The significance of these effects can
be answered using the previous question.

Metric: Improvement in vulnerable libraries between releases

Most OSS security scanners generate some form of a report. For OSS secu-
rity scanning WhiteSource Bolt is used in the case study. An example can
be found in figure 4.2.

If an issue is found, there is a severity level coupled to this issue. This
metric shows the number of issues found at every release, and shows trends
in number of issues over time. If issues are not solved, we must look into
why this is the case. If issues are resolved but new ones keep popping up,
there could be some research as to why there are new issues.

Metric: Improvement in outdated libraries between releases

As can be seen in figure 4.2, WhiteSource shows how many dependencies are
outdated. Outdated dependencies could be a security risk, because newer
libraries often feature security updates. It could be that security flaws in
outdated libraries are not yet found by OSS security scanners, these false
negatives are a big risk to security, because they could already be known by
attackers.

18

Figure 4.2: Example of part of a report generated by WhiteSource Bolt

With this metric, a trend of improvement or stagnation can be shown. If
WhiteSource Bolt is implemented, it could be that there would be improve-
ment in the number of outdated dependencies. It could also be that this
does not happen, and more dependencies become outdated and nobody feels
obliged to update these libraries.

Metric: Improvement in SAST vulnerability reports between re-
leases

Most SAST tools generate some kind of report from a scan. This report
shows certain metrics, from which we can make conclusions on security im-
provement in general. For our Case Study at SpendLab technology we will
be using SonarQube as a SAST. An example of a SonarQube report gener-
ated is shown in figure 4.3.

There are 4 sections in the dashboard: bugs and vulnerabilities, code smells,
coverage, and duplications. For security by design, we will mostly be looking
at the bugs and vulnerabilities section. This metric will be answered by
creating a zero measurement, described in the case study. From there scans

19

Figure 4.3: Main dashboard of a project analyzed by SonarQube

will be done at every release, and we can try to extract a trend from these
figures.

4.4 Conclusion

We now formulated a goal, which we will answer through our identified
questions and metrics. This GQM metric model was created to answer
RQ.a: How can security by design improvement by inserting security checks
in CI pipelines be measured? In the next chapter this GQM model will be
used to answer if security is improved at SpendLab Technology.

20

Chapter 5

Case Study at SpendLab
Technology

The previous two chapters described the options for taking security mea-
sures in the CI pipeline, and how to measure security improvement. Now
this builds up to this case study, where we will try to measure security
improvement at SpendLab Technology.

SpendLab Technology is a software team working for SpendLab Recovery,
and creates workflow software to analyze financial data. At SpendLab Tech-
nology, Azure DevOps is used to manage the software team. The pipelines
are defined using YAML files and are also managed from Azure DevOps.
The main application created by SpendLab Technology is Advance Payable
Recovery Audit (APRA) together with the Database Quality Gate (DBQG),
APRA is the front end and the DBQG is used for back end processing. This
case study will focus on APRA and the DBQG, but the developed methods
can later be used on other software projects at SpendLab Technology or any
other company.

5.1 Research Methodology

An embedded case study will be conducted, which means that the case
study contains more than one sub unit of analysis in the same context. The
context is SpendLab Technology, the case is the improvements in the CI
pipelines, and the sub units of analysis will be APRA and the DBQG [20].
The main research question for this case study will be: can increases in
security by design through improving CI pipelines actually be measured in
practice?

21

5.2 Evaluation of current pipelines in SpendLab
Technology

Before the changes made with this thesis, with every commit or pull request,
APRA and DBQG run a QuickBuild to check if the application builds on
the server and if all unit tests are successful. A graphical overview can be
found in figure 5.1.

Figure 5.1: QuickBuild of APRA or DBQG

If a commit or pull request is tagged with a git tag called ”workflow” for
APRA or ”dbqg” for the DBQG, which is mostly done on the main develop
branch, the Build for Release pipeline will run. After running the pipeline
the release process is started. This is visually displayed in figure 5.2. Af-
ter the last acceptance phase, the new version of the software is sent to
production.

Figure 5.2: Build for release of APRA and DBQG

The exact way the QuickBuild.yml and BuildForRelease.yml work at Spend-
Lab is described in Appendix B.

5.3 Setting up the case study

Now the current state of affairs at SpendLab is explained, the set up of the
case study is layed out here. First, it is shown how security checks have
been added to the pipeline. Then a timeline is given of the case study, and
last there is a report on how two meetings went where the additions to the
pipelines were discussed.

22

5.3.1 Additions to pipelines

From chapter 3, it is concluded that we will be adding a SAST scanner and
OSS scanner. For the SAST tool SonarQube Developer edition was selected,
this was chosen because people within SpendLab Technology already had
experience with this tool. The tool is also inexpensive and easy to use
and integrate with Azure DevOps. For our OSS security scanning we chose
WhiteSource Bolt. A reasoning for why we chose WhiteSource can be found
in appendix A.

About SonarQube

SonarQube is a well known software quality scanner. It has multiple uses,
and combines all in a dashboard with an intuitive overview. We set up
SonarQube on a Azure Virtual Machine, using a Microsoft SQL studio
database.

How SonarQube works

There are multiple ways to integrate SonarQube into the development pro-
cess. We could manually scan the application from time to time. With the
developer edition we can scan with every pull request, or we can scan with
every build for release. In figure 5.3, a visualization is shown of where the
scans will be done. The SonarQube scans will be ran for pull requests and
release builds. This is done by using a trigger in the QuickBuild, which
only runs the SonarQube related steps on a pull request. More technical
explanations can be found in Appendix B.

Figure 5.3: Figure showing where SonarQube is triggered in the CI process

23

Exclusions in analysis

With SonarQube, it is possible to exclude certain parts of a solution from
analysis. At SpendLab the folders with JavaScript libraries are excluded,
because these are not maintained by SpendLab and it saves lines of code to
scan. The migrations folder is also excluded, because this is automatically
generated code. These exclusions also save some time by not scanning the
code.

Useful rule set

Rules are used by SonarQube to determine if some piece of code is an issue.
SonarQube has a standard rule set called the sonar way. This contains all
rules SonarQube deems useful, but some rules might not be found necessary
by the developers at SpendLab Technology. If this is the case, we will
dynamically create a new rule set tweaked for use at SpendLab Technology.
This new rule set is called the SpendLab way.

Rule types and severity

SonarQube distinguishes three types of issues: bugs, vulnerabilities and code
smells. For every rule it is categorized in one of these issues, and a severity
tag is given to the rule. The severity tag has the following options:

1. Info

2. Minor

3. Major

4. Critical

5. Blocker

The category and the severity of a rule are customizable for every rule by
the user. This was not done for this research, because it was not needed and
would not have influenced the results significantly.

SonarQube caveats

While using SonarQube at SpendLab, some caveats were found that hamper
the measurements for this case study. In section 4.3.2, we described a metric
used to measure how serious developers take SonarQube comments. The first
plan was analyzing all comments placed by SonarQube on pull requests, and
see if developers resolve these comments or if they resolved them as won’t

24

fix. If developers did not want to fix a problem, we would ask them to
explain why in a comment. This information would be used to disable rules
that SpendLab found unnecessary. Ideally, a percentage of comments taken
serious by developers could be made from this. Because of shortcomings of
SonarQube this was not possible. Not all problems found by the scanner
were actually commented, which might be a result of the API not allowing
that many comments by an external source.

Figure 5.4: Figure showing the workaround for SonarQube not placing all
comments

This issue was solved by automating a comment with the REST API of
Azure DevOps, the comment shown in figure 5.4 is placed on every pull
request. This way developers can easily find all issues, which can be used
as a workaround. The comment is placed as a resolved comment, so the
comment does not interfere with completion of a pull request. When looking
at the GQM model, this does influence the question: ”Are security problems
detected with vulnerability scanning?”. Problems are found, but not always
properly reported.

Another problem was that when a problem is solved in a pull request before
it is merged to the main branch, SonarQube deletes this issue and never
counts it as one of the issues on the main branch. This made it very hard
to backtrack the problems found by SonarQube. An example can be found
in figure 5.5. This is a branch analysis of a pull request related to user
management with 193 file changes. As can be seen, 4 vulnerabilities were
found. The hard coded password vulnerabilities were deemed false positives,
and the tainted data that was logged is fixed with a sanitize function.

Because SonarQube does not log issues fixed in the pull request, it is hard
to measure all solved issues for this research. This caveat influences RQ.b:
”Can increases in security by design through improving CI pipelines actually
be measured in practice?”. Because of this issue, measuring improvements
with SonarQube becomes difficult.

25

Figure 5.5: Figure showing 4 vulnerabilities found by SonarQube

Setting up WhiteSource Bolt

Our OSS check will only be ran after a build for release. This is because in
the scanned software systems there are almost no pull requests containing
new libraries, and the new libraries added are mostly not outdated. To
set up we installed WhiteSource Bolt [6], a convenient extension for Azure
DevOps that can be added to the YAML of a pipeline. It will automatically
run if a pipeline is triggered and then it will generate a report that can be
found in the Azure DevOps environment.

When WhiteSource Bolt scans the directory containing all source files, it
finds 678 dependencies to scan and 5 vulnerable ones. With only the folder
containing the compiled application we find 240 dependencies, and only 1
vulnerable package. A reasoning for this difference can be found in sec-
tion 3.1.2.

There has to be made a choice between these two options, and for now we
will use the whole sources directory and not only the publish folder. This
is done because otherwise we might not find critical security flaws in front
end JavaScript packages.

WhiteSource Bolt caveats

WhiteSource Bolt has some issues that influence this research. As mentioned
above, a lot of doubles are found by WhiteSource Bolt. One analysis from
the 10th of december on APRA found 680 vulnerable libraries. If we remove
all exact duplicates using the library name, we only have 401 libraries left.
After doing this there are still some more duplicates, for instance one .dll
file found and the same package as .nupkg file. WhiteSource support was
mailed, and they explained that NuGet dll’s are a unique case where the

26

same library can be resolved from different binary files which have the same
name and different hash values. This is because they are compiled under
different framework versions, and they are thus treated as different libraries
by WhiteSource. Because of the presence of duplicate findings, we can not
really put value in exact numbers measured by WhiteSource Bolt. We can
however look at the changes relative to earlier measurements.

Another caveat is that if WhiteSource should find false positives, we are
not able to suppress them using WhiteSource Bolt. Because of this and
the doubles, the WhiteSource Bolt interface is cluttered. This influences
the GQM model question ”Are security problems detected by the scanning
useful?”, because issues reported multiple times are not useful.

Lastly, WhiteSource does not find all front end packages. This is due to
SpendLab not using a package manager like NPM for front-end JavaScript
packages. Lodash and Handlebars are both examples of packages that were
vulnerable in APRA, but not found by WhiteSource Bolt. This influences
the GQM model question: ”Are security problems detected with vulnerabil-
ity scanning?”, because issues that could be there are not always found by
WhiteSource Bolt.

5.3.2 Final pipeline definitions

In section 5.2, we examined how the pipelines work at SpendLab. To im-
plement SonarQube and WhiteSource Bolt, we made some changes to these
pipelines. Performance was also taken into account, because performance
influences usability. The main change is that a SonarQube prepare and
scan task are added to both the QuickBuilds and BuildForReleases. The
QuickBuild used to be executed on every update of a branch and a pull
request, but running on every update was deemed unnecessary and this was
changed to only run on pull requests. The BuildForRelease also includes a
WhiteSource Bolt scan on the Sources folder. More technical changes and
the YAML files can be found in Appendix B.2.

5.3.3 Timeline of case study

First of all, baseline scans with SonarQube and WhiteSource Bolt were made
to have a reference point. The plan executed for measuring improvement
was to first start with a meeting. In this meeting a short presentation would
be held about SonarQube and WhiteSource, and how it is implemented
within our company. From there we would start using the software and
gather data for this research. The timeline of the research is visualized in
figure 5.6.

27

Figure 5.6: Timeline of events described in this case study

Within the company it was chosen to implement SonarQube and White-
Source for the DBQG later, to first make sure everything works correctly
on APRA. This is why the baseline scan for the DBQG is not at the same
time as APRA.

5.3.4 First Meeting - 21 November 2019

The first meeting was held on 21 November 2019, all six developers work-
ing on the software were present, except one who was briefed later. The
meeting went well, and there was one important point raised for this re-
search. WhiteSource seems to only find packages installed through NuGet,
and not all front end JavaScript dependencies. An example of this is the
JavaScript package Bootstrap. This is very important to take into account
for determining the scope and correctness of this research.

During the meeting, it became clear that developers were agreeing with the
issues found by the scanners. They saw it as a duty of notifying management
of these security risks, and seemed to be motivated to fix these problems.
To look into the effectiveness of just notifying developers, and not forcing
action, we decided to wait until the second meeting and see if anything
would happen.

5.3.5 Second Meeting - 11 December 2019

From the above meeting on, people were aware of the security flaws in
APRA. The comments placed in pull requests by SonarQube got resolved,
but not the backlog of problems already there. To continue on the previous
meeting, we wanted to discuss in a quick meeting how we would continue
with the current known issues. Here it became clear that the security prob-
lems have priority, and would be placed on the backlog. Because SpendLab
was working towards a big demo version of the application, fixing the Sonar-
Qube and WhiteSource problems got a lower priority. After the release of
this demo version, fixing security issues would get higher priority.

28

The decision to wait has been made because most of the security risks could
be mitigated, while the application is still only used within the company
and is not accessible for everyone.

5.4 Measuring Security by Design Improvement

Now that the set up of the case study is discussed, this chapter will look
into measuring the security by design improvement using the GQM model
constructed in chapter 4. First all metrics will be measured, then the ques-
tions will be answered using these metrics and finally we will try to reach
the goal of this measurement process.

5.4.1 Metrics from GQM model

To answer the three questions from our GQM model, all metrics defined
in chapter 4 will be measured here. Using figures we created from data
gathered at SpendLab, we will answer multiple questions.

Data from SonarQube

First, we can create a graph with number of issues over time. This graph,
for APRA, can be found in figure 5.7. There are some notable points in this
graph. The first date is the baseline scan. The point at the 5th of December,
which is marked in the graph, is the point where SonarQube is implemented
in the pipelines, so from here we would ideally expect that not a lot of issues
are introduced into the software.

After the 5th of December, many bugs seem to disappear. This is not always
because people were fixing issues found by SonarQube, but because we dis-
abled some rules used to scan the solution. The disabled rules can be found
in Appendix C.2. This does not threat the validity of this research, because
the disabled rules were only for code smells which are irrelevant to security.
There are not many issues added after the implementation of SonarQube,
except many code smells the 24th of December. This was because a large
pull request was merged, but not all code smells were resolved. The reason
for this was that not all comments were placed by SonarQube as described
in section 5.3.1.

The data for the DBQG can be found in figure 5.8, the data here is less
interesting because this is a smaller project with less development in the time
span of this case study. There is also no data from before the implementation
of SonarQube in the pipelines. From the 27th to the 29th, many issues have

29

(a) Bugs and code smells (b) vulnerabilities

Figure 5.7: Shows SonarQube statistics for APRA

disappeared. This is because big parts of unused code were deleted and other
parts of the application were refactored in one pull request. This was done
with help of SonarQube, thus there were no new issues introduced because
they were resolved in the pull request.

(a) Bugs and vulnerabilities (b) code smells

Figure 5.8: Shows SonarQube statistics for DBQG

In the figures we also included bugs and code smells. While these are less
relevant to security than vulnerabilities, they are still useful to study how
serious developers find the tool. If developers do not take bugs or code
smells serious, they are unlikely to take vulnerabilities serious.

Using these figures we can answer the following metrics:

1. Number of vulnerabilities discovered by SAST scanner:
SonarQube reports 5 vulnerabilities for APRA and 3 for DBQG.

30

2. Improvement in SAST vulnerability reports between releases:
There seems to not be much improvement outside of the disabled rules.
There is however a noticeable stagnation, not much new vulnerabilities
or bugs are added to the solutions. As mentioned in section 5.3.1, vul-
nerabilities solved in the pull requests are not counted in figure 5.7
and 5.8. Together with our observation from 5.3.1 on SonarQube
caveats, we can conclude that there is improvement in the handling of
security issues found in applications at SpendLab.

Perceived usefulness of comments placed by SAST

Because of the problems described in section 5.3.1 about SonarQube caveats,
this metric is answered through a Likert scale as described in section 4.3.2.
The interviews conducted and some more in-depth analysis can be found in
Appendix D. In figure 5.9 we see the results of our Likert scale.

Figure 5.9: Figure showing results of survey question about usefulness of
SonarQube security comments

From this survey, a conclusion can be made that developers at SpendLab
think that SonarQube comments are a useful addition to their workflow.
The developer that filled in don’t know explained that he did not know
enough about the SonarQube rule set and did not get enough comments
about security to answer this question properly.

31

Data from WhiteSource Bolt

For WhiteSource Bolt, graphs with results found over time can be found in
figure 5.10.

(a) Op to date and outdated libraries (b) Total number of vulnerabilities found in libraries

Figure 5.10: Shows WhiteSource Bolt statistics for APRA

(a) Op to date and outdated libraries (b) Total number of vulnerabilities found in libraries

Figure 5.11: Shows WhiteSource Bolt statistics for DBQG

As mentioned in section 5.3.1 about WhiteSource caveats, the absolute num-
bers in these graphs are inaccurate due to duplicates. The general trend
noticed in the graph is that the outdated libraries are growing in number,
which demostrates that nobody is actively monitoring these libraries. From
the 7th of January, it seems that the up to date libraries are growing in num-
bers. But this is only by a small amount, and the majority of dependencies
are still outdated.

Another observation is the improvement in the report of 17 January. This

32

is because one developer looked at the WhiteSource report and did an one-
time bulk repair effort. This resulted in the following change log in a pull
request for APRA and the DBQG:

• Update Microsoft.Data.OData to fix vulnerability CVE-

• Update jQuery to to fix vulnerability CVE-

• Update handlebars to to fix vulnerability CVE-

• Update Lodash to fix vulnerability CVE-

• Update Bootstrap and PopperJS

• Update jQuery validate

As explained in 5.3.1, Lodash and Handlebars were both vulnerable but
not found by WhiteSource Bolt. The developer fixing these issues knew
about them from his own private projects analyzed by GitHub’s built-in
security alerts for open source packages, where he did use a front-end package
manager.

The developer looking into these issues noted that some major issues found
were not directly in our own project, something obscure was is going on
within NuGet that we cannot directly solve. Also the vulnerability in OData
still pops up, while this library was updated.

When looking into the logs, it was found that WhiteSource Bolt still found
the older OData package on the build server. After verifying that this pack-
age was definitely gone locally, extra research was done on why WhiteSource
found the older packages. We found out that when a build is done on the
server, the SourcesDirectory is not automatically cleaned. More information
on how the build server exactly works can be found in Appendix B. After
setting up the pipelines to clean up the SourcesDirectory, 145 fewer packages
were found for the DBQG. The DBQG publish folder went from 406 to 251
mb. This does explain the dip in updated and outdated libraries shown in
graph 5.11 on the 30th of January. The same was tried for APRA, but this
did not yield significant results.

Using these graphs we can answer the following metrics:

1. Number of vulnerable libraries discovered by OSS scanner:
As was argued above, the number of vulnerable libraries is not exact
because of duplicates. But there are vulnerable libraries found, which
is the most important observation with this metric.

2. Number of outdated libraries discovered by OSS scanner:
There are outdated libraries discovered by WhiteSource Bolt, but the
exact number is incorrect for the same reason as above.

33

3. Improvement in vulnerable libraries between releases:
Over the time the vulnerable libraries were measured at SpendLab,
there was an improvement in reducing the vulnerable libraries.

4. Improvement in outdated libraries between releases:
From figure 5.10 we see that the outdated libraries are increasing over
time. This is not an improvement for security, and a policy on updating
libraries might be a good addition to SpendLab Technology.

Perceived usefulness of OSS scanning by developers

With WhiteSource Bolt, we were planning on using the same Likert scale as
SonarQube to answer the perceived usefulness by developers. This is in the
end not possible due to the lack of data, because only one developer looked
into WhiteSource Bolt.

From the interview with this developer, which can be found in Appendix D.2,
we can conclude that OSS scanning is found useful by him. He does note
that there are usability issues with WhiteSource Bolt as a tool, but the
general usefulness of OSS security scanning is clear.

General usefulness evaluation through interviewing developers

To look into the general usefulness of the additions to the CI pipeline, in-
terviews with the developers using the CI pipelines were held. Here, some
conclusions will be given that could be drawn from the interviews. As men-
tioned earlier, full summaries of the separate interviews can be found in
Appendix D.

The first thing that occurred to most developers when asked about the com-
ments SonarQube placed, was that they agree with the comments. However,
they do not always agree with the severity or the labeling as a vulnerability.
This was because the issues found by SonarQube were very context depen-
dent, and not always a security risk. The developers did note that it is still
good the comments were placed, because it forced them to look at it. The
developers all said that they take the comments seriously, and investigate
them when they are placed under their pull request.

Developers also found that sometimes, the description of a rule in Sonar-
Qube did not directly say why something would be considered a vulnerabil-
ity.

Again, a reaction to a statement was asked to plot the opinions on Sonar-
Qube. The statement was: SonarQube improves the security of applications

34

developed at SpendLab. The plotted results can be found in figure 5.12 be-
low.

Figure 5.12: Results of survey question about general security improvement
of applications developed at SpendLab.

As we can see in this figure, some developers are neutral to this statement.
They explained that they did see the added value from SonarQube, espe-
cially in code quality and bugs. The improvement in security was according
to these developers not really clear, because they did not get many secu-
rity issues through SonarQube. And if they got security issues, they were
sometimes not sure why it was a security issue and not just a bug or code
smell. The developers agreeing mostly did this on the basis that it was good
that people thought more about security, so as an awareness tool, and that
security by design was more involved in the development process.

During the interviews, many developers noted the impact of SonarQube on
build times. This was seen as an impact on productivity, and was not origi-
nally thought of in the GQM model. We decided to add section 5.5 to shed
some further light to this, in addition to the rest of this case study.

5.4.2 Questions from GQM model

Now to answer the main goal, all metrics answered above will be used to
answer the three questions asked in the GQM model from chapter 4.

35

Are security problems caught with vulnerability scanning?

The answer to this question is simply yes, we did find security issues through
the vulnerability scanning additions to the CI pipelines. With the next two
questions we will evaluate these found problems.

Are the problems caught by the scanning useful?

This question will be answered by looking at the results of the metrics under
it.

• Perceived usefulness of OSS security scanning by developers:
The developer using OSS security did find it useful, but had some
remarks on usability and false positives.

• Number of comments from SAST perceived useful by developers:
All developers agreed that the comments from a SAST that were se-
curity related were useful.

• General usefulness evaluation through interviewing developers:
While developers did see the comments as useful, they did not see many
security related comments on their code. They also could sometimes
not see why something was a security issue and not a code smell.

Taking all the metrics into account, we can say that in general, the con-
sensus is that security problems detected are useful. There are however,
many footnotes together with this claim, which can be found in the sections
corresponding to the metrics above.

Do the problems caught by the scans have effect?

Again, the metrics belonging to this question are itemized below with their
final conclusion.

• Improvement in vulnerable libraries between releases:
It is concluded that there is some improvement in vulnerable libraries,
because one developer created a pull request with updates for libraries.

• Improvement in outdated libraries between releases:
The outdated libraries seem to steadily rise, and are not kept up to
date by SpendLab. A update policy is not in place, and might be a
good idea for SpendLab.

• Improvement in SAST vulnerability reports between releases:
The SAST vulnerability report did not see much improvement, because
developers have not yet gone back to fix older issues. There are no

36

new issues introduced because they get taken seriously and solved in
the pull requests. Because of this deviation from the trend, we can
definitely say that security is improving through SAST.

Looking at the metrics, we can conclude that there is not much improve-
ment, but in general there is a stagnation and the problems are not getting
worse. Because we answered with the previous question that the found vul-
nerabilities are in general useful, we can conclude that the answer is yes, the
problems caught by the scans do have effect. There are again remarks to be
made with this conclusion, which can be found in the sections corresponding
to the metrics above.

5.4.3 Goal from GQM model

The main goal set out by the GQM model was improvement of security in
CI pipelines. We hoped to be able to improve security through the addi-
tion of SAST scanning and OSS security scanning in the CI pipelines at
SpendLab.

Looking at all the questions, we can conclude that the goal is achieved, the
security is improved through taking measures in the CI pipelines. There
are however many remarks made, and a list of possible improvements and
advises should be made to help future implementations improve. These
remarks are named throughout the metrics part of this case study, and are
summed up in the conclusion in section 7.3.

In the introduction, we noted that RQ.b would be answered through this
case study. The research question was as follows: Can increases in security
by design through improving CI pipelines actually be measured in practice?
We would conclude that the improvement in security is measurable through
our GQM model. The consensus seems to be that the security of applications
developed at SpendLab did improve, but we did not fully succeed to quantify
how much we improved. More on this is explained in the conclusions in
section 7.2.

5.5 Impact on productivity

As has been discussed in section 5.4.1 about the general usefulness, impact
on productivity was a big point for many users. Because this was not exactly
in the scope of the thesis, but is very interesting nonetheless, there is some
extra short research in this section.

37

5.5.1 Time measurements from Azure

Because of our additions to the CI pipelines, the time it takes for builds to
complete is longer, and this can cause irritation. Azure has functionality
where it shows statistics from pipelines, here we can look into the time
measurements of QuickBuild and BuildForRelease for APRA. We decided
to not take the DBQG into account because it yields similar results and
there is more data on APRA.

(a) APRA QuickBuild (b) APRA Build for release

Figure 5.13: Shows the top 10 steps by duration for APRA from 28-12-2019
to 27-01-2020 (30 days)

On average, the Build for Release takes 24 minutes and 6 seconds, and the
QuickBuild takes 13 minutes and 34 seconds. The statistics in figure 5.13
show that the run code analysis, the main task executed for SonarQube,
takes 23.21% (around 5 minutes and 36 seconds) of the time for the Build for
release and 38.32% (around 5 minutes and 12 seconds) for the QuickBuild.
WhiteSource Bolt takes 12.41% (around 3 minutes) of the time for a build
for release.

38

5.5.2 Interviewing developers

In the second interview conducted, which can be found in Appendix D.3,
we asked developers if the extra time needed for building the pipelines is
justified by the gain SonarQube gives in security. The results can be found
in figure 5.14.

Figure 5.14: Results of survey question about the extra time used for builds
by SonarQube being justified or not.

We can see there is divide in opinions on this statement. The developer
strongly disagreeing with the statement argued that the security rules from
SonarQube were useful according to him, but because he did not get any
security risks in his code it is not worth the trade off in time when seeing
SonarQube from a security point of view. The agreeing or neutral devel-
opers thought that it is worth it, but there is room for improvement in
implementation or optimization of the usage of these tools.

5.5.3 Conclusion

As has been shown in this section, there is a significant impact on execution
times of pipelines by the security additions to the CI pipelines. The devel-
opers have mixed feelings about this and are not entirely sure if the extra
build time is always worth it.

An argument in favor of the CI pipelines could be made that developers
already had to wait, the few extra minutes are therefore not another ob-
struction of the workflow. The step just takes some time longer, and it does
increase the security of developed applications in the long run.

39

A further possibility would be optimizing the scanning, by for instance omit-
ting certain low risk folders to save scanning time. Lastly, we could look
into improving the performance by changing when SonarQube is ran.

5.6 Completeness of measurements

There are a few remarks to be made about the completeness of the mea-
surements. While SpendLab Technology was a good example case for this
thesis, it is a very small team. Because only 5 developers were interviewed,
the closed questions have maybe too little input to extract a meaningful
result. Because WhiteSource Bolt was only used briefly by one developer,
there is even less input on the OSS scanning side. This might influence the
generalizability of this research.

40

Chapter 6

Related Work

As mentioned in the introduction, the work related to this thesis will be
discussed in this chapter. We will start with looking into existing research
on this topic to our knowledge. Then more research is discussed that has
relevance and is interesting together with this thesis.

6.1 Existing research on security in pipelines

In this chapter we will look into existing research on security in pipelines,
and what is already known in addition to this research.

6.1.1 Evaluation and comparisons of tools

Most research done on SAST are evaluations of currently existing tools, or
a comparison of tools by using an existing vulnerable application as test
bed [7]. This cited research made a comparison between some SAST tools
and concludes that SAST helps with uncovering some security issues, but it
is not enough to uncover all weaknesses.

There is also a case study at Telenor Digital, where it is described how they
integrated SAST, benchmarked it, and evaluated it in the company [19].
This study concluded that there are barriers in the tools performance and
developers perceptions, like low performance in finding security issues and
non-functional nature of security bugs. They did find that teams were still
positive to use SAST tools to reduce security bugs, which is in line with this
research.

In this thesis there was no thorough research on which tool to use, because
we took the technology choices of the host company as a given. Nonetheless,

41

this is still an interesting and relevant research topic. To make a decision
which tool in the end will be the best choice, many factors must be taken
into account. Some interesting ones are cost, integration possibilities, ease
of use and performance of the tool.

One example of research or a tool for this topic is the OWASP benchmark
project, a free and open test suite designed to evaluate the speed, cover-
age and accuracy of automated software vulnerability detection tools and
services [3].

The DAST tools discussed in the systematic review can also be tested using
the OWASP benchmark. One example is research by Mburano and Si,
where they test Arachni and OWASP zap, both SAST scanners, against the
WAVSEP benchmark and the OWASP benchmark [16]. They found that
both tools excelled in different categories, and there is not a single tool that
does it all as of writing that thesis.

6.1.2 Surveys on SAST

Christakis and Bird performed an empirical study at Microsoft, where they
found through interviews and surveys what developers want and need from
program analysis [11]. The most relevant to this research that they found
that security issues were ranked number one on what developers would like
detected from SAST scanners. When asked about known security related
incidents and if developers thought they could have been caught by SAST
scanners, only 47% of the developers said yes. Which means that less than
half of the developers trust a SAST tool to find security bugs that they
found themselves.

6.1.3 Fault proneness SonarQube

Looking at SonarQube, which is used in our case study, there is also research
done on the fault proneness of bug rules [15]. This study by Lenarduzzi et
al concludes that many rules that are classified as bugs by SonarQube have
a low fault-proneness, which means that the bugs found by SonarQube will
not quickly introduce new faults in the software. They also say that the
severity of a bug is not related to fault-proneness, and therefore severity
should not be taken too serious as decision factors by developers looking
into refactoring a violation.

42

6.1.4 Research on OSS

On the performance of OSS scanners itself there is not much research to
our knowledge. However, there is research on impact of security risks in
open source libraries [13]. This cited research by Decan et al concludes that
15% of the vulnerabilities found in OSS are fixed after their publication or
not fixed at all. This means that developers were informed of the issue and
when it would be published, but they did not fix it in time. OSS scanners
also look into outdated libraries. According to research, software that uses
many out of date libraries is four times more likely to contain security issues
in these dependencies [12]. This validates that it is important to look into
OSS security.

6.2 Delayed issue effect

An assumption in software development has long been that delayed issues
get harder to fix over time. This is called the delayed issue effect. This
assumption is used to justify the use of CI pipeline scanning tools, because
issues are found quicker and are thus easier to solve.

According to a study by Tim Menzies et al, almost all research that claims
this effect dates back to Barry Boehm and his book Software Engineering
Economics from 1981 [9]. The study by Menzies et al found that in general
they could not observe the delayed issue effect in any of the cases analyzed
by them [17]. This is mostly credited to the fact that present day soft-
ware development is often an agile process, where changes are more easily
made. They also say that the delayed issue effect may continue to be preva-
lent in some cases, such as high-assurance software, architecturally complex
systems, or in projects with poor engineering discipline.

In this thesis, CI pipeline scanning tools are used for security reasons. It is
important that issues are found and solved, we do not specifically look into
the easiness of solving issues by finding them earlier.

6.3 Security of the pipeline itself

This research mainly concerns itself with security in pipelines, but what of
the security of the pipeline itself? If the software added into the pipeline is
not secure, it could potentially be a security risk.

There is a master thesis by Michael Koopman that tries to create a frame-
work to create a baseline which the company can use to detect and prevent

43

security vulnerabilities in their platform [14]. He concludes that there are
risks associated with CI/CD pipelines. Controls were identified to mitigate
each threat, and there were risk levels assigned to all threats.

44

Chapter 7

Conclusions

In this chapter all conclusions that can be drawn from the preceding chapters
will be presented. The research question of this thesis was: to what extent
can security by design be improved through inserting security checks into
CI pipelines?

To answer the question above this thesis started with a systematic review,
where an attempt has been made at finding all ways of adding security
checks in pipelines. In the end it was concluded that we would limit the
scope to implementing Static Application Security Testing (SAST) scanners
and Open Source Software (OSS) security scanning.

7.1 Methods for measuring security by design im-
provement

Next, chapter 4 concerned itself with finding a way to measure security by de-
sign improvement. This chapter was used to answer RQ.a: How can security
by design improvement through inserting security checks in CI pipelines be
measured? We decided on creating a goal question metric (GQM) model to
measure security by design improvement, where the goal formulated was im-
provement of security in CI pipelines. This goal would be answered through
three questions and nine corresponding metrics. The metrics try to define
security through amount of vulnerabilities found and solved through pipeline
tools, and through interviewing developers about security at SpendLab since
installing the pipeline extensions.

45

7.2 Measuring security improvement at SpendLab

Finally, RQ.b was answered. The question was: can increases in security by
design by improving CI pipelines actually be measured in practice? A case
study at SpendLab Technology, a subsidiary of SpendLab Recovery, was
conducted to put the GQM model to the test. In the end, it was concluded
that the goal of improving security in CI pipelines was achieved. To what
extent the improvements helped security by design is debatable, because this
is a tricky business with many variables. This thesis did not fully succeed
to define exactly how much security improved.

There are many reasons encountered during this thesis that explain why
quantification of the effect of tools is difficult. Below, these reasons are
summarized.

• Difficult to install and configure tools.

• Unexpected behaviour from tools (see section 5.3.1):

– Problems are not properly reported on pull requests by Sonar-
Qube.

– SonarQube reports on main branch, not what happens inside pull
requests.

– Non suppressible false positives in WhiteSource Bolt.

– Double vulnerabilities and packages found by WhiteSource Bolt.

– Not all dependencies are found by WhiteSource Bolt because no
front-end package manager is used.

– Old remaining dependencies on the build server are not cleaned
up by default.

• Severity indicators are inaccurate and not very useful.

• Long running time of the tools.

• False positives and false negatives.

• Not clear how issues of different types (internal vulnerability, vulner-
able dependency, outdated dependency) should be aggregated.

From the GQM model we could see that security was defined by amount
of vulnerabilities found by scanners, and this would be supplemented by
interviews with developers. To say something about the amount of vulner-
abilities found, you must know how much vulnerabilities there are in total.
If this is known for an application, a percentage of vulnerabilities found by
tools can be deduced.

46

There were not many vulnerabilities found in total. Because statistics tend
to get more accurate with more data, it was hard to get an accurate result
from this case study. This could be fixed by having larger projects or in-
creasing the amount of subjects for this case study. It could also be that
the project baseline quality at SpendLab Technology was very high, which
means that not many vulnerabilities were found.

7.3 Recommendations for practitioners

During this research, many pitfalls and footnotes were discovered when im-
plementing the security additions in the CI pipelines. In addition to the
conclusions given above, a list with recommendations is given here. This
summarizes many of the smaller problems, caveats and tips found through-
out the case study.

• Do not underestimate the time it takes to set up tools correctly. This
was a pitfall discovered with this thesis, one example being the cleaning
up of the sources directory for WhiteSource described in 5.4.1.

• Use tools with a clear interface and good usability. WhiteSource Bolt
had some problems with doubles, false positives and it could not sup-
press issues.

• Make sure an update policy for the libraries is in place. WhiteSource
Bolt is a good tool for showing issues in dependencies, but is not of
great help with fixing these issues. The interviewed developer noted
that according to him, it would be a good idea to have someone look
into updates for dependencies at least once a month.

• Try to tweak the rule-set of a SAST as well as possible. If developers
see many issues they do not agree with, the tool will be taken less
serious.

• Make sure the tools integrate well with the developer environment.
As was seen with SonarQube, at SpendLab we ran into the issue that
not all found vulnerabilities were automatically commented on pull
requests. This was resolved as described in section 5.3.1.

• Try to minimize impact on runtime of pipelines. This could be done
by not scanning when it is not necessary, and not scanning certain
parts of the application that have a near zero probability of finding
significant errors.

• Do not take the severity of rules coupled by some SAST tools too
serious or as a heavy deciding factor. As mentioned in section 6.1.3,
and in our interviews, the severity is mostly not correct.

47

In the research by Christakis and Bird [11] that was also used in section 6.1.2,
there is a list of pain points reported by developers when using program
analysers. If we cross reference this with our recommendations, many of
these pain points were also encountered. Wrong checks are on by default,
false positives, too slow, difficult to fit into workflow, selectively turn off
analysis, and ranking of warnings are all addressed in this recommendations
list.

48

Chapter 8

Future Research

8.1 Performing more case studies

This research only conducted one case study, and thus had limited data
available. It could be that case studies at different companies yield different
results, maybe due to other work culture or a more experienced team. To
draw a more meaningful conclusion, multiple case studies should be con-
ducted using the GQM model and recommendations from this thesis.

8.2 Dynamic Application Security Testing

For the scope of this thesis, DAST scanners were not taken into account.
These scanners are however very important to supplement the static scan-
ners. Further research could be to include those scanners in the GQM model,
and to see if they are beneficial for security. This would change the research
from CI pipeline additions to CI/CD pipeline additions.

8.3 Code quality improvement using SonarQube

With this thesis, only security related comments were taken into account. As
is mentioned throughout the case study, SonarQube also places comments
about bugs and code smells. Developers did note in their interviews that
they see these comments as very helpful. It was concluded that because of
this, SonarQube is taken more seriously, and thus developers would take se-
curity comments more seriously. Further research could be done to look into
how much code quality improves by using SAST scanners like SonarQube
or if developers like these tools.

49

8.4 Economics of security in CI pipelines

In section 5.5, a small start has been made on the economics of security.
There was some discussion if the extra time it costs to fix the issues found
by SonarQube were worth it. To make this discussion more complete, there
could be research into the economics of security. An useful addition would
for instance be not only interviewing the developers, but also interviewing
the stakeholders or product owners.

8.5 Optimizing SAST scanning

As has been noted in section 5.5, the SAST scans take some time. Research
could be done on how to improve the performance of scanning. This could
be through framework changes, or measuring how much difference a faster
server makes. There could also be research in optimizing settings with for
instance not scanning certain low risk parts of an application to improve
performance.

50

Bibliography

[1] Add Continuous Security Validation to your CICD Pipeline |
Microsoft Docs. https://docs.microsoft.com/en-us/azure/

devops/migrate/security-validation-cicd-pipeline?view=

azure-devops (visited on 07-11-2019).

[2] Category:Vulnerability Scanning Tools - OWASP. https://www.

owasp.org/index.php/Category:Vulnerability_Scanning_Tools

(visited on 22-10-2019).

[3] OWASP Benchmark. https://owasp.org/www-project-benchmark/

(visited on 29-01-2020).

[4] OWASP Dependency Check - OWASP. https://www.owasp.org/

index.php/OWASP_Dependency_Check (visited on 07-11-2019).

[5] Source Code Analysis Tools - OWASP. https://www.owasp.org/

index.php/Source_Code_Analysis_Tools (visited on 22-10-2019).

[6] WhiteSource Bolt - Visual Studio Marketplace. https:

//marketplace.visualstudio.com/items?itemName=whitesource.

ws-bolt (visited on 07-11-2019).

[7] H. H. AlBreiki and Q. H. Mahmoud. Evaluation of static analysis
tools for software security. In 2014 10th International Conference on
Innovations in Information Technology (IIT), pages 93–98, November
2014.

[8] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Goal
Question Metric Approach. 1994.

[9] Barry W. Boehm. Software Engineering Economics. Prentice Hall,
Englewood Cliffs, N.J, 1 edition edition, November 1981.

[10] Andrew Burt. New Laws on Data Privacy and Security Are Coming.
Is Your Company Ready? Harvard Business Review, July 2019.

[11] Maria Christakis and Christian Bird. What Developers Want and Need
from Program Analysis: An Empirical Study. In Proceedings of the

51

31st IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2016, pages 332–343, New York, NY, USA, 2016. ACM.
event-place: Singapore, Singapore.

[12] Joël Cox, Eric Bouwers, Marko van Eekelen, and Joost Visser. Measur-
ing Dependency Freshness in Software Systems. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, vol-
ume 2, pages 109–118, May 2015. ISSN: 1558-1225.

[13] A. Decan, T. Mens, and E. Constantinou. On the Impact of Secu-
rity Vulnerabilities in the npm Package Dependency Network. In 2018
IEEE/ACM 15th International Conference on Mining Software Repos-
itories (MSR), pages 181–191, May 2018.

[14] Michael Koopman. A framework for detecting and preventing security
vulnerabilities in continuous integration/continuous delivery pipelines,
June 2019.

[15] Valentina Lenarduzzi, Francesco Lomio, Heikki Huttunen, and Davide
Taibi. Are SonarQube Rules Inducing Bugs? arXiv:1907.00376 [cs],
December 2019. arXiv: 1907.00376.

[16] B. Mburano and W. Si. Evaluation of Web Vulnerability Scanners
Based on OWASP Benchmark. In 2018 26th International Conference
on Systems Engineering (ICSEng), pages 1–6, December 2018.

[17] Tim Menzies, William Nichols, Forrest Shull, and Lucas Layman. Are
Delayed Issues Harder to Resolve? Revisiting Cost-to-Fix of Defects
throughout the Lifecycle. Empirical Software Engineering, 22(4):1903–
1935, August 2017. arXiv: 1609.04886.

[18] Briony J. Oates. Researching Information Systems and Computing.
SAGE, 2006.

[19] Tosin Daniel Oyetoyan, Bisera Milosheska, Mari Grini, and Daniela
Soares Cruzes. Myths and Facts About Static Application Security
Testing Tools: An Action Research at Telenor Digital. In Juan Garba-
josa, Xiaofeng Wang, and Ademar Aguiar, editors, Agile Processes in
Software Engineering and Extreme Programming, pages 86–103, Cham,
2018. Springer International Publishing.

[20] Per Runeson and Martin Höst. Guidelines for conducting and report-
ing case study research in software engineering. Empirical Software
Engineering, 14(2):131, December 2008.

[21] Guido Schryen. Is Open Source Security a Myth? Commun. ACM,
54(5):130–140, May 2011.

52

Appendix A

Appendix: OWASP versus
WhiteSource

To make a small comparison between WhiteSource Bolt and OWASP De-
pendency Scan for the case study conducted in 5, we executed them both on
the software used in the case study. With OWASP we found 6 vulnerable
dependencies:

1. Microsoft.Owin.Security.Facebook.dll
This .dll is used by Microsoft as middleware that enables an application
to support Facebook’s OAuth 2.0 authentication workflow. OWASP
tried to recognise it as Facebook PhotoUploader 4.5.57.0, which is
outdated and insecure. This is thus also a false positive.

2. Microsoft.AspNet.SignalR.SystemWeb.dll

3. Microsoft.AspNet.SignalR.Core.dll
Both these SignalR vulnerabilities are false positives, they are about
a very old bug in The Open Whisper Signal app before 2.23.2 for iOS,
which is completely irrelevant to SignalR from Microsoft.

4. Microsoft.DiaSymReader.Native.x86.dll

5. Microsoft.DiaSymReader.Native.amd64.dll
Both these vulnerabilities are false positives, they suspect they have a
vulnerability from 2006, that was already fixed in 2006. The vulner-
ability is matched to the Dia software by RedHat, which is drawing
software inspired by Windows Visio.

6. YamlDotNet.dll
YamlDotNet was correctly identified as a dependency used by us, but
the vulnerability coupled to it is only valid for version 4.3.2 and earlier.
OWASP did not recognise that we are already using 6.1.1.

53

So we conclude that all security risks found by OWASP Dependency Check
are false positives.

WhiteSource Bolt found 3 vulnerable dependencies:

1. microsoft.codedom.providers.dotnetcompilerplatform. .nupkg

2. System.Net.Http- .dll

3. jquery. .nupkg

Which equated to CVE- , CVE- , CVE- , CVE-
and CVE- . The first 4 are from Microsoft and have all

been acknowledged and fixed in updated versions of our outdated pack-
ages. The jQuery is coupled to CVE- and can be fixed with an
update.

From this a conclusion can be made that WhiteSource Bolt found way less
false positives, and OWASP did not find any more serious issues.

54

Appendix B

Appendix: Pipelines
technical explanation

In the case study, the pipelines at SpendLab were discussed briefly and not
in detail. To give some more technical insight, this appendix is added.

B.1 SpendLab Technology pipelines technical ex-
planation

To understand what the QuickBuild.yml and BuildForRelease.yml exactly
do, they are analysed below. First it is important to know the structure of
the build server, when a pipeline is ran a folder is created with the following
path:

D:\b1_W\"some number"\

The build server generates a number for this specific build, and then in
this folder a Sources, Binaries, and Artifacts folder are created. In our
Sources folder we get the full application folder, so the .git, APRA, wiki and
more.

First they both use a template named Build-Framework-Solution.yml, this
does the following:

1. Empty the Binaries directory

2. Copy the sources directory to the binary directory

3. Do a NuGet restore in the binaries directory, to make sure all depen-
dencies are available before building the solution

55

4. Build solution in binaries directory, and save the finished build in
Binaries/APRA publish folder

5. Run tests from the built solution in the binaries directory

We empty the binary folder and copy the sources over, because the down-
loaded NuGet packages and intermediate build files by MSBuild should not
be published. This would be a waste of bandwidth and time.

If a commit or pull request is submitted and a QuickBuild is done, only the
above Build-Framework-Solution is executed.

When a BuildForRelease is done, some extra steps are done in addition to
the Build-Framework-Solution:

1. Copy Sources to ArtifactStagingDirectory/s.

2. Run the Build-Framework-Solution.

3. Copy the created APRA publish to the ArtifactStagingDirectory/r.

4. Zip the ArtifactStagingDirectory and send it to the approval stage.

B.2 Final pipeline definitions

Besides the changes described in section 5.3.2, there were some other more
under the hood changes. The Solution is not build in the binaries directory
anymore, the sources are directly copied to the ArtifactStagingDirectory be-
fore building, and the build is directly built to the ArtifactStagingDirectory.
This makes a build for release significantly more efficient, because we do not
have the inefficient copying of source files everywhere.

The changes made to the QuickBuild are as following:

• Added ”trigger: none” to make sure this pipeline is never triggered,
except as build policy on a pull request.

• Added steps to run SonarQube, these are only ran when the build rea-
son is a pull request. If these steps fail, for instance if the SonarQube
server is down, the build will not fail.

• Added a comment, as described in section 5.3.1 about SonarQube
caveats, that shows a link to the SonarQube server.

And the general changes made to the build for release are:

• Clean the SourcesDirectory, this is standard not done to enable in-
cremental builds and deployments. This is done because otherwise

56

old dependencies might still linger on the build server and clutter the
WhiteSource Bolt report, as described in 5.4.1.

• Copy sources to ArtifactStagingDirectory.

• Build solution in SourcesDirectory with as output folder the Artifact-
StagingDirectory.

• Added SonarQube steps, the same way as in QuickBuild.

• Added WhiteSource scan.

The DBQG uses exactly the same pipeline definitions for QuickBuild and
BuildForRelease, but with different project name and parameters. They
both use exactly the same Build-Framework-Solution, this is why the YAML
files for the DBQG are not included.

B.2.1 APRA Quickbuild.yml

The full YAML specification has been redacted in this version.

B.2.2 APRA BuildForRelease.yml

The full YAML specification has been redacted in this version.

B.2.3 Build-Framework-Solution.yml

The full YAML specification has been redacted in this version.

57

Appendix C

Appendix: SonarQube
setup

In the case study, it is not mentioned how SonarQube is set up in detail.
In this appendix we will discuss some technical features of SonarQube, and
how they were used for the case study at SpendLab.

C.1 Configuration SonarQube

It was decided to not use the SonarCloud subscription service that is pro-
vided by SonarSource, but to create our own SonarQube server. The server
was set up in the following way:

1. Create an Azure VM, that is only accessible through the company
network.

2. Configure and install SonarQube including an SQL database on this
VM according to the documentation.

3. Set up a domain name, and configure SSL certificates through a reverse
proxy.

4. Set up the projects within SonarQube, and make sure they are private.
This is to force people to log in to access the source code.

5. Set up the pull request decoration for Azure DevOps from the Sonar-
Qube server by adding a Personal Access Token to SonarQube.

For now, SonarQube does not use personal accounts for developers. We
created an Admin and Developer account, to make sure everyone can access
the SonarQube server. SonarQube is able to easily integrate with existing

58

users using for instance OAuth, an open standard for access delegation. At
the time of writing SpendLab did not use Azure Active Directory, which is
the Microsoft implementation for identity management that also supports
OAuth. Because of this, we could not easily expose the user-base to Sonar-
Qube.

C.2 Disabled rules in SonarQube

Written down in table C.1 are all SonarQube rules we disabled at SpendLab.
No rules that have anything to do with security have been disabled, so this
does not influence the research results. The amount of issues solved by
disabling the rules is not entirely clear for older rules, because we found this
metric only after disabling those rules. SonarQube did not log the amount
of issues resolved by older disabled rules.

Language Rule Reason Solved APRA Solved DBQG

C# Types should be named in PascalCase This convention is not strictly used

HTML ”<th>” tags should have ”id” or ”scope” attributes Unnecessary for SpendLab 139 0

C# ”ISerializable” should be implemented correctly Is ignored 26 17

Table C.1: SonarQube disabled rules

59

Appendix D

Appendix: Interviews at
SpendLab

For the case study, some interviews were conducted. The two interviews
and a summary of all the answers are presented here.

D.1 SonarQube interviews

First the questions asked for the SonarQube interview are enumerated.
Then, for each interview, a summary is given. The interviews were con-
ducted in Dutch, but the summaries given below are written down in En-
glish.

D.1.1 Questions

The bold keywords are used to make writing down the reviews later more
compact and clear.

1. Experience: How long have you been working in the software devel-
opment sector?

2. Company experience: How long have you been working at Spend-
Lab?

3. Role: What is your current role at SpendLab?

4. Encountered issues: Have you ever encountered a security related
problem found by SonarQube? If yes: can you elaborate?

60

5. examples: I will be giving three examples of SonarQube security
bugs, in the context of APRA. For each example, can you explain if
you agree with this issue? Would you solve it in the way SonarQube
suggests or would you solve this another way?

(a) Handle the exception or explain in a comment why it can be
ignored - Critical

(b) Refactor this code to not log tainted, user-controlled data. -
Minor

(c) Make this field ’private’ and encapsulate it in a ’public’ property.
- Minor

(d) Refactor this code to not perform redirects based on tainted,
user-controlled data. - Blocker

6. Usefulness comments: The security comments made by SonarQube
are all useful:

(a) Strongly disagree

(b) Disagree

(c) Neutral

(d) Agree

(e) Strongly agree

7. Improvement: Do you think SonarQube improves security at Spend-
Lab?

8. Opinion: What do you think of SonarQube so far?

9. Remarks

D.1.2 Developer 1

Experience: 5.5 years.

Company experience: 1 year full time, 6 months internship.

Role: Software Engineer.

Encountered issues: Developer 1 did not get many security related is-
sues from SonarQube, he would guess that he found around 8/10 comments
useful. Around 20 percent of the rules, not necessarily security related, can
occur a lot and he found these rules could be irritating.

Examples:

61

(a) In first instance developer 1 would think this is a functional problem,
he could not instantly see why this is a security issue. Maybe in
certain context, he would solve it but why this is a security issue is
not completely made clear by SonarQube. He would say this is indeed
critical because it is incorrect error handling, but not because of the
security risks associated.

(b) Developer 1 agrees with minor, but does not directly see how this is
security related.

(c) Developer 1 did not see this as a vulnerability, but more as a code
smell. So he does agree with the Minor label, but not exactly with
that this should be marked as a vulnerability.

(d) After reading the SonarQube explanation, the developer thinks this is
a valid rule and a good solution from SonarQube. He also agreed with
the blocker label.

Usefulness comments: Developer 1 Agrees with the statement that se-
curity comments made by SonarQube are all useful. He does not strongly
agree because he feels like minor or info issues do not contribute that much
to security.

Improvement: Developer 1 does not think he can say something about
SonarQube improving the security, because he did not get security com-
ments.

Opinions: Developer 1 sometimes does not like using SonarQube, because
there are some rules he thinks are not necessary. He thinks this needs some
tweaking, to make sure the pull request is not cluttered with rules deemed
unnecessary by him or the team.

Remarks: No remarks.

D.1.3 Developer 2

Experience: 2 years part time.

Company experience: 1.5 years

Role: Software Engineer

Encountered issues: Developer 2 has installed SonarLint1 in his IDE, so
he sees some comments earlier. He does not see many security related prob-
lems from SonarQube, and SonarLint helps him find things like execution
paths resulting in null earlier.

1SonarLint is an IDE extension from the creators of SonarQube, that is able to show
many of the SonarQube errors directly in the IDE while programming.

62

Examples:

(a) Developer 2 thinks this rule is valid, but argues that critical in the
context of security is maybe too high. When looking at code quality,
he does think this rule is critical.

(b) Developer 2 understands this rule, and can understand why it is only
minor. With logging it could be intended and not really create any
problems. In the end developer 2 thinks this is an useful rule.

(c) Developer 2 thinks this should be changed, it does not impact func-
tionality but it is about code quality. He does not think this is directly
a vulnerability, but sees this as a code smell. He gets why it could be
a vulnerability with custom get set code, but vulnerability might be a
bit overblown.

(d) Developer 2 thinks this is a valid rule, he agrees that SonarQube sees
this rule as blocker.

Usefulness comments: Developer 2 strongly agrees with that comments
made by the SAST are all useful. He has some experience with SonarQube
and thinks they are a market leader with security.

Improvement: Developer 2 notes that SonarQube does not cover all secu-
rity issues, but it is a gain for the company in security.

Opinions: Developer 2 thinks SonarQube is sometimes a bit frustrating
to work with it, because he does a lot of small bug fixes. With many pull
requests it can get a bit frustrating to wait a lot longer on a SonarQube
scan, especially on some small changes probably not triggering errors.

Remarks: No further remarks.

D.1.4 Developer 3

Experience: 2.5 years, part time next to study.

Company experience: 2.5 years

Role: Junior Software Engineer.

Encountered issues: Developer 3 had some security related issues, espe-
cially when programming user management he had some comments related
to sanitizing input. All these comments were taken serious by him.

Examples:

(a) Developer 3 sees this rule as convenient, he does think that critical
might be too high because it is most likely not a breaking issue.

63

(b) Developer 3 understands this rule, and thinks in our case this is indeed
minor. If the logs were used within a database or something this could
be more dangerous. He also argues that you could enter many newlines
or other clutter to make the logs unreadable.

(c) This comment is useful according to developer 3, but he does not think
this is specifically a vulnerability. He sees this more as a code smell,
and does agree with the minor label.

(d) Developer 3 argues that this is an useful comment, that is important
to directly solve when it is found. He also agrees with severity label
blocker.

Usefulness comments: Developer 3 strongly agrees with the statement
made, he thinks that all comments are useful. He does note that he does
not think all SonarQube comments marked as vulnerability are a direct
vulnerability.

Improvement: Yes security is improved, because SonarQube definitely lets
people think from a security point of view. It also opens the eyes to some
things you would not think of.

Opinions: Sometimes it is inconvenient, especially on busy days with many
developers and a lot of concurrent builds, SonarQube does hamper the de-
velopment process. SonarQube is user-friendly according to developer 3, but
he would like SonarQube to place all comments, because this is not the case
as described in section 5.3.1.

Remarks: Developer 3 argues that the solution proposed in figure 5.4 to
place a comment that not all comments by SonarQube are placed is the only
comment we need. If SonarQube would place all comments that would be
fine too, but now having it in two places is inconvenient.

D.1.5 Developer 4

Experience: 3 years.

Company experience: 3 years.

Role: Lead developer.

Encountered issues: Developer 4 also worked on the user management
system, and some security related issues were found here. He also fixed
a SonarQube comment which was a direct URL redirect, which was also
fixed.

Examples:

64

(a) Yes this should be solved according to developer 4, not specifically
because he sees this as a security risk, but more because one big ex-
ception is not the code style from SpendLab. We need to create many
more smaller exception and handle these exceptions separate. But de-
veloper 4 sees this more as a code smell. This being a security risk is
context dependent according to developer 4.

(b) Developer 4 sees this as an issue that is indeed minor, the potential
impact he thinks is relatively small because it concerns only the logs.

(c) The rule is true according to developer 4, and is convenient because
it is easy to forget and sloppy programming. Strictly he thinks this
works, but it might give unintended behaviour, so minor is the correct
label.

(d) This rule is useful according to developer 4, he does agree with it being
a blocker rule.

Usefulness comments: Developer 4 thinks that he cannot answer this
question, because he does not have an overview of everything SonarQube
checks on. We rephrased the question to: SonarQube improves the security
of applications developed at SpendLab. With this statement he strongly
agreed.

Improvement: If it is about SonarQube against not using a tool at all, de-
veloper 4 thinks SonarQube definitely has an added value. Because even
when we do not find vulnerabilities, it still does help to know that we
searched for them. It also lets developers think about security, and lets
them think about it on a basic level.

Opinions: According to developer 4, SonarQube is sometimes in the way,
but this is more because we are new to using it. On the longer term, we
know we are more secure because we are using SonarQube to check. It takes
some initial effort to set up SonarQube, but we are not completely there yet.
The impact on pipeline duration is big, but developer 4 agrees that this is
not a problem because we get some security assurance in return.

Remarks: No further remarks.

D.1.6 Developer 5

Experience: 5 years.

Company experience: 3 years and 8 months.

Role: Lead developer.

65

Encountered issues: Developer 5 had one notable security issue, a hard
coded password in the developer seed. The developer seed is used to create
initial accounts to test for developers. This is strictly seen a security issue,
but it is needed to test and not a risk later on.

Examples:

(a) Developer 5 sees this as a good rule, but also does not know if this is
specifically a security issue. This rule being a security issue is context
dependant, but he notes that this is probably almost impossible for
SonarQube to detect.

(b) According to developer 5, this is a more severe security issue than the
previous rule. So he does not agree with this being minor. For instance
opening a log in a browser, you could maybe inject JavaScript code
using this. In the SpendLab application this is no risk for now, but
depending on the context this could be critical.

(c) Developer 5 thinks this is minor, because in our context this would not
really matter. A rule like this might give issues when you are using
micro services, so it is indeed a security risk according to him. The
minor label is thus also correct.

(d) Developer 5 did not directly see the security issue when first seeing this
rule, and would not directly see why this is a blocking issue using just
the SonarQube explanation. He also argues that the first compliant
solution is not good code, and is hard to maintain. So it is important
to not blindly follow SonarQube suggestions.

Usefulness comments: Developer 5 agrees, he does not strongly agree
because not all security risks are actually risks because they are context de-
pendent. He does prefer that SonarQube comments on these issues, because
then we think about these issues. He does not strongly agree because the
vulnerability levels are not always correct according to developer 5.

Improvement: In the end, developer 5 does not really think that we signif-
icantly improve security using SonarQube. This is because our application
is really closed, because we have a closed set of users that work within our
company. This is based on trust and we can mitigate security risks by using
the software in-house. SpendLab also uses frameworks that are known to
be secure, and if they are not this would probably be notified by White-
Source.

Opinions: Developer 5 thinks that in the end it is an improvement, but we
do need to tune the rules more to our liking. It is also frustrating that not
all comments are placed by SonarQube, as described in section 5.3.1.

Remarks: Developer 5 noted that he would rather have a little too many

66

issues found, and put them on wont fix, than not finding those issues by
disabling rules or excluding files.

D.2 WhiteSource interview

For WhiteSource, only one interview was conducted because only developer
2 actually used the software. The following questions were asked, and the
answers with them are thus given by developer 2.

1. Can you explain some of the issues found by WhiteSource:
WhiteSource found some major problems within our projects accord-
ing to developer 2, which were definitely important to keep up to date.
He also thought the outdated dependencies found by WhiteSource were
useful.

2. What did you think of the interface of the tool:
Because we are using two solutions, APRA and DBQG, it is a bit
complicated to see which vulnerable library is in which solution. There
is also the problem that we only look at the DLLs. One of our DLLs
had an issue in .NET Core, but we do not use this and it is hard to
find where this issue comes from and how to solve it. The doubles
described in section 5.3.1 were not a big issue according to developer
2, because it did show all the issues nonetheless.

3. WhiteSource is useful for security in our company:
Yes he does think that it is useful, because Azure DevOps does not do
this automatically. He does not strongly agree because the usability
of WhiteSource is holding it back.

4. Do you think WhiteSource improves security in our company:
Yes, if WhiteSource finds an issue it is a valid security issue that you
have to patch. This is mostly indisputable according to developer 2,
and issues found are thus useful.

5. Before using WhiteSource, were these vulnerabilities checked at Spend-
Lab?
This was almost not done, developer 2 did find some issues with his
private projects that use some of the same dependencies, because he
uses GitHub that automatically finds issues without the need of a
plugin like WhiteSource.

6. What do you in general think of using WhiteSource:
It is useful, but we need to streamline the workflow and have someone
that knows this tool, and usability could definitely improve.

67

7. How many times would you think it is needed to seriously check and
fix issues found by WhiteSource:
Minimal once a month, somebody has to check if we need to update
dependencies. We should at least get the lists from WhiteSource and
check if we should solve some of the issues found.

D.3 Extra interview questions

In the interview with developer 4, there was a new closed question formu-
lated instead of the usefulness of comments. This question was deemed
valuable to the research. Because section 5.5 about impact on productivity
was later added, there were no questions about this in the original interview.
To create a metric for this another question was added, the questions are as
followed:

1. SonarQube improves the security of applications developed at Spend-
Lab.

2. The extra time needed for building the pipelines is justified by the
gain SonarQube gives in security.

Where the scale again goes from strongly disagree to strongly agree. In
table D.1, the results are shown.

Statement 1 Statement 2

Developer 1 Neutral Strongly disagree

Developer 2 Agree Neutral

Developer 3 Agree Agree

Developer 4 Strongly agree Agree

Developer 5 Neutral Neutral

Table D.1: Results of extra interview questions

Developer 1 remarked that he did not personally see the security gains from
SonarQube. He found the security rules from SonarQube useful, but they
did not occur for him, so he strongly disagrees with statement 2.
Developer 2 noted that he thought neutral on statement 2, because he felt
that there is room for optimization, and then he would agree more. He
noted that using another stack might improve scanning time.
Developer 3 agreed with statement 2, but did not strongly agree. He felt
that there might be an in between road, where we could for instance disable
scans on smaller pull requests.
Developer 4 did not strongly agree with statement 2, because he also thought

68

that through configuration a lot of the downsides could be mitigated. If you
look at it black and white, the time is worth it according to him, because it
gives some peace of mind.
Developer 5 is neutral because he thinks SonarQube does work, but it did
not find any big things yet that proved it’s worth. He also noted that the
issues found by SonarQube are not always issues in our context, because
our application is used by a small user base in house. This way we mitigate
many risks, with for instance IP white-listing.

69

