
Bachelor thesis
Computing Science

Radboud University

Creating a Formal Model of the
Game 2048

Author:
Johan Sijtsma
s4793676

Supervisor/assessor:
dr. Nils H. Jansen

N.Jansen@cs.ru.nl

Second assessor:
Prof. dr. Frits W. Vaandrager

F.Vaandrager@cs.ru.nl

June 26, 2020

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Markov Decision Processes . 4
2.2 PRISM . 4

2.2.1 The PRISM language 5
2.2.2 PRISM Property Checker 8

3 Research 10
3.1 Rules of 2048 . 10
3.2 Reduction . 13
3.3 Prototype . 14
3.4 Combining Modules . 24
3.5 Merging Commands - Final Model 29
3.6 Model Generation . 34
3.7 Policy Manager . 37
3.8 Experiment . 40

3.8.1 Method . 40
3.9 Results . 40

4 Related Work 42

5 Conclusions 44

1

Chapter 1

Introduction

Recent years have showed increased attention to machine learning (ML) for
various purposes. ML is an efficient way to solve problems that would take
too long or take too much resources otherwise. However, there are safety
concerns. The resulting policy from a ML algorithm is a black box, and as
such holds no guarantees of safety. Take for example a self-driving car. The
people in the car would want to know that the car is guaranteed to not make
certain decisions that could lead to a crash.

A way to guarantee certain properties has been proposed by Alshiek et
al. in the form of shielded decision making [1]. Shields offers a guarantee
that an agent does not reach certain unwanted states by shielding it from
bad decisions. To implement shielding we need formal definition of the en-
vironment, a model. With a model we can calculate which actions need be
avoided in which states. One source for are games. Games are a great source
for finding environments to trying out machine learning and formal verifica-
tion techniques. Games can have a simple environments where agents can
reach goals and avoid pitfalls. For example, both Jansen et al. [9] and
Hasanbeig et al. [8] used PAC-MAN for their research in Reinforcement
Learning.

The game 2048 has complete information, the player can see the entire
board, but the consequences of the player’s actions are random. Addition-
ally, there are very few possible actions, but many different board states.
Additionally, the game is very popular, which might attract attention to
this field of study, increasing the amount of research of formal verification
techniques. To implement shields or other techniques, however, a model of
2048 has to be created first. Such a model would not only help with testing
shields, but also optimal strategy finding, statistical model checking, formal
verification and more. To make this model useful, to describe 2048 as a
Markov Decision Process (MDP). An MDP encodes all possible states, ac-

2

tions and probabilities of those actions leading to certain states. A partial
MDP for 2048 has been created already by Lees-Miller for his blog about
2048 [13]. This model only goes as far as the 64 tile. We want to create
a full MDP. This is unrealistic because the size for a full 2048 model of the
entire game would be too large for modern computers to handle. Any of
the sixteen cells can have one of 12 different values (0, 2, 4, ..., 1024, 2048).
At most we have 1612 = 281.474.976.710.656, or about 281 trillion differ-
ent states. Some of these are unreachable, but this does number does show
the scale. Doing formal verification on this level is impossible with current
hardware, so instead we can use statistical model checking.

Figure 1.1: Graphical representation of how part of a 2048 model could look

MDPs can be created by describing the model in a language such as
PRISM. With the PRISM you can describe a model’s states and transitions
between those states using variables and commands. A program like PRISM
model checker [11] or Storm [6] can then be used to convert the model to
an MDP.

In this thesis we will create a PRISM model of 2048. We also create
a Python script that can generate N by N 2048 models. We also perform
statistical model checking to compare different strategies of playing 2048.
We do this by extracting the rules of 2048 from the source code, structuring
those rules and then creating a small model representing a simplified version
of 2048. Then we will expand on this prototype to model the full game.
We then improve this model to minimize the amount of commands used
by iteratively combining commands with similar behaviour until no more
commands can be combined. This provides a robust 2048 model that can be
used in future research. To show that this model can be used for statistical
model checking, we will be comparing a few strategies and see which strategy
has a higher chance of leading to a game over screen.

3

Chapter 2

Preliminaries

2.1 Markov Decision Processes

As described in the book Principles of Model Checking [2], a Markov De-
cision Process (MDP) is a 4-tuple (S,A, Pa, Rs) where S is the set with all
states, A the set with all actions. Pa(s, s′) is a function Pr(st+1 = s′|st =
s, at = a) which defines the probability of arriving in state s′ after action
a was used in state s. Ra(s, s′) is the expected reward from reaching state
s′ from s with action a. In other words, when in state s, a user chooses an
action a after which random chance lands them in s′. MDPs are a good fit
for single player games without a hidden board and where user input has
unpredictable results.

Figure 2.1: General shape of an MDP

2.2 PRISM

PRISM is a probabilistic model checker. With PRISM, you are able to build
and analyse discrete-time and continuous-time Markov Chains, Markov De-
cision Processes, as well as probabilistic (timed) automata [11]. It is also

4

possible to write and test properties of the model with temporal logic such
as CTL or LTL. To write models you use the PRISM language. We will give
a short summary of relevant features and concepts of the language.

2.2.1 The PRISM language

The PRISM language is used to describes the state-space and transitions
between those states.When making a model, you split it in multiple modules,
one module for each separate process. A module contains its own internal
variables and commands. The commands describe how and when these
variables change. Different modules can see each others variables, but can
only change their own. Global variables can also be defined outside of a
module, but these can never be changed. The full state-space of the model
is described by all values the variables can take. The commands describe the
transitions between the states. We will be discussing a few key functionalities
of PRISM using the following example of a simple model in the PRISM
language:

mdp

module Example1

i : [0..2] init 0;

j : bool;

[up] i=0 -> 0.5 : (i’=0) + 0.5 : (i’=2);

[] i>0 -> (i’=i-1);

[] true -> 0.5 : (i’=0)&(j’=true) + 0.5 : (i’=1)&(j’=false);

endmodule

module Example2

k : [0..2] init 0;

l : bool;

[up] k=0 -> 0.5 : (k’=0) + 0.5 : (k’=2);

[] k>0 -> (k’=k-1);

[] true -> 0.5 : (k’=0)&(l’=true) + 0.5 : (k’=1)&(l’=false);

endmodule

This specific example does not do anything useful, but does show all
aspects of PRISM that we will discuss. In this model, when counter i and k

5

are zero, there is a fifty percent chance of those variables becoming 2. Every
step where i or k is larger than zero, the counter subtracts one from itself.
There is also a chance of the booleans j and l to change along with their
counter.

First we define the model type. This is an MDP, so we put mdp on at the
top. Other options include ctmc, dtmc or pta. Every module describes a
process. The module contains variables and commands between the module

and endmodule tags. After module comes the name of the module, here
Example1 and Example2.

The variables define in which states the module can be. Variables can
be either integers or booleans. i and k are initiated to zero. If no initial
value is given, PRISM defaults to zero or false.

Commands

[up] i=0 -> 0.5 : (i’=0) + 0.5 : (i’=2);

[] i>0 -> (i’=i-1);

[] true -> 0.2 : (i’=0)&(j’=true) + 0.8 : (i’=1)&(j’=false);

The commands define what transitions have a non-zero chance of occurring.
A command consists of an action (between square brackets), a guard (be-
fore the arrow) and one or more updates (after the arrow). The action is
the ‘name’ of the transition. It used to sync commands between modules.
If the Example1 module chooses the [up] command, then PRISM enforces
that module Example2 will choose a command with [up] as well or vice
versa. This is called parallel composition. If you do not want to use parallel
composition, then no action is necessary for a command.

The guard determines whether a command can be used. If the expres-
sion in the guard evaluates to true, the command can be chosen. In the
first command of Example1, [up], we check in the guard whether i is 0.
This way, this command can only occur when i is zero. Guards can be as
complicated as any expression can be.

After the -> in the command come one or more updates. Every update
has a probability. If only one update is defined, the probability can be omit-
ted like in the second command of either module. If multiple variables need
to be changed, you can chain the variable updates with & as in the third
command of either module.

[] true -> 0.2 : (i’=0)&(j’=true) + 0.8 : (i’=1)&(j’=false);

The variable that is updated is denoted with a ’ to distinguish the post
transition variable from the pre transition variable. This is to avoid ambi-

6

guity.

Other relevant operators for expressions include the addition (+) and sub-
traction (-), relational (=, !=. >, <=), disjunction (|) and conjunction
(&), as well as the condition evaluation (condition ? true-expression :

false-expression) and build-in functions, such as (min(...)), (floor(...))
and (pow(x, y))

One other useful feature of the PRISM language is that we can easily
create a new module by renaming a previously defined module. This re-
naming is on a textual level, meaning the renaming happens before parsing.
We can replace the entire second module in the example module with the
following line:

module Example2 = Example1 [i=k, j=l] endmodule

This produces the exact same Example2 module as in the first model.

PRISM Simulator

We use the PRISM simulator to try out the model as we are making it.
By simulating we can detect errors and unwanted behaviour. The PRISM
simulator offers various features that make simulating convenient.

The PRISM simulator offers step by step execution of the model. We
can either choose which transitions are taken or let the simulator take one
randomly. This transition can be chosen from a list of all possible transitions.
This list also shows the probability of each transition. This list can be used
to see if more transitions are possible than intended. This helps detect

Figure 2.2: List of possible transitions and list of labels in the PRISM
simulator.

unintended behaviour. Steps can be reverted, allowing easy traversal of the
state space to test multiple similar situations quickly. The simulator shows
the values of all variables (per module) in the model. It is also possible to
make formulas for the model. You can then see whether a formula evaluates
to true or false in the current state. One very important feature, perhaps the
most useful, is that the simulator can be used without building the whole
model. PRISM only needs to parse the model before the simulator can be

7

used. This allows us to use the simulator even when working with a large
model like a full 4x4 2048 game, as long as we make a model that can be
parsed in a reasonable amount of time.

Figure 2.3: List of steps the simulator took in the current path.

2.2.2 PRISM Property Checker

PRISM’s main purpose is to verify properties of a model. You can write
these properties in PRISM’s property specification language (PSL). PSL
combines aspects of many probabilistic temporal logics, like LTL and PCTL.
An example of such a property would be [F fail]. In natural language,
this would translate to ‘The model eventually fails.’ Other symbols are X

(next) and G (Globally).

To check a property, we first create all paths through the model. A path
is a list of all states the agent travelled through. Some of these states are
labeled. In our case, a game over state is labeled with ‘fail’. Say a path
existed with two states, first an initial state, and the next being a game over
state. The property ‘fail’ would not be true for this path, as the first
state is not a game over, but X ‘fail’ would be, as the next state from the
first state would be true. Multiple paths are possible in the models, so we
do not just calculate if a path property is true, we want to calculate over all
possible paths. As such, PRISM properties usually look like P=1[F fail],
or in natural language: The probability of a path ending in failure is one.

We can also ask PRISM to calculate the probability with P=?[F fail].
This would return the probability of an execution of the model ending in
failure. A property we often used was Pmin=?[F fail | success], or in
natural language: what is the minimum probability of a path resulting in
either failure or success. If the answer was 1, we did not have loose ends in
our model.
To calculate this, PRISM has to generate every path of the model. This is
clearly not a feasible solution for large models such as our model for 2048.
For such cases, you can use the simulate function. Using the simulate func-
tion, PRISM instead generates a finite amount of paths and calculates the

8

probability from those. PRISM also calculates a number that tells us how
likely that probability is accurate.

Figure 2.4: Al the options you have when clicking on a property.

We will be using Pmin=?[F fail] in this thesis to find the minimum
chance of losing in the model. For the statistical analysis we will be using
Confidence Interval (CI). The specifics of CI are better explained in this
paper [15], but the short version is as follows.
Let the calculated probability be P. Using the variables confidence α and
width w, and amount of samples, CI can determine that the real probability
has a 100× (1− α)% chance of being in the range [P − w,P + w]. CI only
needs two of those variables, the missing one can be calculated from the
other two.

Figure 2.5: Output of the simulate function with CI.

9

Chapter 3

Research

In this chapter we create the 2048 model and perform an experiment with
it. First we analyse the source code to determine the rules of 2048. Then we
create a prototype based on these rules by hand. Afterwards we iteratively
improve the model by decreasing the amount of commands in the model.
We create a Python script that generates N by N models. Then we create
a policy manager that enacts a certain strategy of playing the game. Using
this policy manager we compare a few strategies of playing the game and
show that our model can be used for statistical analysis.

3.1 Rules of 2048

This section describes the rules of 2048. We based these rules on the source
code [4]. The game starts with a four by four grid of empty cells. At the
start of the game two of these cells will be filled with a tile. When a cell is
fated to be filled, the tile will either have a value of 2 or 4. Every empty
cell has equal chance to become filled. The chance for a new tile to have
a value of 4 is 10%, otherwise it will have a value of 2. The player then
chooses to swipe up, left, down or right. Actions that do not change the
state of the grid are not allowed and disabled. All tiles will move towards
the specified direction until they either hit another tile or if they reach the
edge of grid. If a tile hits another tile with the same value, they ‘merge’
and become one tile with double value. There is a bit more nuance to the
moving and merging of the tiles which will be explained in a bit.

Once all tiles are moved, one of the empty cells becomes filled with a tile
of either value 2 or 4 with the same odds as before. The player loses when
the grid is full and they can no longer perform any actions. The player wins
when a tile reaches a value of 2048. Players are usually allowed to play after
this until they lose, but we will not be modeling after the player wins.

Once the player has specified a direction, the moving and merging of

10

Figure 3.1: With a swipe to the left, all tiles move to the left in this manner.
When two equal tiles hit, they combine into one.

all tiles does not happen simultaneously. The tiles closer to the side of the
chosen direction are moved first. E.g. with a left action: the tiles on the
leftmost column will be handled first (and not moved as they are already
at the edge), then the tiles in the column to the right of it will move to the
leftmost row if possible, then the tiles on the next column, etc. Take a look
at figure 3.2, 3.3 and 3.4 for examples.

Figure 3.2: Here you can see that, with a swipe to the left, the two leftmost
tiles combine.

11

Figure 3.3: In this example, the two rightmost tiles merge as well, but the
two newly combined tiles do not merge.

Figure 3.4: Likewise, the newly combined 4-tiles do not merge with the old
4-tile.

12

3.2 Reduction

To define the 2048 game as an MDP we need to describe all aspects of the
MDP as 2048 equivalents. That is, we need to define (S,A, Pa, Rs).

Reducing 2048 to MDP

S is the set of states. We define a 2048 MDP state as the collection of values
in the grid. A state will have 16 variables, each corresponding to a single
cell. If a cell is empty the value will be zero. If it is not empty, the value
will be the same as the value of the tile filling the cell, so either 2, 4, 8, etc.

Figure 3.5: General shape of a 2048 MDP

A is the set of actions. There are four actions in 2048, so A in our
MDP will consist of the four actions up, down, left and right. Pa is the
function that defines the probability of every transition. The probability of
a transition will be higher than zero if the transition is possible in the 2048
game. The exact probabilities depends on the action and the amount of
empty cells. While the action moves existing tiles in predictable location,
afterwards a random empty cell is filled with a 2- or 4-tile. This could grow
to 30 different transitions from a single state. We will explain how we handle
this complexity in the next subsection. Rs is the function that defines the
reward for doing a specific action to a specific state. Defining the reward
depends on the goal one has using the model. As such we will not give a
definition.

Random and Move-Merge phase

The probabilities for the transitions are quite complex as can be seen in
Figure 3.6. With 14 empty cells we get 28 different transitions. Describing
such a transition in a single command would require us to make very long
and difficult commands. To simplify modeling we split the transition into

13

Figure 3.6: How the probabilities of all transitions from a single state could
be described.

two distinct phases. These steps can be seen in Figure 3.7. One transition is
the Move-Merge phase, where the tiles move and merge in accordance with
the rules lined out in the previous section. The second phase is the Random
phase, where a random empty cell is filled with either a 2- or a 4-tile. As
can be seen in the figures, the probabilities become much simpler. Every
single arrow represents a single command. PRISM will choose any available
command with equal chance. This choice determines which cell is filled. We
then define the probabilities of that cell receiving a 2- or 4-tile. To keep
track of the phase, we add a single boolean variable to the state.

PRISM

To create this model we use PRISM model checker and the PRISM language.
To write a model, we need to define the state-space and the transitions
between the states. The model needs to parse and build quickly so it can
be used for formal verification and statistical analysis. We expect the state
space to be large, so to improve build time we would like to be able to
only partially build the model. We can debug the model using PRISM’s
simulator. With this simulator we can try out multiple scenarios to find
problems with the model. The simulator only builds the model one step at
a time, making it possible to use even when building the whole model would
take a long time.

3.3 Prototype

To make an MDP with PRISM, we first need to define the complete state
space. Following that, we need all the transitions between those states. The
goal with this first model was to get familiar with PRISM and to get a

14

Figure 3.7: Probabilities after splitting the previous transition into two sep-
arate phases.

working prototype. To make the design process simpler we decided to make
a model of a two by two 2048 game. After completing this model we work
to scale this model up by making a generator for two by two and four by
four 2048 models.

Modeling choices

There are two main advantages to modeling a two by two first compared to
modeling a four by four. First, there are less variables to consider. Modeling
all cells would only take 4 variables instead of 16. Second, there are less
interactions between tiles. A single row has at most two tiles. The tiles
either combine, or they do not. This reduces complexity.

Recall that it is possible to instantiate multiple modules from the same
code using the renaming feature.

Because of this renaming feature, we decided to put the behaviour of
every cell in its own module. This makes reading and understanding the
behaviour of each single cell easier, but does require us to synchronize all
modules. Our hope at the time of this decision was that it was possible
to rename a single module such that we only need to make one. We will
explain later why this was not possible in the end.

15

Modeling

We begin the model with declaring constants: The maximum value for the
tiles, the chance of a new tile having a value of 2 and the chance of a new
tile having a value of 4. The maximum value for a two by two is 32. The
chance for a new tile to have a value of 2 will be 0.9.

Next we build the modules. We give each module two values: v xy and
and phase xy. Where the xy stands for the location of the cell (either 0
or 1, so v 00 for the upper left cell). The phase variable keeps track of the
phase the game is in, either the random phase or the move-merge phase. Ev-
ery module can access all variables from other modules. However, they can
only update their own variables, so every module has its own phase variable.

To force synchronization between modules, each command needs to be
labeled with a unique action. Take for example the random phase. Only a
single cell will get a new tile, but if no synchronization happens, and every
module just had a flat percentage chance of getting a new tile, then it would
be possible for both no new tiles, all cells filled and everything in between.
To stop that from happening, we need to add one action plus command
for every possible configuration of filled and non-filled cells in the random
phase. The action contains the information of which cell will be filled.

Commands

The module then needs to have the commands describing transitions for
the random and move-merge phase. For the random phase we need one
command per configuration. In the move-merge phase we need at most four
commands (for all directions) per configuration. To keep things organised,
we group the commands on the amount of cells filled in the configuration.
In the next sections we will describe the different kinds of situations and
how we made commands to accommodate them.

Random Phase Commands

The random phase transitions look as follows. This command is from the
module of the top left cell. Here the model decides whether an empty cell
becomes filled with either a 2 (N=0.9, 90% chance), or a 4 (M=0.1, 10%
chance).

[f0000_1100] (field_0000 & phase_00=1)} ->

N : (v_00’=2) & (phase_00’=0) +

M : (v_00’=4) & (phase_00’=0);

16

Figure 3.8: All possible transitions with probabilities from this command,
the cell in question is marked with the red square

17

The action [f0000 1100] describes what the action will do. The first
four digits describe an empty grid, after the underscore, the top row is filled.
An empty grid only happens at the start of the model. However, two ran-
dom cells are filled at the start of the game. This is one example of the
commands that bridges this gap. In this command, the top row will be
filled with tiles. This module describes the top left cell, as such we need a
command with an update to change its variable v 00. After the arrow are
the updates, including the probabilities of each occuring. N is a constant
defined as 0.9, M as 1-N. As such, we define that if this action is chosen,
all modules will use the command with this same action. When that hap-
pens, there is a 90% chance of this cells value to become 2 or a 10& chance
of it becoming 4. It’s phase variable becomes 0 in both transitions. This
command combines with the commands with the same action in all other
modules to create the full range of probabilities that can be seen in figure 3.8.

Next is another example from the start of the model.

[f0000_0011] (field_0000 & phase_00=1) ->

(phase_00’=0);

Figure 3.9: All possible transitions with probabilities from this command,
the cell in question is marked with the red square

We enforce that this command can only happen at the start of the model
with the guard. At the bottom of the file is a long list of formulas defining all
configurations of filled and non-filled cells as short names. In this example,
field 0000 only evaluates to true at the start of a model, when all cells are
empty. Every digit can be seen as a boolean defining if a cell is filled. The
order of the digits is top-left, top-right, bottom-left, bottom-right. Thus we
see that the guard only evaluates to true when all cells are empty and we are
in the random tile phase. The action before the guard once again ensures
that this module is synced with the other modules, even if the value in this
specific module does not change in this module. Only the bottom row cells
will be filled, as such the only value that is updates here is the phase variable.

A non-start command can be seen in Figure 3.10.

18

[f0100_0110] (no_MAX & field_0100 & phase_00=1) ->

phase_00’=0);

Figure 3.10: An example of a transition for this command, the cell in ques-
tion is marked with the red square

The no MAX checks if no cell holds the maximum value. If this check is not
done, the MDP grows endlessly. f 0100 checks if only the top right cell is
filled. From this configuration three possible target configurations can be
made (a new cell at top-left, bottom-left or bottom-right). This command
describes the transition that creates a new tile at bottom left. The value
of the top-left cell does not matter, as long as it is not 0. This means that
the cell could hold 5 different values, which means that this command sup-
ports 10 different transitions. This greatly reduces the amount of commands
needed. In the model the commands are sorted by initial amount of cells
filled. This is because behaviour is very similar between configurations with
the same amount of cells filled. This will be much clearer when we look
at the move-merge transitions. Grouping commands with similar behaviour
will be a recurring theme.

Move-Merge Phase Commands

Now we describe the Move-Merge phase transitions. These are grouped for
organisational purposes by amount of filled cells.

[down] (field_1000 & phase_00=0) ->

(v_00’=0) & (phase_00’=1);

Here we first check for configuration and phase. As any action will cause
this cell to become empty, we set the variable to 0 and move the phase to
1. Let’s look at the command that gets used at the same time as this one
from another module:

19

Figure 3.11: An example of a transition for this command, the cell in ques-
tion is marked with the red square

[down] (field_1000 & phase_10=0) ->

(v_10’=v_00) & (phase_10’=1);

Figure 3.12: An example of a transition for this command, the cell in ques-
tion is marked with the red square

This is from the bottom-left module. Here its value (v 10) becomes the
top-left value (v 00). We know that only these two commands can be used
at the same time, the action + field combination is unique for every possible
field and command. This results in at most four commands being possible in
the move-merge phase, and never more than one with the same action. For
every extra command that is possible in any module, the amount of possible
transitions double. In the move-merge phase every action should only have
one transition. Let us look at yet another module.

[down] (field_1000 & phase_11=0) -> (phase_11’=1);

Figure 3.13: An example of a transition for this command, the cell in ques-
tion is marked with the red square

In the bottom right module, the value does not change with this configura-
tion and action. We still need a command however, as an action can only be

20

chosen if it is possible in all modules. Thus, to prevent desynchronization,
we need a command for this specific configuration-action combination as
well, even when this cell is not affected. We only change the phase variable
here.

Move-Merge Commands with two filled cells

The commands for two filled cells can be split in two groups based on be-
haviour. One group has the two filled cells next to each other, the other
in a diagonal. With the former, there should be two commands that cause
the tiles to merge, one that moves the tiles. One direction will not lead to
a legal move, so it will be commented out. With the latter, all actions are
legal, but none lead to two tiles merging.

//[up] (field_1100 & phase_00=0) -> (phase_00’=1);

The command above is an example of a command that is commented out
because it can never be called. The top row is filled, and cannot move fur-
ther up. Even though the configuration-action combination is unique for
this module, this move is not legal in 2048. By not having this move be a
command, it cannot happen.

[left] (no_MAX & field_1100 & phase_00=0 & v_00=v_01) ->

(v_00’=2*v_01) & (phase_00’=1);

Figure 3.14: An example of a transition for this command

In this command, the top row is filled once again, but the tiles will combine
in the top-left cell with a left action. The new value of v 00 becomes two
times that of v 01. The no MAX prevents a merge that would exceed the
maximum value a cell can have. This differs from the no MAX use in the
random phase, this no MAX prevents moves that cannot be made in the
move-merge phase. The previous one prevents the game from continuing
after the goal has been reached.

[left] (field_0110 & phase_00=0) ->

(v_00’=v_01) & (phase_00’=1);

21

Figure 3.15: An example of a transition for this command

The behaviour of this command is the same as the one filled cells ones. No
action can lead to a merge, and all actions are valid moves.

Move-Merge Commands with three filled cells

The three cells filled group is more complex, but can be grouped as one
using conditional expressions. With one cell left open, there are four possible
commands per action. For every configuration of the grid, all actions are
possible under certain conditions. Either the move is valid to move a tile
to the one empty cell, or a move is valid because two tiles can merge. This
means we get commands like the following:

[up] (no_MAX & field_1011 & phase_00=0) ->

(v_00’=(v_00=v_10?2*v_10:v_00)) & (phase_00’=1);

Figure 3.16: Two examples of a transition for this command

There is a possibility of merging, so we invoke no MAX again. In the update
we have a tertiary expression, an if statement. If the values in this column
are equal, then this cell’s value doubles. Else it stays equal. We need this
conditional expression inside of the update instead of the guard for a reason.
The up action here is always valid, because the bottom-right cell is filled,
but the top-right cell is not. The guard only defines when an action is valid.
Seeing as this action is valid, there are still two different behaviours possible,
either the top- and bottom-left tiles are equal, or they are not. Thus, we
use the conditional expression to describe these possibilities.

22

Move-Merge Commands with four filled cells

The four tile group needs very few commands. Only one command per
action per module.

[up] (no_MAX & field_1111 & phase_00=0 &

(v_01=v_11 | v_00=v_10)) ->

(v_00’=v_00=v_10?2*v_10:v_00)

& (phase_00’=1);

Figure 3.17: Two examples of a transition for this command

This command combines every technique used for the move-merge phase.
We need to check for no MAX because any move can merge. We need to
check in the guard if a merge is possible. We use a tertiary expression
once more to describe differing behaviours within a single valid configura-
tion+action combination. This is because from passing the guard, we do
not know on which side the tiles were equal, only that at least one was. As
such we need to describe both once again.

Fail and Win states

[loss] fail -> true;

[victory] success -> true;

To end the module, we put two self loops at the end, this prevents intended
dead ends to be marked a deadlock. This also signals to PRISM that this
is indeed an end point, it will not model further than this. fail and success
here are formulas that are defined at the end of the file as follows:

formula fail = (v_00!=v_01 & v_01!=v_11 &

v_11!=v_10 & v_10!=v_00 &

field_1111 & phase_00 = 0);

formula success = ((v_00 = MAX | v_01 = MAX |

v_10=MAX | v_11=MAX) & phase_00 = 1);

fail is when no neighbours are equal and all cells are full, so no merging
or moving can happen, losing the player the game. The success formula is
true when one or more cells has the max value, this only happens when the

23

game is won, ending this model.

These commands may look (and are) simple, but these commands have
an important function in the model. These are the states players and agents
will want to either avoid or reach. To accommodate this we added labels for
these states. This makes it easier to detect these states and makes property
expression simpler.

There are problems with this model. As mentioned before, this model
makes use of multiple modules without any purpose. Currently the amount
of commands can be greatly reduced by putting multiple updates in a single
transition instead of distributing them over multiple modules. This will
reduce readability, but readability will be less of a problem because we will
be generating the model with a Python script. With the next model we aim
to put everything in a single module, as well as scale up to the four by four
2048.

3.4 Combining Modules

For our model to be useful, we need it to parse and build in a reasonable
amount of time. The simplest way to do this is by reducing the amount
of commands. A two by two 2048 game has 4 cells. A four by four game
has 16 cells. So far, the model has been made by hand, with commands
based on all different configurations for filled-empty cells. The amount of
such configurations is 2N , where N is the amount of cells. For a two by two,
that is 16 different configurations. A four by four has 65,536 configurations.
Making commands for all these configurations by hand is not viable. We
need to find ways to automate command creation. One way is to find groups
with similar behaviour and describing them with a single command. First
we look at general improvements to the model for the two by two grid. Then
we look at how we change the random and move-merge phase commands.
Afterwards we will scale this model to the four by four grid.

Improvements from the first prototype

The first improvement from the prototype is that all commands will be in
one single module called game grid. Here we define a single phase variable,
rather than the previous four. This alone reduces state complexity by a
factor of 8.

Readability is less important now that we generate the model with a
python script. As such we won’t be declaring v 00, v 01, v 10 and v 11,

24

but v 0 to v 3. This makes defining the value variables easier for the gen-
erator and also makes scaling this operation easy, as we just loop N times,
where N is the amount of cells.

We now use a similar loop for the commands that can be called in the
random phase. Let N be the amount of cells. The previous model had 2N

filled or non-filled configurations for the grid, described with binary numbers
at the bottom of the model with formulas. For example, the formula f 0100

would evaluate to true when all cells are empty except the top-right cell, as
cells are ordered starting top-left, left-to-right. The n’th digit would define
the status of the n’th cell.

We want to describe all random phase transitions. With the previous
system, that would mean that we would need to have 2N starting configura-
tions. From any position we could fill one cell, so we need to multiply every
instance with the amount of empty cells, further enlarging the amount of
commands. Furthermore, we need to handle the starting state of the board,
where two cells are filled. Thus we would need N ∗N−1 different additional
starting configurations. We will not need this many commands now that we
put all updates in a single module. We will discuss how in the next section.

Random Phase Commands

Because we now use only one module, we can greatly reduce the amount of
commands to 2N . N for the general transitions and N for the start of the
game, so two commands per cell. One of these is the following example:

[v_1] !(v_0=0 & v_1=0 & v_2=0 & v_3=0) &

(v_1=0) & no_MAX & (phase=1) ->

N : (v_1’=2) & (phase’=0) + M : (v_1’=4) &

(phase’=0);

Figure 3.18: Transitions these commands define

25

While this command has an action, it only uses it for tracking purposes,
no synchronization is needed until we start making a policy manager. The
guard only evaluates to true if the state is not an initial empty grid, no
cell has max value (to prevent the state space from growing endlessly) and
the phase is 1. (v 0=0) here is the only part that differs between all the
commands for every cell, it checks if a single cell is empty. This command is
repeated for every cell. Because of this guard, only commands that will fill
an empty cell will be considered by the simulator. PRISM chooses between
one of these commands with equal probability for each. The only thing left
is to begin the game with two random tiles on the grid, which we can do
with only one extra command per cell.

[v_0_init] (v_0=0 & v_1=0 & v_2=0 & v_3=0) &

(phase=1) ->

N : (v_0’=2) + M : (v_0’=4);

The first part line ensures that the guard only evaluates to true if all cells
have a value of zero, a state that is only possible at the very start of the
game. On the last line we do not change the phase, thus another random
tile will be added by a normal random phase command.

Move-Merge Commands

The commands for the move-merge phase are generated with two different
systems. One system defines the guard, one defines the updates. Both of
these systems base their output on the filled-empty configuration of the grid
and the action. For a two by two, this means at most 24 = 16 commands
per action. Some of these commands never lead to a valid transition. Take
for example the grid with a single cell filled on the top-left corner, no left
or up action will be valid. This lowers the total amount of commands to 12
commands per action. Some transitions are purely possible because of the
contents of the filled tiles. Think of a grid with the left side filled. An up or
down command will only be possible if both tiles are equal. Thus our guards
will need to consist of two important parts, one part that evaluates to true
if the grid is equal to the configuration the updates are made for, and one
possibly empty part that evaluates to true if the contents of the grid allow
for a transition. Thus our guard will contain the grid configuration with
a disjunction of extra demands. How these demands are generated will be
discussed in the section Model Generation.

Generating updates for the commands

The updates will be generated based on the position of the cell in the row
and the amount of cells filled in that row. We first made updates based on

26

a left action on the top most row. We can later convert the updates and
guards to different directions and rows. All of these updates are made with
the assumption that an exact amount of cells are filled. The updates can be
seen in Table 3.1

cell 0 cell 1

0,1 filled (c0=0?(c1=0?0:c1):c0) (0)

2 filled (c0=c1?2*c0:c0) (c0=c1?0:c1)

Table 3.1: Cell updates

In this table, the values of the cells are held in the c0 and c1 variables.
These are placeholders for the in-model variables. The 0 and 1 cell filled
rows are combined into one, as the combining both in a single expression
is easy and reduces the total amount of such updates we need to make. In
these conditional evaluations we first check if the first cell is empty, then we
check if the second cell is empty. If both are empty, then the row had zero
filled cells. In all other branches, we know which cell has the filled cell, and
can then fill the leftmost cell with that value. For the second cell in this
case, we know that it will always be empty afterwards, thus it is only a zero.
When we know that there are two filled cells, we get a conditional evaluation
very similar to the one used in the prototype. When the cells have equal
value we double the value in the first cell and set the value to zero in the
second cell. If not, they both remain as they were. One could think that
unchanging variables would be against the rules, as an action that doesn’t
change any values should be illegal. However, because of our guard, we know
that either the values are equal, or a move is legal because the state of the
grid in another row allows the move.

Move-Merge Command Examples

The generator can determine which of the updates to use for each variable
based on the guard by calculating how many cells are filled in each row.
Take this command as an example:

[left] ((!v_0=0 & v_1=0 & !v_2=0 & !v_3=0) &

(v_2=v_3)) & no_MAX & phase=0 ->

(v_0’=(v_0=0?(v_1=0?0:v_1):v_0)) &

(v_1’=0) &

(v_2’=(v_2=v_3?2*v_2:v_2)) &

(v_3’=(v_2=v_3?0:v_3)) & (phase’ = 1);

The generator is tasked with making a command for a left action where
all cells are filled except for an empty top-right cell. The extra condition

27

Figure 3.19: Examples of transitions for this and the next command

v 2=v 3 is added because this action can only be legal if this condition is
true. This technically does make one conditional evaluation in the updates
redundant, as we will check for equality there as well. However, this redun-
dancy is fairly minor and simplifies the model generation substantially. After
the arrow, we have one update for every cell, as well as one that changes
the phase.

The generator determines which cells are in which rows, the first has v 0
and v 1, the second one has v 2 and v 3. For the first row, it knows that
one or zero cells are filled. Thus it uses the top-left formula from Table 3.1
for v 0 and top-right for v 1. For the second row it knows both are filled.
Thus it uses the bottom-left for the v 2 update and the bottom-right for the
v 3 update. In all of these updates, the correct variables need to be put in
place instead of the placeholders. The generator calculates which cells are
in which row, and in what order. Take a look it this down action command
that stems from the same grid configuration.

[down] ((!v_0=0 & v_1=0 & !v_2=0 & !v_3=0) &

(v_2=v_0)) & no_MAX & phase=0 ->

(v_2’=(v_2=v_0?2*v_2:v_2)) &

(v_0’=(v_2=v_0?0:v_0)) &

(v_3’=(v_3=0?(v_1=0?0:v_1):v_3)) &

(v_1’=0) & (phase’ = 1);

Here we can see that the guard is mostly the same, only the additional
requirement part is different. This is because the action has a different di-
rection, which requires different variables to be equal. At first glance one
can see that the order of the updates is different. The order matters little
and is a result of the generation process. In this case, the first row (now a
column) contains v 0 and v 2, with v 2 as the ‘leftmost’ cell. The updates
themselves are from the bottom row of Table 3.1, as both cells are filled.
you can see that the variables have changed to reflect the rotated row. The

28

v 1 and v 3 updates follow the same procedure.

To scale this process to a four by four 2048 game, we need 16 different
updates for the new grid. The amount of commands that will be generated
will also grow because of the large amount of configurations. In the next
section we discuss the problems the large amount of commands cause, and
how we minimize the amount of commands.

3.5 Merging Commands - Final Model

In this section we will first describe how the updates work for the four by
four grid. Then we will discuss the improvements that made the model
practical to use. The following updates were made similarly as the updates
in the previous two by two model. With placeholder names as described in
figure 3.20. The updates are grouped by amount of cells filled. We start
with zero or one cell filled.

Figure 3.20: Placeholder variable names used in the updates.

Updates for 0 and 1 filled cell in a row

cell 0 (c0=0?(c1=0?(c2=0?(c3=0?0:c3):c2):c1):c0)

cell 1 0

cell 2 0

cell 3 0

Table 3.2: Cell updates for rows with no or one filled cell

The updates in table 3.2 are used for variables where we know that their
row has one or zero filled cells. A visual example can be seen in Figure 3.21.
Only a single cell is filled, so a left action will only be able to the leftmost
cell. We also know that all other cells will be empty after the action. We do
need to know what value the cell needs to be. Thus the largest part of this
conditional expression is a series of c =0 conditionals that determine which
cell is filled. The value of c0 is then changed into that value. If no cell is
filled, c0 stays zero.

Updates for 2 filled cells in a row

The updates in table 3.3 are for two filled cells. The largest part of these
updates is in discovering which two cells are empty, for which there are six

29

Figure 3.21: Examples of transitions the updates in table 3.2 are made for

cell 0 (c0=0?(c1=0?(c2=c3?2*c2:c2):(c2=0?(c1=c3?2*c1:c1):(c1=c2?2*c1:c1))):

(c1=0?(c2=0?(c0=c3?2*c0:c0):(c0=c2?2*c0:c0)):(c0=c1?2*c0:c0)))

cell 1 (c0=0?(c1=0?(c2=c3?0:c3):(c2=0?(c1=c3?0:c3):(c1=c2?0:c2))):(c1=0?(c2=0?(c0=c3?0:c3):(c0=c2?0:c2)):(c0=c1?0:c1)))

cell 2 0

cell 3 0

Table 3.3: Cell updates for a full 2048 grid with two filled cells

options total. After finding the filled cells, the expression evaluates whether
the tiles have equal value. If so, c0 becomes the doubled value, and c1 zero.
If the two tiles are not equal, c0 gets the value of the first filled cell, c1
becomes the value of the second found filled cell. c2 and c3 always become
0.

Figure 3.22: Examples of transitions the updates in table 3.3 are made for

Updates for 3 filled cells in a row

Table 3.4 contains the updates when one cell is empty. In these expressions
we once again try to find where the empty cell is. After that we determine
if the first and second filled cell are equal, and if not whether the second
and third filled cell are equal. Depending on these factors, the outcome of
each cell changes. For c0 we do not need to know anything about the third
filled cell, as such it is a much shorter update. It only needs to know if the
first and second filled cell are equal. If these are equal, c1 gets the value
of the third filled cell. If the first and second filled cell are not equal, then
c1 depends on the second and third filled cell. If they are equal value, c1
becomes double that value. If not, c1 becomes the value of the second filled
cell, and c2 becomes the value of the third filled cell. c3 always becomes 0.

30

Figure 3.23: Examples of transitions the updates in table 3.4 are made for

cell 0 (c0=0?(c1=c2?2*c1:c1):(c0=c1?(c0=c2?2*c0:c0):(c0=c1?2*c0:c0)))

cell 1 ((c0=0?(c1=c2?c3:c2):(c1=0?(c0=c2?c3:(c2=c3?2*c2:c2)):(c2=0?(c1=c0?c3:(c1=c3?2*c1:c1)):(c1=c0?c2:(c1=c2?2*c1:c1)))))

cell 2 (c0=0?(c1=0?(c2=c3?0:c3):(c2=0?(c1=c3?0:c3):(c1=c2?0:c2))):(c1=0?(c2=0?(c0=c3?0:c3):(c0=c2?0:c2)):(c0=c1?0:c1)))

cell 3 0

Table 3.4: Cell updates for a full 2048 grid with three filled cells

Updates for 4 filled cells in a row

Figure 3.24: Examples of transitions the updates in table 3.5 are made for

cell 0 (c0=c1?2*c0:c0)

cell 1 (c0=c1?(c2=c3?2*c2:c2):(c1=c2?2*c1:c1))

cell 2 (c0=c1?(c2=c3?0:2*c3):(c1=c2?c3:c2))

cell 3 (c0=c1 — c1=c2 — c2=c3?0:c3)

Table 3.5: Cell updates for a full 2048 grid with four filled cells

When we know that all cells are filled, we only need to know what neigh-
bouring cells are equal to each other. c0’ only depends on the equality of
c0 and c1. There are two branches in the expression for c1 and c2, splitting
on the equality of c0 and c1. c3’s update is very different. We know that
it either stays the same value if no cells have equal value (save for c0 = c2

and c1 = c3) or becomes empty. As such we only check if a value is equal
to its neighbour. If so c3 becomes 0, otherwise it stays c3.

31

Combining commands

It is not feasible to describe all transitions with the same technique as in sec-
tion 3.4 with a 4x4 grid. There are 216 = 65536 different possible filled/non-
filled configurations, each of which would need four commands; one per
action. Some of these configurations cannot be reached and not all actions
are valid in every configuration. This calculation does show the scale we
need to reduce. We will now discuss some solutions and how they led us to
a solution that worked well.

Merging commands with similar updates

If we create all the commands in the way we have been doing in section 3.4,
then we create multiple commands with identical updates. This happens
because the updates do not care which cells are filled in a row, only how
many cells are filled in a row. We can see this in the following (abbreviated)
example:

[left] f0010_0000_0000_0000 -> (v_0’=0or1filledcellupdate & (v_1’=0) & (v_2’=0) & (v_3’=0) & 12 other updates;

[left] f1000_0000_0000_0000 -> (v_0’=0or1filledcellupdate & (v_1’=0) & (v_2’=0) & (v_3’=0) & 12 other updates;

Despite the difference of the location of the single cell, these two com-
mands have the exact same updates. We can combine these by merging the
guards as follows:

[left] f0010_0000_0000_0000 | f1000_0000_0000_0000 -> (v_0’=0or1filledcellupdate & (v_1’=0) & 14 other updates;

Merging all commands where the updates are the same greatly reduces
the amount of commands needed. This way we only need commands for
every configuration of every amount of cells filled for every row. Because we
combined zero and one we have four possibilities for every row (0
1, 2, 3 or 4). With four rows, we get 44 = 256 updates per action, a massive
improvement compared to Combining Modules. However, if you generate
this model you might notice that it still takes a long time to parse this model
in PRISM. This is because while the amount of updates have decreased, all
definitions for the configurations are still in the guards, causing very long
commands, which take a very long time to parse. For example, let us take
a command for a state with 2,3,4 and 3 cells filled. There are four different
ways to make a row with all of these amounts. That means that there are
44 = 256 different configuration definitions in the guard of that command.
For every 0 or 1 in the configuration of rows, this number doubles. The first
(1111) command contains 4096 configurations in its guard. Thus, we need
to find a way to rewrite the guards in a shorter way as well.

Merging commands with similar guards

Our goal is to make an expression that encompasses exactly and nothing
more than all possible ways to describe a row configuration. That is, if we

32

want to describe the row configuration 2, 3, 4, 1 (top row has two filled cells,
second row three, etc.), we need to find a sufficiently short expression that
evaluates to true if and only if the grid has the row configuration 2, 3, 4, 1.

To do this we would like to have an expression that counts how many
cells are filled. We cannot use the variables themselves, like in c0 + c1 +
c2 + c3, because these variables’ value ranges from 0 to 32 or higher. We
can use the min(...) function however. min(c0, 1) returns 1 when c0 is
filled and 0 when the cell is empty. min(c0,1) + min(c1, 1) + min(c2,
1) + min(c3, 1) returns the amount of cells filled in a row with cells c0
to c3. Henceforth this function will be referred to ascount(c0, c1, c2,
c3) to save space. However, in a model it would still be written as the long
version. This means that any guard for row configuration a, b, c, d, would
look like the following example:

count(c0, c1, c2, c3) = a & count(c4, c5, c6, c7) = b &

count(c8, c9, 10, c11) = c & count(c12, c13, c14, c15) = d &

-> {updates};

This is great, but still leaves us with the 256 commands per action. With
the new count function, we can do much better.

Merging commands with the same action

Using the same count() function we can reduce the amount of commands
from 256 to 1 per action. The current amount of commands stems from
the fact that we have essentially four different variable updates to choose
from four times, 44 = 256. If we can merge two of the four different updates
(leaving three), we leave 34 = 81 different commands per action. Say that we
want to merge the 3-cells-filled and 4-cells-filled expressions using count().
Using count() we could make the following expression. Recall that count()
here is short for the actual expression in the model.

[action] guard -> (c0’=(count(c0, c1, c2, c3=3)? 3filledcellupdate : 4filledcellupdate))

This can be repeated for all different updates. The model implements
the following flowchart

count()>2?

no yes

count()=2? count()=4?

no yes no yes

0or1filled 2filled 3filled 4filled

This leaves the generator with a single choice for an update. There are
still four different updates, one for every cell in a row, but which are deter-
mined by the location of the variable in the row. This means that we now
only need a single command per action. The guard for this action would be
very long if we combined every previous guard, but with only one command,
we can rewrite our guard. Instead of an expression evaluating to true if one

33

of many grid states is true, we can evaluate whether the action is allowed,
which is much shorter. For a left action, we need to know two things to be
true for the action to be legal: Whether a single tile has an empty neigh-
bouring cell on its left, or whether a tile has an equal value tile on its left.
Either of these conditions is enough to allow for the move to be made.

[left] no_MAX & (left_movable | left_mergeable) & phase=0 -> updates;

This leaves us with a model with 38 commands. 32 in the Random phase,
4 in the Move-Merge phase, one fail loop and one win loop.

3.6 Model Generation

We wanted an easy way to scale this model. To do this we made a script
that generates the model file for us. The script was written in Python 3.7.
By running the script in an IDE it generates a file that models an N by N
2048 game. The user can change some constants, including N, the chance of
an empty cell getting a 2-tile, the filename of the model, and the maximum
value a tile can reach. This script itself only supports 2x2 and 4x4 grids.
Other values for N would also work with minor fiddling in update generation
and by adding the necessary 3x3 updates.

Most of the generating is done in the write file() function. It writes
lines of text to the given filename using the .write() function.

Variable generation

Using a simple for-loop, we loop N ∗N times to write a variable definition
for every cell. We also write a definition for the phase variable, initiated
on 1. 0 will stand for the Move-Merge phase, 1 will stand for the Random
phase. We also create a list with all variable names for the upcoming code
to use.

Random phase commands generation

The random phase commands are generated with two for-loops of length
N ∗N . The first loop is for the initial commands at the start of the game,
the second loop for the normal commands. The first loop does not change
the phase variable, adding two tiles instead of one. The first loop c=can
only happen at the start because the guard only evaluates to true if the grid
is empty. In the second loop, the guard checks if the grid is not empty, like
in the example below.

34

file.write(’\t//random transitions\n’)

for i in range(N * N):

full_string = ’\t[v_’ + str(i) + ’] !field_empty & (v_’ + str(i) + ’=0) & no_MAX & (phase=1) ->

N : (v_’ + str(i) + ’\’=2) & (phase\’=0) + ’

full_string += ’M : (v_’ + str(i) + ’\’=4) & (phase\’=0);\n’

file.write(full_string)

This creates commands such as:

[v_1] !field_empty & (v_1=0) & no_MAX & (phase=1) -> N : (v_1’=2) & (phase’=0) + M : (v_1’=4) & (phase’=0);

Rotating the board

The move-merge commands are made of multiple parts that are combined
together at the end and then written to the file. This happens four times,
once per action. We would like to avoid making four separate functions,
one for every direction. So instead we ‘rotate the board’. We program the
functions to base their output on a list of variable names. From this list
they can see where all variables are located on the board. For a concrete
example, with N = 2 a list would look like (v 0, v 1, v 2, v 3). The
function assume that the variables are ordered left-to-right top-to-bottom
and will use v 0 and v 1 for the top row in that order, but for a [right]

action we would like this order to be reversed. If we rotate the board 180
degrees, and create a new list we would instead get the list (v 3, v 2, v 1,

v 0). Now the function would use v 1 and v 0 in the now correct order for
it’s command generation.

Move-Merge phase commands

The command is made of distinct pieces that are combined at the end. The
pieces are the action, the guard and the updates. The guard is made of three
parts that evaluate to true when, the end of the model has not been reached,
tiles can move in the given direction and the model is in the correct phase.
Tiles can move either when a tile can merge or when a tile can move. The
updates contain the updates for all variables, including the phase variable.
The updates in the generated command use the same updates from table
3.1 and table 3.2 and onwards, combined in a single command as described
in section 3.5.

We create the guard by generating all neighbour pairs on the board.
With these pairs we create the two different expressions. One that evaluates
to true if one tile has an empty cell to it’s left. The other if the two tiles are
equal and not empty. If the neighbours would be v 0 and v 1, then these
expressions look as follows:

movable: (v_1!=0 & v_0=0)

mergeable: (v_0!=0 & v_0=v_1)

35

All these expressions will be chained in one massive disjunction, as only
one has to evaluate to true to allow an action. These large disjunctions are
printed at the bottom of the model with the other formulas. In the actual
command it will look like [left] no MAX & can left & phase=0 ->.

Update generation

We need to create a string that contains all the updates in the command.
We loop over all variables in the grid. For every variable we create a list
that contains all the variables in its row, including itself. We also cal-
culate what its position is in the row. With the row and position the
large generate update() function can determine what update the variable
needs. generate update() creates all the conditional expressions using a
few helper functions that handle syntax to prevent most human errors. This
functions contains the updates for all two by two and four by four games.
The possibility to add three by three or other sizes is there as well. For a
concrete example, here is the code for N = 2 if the position of the variable
is 0:

if N == 2:

if pos == 0:

str_fill_1 = prif(preq(var[0], 0), prif(preq(var[1], 0), 0, var[1]), var[0])

str_fill_2 = prif(preq(var[0], var[1]), prdb(var[0]), var[0])

str_count = prcount(var)

return prif(str_count + ’=2’, str_fill_2, str_fill_1)

Which creates the update

((min(1,c0)+min(1,c1))=2?(c0=c1?2*c0:c0):(c0=0?(c1=0?0:c1):c0))

where c0 and c1 are replaced with the actual variable names.

Formula and label generation

The bottom of the model contain formulas and labels. We have described
most of these formulas already, but put these at the bottom of the model
for readability. There are four formulas not specifically for the Move-Merge
phase commands. One for an empty grid to be used by the random phase
commands, one to ensure that no cell has maximum value, one for the
win-condition, and one for the loss-condition. field empty is simply a con-
juction of v X=0 where x ranges from 0 to N-1. no MAX is a conjuction of
v X<=MAX/2. We test for larger than MAX to ensure that if somehow MAX
is skipped, the model is still stopped. the fail condition is created by a
conjunction of v X != v Y, where v X and v Y are neighbours, and a reverse
field empty, ensuring that all cells are filled. The win-condition is a dis-
juntion of v X=MAX, evaluating to true when one variable has reached the
goal.

36

3.7 Policy Manager

We want to do an experiment to show that this model can be used for
statistical model checking. Statistical model checking can not be done on
MDPs [14], due to its non-deterministic nature. This is also seen in our
model, where multiple commands can be chosen at once, e.g. when both
left and right are valid actions or when multiple empty cells can be filled.
PRISM does allow us to perform statistical model checking, by resolving
non-determinism uniformly. This is in our favor, as that is is the exact
distribution we want when filling empty cells and when choosing random
actions.

We still want to play the model in a certain way to simulate differ-
ent strategies. There might also be a need in the future to remove non-
deterministic choices in our model. Both can be done by creating a new
module. This new module will use parallel composition such that only a
single action can be chosen in every state, thus removing non-determinism.

Module

When multiple modules have a command with the same action, these com-
mands can only be used if both guards evaluate to true. This is called
parallel composition. We can use parallel composition to prevent that mul-
tiple actions can be chosen at the same time. For example, say we have a
module with a variable b that is true if and only if left actions are allowed.
Next, the model is in a state where both a left and a down action are pos-
sible. We add the following command to the new module: [left] b=true

-> true;. This command can only be chosen if b is true. But if b is false,
only the down action can be chosen. This concept is used in a new mod-
ule called policy manager to remove non-determinism and to apply certain
strategies.

Random Move-Merge Phase

For our purposes of testing different strategies, we actually do not need to
remove non-determinism from the model. This is because PRISM interprets
a choice between for multiple different commands as a single command with
uniform probability between them. This means that the same path with
the following module and without the following module have equal chance
of being generated. But for some purposes it might be useful to remove
non-determinism from the model.

In a successful implementation of a random strategy, only a single action
between left, up, right and down is allowed at a time. To do this we add

37

a single variable move rn, that holds a random number between 0 and 3,
that determines which move will be chosen. We then add four commands,
one for each direction, with a guard that only evaluates to true on a certain
value of move rn. For example, only the left command is available when the
random number is 0. The transition for this command changes move rn to
a new number, where each number has equal chance of being chosen. The
random number can be a number for an illegal action, causing a deadlock.
To prevent this we add a command that resets move rn, but if and only if
the chosen number corresponds to an illegal move. This way, every legal
move has equal chance to be chosen.

module policy_manager

m_rn : [0..3];

[left] m_rn = 0 -> 0.25: (m_rn’=0) + 0.25: (m_rn’=1) + etc.

[up] m_rn = 1 -> 0.25: (m_rn’=0) + 0.25: (m_rn’=1) + etc.

[right] m_rn = 2 -> 0.25: (m_rn’=0) + 0.25: (m_rn’=1) + etc.

[down] m_rn = 3 -> 0.25: (m_rn’=0) + 0.25: (m_rn’=1) + etc.

[rn_reset] !fail & phase = 0 &

((!can_left & m_rn=0) | (!can_up & m_rn=1) | etc.)) ->

0.25: (m_rn’=0) + etc. ;

The !fail is there to ensure that this command can only be chosen if the
game is in progress.

This implementation does have a downside. Although rare, it is techni-
cally possible that the move rn reset loops infinitely, by choosing the same
illegal move over and over. This also means that the total amount of steps
in a path does not correspond exactly to the amount of moves by the player.
This downside does not affect our experiment, as path length does not mat-
ter to us, and an infinite loop is very rare.

Listed Preference Move-Merge Phase

Creating a simple strategy that is not random is less complicated. For
our experiment we want to have a strategy that favors one move over the
others. The following strategy will always take a left action if the left action
is available. Only when the left action is not available (the formula for this
is !can left) will the up action be chosen. Similarly for all action, when
no action above them is available can the action be chosen. This strategy
does not add extra steps and cannot become an infinite loop like the random
strategy.

[left] true -> true;

[up] true & !can_left -> true;

38

[down] true & !can_left & !can_up -> true;

[right] true & !can_left & !can_up & !can_down-> true;

One other strategy is to alternate between two orthogonal actions. We
can create this behaviour by using two preference lists and alternating be-
tween them. We add boolean variable to the module. One list is only
available when the variable is true and the other when false. The boolean
switches values when the top choice is taken. Technically, the bottom two
actions from both lists can be combined.

turn : bool init true;

[left] turn=true -> turn=false;

[up] turn=true & !can_left -> true;

[down] turn=true & !can_left & !can_up -> true;

[right] turn=true & !can_left & !can_up & !can_down-> true;

[left] turn=false -> turn=true;

[up] turn=false & !can_left -> true;

[down] turn=false & !can_left & !can_up -> true;

[right] turn=false & !can_left & !can_up & !can_down-> true;

Random Phase

As with the random move strategy, this implementation does not affect our
measurements in the following experiment. It can, however, be useful when
non-determinism must be removed. For this we use the same technique as
with the random strategy. We add a random number to the module and
only allow a cell to be filled if the random number is equal to the cell’s
number. If the random number corresponds to a command that cannot be
used, then the random number is reset until a check can be filled.

rn : [0..N]

[v_X] seed=X -> 1/N: (seed’=0) + 1/N: (seed’=1) + etc.

[reset_rn] !success & phase=1 &

((!v_0=0 & rn=0) | (!v_1=0 & rn=1) | etc. ->

1/N: (rn’=0) + 1/N: (rn’=1) + etc.

The !success is there to ensure that this command can only be chosen if
the game is in progress.

You can see here that we need one command per cell. The transition
also contains as many updates as there are cells. Luckily these can easily be
generated by the model generator, by looping over the amount of cells.

39

3.8 Experiment

To show that our model can be used for statistical analysis, we will be doing
a small experiment. In this experiment we will be comparing four different
strategies of playing 2048, using the PRISM simulate function.

3.8.1 Method

We will compare four different strategies to complete a full 4x4 cells 2048
game. We will use the model created by the script with N = 4 and MAX =
2048, 1024, 512 and 256. The three strategies will be:

• Random, the manager picks a random move from all available moves.
Every available move has equal chance to be chosen.

• List of preferences, the manager will always pick a certain move when
that move is available. If that move is not available, then it will pick
the second move from the list, etc. One order will be: up, down, left,
right. The other order used is left, up, down, right. One has the
top two choices be opposite directions. With the other, the top two
directions are orthogonal.

• Alternating lists of preferences. This simulates how humans tend to
play the game. The manager has not one, like in the previous example,
but two preference lists, and alternates between them when the top
choice is picked in either of them. The two lists used where: up, left,
down, right and left, up, down, right.

We will calculate the probability of a certain strategy resulting in a fail state.
That is, we will calculate the property Pmin=?[F fail]. The minimum
probability of a path ending in a fail state. We cannot calculate this because
of the large size of the model, but we can apply statistical model checking.
The statistical model checking algorithm used will be Confidence Interval
(CI) [15], with a confidence of 0.01 and 1000 samples. CI will calculate the
width. Recall that a confidence of 0.01 means that there is a 99% chance
that the calculated probability has a difference smaller than the width with
the real probability.

3.9 Results

As can be seen from figure 3.25 and the table 3.6, the opposite preference
strategy has the lowest chance to get far in the game. Both orthogonal pref-
erence and alternating have a decent chance of getting far, with orthogonal
preference performing a bit better. None of the tested strategies had a solid
shot at the finish line however. All strategies have trouble with reaching the
1024 mark, and perform about equal from this point.

40

Random Preference (opposite) Preference (orthogonal) Alternating

Max Pmin w Pmin w Pmin w Pmin w

128 0.138 0.02811 0.722 0.03651 0.010 0.00811 0.014 0.00957

256 0.537 0.04063 0.980 0.01141 0.134 0.02776 0.193 0.03216

512 0.873 0.02714 0.999 0.00258 0.583 0.04018 0.671 0.03829

1024 0.971 0.01368 1.0 0.0 0.965 0.01498 0.989 0.00850

2048 0.997 0.00446 1.0 0.0 0.998 0.00364 0.999 0.00258

Table 3.6: Minimum chance of losing the game using various strategies before
reaching a max value tile.

Figure 3.25: Minimum chance of getting a game over before reaching the
highest value tile, with errorbars representing the width

41

Chapter 4

Related Work

In Safe Reinforcement Learning via Shielding [1] Alshiekh et al. in-
troduces the concept of shielded decision making. The resulting policy of
a reinforcement learning algorithm is good at maximising reward, but does
not guarantee safety. To guarantee this safety they introduce the shield.
They propose two different ways to implement this shield, either before the
agent decides, or after the agent decides. When the implemented before, the
shield removes all unsafe actions from the list of actions. In the case of af-
ter, the shield changes the action to a safe action after the agent chooses an
unsafe action. The shield calculates which actions are safe or unsafe using a
model of the environment the agent is in, usually an MDP. Using temporal
logic, the shield calculates which states must be avoided, and which actions
are safe/unsafe. Tested shielded agents performed at least as well as non-
shielded agents in the performed experiments.

In Shielded Decision-Making in MDPs [9] Jansen et al. discuss the
use of shielded decision making in the exploration phase of reinforcement
learning algorithms. They constructed shields for PACMAN and a model
about avoiding robots in a warehouse. To construct a shield an MDP is
needed. This was done by first creating a behaviour model of the ghosts
and robots. Then this behaviour model was converted to an MDP. Finally
a shield is constructed that tries to prevent the agent fro choosing an action
that leads to a game-over. Agents that learned with a shield performed
much better than agents that learned without

Safety-Constrained Reinforcement Learning for MDPs [9] offers
another way to compute safe and optimal strategies in an environment with
“random choices, unknown cost, and safety hazards.” S. Junges et al. use a
permissive scheduler to allow multiple actions. These actions are calculated
to be safe, after which exploration can happen within the bounds of this
scheduler.

42

In a series of blog posts on his personal website, John Lees-Miller
analyses 2048 using various mathematical techniques. In the first blog [12]
he asks how many moves are needed on average to complete the game. To
find this he created a simplified version (without tile position) of the game
as a Markov Chain. Then he sampled one million paths from this chain to
find the answer. In the fourth and final blog [13], Lees-Miller attempts to
find optimal play using Markov Decision Processes. He manages to find an
optimal policy for 2x2, 3x3 and 4x4 until tile 64. The creation of the final
MDP “took roughly one week on an OVH HG-120 instance with 32 cores at
3.1GHz and 120GB RAM.” The reason we made our own model is because
our PRISM model can be used for a wider variety of purposes, including
statistical analysis.

43

Chapter 5

Conclusions

This thesis presents a PRISM model of the game 2048. Furthermore, we
present a Python script that can generate 2x2 and 4x4 2048 PRISM models.
This script is also able to make NxN models when the cell updates for a
given N are added. The model splits a usual 2048 turn in a ‘move-merge’
and ‘random’ phase. This split allowed us to create a model with few com-
mands, allowing it to be parsed quickly. This makes it possible to perform
statistical analysis on the model. The script also has the option to add a
policy manager to the model. The policy manager played the game with
a certain strategy We compared four different strategies using statistical
model checking and found that some strategies, such as alternating orthog-
onal directions, can reliably get you to high values like 256 and 512, but
none of the tested strategies were good enough to reach 2048.

Future Work

This model was made so that shielded decision making could be tested on the
game 2048, but building the full MDP is infeasible for modern computers.
So future research could look into implementing a shield on a partial MDP
made using a program such as Storm model checker [6]. Future research
could also investigate so-called counterexamples to point to faulty or bad
behavior in the model. This could be done using research by T. Han et al.
[7] or by N. Jansen et al. [10]. More specifically, C. Dehnert et al.’s research
on PRISM debugging could be of use [5]. These require a model to be a
DTMC instead of a MDP, but the techniques used in the policy manager
could be used to reduce our model to DTMC.

More work could also be done by augmenting the model with partial
observability to account for the fact that the next number is not known.
Related research to model checking with POMDPs includes work by S. Carr
et al’ [3], L. Winterer et al. [17] and E. Walraven et al. [16].

44

Bibliography

[1] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. Safe reinforcement learn-
ing via shielding. CoRR, abs/1708.08611, 2017.

[2] C. Baier and J. Katoen. Principles of Model Checking. MIT Press,
2008.

[3] Steven Carr, Nils Jansen, Ralf Wimmer, Alexandru Serban, Bernd
Becker, and Ufuk Topcu. Counterexample-guided strategy improve-
ment for pomdps using recurrent neural networks. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI-19, pages 5532–5539. International Joint Conferences on
Artificial Intelligence Organization, 7 2019.

[4] Gabriele Circulli. 2048. https://github.com/gabrielecirulli/

2048. Last Accessed: 17-12-2019.

[5] Christian Dehnert, Nils Jansen, Ralf Wimmer, Erika Ábrahám, and
Joost-Pieter Katoen. Fast debugging of prism models. In Franck Cassez
and Jean-François Raskin, editors, Automated Technology for Verifica-
tion and Analysis, pages 146–162, Cham, 2014. Springer International
Publishing.

[6] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and
Matthias Volk. A storm is coming: A modern probabilistic model
checker. CoRR, abs/1702.04311, 2017.

[7] T. Han, J. Katoen, and D. Berteun. Counterexample generation in
probabilistic model checking. IEEE Transactions on Software Engi-
neering, 35(2):241–257, 2009.

[8] Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening.
Logically-coonstrained reinforcement learning. CoRR, abs/1801.08099,
2018.

[9] Nils Jansen, Bettina Könighofer, Sebastian Junges, and Roderick
Bloem. Shielded decision-making in mdps. CoRR, abs/1807.06096,
2018.

45

[10] Nils Jansen, Ralf Wimmer, Erika Ábrahám, Barna Zajzon, Joost-Pieter
Katoen, Bernd Becker, and Johann Schuster. Symbolic counterexample
generation for large discrete-time markov chains. Science of Computer
Programming, 91:90 – 114, 2014. Special Issue on Formal Aspects of
Component Software (Selected Papers from FACS’12).

[11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In G. Gopalakrishnan and S. Qadeer,
editors, Proc. 23rd International Conference on Computer Aided Ver-
ification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer,
2011.

[12] John Lees-Miller. The mathematics of 2048: Minimum moves to
win with markov chains. https://jdlm.info/articles/2017/08/05/
markov-chain-2048.html. Last Accessed: 10-6-2020.

[13] John Lees-Miller. The mathematics of 2048: Optimal play with
markov decision processes. https://jdlm.info/articles/2018/03/

18/markov-decision-process-2048.html. Last Accessed: 10-6-2020.

[14] Axel Legay, Benôıt Delahaye, and Saddek Bensalem. Statistical model
checking: An overview. In RV, volume 6418 of Lecture Notes in Com-
puter Science, pages 122–135. Springer, 2010.

[15] V. Nimal. Statistical approaches for probabilistic model checking. MSc
Mini-project Dissertation, Oxford University Computing Laboratory,
2010.

[16] Erwin Walraven and Matthijs T.J. Spaan. Point-based value iteration
for finite-horizon pomdps. The Journal of Artificial Intelligence Re-
search, 65:307–341, 2019.

[17] L. Winterer, S. Junges, R. Wimmer, N. Jansen, U. Topcu, J. Katoen,
and B. Becker. Motion planning under partial observability using game-
based abstraction. In 2017 IEEE 56th Annual Conference on Decision
and Control (CDC), pages 2201–2208, 2017.

46

