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Abstract

Attack trees are a graphical security model which allow to systematically
categorize the different ways in which a system can be attacked. They are
appealing to practitioners, yet also useful for tool builders attempting to
partially automate the threat analysis. Therefore, attack trees are really
useful for the security community for threat analysis. It helps to improve
the security of a system within a company by analysing the ways in which
the system can be attacked. Thus, it is important to have efficient analysis
methods to be able to make great use of these attack trees. The problem,
however, is that there are several extensions of attack trees which result in
different types of attack trees. Some analysis methods work for one type,
but do not work for other types. We go further into two of these types
and describe fast algorithms to analyse those types of attack trees. For the
first type, classical attack trees with possibly SAND gates, we show how the
already known bottom up method works and we extend it for the addition of
the SAND gate. For the second type of attack tree, attack trees with shared
subtrees but no SAND gates, we explain how we can exploit the structure
of the attack tree and analyse them by using binary decision diagrams. An
attack tree will be converted to a binary decision diagram, which will then be
used to analyse different properties of the attack tree. This results in several
algorithms for different attributes to be able to analyse different properties
of the attack tree.
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Chapter 1

Introduction

1.1 The problem

The world is getting more digital by the day. This brings a lot of advantages
along, but also some major risks. The vulnerability of digital systems to cy-
ber attacks is one of these major threats [2], varying from DoS and DDoS
attacks to phishing or password attacks. There is a need to understand all
the different ways in which a system can be attacked, so that appropriate
countermeasures can likely be designed to thwart those attacks. Often secu-
rity decisions are made informally, e.g. by brainstorming. More structures
approaches are based on spreadsheets and technical standards.

Graphical security models provide a useful method to represent and anal-
yse security scenarios that examine vulnerabilities of systems and organiza-
tions. The great advantage of graph-based approaches lies in combining user
friendly, intuitive, visual features with formal semantics and algorithms that
allow for qualitative and quantitative analyses [11]. Over the last decades a
lot of such graphical models have been developed. A historical overview on
existing graph-based approaches is given in [14]. A good overview of attack
tree like models has been given in [11]. It describes the forest of the trees,
among which we find the attack tree which will be discussed in this thesis.

This thesis focuses on attack trees, introduced by Schneier in [15]. Attack
trees form a convenient way to systematically categorize the different ways
in which a system can be attacked. The graphical, structured tree notation
is appealing to practitioners, yet also very promising for tool builders at-
tempting to partially automate the threat analysis. Therefore attack trees
are of great interest to the security community for threat analysis [13]. For
example a company which works with a lot of sensitive data. They must
be sure their system is as safe as possible to prevent any leaks. Attacks
trees can help them fulfilling this task by giving a better overview of how
a system might be attacked and what the weak points in the system are.
Furthermore, attack trees are also part of the security standards.
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1.2 Attack trees

Open safe

Pick lock Learn combo Cut open
safe

Install
improperly

Find written
combo

Get combo 
from target

Threaten Blackmail Eavesdrop Bribe

Listen to
conversation

Get target to
state combo

Figure 1.1: Classic attack tree

In short, an attack tree is a tree in which the nodes represent (sub)attacks,
see Figure 1.1. The root node of the tree is the global goal of an attacker.
Children of a node are refinements of this goal, and leaves therefore represent
attacks that can no longer be refined. Such a refinement can be conjunctive,
via AND gates, or disjunctive by using OR gates. Figure 1.1 shows an
example of an attack tree. The root node is the goal of the attack. This
goal can be refined further into sub attacks using gates. The basic attack
steps of this attack tree are the leaves, for example ’Pick lock’. Those are
the actual attacks and cannot be refined any further. These basic attack
steps are also the nodes that contain all attribute values which an attack
tree has. As introduced by Schneier [15], attack trees only had OR- and
AND-gates and were real trees. However, there are two extensions of these
attack trees which we will also cover in this thesis. The first one is shared
subtrees, which means that attack trees are directed acyclic graphs rather
than real trees, an example of this can be found in Figure 1.2. The second
extension is the addition of another gate, which is the sequential version of
the AND gate: the SAND gate. This is useful, because temporal order is
often an important aspect in attacks. An example of this can be found in
Figure 1.3. Attack trees will be explained more detailed in Section 2.1.
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Use secured
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Use external
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Figure 1.2: Attack tree with a shared subtree. The node ’Hire expert’ can
be reached in multiple ways

Get inside
house

Go through
window

Enter via
door

Open window Climb through
window

Figure 1.3: Part of an attack tree including a SAND gate. To go through
the window, first the window needs to be opened and then one can climb
through the window

In summary, attack trees are very useful to model cyber attacks on a sys-
tem, but to make good use of attack trees they need to be analysed. Attack
trees themselves only show the ways how a system can be attacked, but by
analysing them we get to know more properties of a system, such as the
weaknesses. The main reason for AT analysis therefore also is: find (cost-)
effective counter measures against the attack on a system. However, there
are many different types of attack trees, i.e. different gates, different struc-
tures (tree vs. DAG). Some of which we are able to analyse efficiently, but
others are lacking efficient analysis methods. For example, the classic attack
trees have fairly good methods as they can be analysed using the bottom
up method. However, attack trees with shared subtrees and especially if
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they also include SAND gates are way harder to analyse, because they add
another layer of complexity. Besides the fact that all children have to be
executed, the order of the execution of the children is also a factor now. This
makes for extra checks and furthermore changes the structure properties of
the attack tree, because there is a new gate in it. There has been done
a lot of research on analysing attack trees, some of which we describe in
Chapter 3. Being able to understand attack trees better significantly helps
to improve the security, for example to come up with effective countermea-
sures. Therefore it is very important that efficient analysis methods will be
available. This brings us to our research question.

How can we make attack tree analysis more efficient by exploiting structural
properties of the attack trees?

Attack tree analysis is important for several reasons. It helps us to find use-
ful properties of different possible attacks to come up with countermeasures.
Examples are the cheapest or the fastest attack, or even the probability that
a system is attacked. With this information, we can understand what the
attack goals are, which attacks are more likely to occur, determine the weak
places in a system, understand where to best spend a security budget etc.
[15]. We consider two types of analysis in this thesis.

1. A bottom up method where values at the leaves of the attack will be
propagated towards the root node of the tree to find a certain property
of the attack tree, for example the cheapest attack in the attack tree.

2. The second analysis method will be with the use of binary decision
diagrams. It is the so called BDD method, where an attack tree is
first converted to a binary decision diagram which will then be used
to analyse properties of the attack tree.

We sometimes use the bottom up method and sometimes use the BDD
method, because the methods are not always applicable to a certain type of
attack tree or as effective. For example, the bottom up method is the faster
method of the two. However, when an attack tree has shared subtrees the
method will require a lot more work as we will show later. Then it is better
to use the BDD method. There also exists a third technique, which is model
deciding. This is an alternative, but more expensive and complex method.
Examples of this will be given in Chapter 3.

Binary decision diagrams
A binary decision diagram is a data structure which is used to represent a
Boolean function. It is a directed, acyclic graph with one root node. Every
node represents a variable of the Boolean function and has two children. One
for the function in case the variable equals 0 and the other for the function
when the variable equals 1. There are also terminal nodes, which do not have
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Figure 1.4: Example of a binary decision diagram of the function
f(x1, x2, x3) = x1 · (x2 + x3)

any children. They specify the final value of the Boolean function given a
certain variable assignment. See Figure 1.4 for an example of a BDD. More
about binary decision diagrams will be said in Section 2.2.

1.3 Our contribution

This thesis gives an overview of the most prominent existing methods for
analysing attack trees as well as new more efficient analysing methods for
attack trees. With the classical attack trees and its extensions there are four
types of attack trees:

1. Classical attack trees, so no shared subtrees and SAND gates

2. Classical attack trees with the addition of SAND gates

3. Attack trees with shared subtrees but no SAND gates, so directed
acyclic graphs (DAGs) without SAND gates

4. Attack trees with both shared subtrees & SAND gates, so DAGs with
SAND gates

This thesis focuses on the first three types of attack trees, where we treat the
first two types as one, so attack trees without shared subtrees, but possibly
with SAND gates. Thus, in this thesis we will look at the analysis methods
of the following two types of attack trees:

1. Attack trees with possibly SAND gates, but no shared subtrees

2. Attack trees with shared subtrees, but no SAND gates.
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For the first type of attack tree, there is a method called bottom up which
is already efficient to work with. We show how this bottom up method can
be applied to different attributes. For the other type of attack tree this is
not possible. We will show why and how the BDD method is applicable
for this type of attack tree. The main idea behind the BDD method is the
following. Attack trees are essentially just a Boolean function. A BDD is a
data structure to represent a Boolean function. We convert attack trees to
binary decision diagrams, which we find easier to analyse. This results in ef-
ficiency gains compared to the methods that are currently used. The current
methods are mainly focused on model checking tools and simulations which
are very complex. Current BDD methods merely focus on attack vectors,
i.e. what basic attack steps form an attack, and simple risk computations.
We show this can be extended to analyse more properties of attack trees in
an efficient way. Table 1.1 shows the results for the analysation methods
for different types of attack trees we treat in this thesis. For both types of
attack trees, it shows for each attribute how it can be analysed. Attributes
are the values of the attack tree, such as probability or cost. BU stands for
bottom up, a method where leaf values will be propagated up the tree to
the root node. This will be the method used to analyse the first type of at-
tack trees. The second type of attack trees can be analysed by the so called
BDD method, where attack trees are translated to BDDs and those will be
analysed. For probability, it says BDD which means that it works with any
type of BDD. Other attributes say that the method is MBDD, which means
that the analysis will be done with BDDs that only show minimal cut sets.

Type Prob. Cost Time Skill Boolean Comb.

TREES with

SAND gates
BU BU BU BU BU

Partly

BU

AT with

shared subtrees
BDD MBDD MBDD MBDD MBDD MBDD

Table 1.1: Results of the thesis. It shows which attribute can be analysed
in what way for both types of attack trees treated in this thesis

1.4 Thesis overview

Chapter 2 will explain the concepts of attack trees and binary decision dia-
grams to a greater extent. After that, Chapter 3 shows some of the related
work that has already been done on this topic. Then Chapter 4 gives the
overview of analysis methods for the two types of attack trees covered in
this thesis. Finally, Chapter 5 is the conclusion of this thesis followed by
the acknowledgements in Chapter 6.
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Chapter 2

Preliminaries

This chapter will give an overview of the concepts which are essential to
know for you to understand the rest of this thesis. In Section 2.1 attack
trees will be discussed, which is the security model this thesis focuses on.
After that, binary decision diagrams are explained in Section 2.2 which will
later on be used to help analysing attack trees.

2.1 Attack Trees

Attack trees, first described by Schneier in [15]), are a formalism to model
the security of a system. They are conceptual diagrams showing how an
asset or target can be attacked. They have a hierarchical structure and an
intuitive representation of multi-step attack scenarios. Therefore they are
very practical to use and can be used for analysing the safety of a system.
This is especially important if security is a critical aspect of the system,
which in these days is almost always the case. See Figure 2.1 for an example.
Attack trees are useful to understand several aspects:

• what the attack goals are, i.e. what steps have to be done to complete
an attack
• what attacks are likely to occur, i.e. what attacks have a higher prob-

ability to occur
• the security assumptions of a system, i.e. do many attacks rely on one

specific basic attack step
• where to best spend a security budget, for example if a loot of attacks

exploit one part of the system, spend your security budget on that
part to make a bunch of attacks a lot harder.
• what the properties of attacks are, i.e. what is the cost of an attack,

what is the cheapest attack etc.
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2.1.1 Attack tree structure

The first attack trees introduced by Schneier [15] represent the attacks on
a system as a tree structure. An attack tree models an attack on a sys-
tem, which can be achieved in multiple ways. This goal will be refined into
smaller sub attacks using gates, which defines the structure of the attack
tree. The root node is the goal of the attack. This root node can be refined
further into sub attacks. The direct children of a node N are the sub attacks
of that node N . These child nodes are conditions which must be satisfied
to make the direct parent node true. When the root node is satisfied, the
attack is complete. The relation between parent and child nodes can either
be conjunctive, with an AND-gate, or disjunctive, with an OR-gate. The
AND-gate requires all the child nodes to be true for the parent node to be
true. The OR-gate requires that only one child node needs to be true for
the parent node to be true. Thus basically, ”OR” nodes represent different
ways to achieving the same goal, whereas ”AND” nodes represent different
steps in achieving a goal [15]. When a node cannot be refined any further,
it has no children and is a leaf node. The leaf nodes are the actual attack
steps, called basic attack steps.

Open safe

Pick lock Learn combo Cut open
safe

Install
improperly

Find written
combo

Get combo 
from target

Threaten Blackmail Eavesdrop Bribe

Listen to
conversation

Get target to
state combo

Figure 2.1: Example of a classical attack tree

Example 1. Figure 2.1 shows an example of a classic attack tree from [15].
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The goal of this attack is to open a safe. This root node is refined by an
OR gate. Opening the safe can either be done by picking the lock, learning
the combo, cutting open the safe or by installing the safe improperly. Out
of these 4 attacks, 3 are leaves and thus basic attack steps. Learn combo is
refined further into sub attacks. To learn the combo one either needs to find
the written combo somewhere or get it from someone who knows the combo.
Getting the combo can also be done in several ways. One of the possibilities
is eavesdropping. Eavesdropping is connected to its children via an AND-
gate hence to successfully perform this sub attack, one needs to listen to a
conversation of the target AND get the target to say the combo. The leaf
nodes can be executed and this can be propagated up the tree. Successful
attack nodes can satisfy their parent nodes according to the gates. Once the
root node is satisfied, the attack is successfully executed.

Attributes

Once the attack tree is created, different values can be assigned to the leaf
nodes. The set of names for these values are the attributes of the attack tree.
Attributes are needed to analyse properties of the different attacks. Without
any attributes, attack trees would only be useful to see how a system can be
attacked, but it is impossible to say something about the cost, damage, time
etc. of an attack. These attributes can be Boolean values, such as possible
vs. impossible, or special equipment(SE) needed vs. no SE needed, but also
continuous values like the cost of a basic attack step. An attack tree has
some set of attributes and every leaf must contain values for all attributes,
otherwise the attack tree is incomplete. If one leaf contains the cost for a
basic attack step, but other leaf nodes do not, then it is still impossible to
analyse the cost properties of the attack tree. Thus a leaf value can have
several values, for example the cost of an attack step as well as a Boolean
value like equipment needed. The information of all leaf values is called the
basic attack step information, which can be stored in a table for example.

2.1.2 Attack tree definition

With all this information we can define attack trees as follows, inspired by
[12].

Definition 1. BAI: Attr→ R is a function that assigns values from the real
numbers to attributes where Attr is the set of attributes of the attack tree.

Definition 2. An attack tree A is a tuple (V, Child, Top, Attr, val, L), where

- V is a finite set of nodes, including the set of nonterminal nodes VN
and the set of all leaf nodes VT , where VN ∩ VT = ∅.

- Child: V → V* maps each node to its child nodes.
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- Top ∈ V is the unique top level element, representing the goal of the
attacker.

- Attr is the set of attributes

- val: VT → BAI is a function that for every BAS assigns a value to all
elements in Attr using the function BAI.

- L: VN → Gates is a function that assigns to each nonterminal node a
gate available in the attack tree where Gates is the set of gates in the
attack tree.

We require each AT to be a directed acyclic graph with a unique root Top ∈
V. Furthermore we define the set of edges of A by E = {(v, w) | w ∈ child(v)}
and Leaves = {v ∈ V | Child(v) = ε}
As mentioned earlier, there are two extensions of attack trees which will be
treated in this thesis. These are shared subtrees and SAND gates.

Attack trees with shared subtrees

Use secured
system

Know how to
use sytem

Find way into
system

Learn how to
use system

Brute force
access code

Use external
help

Hire expert Expert obtains
access code

Figure 2.2: Attack tree with shared subtree

When attack trees were introduced for the first time, they had a real tree
structure and could not have any shared subtrees. Every node was reachable
from the root in a unique way. However, in the way we just defined attack
trees, we require them to be directed acyclic graphs. This means that they
do not need to have a real tree structure. This allows nodes to be reached
in multiple ways from the root node. Figure 2.2 shows an example of this.
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The node ”Hire expert” is reachable in two different ways and therefore this
attack tree does not have a tree structure, but it is a directed acyclic graph.

Attack trees with SAND gates

Finally, there is one more extension possible for attack trees which will be
discussed in this thesis. Next to the standard OR- and AND-gates, there
exists another gate. Temporal order is crucial in security and therefore there
is a sequential version of the AND-gate, called a SAND-gate. This allows us
to express the ordering of events in attack trees. It is essentially an AND-
gate, but now there is an ordering on the child nodes. Not only do all child
nodes need to be true for the parent node to be satisfied, they should also
be performed in a certain order. An attacker will only start with the next
basic attack step when all previous basic attack steps have been finished.
Literature also features a SOR-gate, which is the sequential version of the
OR-gate, but we will not use it in this thesis. The symbols of these gates are
the same as the AND- and OR-gates, but also containing an arrow inside it
indicating the order of the children, i.e. from left to right or right to left.
Attack trees including a SAND gate are called dynamic attack trees, whereas
attack trees without SAND gates are called static attack trees.

Get inside
house

Go through
window

Enter via
door

Open window Climb through
window

Figure 2.3: Example of a part of an AT with a SAND gate

Example 2. An example can be found in Figure 2.3. The node ”Go through
window” is connected with its children via a SAND-gate. The arrow goes
from left to right, so that is the order in which the child nodes have to be
executed. To go through the window, first the window needs to be opened and
after that is finished one can climb through the window.

2.1.3 Attack tree semantics

When is a subset of basic attack steps an attack? This is defined by the
attack tree semantics.
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For static attack trees, we only care about the status vectors of attacks. It
is enough to know what basic attack steps are executed and which are not
since there are no operators that depend on time. The semantics of static
attack trees are given by the structure function. Given the status of all
basic attack steps, where 0 means not executed, and 1 means executed, the
structure function indicates whether the top level attack is executed.

Definition 3. The structure function of a static attack tree T is the function
φT : {0, 1}n → {0, 1} that takes as input a status vector (b1, b2, . . . bn) of n
booleans, where bi = 1 if the BAS i is executed, and bi = 0 otherwise [16].

Deriving the structure function of a static attack tree is done in a top down
fashion.
Formally, the structure function φT of T is defined recursively in terms of the
structure functions of its children. To do, we extend the structure function
with an extra parameter a that indicates the current sub attack, i.e. an
intermediary node. Thus, φT (B, a) indicates whether attack a is executed,
given the status vector B. Then φT (B) is defined as φT (B, TA) where TA
is the root node.

Definition 4. Let T = (V,Child, Top,Attr, val, L) be a static attack tree.
The structure function φT : {0, 1}n × A→ {0, 1} of T is defined as follows.
We write b = (b1, b2, . . . bn) for the status vectors of the basic attack steps,
and Child(a) = {a1, a2, . . . am} for the set of children of intermediate attack
a [16].

- If a ∈ VT , then φT (b, a) = bi
- If a ∈ VN and L(a) = AND, then φT (b, a) = φT (b, a1) ∧ φT (b, a2) ∧
. . . φT (b, am)

- If a ∈ VN and L(a) = OR, then φT (b, a) = φT (b, a1) ∨ φT (b, a2) ∨
. . . φT (b, am)

This does not work for attack trees including SAND gates!
An attack now is a status vector B of which the structure function will
evaluate to 1, so φT (B, TA) = 1. In an alternative view, an attack is a
subtree T ′ such that: (1) T ′ contains the root node; (2) for any AND-node
v ∈ T ′, all child nodes of v belong to T ′; (3) for any OR-node v ∈ T ′, at
least one child node of v belongs to T ′[5].

For dynamic attack trees, however, we also need to keep the order of basic
attack steps in mind. There are two interpretations of SAND gates. Take a
look at Figure 2.4. Sub1 requires the basic attack steps A and B to be done
in that order respectively, but sub2 requires the basic attack steps B and A
to be done in the opposite order. One interpretation is very strict, which
requires the basic attack steps to be done in the exact same order as defined
by the SAND gate. In that case, this attack tree would be invalid. Another
interpretation is that the basic attack steps have to be done in the specified

14



Sub2

A B

Sub1

Figure 2.4: Weird AT structure

order, but if a certain basic attack step is already done in another subtree,
then that is fine. In that case this structure would be perfectly fine. In this
thesis, we use the first interpretation.

Because the order of the basic attack steps is also important for attack trees
including SAND gates, the status vector of an attack now not only consists
of the information whether a basic attack step is executed, but also the time
slot when it is executed (only for basic attack steps which are executed). An
input of an attack could look like this: {a, c}{f}{d, e} These are all the basic
attack steps that are executed, and a and c are executed in the first time
slot, f in the second and d and e in the third time slot. First of all, for such
an attack to be true, the executed basic attack steps must satisfy the root
node. We can check this using the structure function given earlier. Replace
every SAND gate with an AND gate, and construct the structure function
of the attack tree. Now we can easily check if with the executed basic attack
steps the root node is satisfied. If the input evaluates the structure function
to 1, the executed basic attack steps satisfy the root node and we need to
check a second part. If the structure function evaluates to 0, then this is
not a valid attack. If a certain input made the structure function evaluate
to 1, we need to check if the order of the sub attacks at the SAND gates
are in the correct order. This can be done in a bottom up style. Every
executed basic attack step has a time slot attached to it as explained above.
These are propagated up the tree and during this process the checks will be
done at the SAND gates. An OR node will inherit the minimum value of
its children, as it is true once the first child is true. At an AND gate, the
maximum value of its children will be inherited as it is only true when all
children are done. The propagation at a SAND gate is the same as for an
AND gate, but it will also check if its children are executed in the correct
order (for example from left to right). If this is the case, the bottom up
process will continue. If the basic attack steps are not done in the correct
order, the algorithm will return a fail, meaning that the input is not a valid
attack. If the algorithm has reached the root node without failure, true will
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be returned and the input attack is valid. So an input is only a valid attack
if 1) the structure function where SAND gates are replaced by AND gates
evaluates to true and 2) the bottom up process returns true.
Again an alternative view, a successful attack is a subtree T ′ such that: (1)
T ′ contains the root node; (2) for any AND-node v ∈ T ′, all child nodes of
v belong to T ′; (3) for any OR-node v ∈ T ′, at least one child node of v
belongs to T ′; (4) for any SAND-node v ∈ T ′, all child nodes of v belong to
T ′ in the same order as in the original attack tree.

Example 3. Consider Figure 2.5 for an example. Suppose we get {A}{C},
then we know that both a and c are executed at time slots 1 and 2 respectively.
So Sub1 is true with time value 1. This is shown in the left AT. Both child
nodes of the root are true in the correct order, hence {A}{C} is a valid
attack. An example of an invalid attack would be {C}{B}, the right AT
in Figure 2.5, because now Sub1 is only executed after C which is not the
correct order as specified by the SAND gate of ’Root’.

Root

Sub1
t=1

C
t=2

A
t=1 B

Root

Sub1
t=2

C
t=1

A B
t=2

Figure 2.5: An AT structure

2.1.4 Metrics

Security metrics are the properties of an attack tree we want to calculate.
Metrics we want to calculate are:

• Probability to successfully attack. Every basic attack step has a certain
probability to be executed successfully. The probability of an attack
X in the attack tree T to happen is the product of the probabilities
of all basic attack steps in X that are true. X is a status vector
{x1, x2, . . . xn} of basic attack steps. Then

P (X) =
∏

1≤i≤n,xi=1

P (xi)

where P (x) is the probability of x. We want to know what the prob-
ability is that any attack in an attack tree T is successfully executed,
that is

∑
X∈T P (X)
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• Minimal cost of an attack, all attacks below a certain cost, k cheapest
attacks; same metrics for time. Every basic attack step has a certain
cost to be executed. The cost of an attack X in the attack tree T to
happen is the sum of the costs of all basic attack steps in X that are
true. X is a status vector {x1, x2, . . . xn} of basic attack steps. Then

C(X) =
∑

1≤i≤n,xi=1

C(xi)

where C(x) is the cost of x. We want to compute several things
with this attribute, like the cheapest attack there is, X for which
minX∈T C(X), or the k cheapest attacks. The same holds for time.

• Skill level needed for attacks. Basic attack steps can require a certain
skill level in order for it to be executed, for example {low,medium, high}.
The required skill level of an attack X in the attack tree T is the max-
imum skill level of all basic attack steps in X that are true. X is a
status vector {x1, x2, . . . xn} of basic attack steps. Then the skill level
required for the attack X is

S(X) = max
1≤i≤n,xi=1

S(xi)

where S(x) is the skill level of x. We want to calculate what skill level
is needed for attack and to find for example all attacks with maximum
skill level medium.

• Special equipment needed for attacks. This could really be any boolean
value. A basic attack step could either require special equipment or
not. Whether an attack X requires special equipment or not, depends
if there is at least one basic attack step in X that needs special equip-
ment. We can order ’No SE’ and ’SE’ just like skill levels to get the
same definition as with skill level. SE needed will be ordered higher
than no SE needed, since SE needed dominates the final value. If there
is at least one BAS which requires SE, then SE is needed for the at-
tack. Attack X is a status vector {x1, x2, . . . xn} of basic attack steps.
Then whether SE is needed for X is specified by

SE(X) = max
1≤i≤n,xi=1

SE(xi)

where SE(x) returns true if SE is needed and false otherwise. With
this attribute we can do calculations like computing all attacks that
do not require special equipment.

• Combinations of the above metrics. An example of this could be the
cheapest attack without any special equipment.
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Basically, these metrics are just examples. For example, instead of the cost
of an attack, we can also take the damage an attack does. Or instead of
skill levels, we could work with discrete damage levels. It is more about the
different categories of metrics/attributes we treat in this thesis. Cost and
time are real-valued variables, where less is better. The shorter an attack,
the better it is for an attacker. Skill level and special equipment (boolean)
are discrete variables, where also less is better. Probability is a special
attribute on its own, because even though it does work with real numbers,
it works in the range 0 to 1. Calculations with probability are different from
real-valued variables such as cost.

Example 4. Figure 2.6 shows an example of an attack tree with attribute
values. In this example two attributes are shown, probability and cost. All
leaf nodes contain these values, since those are the basic attack steps. How-
ever, intermediary nodes do not have these values. That is why we, for
example, cannot immediately see what the cheapest attack in the attack tree
is. Therefore we have certain metrics for an attack tree that we want to
calculate.

Open safe

Pick lock Learn combo Cut open
safe

Install
improperly

Find written
combo

Get combo 
from target

Threaten Blackmail Eavesdrop Bribe

Listen to
conversation

Get target to
state combo

p = 0.05
c = 1K

p = 0.07
c = 5K

p = 0.01
c = 10K

p = 0.001
c = 0.5K

p = 0.02
c = 1K

p = 0.01
c = 2K

p = 0.05
c = 50K

p = 0.1
c = 1K

p = 0.1
c = 5K

Figure 2.6: Attack tree including the attributes probability and cost
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2.2 Binary decision diagrams

A key technique to analyse attack trees is by the use of binary decision
diagrams. In this section we explain what BDDs are and some properties of
the BDDs, such as variable ordering.

2.2.1 BDD definition

A binary decision diagram is a data structure used to represent a Boolean
function. A BDD is a rooted, directed, acyclic graph. This means that it
contains one root node, all edges can only be taken in one direction and
there are no cycles in the graph. It has a set of nodes V = VN ∪ VT con-
taining two types of nodes. A nonterminal node v which has two children
low(v), high(v) ∈ V . The edge from v to its low child represents an assign-
ment of v to 0. An edge from v to its high child represents an assignment
of v to 1. It is also equipped with a variable from the Boolean function it is
representing. A terminal node v has an attribute value(v) ∈ {0, 1}.
A BDD can be denoted as a tuple as follows.

Definition 5. Let Vars be a set of variables, equipped with an order <.
Then a BDD G is a tuple (V, low, high, Top, L) over (Vars, <), where

- V denotes the set of nodes, including the set of nonterminal nodes VN
and the set of terminal nodes VT for which holds VN ∩ VT = ∅.

- low: VN → V maps a node to its low child.

- high: VN → V maps a node to its high child.

- Top ∈ V denotes the root node of the BDD.

- L: V → Vars ∪ {0, 1} is a labelling function that maps each node to
a BDD element. If x ∈ VT , then L(x) = 0 ∨ 1. If x ∈ VN , then
L(x) = V ar ∈ V ars.

A BDD is ordered if every variable is encountered in the same order for
every path from the root. If this is the case then it is called an ordered
binary decision diagram (OBDD).

When talking about a BDD in this thesis, we will always assume that the
BDD is at least ordered. Many operations on a BDD only work if the BDD
is ordered, so it is important that this will always be the case.

The labelling function assigns to each nonterminal node a variable ∈ Vars
and to each terminal node a Boolean value. So L(v) ∈ V ars if and only if
v ∈ VN and L(u) ∈ {0, 1} if and only if u ∈ VT . Furthermore, we require
the BDD to be a directed acyclic graph with only one root node.

Example 5. Figure 2.7 shows an example of a very small binary decision
diagram. This BDD represents the function f(x1, x2, x3) = x1 · (x2 + x3).
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X1

X2

X3

0 1

Figure 2.7: BDD of the function f(x1, x2, x3) = x1 · (x2 + x3)

The circles are the different variables of the Boolean function. The two
squares are the terminal nodes. A dashed line means an assignment of 0 (or
false) to a variable and a solid line means an assignment of 1 (or true) to
a variable.

As denoted by Bryant [4], a BDD having root node v denotes a function fv
which is defined recursively. This means that every node u has a function
fu, which is dependent on the value of node u itself as well as the values of
the functions of both its children. More formally, a BDD with root node v
denotes a function fv, assuming Vars = {x1, . . . , xn} and xi < xi+1, defined
recursively as:
• If v is a terminal node, then

– If L(v) = 1, then fv = 1

– If L(v) = 0, then fv = 0

• If v is a nonterminal node with L(v) = i, then fv is the function
fv(x1, . . . , xn) = xi · flow(v)(x1, . . . , xn) + xi · fhigh(v)(x1, . . . , xn)

This definition is based on Shannon expansion [4][3][1]:

F = xi · Fxi + xi · Fxi

where:

• F is a Boolean function

• xi is a variable

• xi is the negation of xi

• Fxi and Fxi are F where Fxi = F (x1, . . . , 1, xi+1, . . . , xn) and Fxi =
F (x1, . . . , 0, xi+1, . . . , xn)
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Consider the example from Figure 2.7 again of which we will derive the
Boolean function using the above formula. Figure 2.8 shows the same BDD,
but now with the derivation along the edges. We start at the root node,

X1

X2

X3

0 1

flow(v0)(0,	x2,	x3)

=	0

fhigh(v0)(1,	x2,	x3)

fhigh(v1)(1,	1,	x3)
=	1

flow(v1)(1,	0,	x3)

fhigh(v2)(1,	0,	1)
=	1

flow(v2)(1,	0,	0)
=	0

fv0 =	x1	*	flow(v0)(0,	x2,	x3)	+	x1	*	fhigh(v0)(1,	x2,	x3)

Figure 2.8: BDD of x1 · (x2 + x3) with derivation

which we call v0. The variable corresponding to this node is x1. v0 is a
nonterminal node hence the second case needs to be applied. As can be seen
in Figure 2.8:

fv0 = x1 · flow(v0)(0, x2, x3) + x1 · fhigh(v0)(1, x2, x3) (1)

As shown in the Figure, the low edge leads to the 0 terminal node. The high
edge is fhigh(v0)(1, x2, x3), which equals

x2 · flow(v1)(1, 0, x3) + x2 · fhigh(v1)(1, 1, x3) (2)

This equation is again split up along the outgoing edges of x2. This process
is continued until the terminal nodes are reached in every path. This is
shown in Figure 2.8 with the values along the edges.
We can see that flow(v1)(1, 0, x3) = x3. Substitution into (2) gives

fhigh(v0)(1, x2, x3) = x2 · x3 + x2

Substituting this equation and the low edge of x1 into the top formula gives
us a Boolean function

fv0 = x1 · (x2 · x3 + x2)
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which is equivalent to the Boolean function x1 · (x2 + x3) we saw earlier.

Thus a set of argument values {x1, . . . , xn} describes a path in the BDD
starting from the root node ending in a terminal node. If some node v along
the path has L(v) = xi, then the path continues to the low child if xi = 0
and to the high child if xi = 1. The value of the terminal node will determine
the value of the function given these arguments. Every path defined by a
set of arguments is unique and every node in the BDD occurs in at least one
path, so every part of the BDD is reachable.

2.2.2 BDD reduction

A BDD is reduced if it 1) contains no node v with low(v) = high(v), 2) there
are only two terminal nodes, one with value 0 and the other with value 1
and 3) the BDD does not contain two different nodes v and v′ such that
the subgraphs rooted by v and v′ are isomorphic [1][4][17]. Two Boolean
expressions are equivalent if and only if their reduced BDD’s are isomorphic
for some variable ordering.

X1

0 1

X2X2

X3X3 X3X3

0000 1 1

(a) Binary decision tree for the function f

X1

X2

X3

0 1

(b) Reduced BDD of
the function f

Figure 2.9: Example of BDD reduction

Example 6. Figure 2.9 shows an example of BDD reduction. Both Fig-
ure 2.9a and Figure 2.9b show a BDD of the Boolean function

f(x1, x2, x3) = x1 · (x2 + x3)

The BDD in Figure 2.9a models all Boolean combinations for the function
f . As you can see, the BDD has more than two terminal nodes and some
nodes have two children with the exact same values. Therefore this is not
a reduced BDD. It is ordered because the variables occur in the same order
in every possible path. It is easy to see what the truth value of the function
f is given a variable assignment. Assume one wants to know the value of
f(0, 1, 0) then you traverse the BDD according to the variable assignment
and you end up in a 0 terminal node. This means that the function f is
false for the variable assignment x1 = 0, x2 = 1, x3 = 0.
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2.2.3 The impact of variable ordering

X1

X2

X3

0 1

X4

(a) BDD with good variable or-
dering for x1 ·x2 +x3 ·x4, namely
x1 < x2 < x3 < x4

X1

X2

X3

0 1

X3

X2

X4

(b) BDD with bad variable ordering
x1 · x2 + x3 · x4, namely x1 < x3 <
x2 < x4

Figure 2.10: Impact of variable ordering on BDD size

The size of the BDD heavily depends on the ordering of the variables. For
example, Figure 2.10 shows two BDDs, both of the function

g(x1, x2, x3, x4) = x1 · x2 + x3 · x4

Figure 2.10a uses a good variable ordering x1 < x2 < x3 < x4, while Fig-
ure 2.10b uses a worse variable ordering x1 < x3 < x2 < x4. This example
clearly shows the impact of the variable ordering on the size of the BDD
and thus how important it is to work with a good ordering. Computing an
ordering that minimizes the size of the graph is a co NP-complete problem.
However, experience has been that with some understanding of the problem
domain an appropriate ordering can be found fairly easy [4]. Furthermore
there are efficient heuristics which can find good orderings.
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Chapter 3

Related Work on Attack
Tree Analysis

Below, we discuss two categories of related work: attack tree analysis with
adaptation of attack tree semantics and with the help of external tools.

3.1 Semantics

The first category is focussed on adapting the attack tree semantics to better
analyse them. The authors of [13] argued that to be able to answer complex
questions about attack trees, it is necessary to provide attack trees with
foundations. In [13] attack trees are provided with a semantics in terms
of attack suites and define valuations and projections in a formal way. An
attack tree simply defines a collection of possible attacks which they call an
attack suite. Each attack consists of the components required to performed
an attack. These attack components are at the lowest level of abstraction
and thus have no internal structure. Using these semantics information on
the interpretation and grouping of attacks or any causal relations between
attacks is discarded, like being ordered in time. The difference in structuring
can arise from a different approach towards partitioning the attacks. There-
fore two attack trees with a different structure may be equivalent. This
problem does not occur with their representation. Furthermore they show
what attributes can be analysed using this representation and which ones
do not work. Their main result is a formalization of the concepts informally
introduced by Schneier as we have seen earlier in Section 2.1. This formal-
ization clarifies which manipulations of attack trees are allowed under which
circumstances. This understanding is very important for building adequate
tool support. Another paper, [11] describes the forest of the trees, which is
a good overview of the different security models used to analyse the security
of a system.
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3.2 Analysis methods

Other papers focus on using external tools or creating external tools to help
them analyse attack trees. In [7], attack trees are analysed by converting
them to Petri nets. Then Monte Carlo simulation is used to analyse the
Petri nets. Questions like average time for successful attack, minimal cost,
maximal effort can be posed. So in this paper it is shown how to build a
petri net from an attack tree, how to analyse it using simulation and how the
results can be used to further refine the attack tree or to develop counter-
measures. In [2] the analysis of a slight variant of attack trees using BDDs
is shown. Weighted attack defense trees (WADT) are analysed using multi
terminal binary decision diagrams (MTBDD), an extension of binary deci-
sion diagrams that allows a more general and efficient evaluation tool for
the weight functions associated to a WADT. An attack defense tree (ADT)
is an extension of an attack tree where it is allowed to also model coun-
termeasures, see [10] and [11]. A method is shown to efficiently compute
various quantitative and probabilistic measures. This is done by translating
the WADT to a MTBDD which allows the modeler to evaluate the prob-
ability distribution function of the cost and impact related to any possible
attack scenario. In the paper the authors want to enlarge the view of WADT
analysis by evaluating the distribution of cost and impact, i.e. to find which
is the probability of reaching a successful attack given a cost and impact.
The paper [12] describes the analysis of attack trees with a model checker
Uppaal CORA. With this model more complex gates, temporal dependen-
cies between attack steps, shared subtrees and realistic, multi-parametric
cost structures can be handled. To analyse an attack tree, they have pro-
vided a compositional semantics in terms of priced timed automata (PTA).
Each AT element is translated into a PTA and the PTA of the entire at-
tack tree is analysed by formulating the security measures as queries in the
logic mWCTL. [16] is about fault tree analysis. Fault trees are the same as
attack trees, except that they model faults in a systems instead of attacks
on a system. One of the described analysis methods is the BDD-method.
Here fault trees are translated to BDDs which can then be used to analyse
the properties of the fault tries. The basic elements of a fault tree normally
contain probability, which is the chance that elements in a system fails. By
propagating these values up the tree the failure probability of the whole
system can be calculated. In [16] they also show that this is not easy to
do when the fault tree has shared subtrees, because then one needs bayes
law to calculate dependent probabilities. Also they show that this can be
avoided with BDDs and thus makes the process a lot easier. However, this
is only shown for fault trees and also only for probabilities. We will show
that this can also be used for other properties in attack trees such as cost
and time.
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3.3 Application

[9] shows a case study of how attack-defense trees are used to analyse threats
and countermeasures in an ATM. This is a great example of how such a
model, in this case the attack-defense trees, can be applied to a real life
situation to analyse threats.
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Chapter 4

Analysis of attack trees

This chapter surveys two analysis methods for different classes of attack
trees.

4.1 Overview

4.1.1 Types of attack trees

Recall the two different attack trees which will be discussed, also see Ta-
ble 4.1. It is important to work with different kind of attack trees, because
they all need to be analysed in a different way. The two types are:

• Attack trees with possibly SAND gates
This type of attack tree contains one root node, it has three gates,
AND-, OR- and SAND-gates and there are no shared subtrees, i.e.
a node can only be reached in one unique way starting from the root
node. Therefore this form of attack tree does have a real tree structure.
It will be analysed with the bottom up method, where leaf values will
be propagated up the tree to find the property of the root node of the
attack tree.

• Attack trees with shared subtrees and no SAND gates
This type of attack tree contains shared subtrees, but there is no
SAND-gate. This means that a certain node in an attack tree can
have two or more parents thus there is no unique way from the root
node to that node anymore. Therefore this form of attack tree does
not have a real tree structure, but it is a directed acyclic graph (DAG).
This type of attack tree will be analysed with BDDs, where the attack
tree is first converted to a BDD and then the BDD is analysed.

Even though AND-gates are well known, for the attribute time the AND
gate can have two interpretations: either it has x steps to do and those can
be done in any order but not simultaneously or it has x steps to do which
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can be done parallel. This heavily depends on the situation, for example
the group which is attacking a system. If there is just one attacker then the
attacker has to do everything by himself, so it is not possible to do all steps
at once. However if a big group of attackers is attacking a system they can
divide all the tasks over different people hence the attack can be done faster.
When analysing time, this will be taken into consideration.

4.1.2 Results

Table 4.1 shows the results for the analysation methods for different types
of attack trees. For both types of attack trees we discuss in this thesis, it
shows for each attribute how it can be analysed. BU stands for bottom
up, a method where leaf values will be propagated up the tree to the root
node. This will be the method used to analyse the first type of attack
trees. The second type of attack trees can be analysed by the so called
BDD method, where attack trees are translated to BDDs and those will be
analysed. For probability, it says BDD which means that it works with any
type of BDD. Other attributes say that the method is MBDD, which means
that the analysis will be done with BDDs that only show minimal cut sets.

Type Prob. Cost Time Skill Boolean Comb.

TREES with

SAND gates
BU BU BU BU BU

Partly

BU

AT with

shared subtrees
BDD MBDD MBDD MBDD MBDD MBDD

Table 4.1: Results of the thesis. It shows which attribute can be analysed
in what way for both types of attack trees treated in this thesis
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4.2 TREES with SAND gates

This section will be concerned with attack trees that can include SAND
gates, but no shared subtrees. This type of attack tree can be analysed
by the so called bottom up method. All basic attack steps of the attack
tree have attribute values. These values need to be propagated up the
tree to the root node to say something about the whole attack tree, for
example the cheapest attack. A node’s value is a function of its children’s.
There are different calculation rules for AND, SAND and OR nodes [15]. In
summary, we start at the leaf nodes and using the different calculation rules
we calculate up to the root.

Probability

Suppose every basic attack step has a certain probability to be executed
successfully, which are all independent of each other. Recall that the proba-
bility for a certain attack to happen is the product of the probabilities of all
basic attack steps in the attack. Using the bottom up technique the total
probability that any attack will be successfully executed can be found. For
this the basic probability rules can be used. Suppose you have an attack tree
with the probabilities of all basic attack steps, which are all independent.
Using the basic probability rules it is now possible to propagate these up to
the root [16]:

• OR node: the addition rule, that is P (A or B) = P (A) + P (B) −
P (A and B).

• (S)AND node: the multiplication rule, which is P (A and B) = P (A) ·
P (B) since the probabilities for all basic attack steps are independent.
The SAND nodes and AND nodes can be treated in the same way since
the order of the events does not change the probability calculation.

After propagating the values at the leaf nodes to the root, the final value
at the root will be the probability that any attack in the attack tree is
executed. This method works because there are no shared subtrees, so if the
basic attack steps are independent, then so are the subtrees of a node.

Example 7. Consider the attack tree in Figure 4.1, which is a smaller
version of the attack tree we have seen earlier in Section 4.2. Every basic
attack step has a probability to be executed successfully.
The bottom up method works as follows. ’Eavesdrop’ is an AND-node hence
we use the multiplication rule. Its children have probabilities of 0.1 and 0.1,
so the probability for ’Eavesdrop’ to happen is 0.1 ·0.1 = 0.01. ’Learn combo’
is an OR-node with as children ’Find written combo’ and ’Eavesdrop’ which
have probabilities 0.05 and 0.01 respectively. Using the addition rule we
obtain a value of 0.05+0.01−0.05 ·0.01 = 0.0595. Now we have reached the
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p = 0.05

p = 0.02

Figure 4.1: Attack tree with probabilities and the propagated values in red

root node and the probabilities of both its children are known hence we can
calculate the root value. The root is an OR-node, so we get P (Opensafe) =
0.0595 + 0.02− 0.0595 · 0.02 = 0.07831. So the total probability that the safe
will be opened in any of these ways is 0.07831.

Cost

Suppose every basic attack step has a certain cost to be executed. Recall
that the cost of an attack will be the sum of the costs of all basic attack
steps. An interesting property to find is the cost of the cheapest attack.

Cheapest attack
Finding the cheapest attack can also be achieved using the bottom up
method. Only the calculation rules will differ compared to the probabil-
ity attribute. These calculation rules now are [15]:

• OR node: the value of the parent will be the minimum of all child
values. Let H = {h1, h2, . . . hn} be the set of all child nodes. Then
the value at the parent node will be min1≤i≤nC(hi). At an OR node
only one child has to be executed for the parent to be true, so that is
why we take the cheapest option when we want the cheapest attack.

• (S)AND node: the value of the parent will be the sum of all child
values. Let H = {h1, h2, . . . hn} be the set of all child nodes. Then
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the value at the parent node will be
∑

1≤i≤nC(hi). At (S)AND nodes
there is no choice but to execute all children for the parent to be true.
Therefore the cost of a (S)AND node will be the sum of all child value.
Again, the SAND nodes and AND nodes can be treated in the same
way since the order of the events does not change the cost calculation.

After all leaf values are propagated upwards, the root will now contain the
value of the cheapest attack. However, to be able to also know what this
attack is instead of only knowing the cost of the cheapest attack, we will find
the subtree which belongs to the attack. This will be done by traversing the
attack tree in a certain way. Start at the root node v and apply the following
in a recursive manner:

• if v is a BAS, terminate

• if v is an intermediary node:

– If V is a (S)AND node, add all child nodes to the subtree (in the
same order as in the original attack tree for SAND gates) and
apply this algorithm to all children

– If v is an OR node, add the cheapest child c to the subtree and
apply this algorithm to c

This process will result in a subtree which represents the cheapest attack.
This is especially useful for SAND nodes, because one can not only see what
basic attack steps are part of the attack, but the subtree also shows the
structure between these basic attack steps, i.e. in which order sub attacks
have to be executed.

Example 8. Figure 4.2 shows an example of how the result would look like.
The costs for all basic attack steps are known at the start. These are all
shown underneath the basic attack steps. Inside the boxes of the interme-
diary nodes are the cheapest costs to execute that sub-attack. These values
are calculated using the bottom up technique as described above. Once this is
finished every node should have a cost. Now from the root node we go back-
wards to actually find the cheapest attack. We do this in a recursive manner
as described earlier. The root node is an OR node, so we add the cheapest
child to the subtree which is ’Learn combo’. This is again an OR node where
the cheapest child is ’Eavesdrop’. ’Eavesdrop’ is an AND-node hence all
children are added to the subtree. All children of ’Eavesdrop’ are basic at-
tack steps, so this traversing algorithm stops there. The subtree representing
the cheapest attack is shown by the dashed edges in Figure 4.2.

All attacks cheaper than x
If we want to use the bottom up method to find all attack cheaper than a
certain cost x, then nodes will need to store more than just the cheapest
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Figure 4.2: Example of finding the cheapest attack tree in a bottom up
manner. The propagated values are marked in red. The dashed edges show
the subtree of the cheapest attack

value. Suppose there is an OR node which has three children which can all
be executed in one way, then the OR node has three ways to be executed
successfully. If all of those three ways are cheaper than x, all values need to
be stored. Therefore the propagation rules change for the different nodes.

• (S)AND node: the values at these nodes will be all values less than
x of all possible combinations between all its child values. The new
value will also need to store a child pointer to know from which child
values this combination is. See an example of this below.

• OR node: the values at an OR node are all values of all child nodes. At
an OR node there is a choice of how to complete this node. Therefore
all possible ways of all children need to be taken into account. There
is no check needed if a new value at an OR node will be higher than
x, because the new values will only be inherited from the child values
and the child nodes do also not contain values which are higher than x.
Also this value will need to store a child pointer to know from which
child value the new value originates. For example, suppose an OR
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node v which has two children where one child has two values and the
other child has one value, then the node v will inherit all three values.

Example 9. Suppose there is an AND node v which has two children a
and b. Both a and b have two values which we will call a1, a2, b1 and b2
here. Then all possible combinations are a1b1, a1b2, a2b1 and a2b2. The
new cost will be the sum of all cost values in the new combination. Such a
combination can only be added to the AND node v if the new cost is less than
the constraint x. Furthermore, the new value should also store from which
child values this combination is called the child pointer. So the new value
a1b2 should store as children a1 and b2. This is needed for backtracking the
path of an attack. The number of possible combinations for an AND node v
is given by the formula

nrChilds(v)∏
i=0

nrV alues(child(v, i))

where nrChilds(v) is the number of childs the node v has, nrV alues(v) is
the number of cost values of node v and child(v, i) returns child number i of
node v.

After propagating all leaf values up, the root node will contain a certain
amount of values which are all costs of all attacks cheaper than x.

The principle for backtracking to find the subtree of a certain attack stays
the same. The same traversing algorithm can be used, but which child to
add to the subtree now changes a bit. Instead of adding the cheapest child
at an OR node, one must add the node to which the child pointer at the
current node points. At (S)AND nodes still all children will be added to the
subtree, but also here it is important to also choose the correct value at a
child node, such that the algorithm can also determine for the child node
how to continue.

Time

For analysing the time in attack trees we can distinguish two cases for AND-
gates as stated earlier. When a system is attack by an individual, it is
plausible to assume that he cannot execute attack steps simultaneously and
thus have to perform all attack steps one after another. So in this case the
AND-gate is treated as it is used in most cases. But if a system is attacked
by a group of attackers who have a lot of resources and enough people to
perform all attack steps at the same time, then the attack can be done much
quicker. So in this case all steps of an AND-gate still have to be performed,
but they can all be done at the same time. Therefore there are two cases:
the non-parallel AND-gate and the parallel AND-gate.
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Non-parallel AND-gate
In this case analysing time will be the same as cost. The time to perform
an attack will be the sum of the time of all basic attack steps in the attack.
Both are continues values which use the same rules for the bottom up tech-
nique. This will be different for the parallel AND-gate.

Parallel AND-gate
In this case, all children of an AND node can be done at the same time.
Suppose an AND gate has three children with time values 4, 5 and 2. The
total amount of time to execute all children will not be 11, but 5 since they
can all be done simultaneously. This requires slight changes in the propaga-
tion rules for the bottom up method.
For finding the cheapest attack, the rules at the OR and SAND gate stay
the same. Note that a SAND gate can never be done in parallel, because
it requires a certain order on the events. The rule for the AND gate used
to be to sum all time values of its children, which will be changed to be
the maximum of the time values of its children. So we obtain the following
propagation rules:

• OR node: the value of the parent will be the minimum of all child
values. Let H = {h1, h2, . . . hn} be the set of all child nodes. Then the
value at the parent node will be min1≤i≤n T (hi) where T (hi) returns
the time it takes to sub attack hi.

• AND node: the value of the AND node will be the maximum of all child
values. Let H = {h1, h2, . . . hn} be the set of all child nodes. Then the
value at the parent node will be max1≤i≤n T (hi) where T (hi) returns
the time it takes to sub attack hi.

• SAND node: the value of a SAND node will be the sum of all child
values. Let H = {h1, h2, . . . hn} be the set of all child nodes. Then the
value at the parent node will be

∑
1≤i≤n T (hi) where T (hi) returns

the time it takes to sub attack hi.

Traversing the attack tree from the root to find the actual cheapest attack
stays the same, because all children of an AND node still need to be com-
pleted for the AND node to be true.

For finding all attack shorter than a certain time x, also only the AND gate
rule will change. The new values at an AND node will still be all possible
combinations of its child values, but the new time value will not be the sum
but the maximum of these child values. Note that if we take the maximum,
it is impossible for the new time value to be higher than at any child, so
every possible combination is for sure shorter than x. If not, then something
went wrong at a child because value which are ≥ x should never be stored.
Finding the subtree belonging to a time at the root node still works the
same way by traversing the attack tree.
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Skill

Suppose every basic attack step has a certain skill level needed to be exe-
cuted. There are several skill levels which can be ordered, for example low,
medium and high. Attackers with a low skill level will not be able to execute
basic attack steps of medium or high skill. Recall that the skill level required
for an attack will be the maximum skill level among all basic attack steps
in the attack. An interesting property to look at is the subtree which shows
all attack with a skill level below a given skill level, e.g. all attacks with a
skill level lower than medium.

All attacks below a certain skill level
For this we will first use the bottom up method to find the minimum skill
level of every intermediary node and then we will remove all nodes which
have a skill level that is too high. For the bottom up method, the following
calculation rules apply.

• OR node: the minimum skill level of its children is propagated up,
because only one child needs to be true and we want to find the mini-
mum skill level. Let H = {h1, h2, . . . hn} be the set of all child nodes.
Then the value at the parent node will be min1≤i≤n S(hi).

• (S)AND node: The maximum skill level of all its children will be
propagated up, because all children need to be true hence the skill
level will be the maximum of all its children. Let H = {h1, h2, . . . hn}
be the set of all child nodes. Then the value at the parent node will
be max1≤i≤n S(hi).

If propagating all values up to the root of the attack tree is done every node
in the attack tree will have its minimum skill level. Note that if the root
node has a value of medium, then there is no attack with a skill level of low.
The nodes with a skill level that is too high which can be reached from the
root node without crossing another node with a skill level that is too high
need to be deleted, but also their descendants need to be deleted. We will
illustrate this with an example.

Example 10. Figure 4.3a shows an attack tree on which the bottom up
method for skill levels has been applied. The set of possible skill levels is
{low,medium, high}. We want to find all attacks with a skill level lower
than medium. Therefore after the bottom up all nodes, and their descen-
dants, which have a skill level that is too high and are reachable from the
root without crossing another node with a skill level that is too high need to
be deleted. These nodes are marked in red. After deleting those nodes and
their descendants we obtain the attack tree in Figure 4.3b, which now only
shows attacks with a skill level lower than medium. Note that we can just
delete all nodes which are too high and reachable from the top, because their
parents do not need them for an attack. If this would have been the case
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Figure 4.3: Example of bottom up method for skill

then their parents would have had a skill level which was also too high and
then their parent would have been deleted. So we can assure that the result
attack tree only contains valid attacks.

All attacks above a certain skill level
The task of finding all attacks above a certain skill level is a lot harder.
This is because you cannot just discard nodes with a too low skill level,
because later on in the attack tree a node with a low skill level might come
together with a node of a high skill level which would make the node with
a low skill level a valid part of the attack. We did not have the problem
at the previous algorithm, because higher skill level dominate at an AND
node. Take a look at Figure 4.4. Suppose we want to find all attacks with a
skill level of at least medium. Out of the four possible attacks ac, ad, bc and
bd three of them satisfy this condition. However, ac does not because that
attack requires a skill level of low. It is not possible to delete either a or c,
because then ad or bc would also not be part of this attack tree anymore.
This shows how hard this situation is.
So when trying to solve this with the bottom up method, we cannot just
discard nodes with a low skill level, but we need to store them all at the
parents to find all possible combinations of basic attack steps. This now ba-
sically comes down to finding every possible attack there is and just looking
at its skill level, which is not a fast way to do it. We did not find a faster
method to find all attacks above a certain skill level.

Boolean

Every basic attack step can contain a boolean value, for example whether
special equipment is needed or not or if something is impossible / possible to
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Figure 4.4: An AT structure with skill levels

do. Calculating values for this works the same as with skill level, only now
there are just two options true and false whereas with skill level there could
be more. True and false can also be ordered just like skill levels, without
false being lower than true. For example, an attack can only be done without
special equipment if all basic attack steps can be done without. As soon as
there is one basic attack steps which requires special equipment an attack
needs special equipment. To compare this with skill levels, an attack is only
of skill level low if it only contains basic attack steps with skill level low,
but if there is one basic attack step with medium, the attack will have a
skill level of medium. So the way of analysing boolean values is the same as
analysing skill level as described above.

Combinations

Some combinations of attributes are also possible using the bottom up
method. Often you want to optimize one attribute and put constraints
on the other attributes. For example the cheapest attack of all low skilled
attacks. This is possible by first finding the subtree of all low skilled at-
tacks. Then on the subtree one can apply the bottom up method to find
the cheapest attack of that subtree. This is not possible for finding the
cheapest attack of all attacks faster than a given time, because the bottom
up method for finding all attacks faster than a given time does not return a
subtree. If the attack tree does not contain a SAND gate, this can be done
using the BDD method as will be described Section 4.3. If the attack tree
does contain SAND gates, then other tools have to be used which are able
to analyse attack trees with SAND gates, for example [12].
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4.3 Attack trees with shared subtrees

This section will be concerned with static attack trees with shared subtrees.
This type of attack tree can be analysed by the so called BDD method. We
show how this works by first translating an attack tree to a BDD and then
providing algorithms to analyse the BDDs.

4.3.1 Why BDD method?

But first we will explain why this type of attack tree is not suitable for the
bottom up method. Recall that the top node is the ultimate goal of an
attack and that the leaves, the basic attack steps, contain the values for the
attributes. We want to derive the attribute value for the top node, but only
the values for the leaves are known. Therefore, most of the time, these val-
ues need to be propagated upwards to find the value of the root node. For
attack trees with a real tree structure, which we have seen in the previous
section, a bottom up method can be used.
Shared subtrees, however, can lead to some difficulties when using these at-
tack trees in computations. In [16], it is shown that for fault trees, which
are closely related to attack trees, the bottom up method gets significantly
harder when there are shared subtrees. This is also the case in Figure 4.5.
Suppose that every basic attack step has a certain probability to be exe-
cuted successfully. Then the values can be propagated upwards to the nodes
”Know how to use system” and ”Find way into system” using the standard
probability laws. For the root node this not work anymore, because both
subtrees of the root node contain the basic attack step ”Hire expert”. For
this Bayes law needs to be used

P [A] = P [A|B] · P [B] + P [A|¬B] · P [¬B]

where P [x] here means the probability that event x will fail and P [x|y] the
probability that x will fail given that y fails.
The intuition behind this is as follows. If there are two events and one is
dependent on the other this needs to be taken into account. Assume there
are two variables A and B, where A is dependent on B. To calculate the
probability that A is true we need to distinguish two cases: B is true and B
is false. The probability that A is true given that B is true is normally known.
The same holds for the probability that A is true given that B is false. Now
those probabilities should be added together to get the probability that A is
true. However, one thing has to be noted. We can only use the probability
that A is true given B is true if B is actually true, so we need to multiply
it with the probability that B is true. The same goes for the case if B is
not true. Therefore we get that the probability that A is true is equal to
the probability that A is true given B is true times the probability that B
is actually true plus the probability that A is true given B is false times the
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probability that B is actually false.
Stoelinga and Ruijters show that the computation is easy with no shared
leaves or subtrees, but it requires more complex computations if Bayes law is
needed. Therefore they introduce the BDD method. Stoelinga and Ruijters
observe the following with this method:

• Every path in the BDD leading to a 1-leaf corresponds to a set of
status vectors, i.e. an assignment to all basic events, that make the
FT fail.

• The probability for that set of status vectors to occur is obtained by
multiplying their probabilities.

• Every path in the BDD corresponds to a disjoint set of status vectors.
Hence, their probabilities can be added.

This method always works, irrespective of the chosen BDD ordering. This
is indeed correct for probabilities. However, attack trees can also have other
leaf attributes than probability. For some of these attributes the chosen
BDD ordering does influence the result. We will mention this when this is
the case and show how to make sure the BDD method can still work.

So [16] showed how the BDD method works for fault trees using probabilities.
In this section we show how to use the same method for attack trees, where
we also take care of other attributes than probability.

4.3.2 Translating AT to BDD

Binary decision diagrams represent Boolean functions hence we can express
attack trees with binary decision diagrams. The Boolean function of a static
attack tree, i.e. an attack tree without SAND gates, is given by its structure
function, as described in Section 2.1.3.

Figure 4.5 displays the attack tree with shared subtrees from Section 2.1. We
will derive the structure function for that attack tree in a top-down fashion.
We start with the root, Use secured system. This is an intermediate node
hence it has a gate attached to it. Now the root node should be split up in all
child nodes with AND-gates between them. This process is repeated until
there are only leaf nodes left. We obtain the following structure function for
this attack tree

(Learn how to use system ∧ Hire expert) ∧

((Hire expert ∧ Expert obtains access code) ∨ Brute force access code)

Once we have the structure function of a static attack tree, we need to
convert this to a BDD. For this we need the notion of cut sets and minimal
cut sets, as described in [16].
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Figure 4.5: Attack tree with shared subtree

Definition 6. A cut set is a set of basic attack steps that together cause
the root node of the attack tree to be satisfied, meaning that the attack is
completed successfully. In other words, a cut set lets the structure function
evaluate to true. A minimal cut set is a cut set if no basic attack step can
be left out of it.

First we will describe how to convert the Boolean function to any BDD.
After that we will describe how to construct a BDD with only minimal cut
sets (MBDD).

We need to assume an order on the variables, because we only work with
ordered BDD’s. As was already shown in Section 2.2.3, the variable ordering
has a large impact on the BDD size, and therefore on the efficiency of the
analysis methods. With some domain knowledge and heuristics a fairly good
variable ordering can be found. To construct a BDD from a Boolean formula,
Shannon expansion is used to construct the top node v0 of the BDD.

fv0(x1, x2, . . . , xn) = x1 · flow(v0)(0, x2, . . . , xn) + x1 · fhigh(v0)(1, x2, . . . , xn)

and then apply the Shannon expansion to the children flow(v0)(0, x2, . . . , xn)
and fhigh(v0)(1, x2, . . . , xn). Recursively applying this expansion until all
variables have been converted into BDD nodes yields a complete BDD [16].
However, it is not yet reduced. To accomplish this one can simply use
Bryant’s function Reduce [4].

Some attributes of an attack tree require the BDD method to work with
BDD’s that only contain minimal cut sets. This is because an attack in
practice only really is an attack if the cut set is minimal. When you for
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example want to find the cheapest attack, then the search space only needs
to be the set of minimal cut sets. Therefore this needs to be taken into
account when converting the AT to a BDD. A status vector x1, x2, . . . , xn
represents a minimal cut set in two cases:

1. if x1 = 0, then x2, . . . , xn must represent a minimal cut set.

2. if x1 = 1, then x2, . . . , xn must represent a minimal cut set, and fur-
thermore, 0, x2, . . . , xn must not be a cut set. If 0, x2, . . . , xn were
to be a cut set, then 1, x2, . . . , xn can never be a cut set since x1 is
superfluous.

The above cases are expressed in the following formula [16]:

fmin(x1, x2, . . . , xn) = x1 · fmin(0, x2, . . . , xn)+

x1 · fmin(1, x2, . . . , xn) · ¬f(0, x2, . . . , xn)

To compute the BDD with only minimal cut sets, Shannon expansion can
be used for fmin with the same process as described earlier. To make sure
the BDD is reduced, Bryant’s function Reduce [4] can be used.

In the following section several algorithms will be described which will run
on a BDD. In some of these algorithms several nodes and/or edges may be
deleted. Officially we can not speak of a BDD then anymore, but rather a
partial BDD. However, the goal of this method is not to keep working with
BDD, but to use them in algorithms to be able to analyse attack trees faster.

4.3.3 Methods for different attributes

In this section we will specify per attribute how the BDD of an attack tree
can be used to analyse that specific attribute.

Probability

Suppose every basic attack step of an attack tree has a certain probability
to be (successfully) executed by an attacker. Recall from earlier that the
probability for a certain attack A to be successfully executed is the product
of the probabilities of all basic attack steps in A. We want to know the
total probability that the system which is modelled will be attacked by an
attacker. For all possible status vectors of the attack tree we calculate the
probability and we sum those together. Since there are shared subtrees,
the bottom up method does not work very well as explained earlier in Sec-
tion 4.3.1. Therefore the BDD method is used. If we want to apply the BDD
method, first the attack tree must be translated to a BDD. Every interme-
diate node in the BDD represents some basic attack step. Along the solid
outgoing edge of such a node is the probability that that particular basic
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attack step is executed successfully (p), whereas along the dashed outgoing
edge there is the probability that the attack is not executed successfully
(1-p). If we add up the probability of both outgoing edges of a node this
should always add up to 1. Figure 4.6 shows an example of an attack tree
fragment and the corresponding BDD with probability.

Find way into
system

p = 0.0298

Brute force
access code

Use help
p = 0.02

Hire expert Expert obtains
access code

p = 0.2 p = 0.1

p = 0.01

(a) Attack tree tree fragment

Brute
force

Hire

Obtain
code

0 1

p = 0.01

p = 0.99

p = 0.2

p = 0.8

p = 0.9
p = 0.1

(b) BDD of AT fragment with
probabilities on edges

Figure 4.6: Example of converting an attack tree to a BDD

The interesting property now to find is the total probability that the system
will be attacked successfully. To find the probability of one path, one must
multiply all probabilities along the path from the root node to the 1-leaf
node. Now to get the probability that any attack is successfully executed
we need to add up the probabilities from all paths in the BDD. We do this
with an algorithm that uses the topological ordering.
A topological ordering of a graph is a linear ordering of the nodes of the
graph such that for every directed edge (u, v) u comes before v in the order-
ing. In other words, every parent of a node v comes before that node v in the
topological ordering. This ordering can be found using several algorithms.
One easy way to find it which is also applicable in this case is by using the
DFS algorithm, as shown in Figure 4.7.

Call the function FindTopOrder with u as the root node of the BDD. G is
the graph, so the BDD in this case, and orderList is an empty list which will
contain the topological order at the end. For every node keep track if it has
already been visited. This is done by the Boolean variable discovered which
every node has. As soon as a node is visited, set the discovered variable to
true. Then for every outgoing edge the algorithm makes a recursive call if
the new node is not already discovered. The function calls itself, but now
with the new node as source node. After this is done for all children of the
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Figure 4.7: Pseudo code for finding the reverse topological ordering

node u, so it has done this for all outgoing edges, u will be added to the
list and the list is returned. Since this is basically DFS with some small
additions, which have no influence on the time complexity, the running time
will be the same as DFS. The running time thus is O(|V |+ |E|), where |V |
is the number of nodes and |E| is the number of edges.

Correctness: A node is added to the list when all recursive calls are done.
This means that all of its children are already added to the list, because
the recursive calls of its children are finished. But these children also make
recursive calls, which also need to be finished. Therefore a node u is only
added to the list if all nodes which are reachable from u are added to the
list. So when eventually the list will be reversed to get the topological order,
any node comes before any of its descendants in the ordering. Specifically
this means that every node will not appear before all of its parents have
appeared in the topological ordering and that is exactly what we want.

Example 11. Recall the BDD we already saw earlier in fig. 4.8. We start
at the root node with variable x1 and call the function FindTopOrder for
all its children that are not yet discovered. These are the 0-leaf node and
x2. The 0-leaf node has no outgoing edges, so it is added to orderList and
this is returned. The root node then calls the FindTopOrder function with
x2 as node and the orderList consists of the 0-leaf node. x2 then first calls
FindTopOrder for the x3 node (as we handle the children from left to right
in this example). This node has two children of which one, the 0-leaf node,
is already discovered hence that node will not be considered. The 1-leaf node
is called with the FindTopOrder function, but has no children so it will be
added to orderList immediately. Now all calls of x3 are also finished, so x3
is added to orderList. x2 now still has one outgoing edge not yet handled,
but this leafs to the 1-leaf node which is already discovered. Therefore, all
recursive calls of x2 are finished and is added to the orderList. Finally, x1
will be added to orderList and we have the result, which is the following
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list: [0, 1, x3, x2, x1]. When reversing this list, we indeed have found the
topological ordering.

X1

X2

X3

0 1

Figure 4.8: A BDD of the function f(x1, x2, x3) = x1 · (x2 + x3)

Once the topological ordering is found, we can use the algorithm as de-
scribed in Figure 4.9.

Figure 4.9: Algorithm to find the total probability of all paths from the root
node to the 1-leaf node

All nodes have one variable called value, which corresponds to the proba-
bility that that node will be reached via any path from the root node. So
eventually, when we obtain this value for the 1-leaf node, we know the value
that the 1-leaf node will be reached via any path which is exactly what we
want to find. The algorithm is based on the following principle: when you
know the probability that any parent of a node u is reached (the values at
the parent nodes) and you know the probabilities of the parent nodes reach-
ing u (the edge values from the parent nodes to u), then you can calculate
the probability that u is reached via any of its parent nodes.
When initializing all nodes, the value of the root node is set to 1, and the
rest of the values are set to 0. This is because the total probability is 1
and we are going to divide this over all paths there are. Then in topological
order, every node propagates its value down over its children. This is done
by multiplying its own value with the edge weight (being the probability of
taking that route) and adding that value to the value of its child. This is
done in topological ordering, so that we know for sure that when a node u is
propagating its value over its children, u actually contains the correct value.
We can guarantee this, because every parent of u has already propagated
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its value to u since they appear before u in the topological ordering. When
propagating a value down to a child, it is added to the child’s value, because
all paths are a disjoint set of status vectors, so their probabilities can be
added. When this algorithm is completed, the 1-leaf node will contain the
probability that it is reached via any path starting in the root node.

Correctness: The correctness of this algorithm is already shown in [16]. It
comes down to the following:

• Every path in the BDD leading to a 1-leaf corresponds to a set of
status vectors that form a valid attack

• The probability for that set of status vectors to occur is obtained by
multiplying their probabilities

• Every path in the BDD corresponds to a disjoint set of status vectors.
Hence, their probabilities can be added.

Run time analysis:
We loop through all nodes with running time O(|V |). Furthermore, we walk
along each edge once with running time O(|E|). This gives us a running
time of O(|V |) + |E|).

Brute
force

Hire

Obtain
code

0 1

1

0.01 + 0.198 * 0.1 = 0.0298

0.99

0.198

0.792 + 0.1782 = 0.9702

Figure 4.10: Example of the probability algorithm. The value along a node
is the probability of getting to that point given the edge probabilities. Topo-
logical ordering: [Brute force, Hire, Obtain code, 0, 1]

Example 12. An example of this algorithm can be found in Figure 4.10.
To find the probability that any attack is successfully executed, we need to
know the value at the 1-leaf node. We start at the top node with a value of
1. This value will be propagated downwards via both its outgoing edges. The
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edge from ’Brute force’ to the 1-leaf node has a value of 0.01, so the value
which goes to the 1-leaf node is 0.01. The other edge has a probability of
0.99, so the value that goes to ’Hire’ is 0.99 as can be seen beneath it. The
next node in the topological ordering is ’Hire’. It has a value of 0.99 and
the edge from ’Hire’ to ’Obtain code’ has a value of 0.2. So the value which
goes to ’Obtain code’ is 0.99 ·0.2 = 0.198. The value which goes to the 0-leaf
node is 0.99 · 0.8 = 0.792. ’Obtain code’ is the next node in the topological
ordering. It has a value of 0.198 and the value along the edge from ’Obtain
code’ to the 1-leaf node is 0.1, so the value that will be propagated downwards
is 0.198 · 0.1 = 0.0198. The 1-leaf node already contained a value of 0.01,
so the new value will be added to get a value of 0.0298. The value which is
propagated down to the 0-leaf node is 0.198 ·0.9 = 0.1782. This node already
contained a value of 0.792, so the new value will be 0.792+0.1782 = 0.9702.
Both the 0- and 1-leaf node do not have any outgoing edges, so the algorithm
is finished now. As you can see, the value at the 1-leaf node is equal to the
value calculated earlier in Figure 4.6a. Also, the value at the 0- and 1-leaf
node add up to 1, which is indeed correct because every path ends in either
one of those nodes and we started with a probability of 1.

Cost

Suppose that every basic attack step has a certain cost to be executed. We
assume here that the cost is fixed and is not dependent on time, skill level or
any other attribute. Recall that the cost of one attack will be the sum of the
costs of all basic attack steps in the attack. When constructing the BDD for
this attribute we use the value as follows. Along the solid outgoing edge of
a node n is the cost of the basic attack step attached to that node n. Along
all dashed edges is a value of 0, because not executing a basic attack step
does not cost anything. In contrast to probabilities, it is important that this
BDD is a so called MBDD. The BDD only represents minimal cut sets. In
practice, an attack is only an attack when the cut set of basic attack steps
is also minimal. No attacker would do certain basic attack steps which are
not necessary for the attack to be completed. So when analysing the costs
of attacks, if there would be an attack in the BDD which is not a minimal
cut set, the cost of this attack would make no sense. With probabilities this
did not really matter, because every solid edge with a probability p had a
counterpart, namely a dashed edge with probability 1-p. Furthermore, we
wanted to know the total probability, so all status vectors - minimal or not
- had to be involved in the calculation. Here this is not the case, because
every dashed edge will standard have a value of 0. So, now we have a MBDD
with along the solid edges the cost of the different basic attack steps and
along the dashed edges a cost of 0. Again, every path from the root node to
the 1-leaf node is an attack. Now the cost of an attack will be the sum of all
values along the edges on the path from the root node to the 1-leaf node.
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Cheapest attack
One interesting thing to look at is the cheapest attack of an attack tree [15].
In the BDD this means that we want to find the shortest path from the
root node to the 1-leaf node. Dijkstra [6] is a well known algorithm which
would work perfectly fine for this. However, since BDD’s are directed acyclic
graphs hence we can find faster algorithms in this case than Dijkstra.
We require the BDD to be reduced for this algorithm to work. Again, the
concept of topological ordering can be used for this algorithm. The gen-
eral idea of the algorithm is as follows. The input is a BDD with a certain
root node, the output will be the shortest path with its cost. First we will
calculate the topological ordering of the nodes in the graph. Following this
the topological ordering will be used to compute the shortest path to every
other node in the graph from one starting node with a single source shortest
path algorithm for DAGs.
We can use the same algorithm to compute the topological ordering as be-
fore, see Figure 4.7. Once the topological ordering is found we can work
with the following idea. If we want to know the shortest route from a node
S to a node T and we know the shortest paths from S to all parents of T,
then the shortest path from S to T is the following. For all parents u of T,
take the value of the shortest route from S to u and add the weight of the
edge from u to T to it. Then the minimum of all these values is the shortest
path from S to T. So if we start this process with the root node of the BDD
and do this for every node in topological order then we can calculate the
shortest route from the starting node to all other nodes in the BDD. This
is also known as the single source shortest path algorithm for DAGs. The
implementation of this can be found in Figure 4.11:

Figure 4.11: Implementation of shortest path in a DAG

The initializing part is pretty straight forward. Set the distance of all nodes
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to infinity except for the source node, which should have a distance of 0.
Furthermore set the parent of all nodes to nil.
The nodes will be taken in topological ordering starting with the source
node. Every outgoing edge of the current node in the algorithm will be
relaxed. Of the current node we already know the shortest distance so the
shortest path to all its children via the current node can be calculated using
the Relax function. The distance of the new path is calculated and com-
pared with the already known distance at v. If the already known distance
at v, via another parent of v, is shorter then nothing will happen. However,
if the new path is shorter than the currently known shortest path to v, then
the value of distance will be updated and the current node u will be set as
the parent of v. Once this is done for all nodes all edges are checked and
the shortest path from the source node to all other nodes is found.
So the shortest path from the root node to the 1-leaf node represents the
cheapest attack of all attacks which are possible according to the BDD. Also
because every node keeps track of its parent, we can reconstruct what the
actual shortest path is and not only the length of it. This can easily be
done by backtracking starting from the 1-leaf node all the way up to the
source node. Note that there could potentially be other attacks with the
same cost. If one would like to find all these attacks, then a node should
keep track of more parents in case there are distances which are equal when
comparing in the relax function. Furthermore, if someone for a reason wants
to know the most expensive attack, all costs in the BDD can be negated and
this algorithm can be executed. The result will be the most negative value,
so when negating it back it will be the highest value hence it is the most
expensive attack.

Correctness: The algorithm is already an existing algorithm, so we can
guarantee that with this algorithm we do find the shortest paths from one
node to all other nodes in the graph. It also returns the cheapest attack of
an attack tree T , because we constructed a MBDD of T , which only consists
of minimal cut sets, thus actual attacks. So every path from the root node
to the 1-leaf node in the MBDD is the status vector of a minimal cut set.
Given the fact that the MBDD models the behaviour of the structure func-
tion, every minimal cut sets of T will also be part of the MBDD. Therefore,
we can conclude that this method is correct, because we find the cheapest
path out of all minimal cut sets.

Run time analysis:
We need to loop through all the vertices with running time O(|V |). Then we
need to check all outgoing edges at all nodes (edge relaxations) with running
time O(|E|). This gives us a running time of O(|V |+ |E|). We already saw
that finding the topological ordering has the same running time as DFS:
O(|V | + |E|). Therefore the running time of the whole algorithm will be
O(|V |+ |E|), which is pretty efficient and also more efficient than Dijkstra’s
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algorithm which has a running time of O((|E|+ |V |) · log|V |) (when using a
binary heap or priority queue).
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Figure 4.12: Snapshots of the shortest path algorithm for cost. (n, x) next
to a node represents (the cost of the shortest path, the parent node). The
topological ordering is [x1, x2, x3, 1, 0]

Example 13. Figure 4.12 shows an example of the shortest path algorithm.
The values along the edges are the cost of a certain basic attack step and the
tuples (value, parent) are part of the algorithm. As you can see, the values
along the dashed edges are 0 as we discussed earlier. We can also see that
the cost of basic attack step x1 is 2, x2 has a cost of 5 and the cost of x3 is
3. First we need to find the topological ordering, which is [x1, x2, x3, 1, 0] as
we saw earlier.
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• Figure 4.12a is the starting point after initializing. The source node
x1 has a distance of 0 and all other nodes have a distance of ∞. Fur-
thermore, every node has its parent set to nil.

• Figure 4.12b shows the situation after relaxing all outgoing edges of the
first node in the topological ordering, x1. Everything that has changed
is marked in red.

• Continuing this process results in the situation as it is in Figure 4.12d.
Here we can see that the shortest path, thus the cheapest attack, has
a cost of 5. Backtracking shows that this path is x1, x2, x3, 1. In this
path x1 and x3 are solid lines and x2 is a dashed line, meaning that
the corresponding attack consists of the basic attack steps x1 and x3.

All attacks given a maximum cost
It could also be possible that someone does not only want to know the
cheapest attack, but all attacks cheaper than a certain cost. There does
not exist a polynomial time algorithm to do this. The number of attacks
given a constraint, for example all attacks cheaper than 10.000 euros, can
be exponential in size. This means that in the worst case the algorithm also
would have an exponential running time. Imagine that someone wants to
know all attacks with a cost below a certain threshold, but this threshold is
set so high, then this means that even though we can represent all minimal
cut sets compact in a MBDD, all paths of the MBDD would satisfy this
condition, which means an exponential number of paths given the number
of nodes in the MBDD.
To find all attacks cheaper than a certain cost, we can extend the shortest
path algorithm in a DAG. The idea of the algorithm stays the same, first
finding the topological ordering and then calculating the distances.
INPUT: The input stays the same, a BDD G with one root node u.
OUTPUT: The output will not only be the shortest path, but all path
satisfying the condition, thus all paths with a lower cost than the given
limit.
METHOD: With the shortest path algorithm we only stored the shortest
distance to a node, but now we need to store all distances to a node which are
smaller than the given constraint. Every distance also keeps track of its own
parent. This parent pointer consists not only of the parent node, but also
which value of the parent node is the predecessor. This is needed in order to
be able to backtrack and find the path corresponding to the path length. For
example if at a node u there are 10 values for paths, and u is a predecessor
of a value at v, then v also needs to know which of those 10 values is the
parent in order to be able to backtrack and find the path corresponding to
that path cost. Another modification will be in calling the relax function. In
the shortest path algorithm we would call the relax function once for every
outgoing edge at a node, but this was the case because we only stored one
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distance, namely the shortest distance. Now we store the distances of all
paths which are below a certain limit, so for every value at a node we need
to relax all outgoing edges at that node. Because the number of values at a
node can grow exponentially, it could also be the case that we need to call
the relax function a lot. We can try to minimize this by first pruning part
of the input BDD. Theoretically this won’t change anything in the running
time complexity, which will still be exponential, but in practice it can make
a difference.

Correctness: The whole idea of the algorithm is exactly the same and
works on the same principles. If you know the distances to all parent nodes
of a node u and you know the edge weights from those parent nodes to
node u, then you can calculate all paths + costs to node u. So although we
changed the algorithm slightly, we can guarantee that it still works correctly.

Further optimizations
If you want to find all paths with a cost lower than x, then the first thing
you can do for pruning is deleting all edges which have a cost of x or more.
Any attack via that path will have at least a cost of x which is something
you want to avoid since you are looking for all paths with a cost lower than
x.
The shortest path algorithm in a DAG can also be used for pruning so that
some attack paths can already be discarded. If we perform the shortest path
in a DAG algorithm from the 1-leaf node, with all edges in the opposite
direction, then we calculate all shortest paths from the 1-leaf node to all
other nodes (except the 0-leaf node since that one is not reachable from the
1-leaf node). If at a non terminal node the lowest cost to get to the 1-leaf
node is already higher than x, then we know for sure that any attack via
this node is not cheaper than x. Therefore this node can be deleted from
the BDD along with all edges connected to it.

K shortest paths
If a bound k is selected then it is possible to find the k shortest paths in
polynomial time, for example if one wants to know the 10 cheapest attacks.
Now we know that the output will not be of exponential size, but only a
maximum of 10 attacks. One algorithm which can be used for this is the
one described by Eppstein in [8]. However, this describes how to find the
k shortest paths in a directed graph whereas we are dealing with directed
acyclic graph.
Therefore we use the same concept as earlier, topological ordering. This can
be done in the same way as earlier, see Figure 4.7. Figure 4.13 shows the
implementation of the k shortest paths in a DAG. Instead of relaxing edges,
this algorithm calculates the k shortest paths of all nodes in topological
ordering. When the algorithm arrives at a node, the k shortest paths to
all its parents are already known and therefore the k shortest paths for the
current node can also be calculated.
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Figure 4.13: implementation of k shortest paths in a DAG

Figure 4.14: implementation of k shortest paths for one node

Figure 4.14 shows how the k smallest values at one node are calculated if
the lists of all its parents are given. We know that all lists from the input
tuples are sorted. All input tuples are then put into a priority queue, where
the priority is based on the lists of the tuples. The priority takes the edge
weight between a parent node and the current node into account, because
the priority of a tuple (Li, Si) is the head Li + weight(Si, u) where u is
the current node of which we want to calculate the k shortest paths. Since
the lists itself are sorted and the tuples in Q are also ordered according to
the priority, we can conclude that the first element of the list of the first
tuple in Q is the shortest path there is to node u. Therefore the first list
tuple (L, Si) will be pulled from Q and then the first element elt from L is
removed and obtained from L. The updated value of elt is then added to
the output list Result. The tuple (L, Si), which now has another priority
because head(L) is different, will again be added to Q in the correct place
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according to its priority. This process of obtaining the first element of the
list of the first tuple will be repeated k times to obtain the k shortest paths
at a node. After these k iterations we can guarantee that we have indeed
the k shortest paths, because in each iteration we add the smallest value at
that moment to k. Furthermore, each value also keeps track of its parent to
be able to backtrack a path.

Correctness: Calculating the k shortest path for one node given the paths
to its parents is correctly done in this way, because for k iterations it every
time takes the first element from the list with the lowest priority.

• All parent lists are sorted with the lowest cost being in front, Head(L) =
minL. These lists are part of a tuple and all tuples are stored in Q.
The priority of a tuple (Li, Si) in Q is Head(L) +weight(Si, u) where
u is the node of which we want to calculate the k shortest paths. Be-
cause every list Li is sorted, this is the cheapest cost to get to node u
via node Si. Q contains tuples for all parents, so when sorted on the
above priority, it is sorted on the cheapest costs to get to node u via
any parent node Si. Therefore, if adding the first element from the
list of the first tuple in Q, we obtain the shortest path to node u via
any parent node in this iteration.

• The first element is deleted from the list of the first tuple, and the
tuple, with an updated list because the first element is removed, is
inserted back into the priority queue. Because it is inserted back into
a priority queue, it will automatically be placed in the correct position.

• Next iteration, the same process is repeated and for the same argu-
ments we can guarantee to get the shortest path of that iteration.

• This is repeated k times, and every iteration we take the shortest path.
From this we can conclude that we obtain the k shortest paths.

The fact that we obtain the k cheapest attacks from this method is based on
the same arguments as earlier when we were looking for the cheapest attack.
We search for the k shortest paths in the MBDD which only shows minimal
cut sets of an attack tree, which guarantees that the k shortest paths will be
equivalent to the k cheapest attack of an attack tree (only counting minimal
cut sets as an attack).

Run time analysis:
First we will analyse the running time of the computation at one node
followed by the running time of the whole algorithm. Suppose that the
number of parents of a node i, and thus the number of input tuples, is Mi.
The first thing which is done is constructing a priority queue Q with all
input tuples. Using Floyd’s heap construction algorithm this can be done
in O(Mi) time. Creating an empty list Result can be done in constant
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time. Now the algorithm reaches the for loop. Pulling the top element of
a priority queue requires O(logMi) time. Removing the first element of a
list can be done in constant time. Adding the updated value to the end of
Result can also be done in constant time if we keep track of a pointer to
the end of the list. Finally inserting the tuple (L, Si) back into Q requires
O(logMi) time again. This is done k times, which gives a running time of
k · 2logMi = O(k · logMi).
So constructing Q has a running time of O(Mi). The number of parents
is also Mi, meaning that the number of incoming edges is Mi. Thus the
construction algorithm needs O(1) time for every edge, meaning that for
the overall algorithm the running time for this part will be O(m) where m
is the number of edges in the BDD.
Furthermore, the running time of the for loop part is O(k · logMi). This
has to be done for all nodes in the BDD. Assuming the number of nodes
in the BDD is n, we obtain O(k · logM1 + k · logM2 + . . . + k · logMn) =
O(k · log(M1 ·M2 · . . .Mn)). The maximum is reached when Mi = m/n,
with m the amount of edges and n the amount of nodes. Now we obtain

O(k · log(M1 ·M2 · . . .Mn)) = O(k · log(
n ·m
n

)) = O(k · log m).

Now we can conclude that the total running time is O(m+ k · log m).

Example 14. Figure 4.15 shows a BDD fragment on which we perform the
k shortest path algorithm at a node. Node S is the node of which we want
to know the k shortest paths, where k is 4 in this situation. P1, P2 and P3

are the three parent nodes of S, with their k shortest paths showed in a list
above these nodes. The edge weights from P1, P2 and P3 are 1, 2 and 0
respectively.

P3

S

P2
P1

L1 = [3, 5, 6, 9]
L2 = [4, 7, 8, 9]

L3 = [3, 5, 9, 10]

0

2

1

Result = [3, 4, 5, 6]

Figure 4.15: Fraction of a BDD fragment showing the situation of this ex-
ample

The process of the algorithm is shown in Figure 4.16. Initially the list result
is empty. Since k is 4, there will be 4 iterations as is displayed in the figure
by a-d. In each iteration the top part shows the parent lists in the current
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Q = [L3, L1, L2]

L1(4) = [3, 5, 6, 9]
L2(6) = [4, 7, 8, 9]

L3(3) = [3, 5, 9, 10]

L = L3
elt = 3

Result = [3]

Q = [L1, L3, L2]

L1(4) = [3, 5, 6, 9]
L2(6) = [4, 7, 8, 9]
L3(5) = [5, 9, 10]

L = L1
elt = 3

Result = [3, 4]

Q = [L3, L2, L1]

L1(6) = [5, 6, 9]
L2(6) = [4, 7, 8, 9]
L3(5) = [5, 9, 10]

L = L3
elt = 5

Result = [3, 4, 5]

Q = [L2, L1, L3]

L1(6) = [5, 6, 9]
L2(6) = [4, 7, 8, 9]
L3(9) = [9, 10]

L = L2
elt = 4

Result = [3, 4, 5, 6]
(a) (b) (c) (d)

Input lists

Priority queue
Selected list

Selected element
Updated result

Figure 4.16: k-shortest algorithm at node S of Figure 4.15. Since k = 4,
there are also four iterations, shown as a-d. On top of every iteration we
everytime see the lists as they are during that iteration. The number x in
Li shows the priority of list i. Q shows the priority queue at that iteration
(we only show lists here instead of tuples as described in the algorithm for
the sake of explaining this example). L is the pulled list from Q and elt is
the first element of L. Result is the list at the end of the iteration

situation, with the value of its priority i.e. head(L) + edge weight, between
brackets. So the list with the lowest value has the biggest priority. This
is reflected in the ordering of the list in Q (for the sake of explaining this
algorithm we only show lists in Q. Normally Q would be a list of tuples
with a list and a node). Next, the first list from Q will be pulled and is
called L. Then the first element from this list L is pulled and displayed as
elt. Elt will then be updated with the edge weight and added to Result. After
four iterations the four smallest values have been found and the algorithm is
finished. Now the 4 smallest paths to node S are also known.

Time

For analysing time, we can again make the division between non-parallel
and parallel AND gates.

Non-parallel AND-gate
Suppose every basic attack step has a fixed amount of time which is needed
in order for the basic attack step to be executed successfully. Then every
solid outgoing edge contains the time to perform that specific BAS and every
dashed outgoing edge contains a value of 0 (because not executing a basic
attack step also takes no time). It is important that the BDD representing
the attack tree only contains minimal cut sets for the same reason as with
cost hence the BDD should be a MBDD. The attack steps cannot be done
in parallel in this case hence the time it takes for an attack to complete will
be the sum of the time values of all basic attack steps in the attack just
like with costs. So, in a BDD the time to perform an attack is the sum of
all values along the path to the 1-leaf node. To find the shortest attack, all
attacks shorter than a certain amount of time or the k-shortest attacks the
same algorithms can be used as described earlier for the costs of an attack.
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Parallel AND-gate
The structure for the BDD in this case is the same as in the non-parallel
case. However, in this case all attack steps can be done at the same time.
This means that the attack can be executed way faster. The time for an
attack will now be the maximum time value of all basic attack steps in the
attack. For example suppose an attack can be done by performing 4 basic
attack steps which take 3, 5, 4 and 2 hours to perform then the attack will
take 5 hours to be executed. So in a BDD the time of an attack can be
found as the maximum of the values along the path to the 1-leaf node.

Shortest attack
When one wants to know the shortest attack in this situation, he needs to
find the path in the BDD of which the maximum value along the path is
the lowest. In other words, we want to find the most expensive edge on the
shortest path since that edge determines the cost of the attack. A concept

Figure 4.17: Example of binary search looking for the number 7

we will use in the algorithm is binary search. It works on a sorted list to find
a certain element. First it checks if the given element matches the middle
element of the list. If so, then you found the element you were looking for.
If not, then you know that the element you are looking for is either in the
left half of the list or the right half of the list since it is an ordered list.
You apply the same steps on either the left or right half of the list until you
find the element you are looking for. An example of this can be found in
Figure 4.17.

The idea of the algorithm is the following. we are looking for the most
expensive edge of the shortest path, which we will call e. First all edges will
be sorted in descending order according to their weight. Let C be the set
of candidates, of which one is the edge e we are looking for. At the start C
will contain all edges in the BDD. Then the |C|2 most expensive edges in C
will be deleted from the BDD. This can be done quickly, since we sorted the
edges in the first step. Now we check if there is still a path from the root
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node to the 1-leaf node. There are two options:

• If there is still a path, then we know for sure that the set of just deleted
edges does not contain the edge e we are looking for, because there
is still a path with only edges that are not more expensive. So these
edges can also be deleted from the set C.

• If there is not a path anymore, then we can conclude that the edge e
is one of the just deleted edges. We need to add the just deleted edges
back to the BDD, and the set C will now only contain the edges which
were just deleted. Note that the cheapest edges still need to be part of
the BDD, otherwise checking for a path in the BDD might not work.

This previous step will be repeated until there is just one edge left in C,
which will be the edge e we are looking for. Now all paths that are left will
have to pass through this edge e and thus are all attacks that will cost the
same amount of time. These are also all the shortest attacks time wise.
In summary, the algorithm works as follows:
INPUT: A BDD G with one root node
OUTPUT: The critical edge that determines the cost of the shortest attack
plus a partial BDD showing the shortest path.
METHOD:

1. Sort the edges in descending order according to their weight.

2. Add all edges to the set C

3. Delete the |C|2 most expensive edges in C from the BDD

4. Check for a path in the BDD.
If there is one, delete the just deleted edges also from the set C. If C
now only contains one edge, then edge e is found. Otherwise, go back
to the previous step.
If there is no path, add the just deleted edges back to the BDD and
C now only consists of the just deleted edges. If C now only contains
one edge, then edge e is found. Otherwise, go back to the previous
step.

Correctness: Essentially, we are looking for one edge, namely the most
expensive one on the shortest attack since that is the edge which determines
the cost of the shortest attack. In step 1, all edges are sorted in descending
order, so from the most expensive edges to the cheapest edges. We keep
track of a set of candidates of which one will be the edge e we are looking
for. Every iteration the most expensive edges are deleted, so when the point
is reached where there is only one edge left, we can conclude that we did not
delete a cheaper edge which could have lead to a faster attack. Furthermore,
every iteration there is a check for a path hence every time we know in what
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half of C the edge e is located. With these two observations, it has to be
the case that when there is just one edge left in C this is the one we are
looking for. Thus, we have found the most expensive edge on the shortest
path, which tells us the cost of the fastest attack.

Checking for a path in the BDD
Checking for a path from the root node to the 1-leaf node can either be done
by using the BFS or the DFS algorithm. Since we want to know if there is
a path from the root node to the 1-leaf node and the 1-leaf node is deep in
the graph it is better to use the DFS algorithm. We start DFS on the BDD
from the root node. We let DFS run and whenever the algorithm encounters
the 1-leaf node it should return true. If the DFS algorithm is finished and it
did not encounter the 1-leaf node then there is no path from the root node
to the 1-leaf node and it should return false.

Run time analysis:
For sorting several algorithms can be used. Depending on the preferences
a sorting algorithm can be chosen. Looking at run time complexity, merge
sort, heapsort and quicksort are all a good option, with running time O(|E| ·
log|E|). Deleting the |C|2 most expensive edges in C can be done in linear
time, being O(|E|). Checking for a path using DFS can be done in O(|V |+
|E|) time. This means every iteration takes O(|V | + 2|E|) = O(|V | + |E|)
time. Since we use the idea of binary search, there will be a maximum of
Log|E| iterations, giving a running time of O((|V | + |E|) · Log|E|). The
running time of sorting does not matter compared to this, so the running
time of the algorithm will be O((|V |+ |E|) · Log|E|).

Example 15. Figure 4.18 shows snapshots of how this algorithm works. In
Figure 4.18a the starting point is shown. On the right side of each BDD
the set of edges, in descending order, is shown. The curly bracket around
it marks which edges are in the set of candidates C. We start with deleting
the |C|2 most expensive edges in C, which is shown in Figure 4.18b. There is
no path from the root node to the 1-leaf node anymore hence the just deleted
edges will be added back to the BDD and the set C now consists of the just
deleted edges, shown in Figure 4.18c. Again, the |C|2 most expensive edges
in C will be deleted (because half of the edges would be 2.5, one can choose
to delete either 2 or 3 edges, which is 2 in this example). This results in
the BDD shown in Figure 4.18d. The red marked edges at the right side
are not part of the BDD anymore. There is still a path from the root node
to the 1-leaf node, so we can leave the just deleted edges out and remove
them from C. Again, edges will be deleted (just one edge now) resulting in
Figure 4.18e. There is not path left anymore, so we add the edge back to
the BDD and we update C. In Figure 4.18f there is only one edge left in C,
meaning that the critical edge is found. This edge is marked in green and by
eyeballing this small example one can indeed verify that this is correct. The
shortest path is A, C, E, 1 with a cost of 3 because of the edge (E, 1).
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Figure 4.18: Snapshots of the shortest path algorithm for time. Along each
figure all edges can be found. All edges in the range of the curly bracket are
part of the set C. The red marked edges are permanently removed from the
BDD at that stage 59



All attacks faster than a given time
If one wants to find all attacks which are faster than a given time x, the
following algorithm can be used.
INPUT: A BDD with one root node
OUTPUT: A partial BDD with only paths faster than the given time
METHOD: We start with the BDD corresponding to the attack tree with
the times of the basic attack steps along the edges. Now loop through all
the edges and if an edge has a value which is greater or equal to x, delete
this edge. In this way the BDD will only contain edges with a lower value
than x, meaning that every path in the BDD takes at most x−1 time. Note
that after deleting some edges, the result is not a BDD anymore but rather
a partial BDD. It could also be the case that some nodes are not reachable
anymore.
Correctness: All edges with a cost that is too high will be deleted. Because
the time an attack takes will only be the maximum of all edges on the path
from the root node to the 1-leaf node and there is no edge which is more
expensive than the given threshold, all paths will not exceed this threshold.
Better alternative METHOD: It would be more useful if the output
would be a proper BDD, also when using this algorithm in combination
with other leaf attributes. This means that the BDD should also be reduced
afterwards. This whole process then ends up to be the same as the Re-
strict function described by Bryant in [4]. Arguments for this function are
variables of the BDD which all also get a truth value. What this function
then does is traversing the BDD and when it reaches a variable that has
been given as argument, it sets that variable to the given value hence it
restricts some variables to a certain value. In our case we would give every
basic attack step with a time of x or higher as an argument and set all their
values to 0. In this way all basic attack steps with a cost of x or higher
are restricted to the value false, meaning there will only be path with value
along the edges which are smaller than x.

Run time analysis:
The first variant, the only thing that happens is looping through the edges
and removing only those edges with a cost of x or higher. Removing an edge
can be done in constant time if implemented with the correct data structure.
Therefore the running time would be O(|E|).
The Restrict function by Bryant has a running time of O(|G| · log|G|), where
|G| is the size of the input BDD in terms of number of nodes.

Skill level

Suppose there a some skill levels which can be ordered, for example low,
medium and high. Every basic attack step has a certain minimum skill
level needed in order to be successfully executed. So if a basic attack step
has a minimum skill level of medium, then only attackers with skill level
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medium or high can execute this basic attack step successfully. Recall that
the required skill level of an attack is the maximum skil level of all basic
attack steps in the attack. The values along the edges in the BDD will be as
follows. Every solid outgoing edge contains the minimum skill level needed
to execute the basic attack step of the node, and every dashed outgoing edge
contains the lowest skill level which exists. The BDD should be a MBDD,
because when not working with a minimal cut set, the element that can be
left out can have an influence on the minimum skill level needed for that cut
set. The minimum skill level needed for a certain attack is the maximum
skill level along the path from the root node to the 1-leaf node. So if a path
contains the skill levels {low,medium, low, low} then every attacker with a
skill level of at least medium can execute this attack.

All attacks below a certain skill level
Suppose one wants to find all attacks with a skill level below high. For this
task, one can once again use the Restrict function from Bryant [4]. Every
basic attack step with a skill level of ’high’ or higher should be set to false.
So what we give as arguments is all basic attack steps with a skill level of
’high’ or higher and the value false. What will be returned is a reduced
BDD which only contains path with a maximum skill level of medium in
O(|G| · log|G|) time.

All attacks above a certain skill level
Instead of finding all attack below a certain skill level, suppose someone
wants to find all attack above a certain skill level, e.g. all attacks with a
minimum skill level of medium. (Until now we did not succeed in finding
a suitable algorithm for this yet. However, we tried some things which did
not work. We show it here because failure is also a result and others can
learn from what we tried)
While Bryants Apply function [4] seems very useful for this, it does not work
in this situation. The Apply function takes two BDDs and creates of BDD
of them given an operator, for example AND. It seems useful to combine the
BDD representing the attack tree with a BDD representing a disjunction of
all basic attack steps with skill level of medium or higher using the AND
operator. In this way all paths in the newly formed BDD have to satisfy
both BDD’s, meaning it is a path in the first BDD and also contains at least
one basic attack step with skill level medium or higher. In the following
example we will show why this does not work.

Example 16. Consider the attack tree in Figure 4.19a and the correspond-
ing BDD in Figure 4.19b both including skill levels of the basic attack steps.
Suppose one wants to know all attacks which require a skill level of medium
or higher. This means that every path should contain at least one edge with
a skill level of at least medium. When using the Apply method, we combined
the BDD in Figure 4.19b with the BDD representing the disjunction of all
basic attack steps with a skill level above low, shown in Figure 4.20a.
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Figure 4.19: Attack tree with skill levels and its corresponding MBDD
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Figure 4.20: Helper BDD in Figure 4.20a and resulting BDD after apply
function in Figure 4.20b

Combining the BDD’s from Figure 4.19b and Figure 4.20a with the AND
operator using Bryant’s Apply function results in the BDD shown in Fig-
ure 4.20b.
In the newly formed BDD, every path does indeed satisfy both the BDD’s,
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meaning that every path is an attack which also contain a basic attack step
with a skill level of medium or higher. However, the problem is that the new
BDD is not a minimal BDD anymore. It also shows non minimal cut sets,
for example the path (a4, a3, 1) since in Figure 4.19b (a4, 1) was already
a valid path. Therefore this newly formed BDD does not have any value,
because only minimal cut sets will in practice be real attacks.

Also deleting paths that are not valid in the original BDD does not work.
For example, consider the BDD in Figure 4.21. The path (a1, a3, a4, a5 1),
in red, is invalid, because that requires a skill level of low. However, (a1,
a3, a4, 1), in green, is a valid attack and (a1, a2, a4, a5, 1), in blue, is also
a valid attack. To keep these paths in the BDD, no edge on the green and
blue path can be deleted. But that means that the invalid path will also
remain in the BDD since no edge in the red path can be deleted.

a4

a3

a1

0 1

a2

a5

low

medium

low

high

low

Figure 4.21: A BDD with skill levels showing various paths

Boolean value

This part describes how to analyse Boolean values, which could be any
Boolean variable. We will work with special equipment as a Boolean vari-
able, which indicates if special equipment is needed to perform the basic
attack step. Every solid outgoing edge contains a true if special equipment
is needed to execute the basic attack step and false otherwise. Every dashed
outgoing edge contains false since not performing a basic attack step also
does not require any special equipment. We require the BDD to be an
MBDD for the same reason as with skill. Now if along the path of an attack
there is an edge with true special equipment is needed. If this is not the
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case then no special equipment is needed.

Boolean value can be treated the same way as skill levels, where there would
only be two skill levels. Boolean variables like special equipment can also
be ordered like skill levels, with false being lower than true. For example,
if one wants to find all attacks that do not require special equipment, the
Restrict algorithm can be used to restrict the value of all basic attack steps
with do require special equipment to false. This is exactly the same as the
situation where someone wants to find all attacks with a skill level below
high when the set of skill levels exists of {low, high}.

Combinations

When combining several attributes, you often want to minimize or maximize
one attribute and put constraints on the other. For example, you want the
cheapest attack, thus minimizing the cost, of all attacks with a skill level
below medium, putting a constraint on the set of possible attacks. What
we want to do is first creating a BDD with all constraints on it such that
afterwards the applicable algorithm can be run to minimize or maximize a
certain attribute.
For example, finding the cheapest attack of all attacks with a skill level below
medium will go as follows. First the AT is translated to a BDD, which will
be followed by the algorithm to find all attacks with a skill below medium
as described earlier. This algorithm returns a new BDD G with all attacks
that require a skill level below medium. This new BDD G can now be used
to run the cheapest attack algorithm on. The result from this algorithm will
be the cheapest attack of all attacks with a skill level below medium.
This is not as straight forward when you want to find the fastest attack from
the top-10 cheapest attack, since the algorithm for finding the k cheapest
attacks does not return a BDD. However, after running the algorithm it is
possible to backtrack all k paths and thus knowing the status vectors, i.e.
the BAS assignments, of all k attacks. Every path i can be represented as a
Boolean function fi, namely as a conjunction of all basic attack steps that
are true for that certain path i. The Boolean function for any of these paths

to be true is a disjunction of all paths, so
k∨

i=1
fi. This Boolean function

can be represented by a BDD, which can then be used by the algorithms as
discussed throughout this section, in this example finding the fastest attack.
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Chapter 5

Conclusions

We discussed the analysis of attack trees in this thesis and specifically two
types of attack trees. These were attack trees without shared subtrees but
possibly including SAND gates and attack trees with shared subtrees but
without SAND gates.

Attack trees without shared subtrees can be analysed via the bottom up
method, where leaf values from the tree are propagated upwards to the tree
to analyse a property of the attack tree. We showed how this can be done for
several attributes and properties as different calculation rules are in place
for different attributes and properties. It was already a well known and
efficient method, so for this we more or less gave an overview of how several
attributes can be calculated with this method. However, we extended the
bottom up method by also including the SAND gate in it.
For attack trees with shared subtrees, but no SAND gates, we focused on
the BDD method. The idea of translating an attack tree to a BDD was
already known, but there was barely any analysis on the BDD. It was merely
focussed on status vectors and simple risk computations. We showed that
this could be extended to analyse different attributes, like cost or skill level.
For these attributes, we used/combined already known algorithms to find
properties such as the cheapest attack in the attack tree, or all attacks below
a certain skill level. Furthermore, we created a new algorithm to find the k
shortest paths in the BDD, which corresponds to the k cheapest or fastest
attacks for the attributes cost and time respectively. Moreover, we showed
how we could combine the analysis of different attributes to be able to make
more elaborate queries. For one metric we wanted to calculate, all attacks
above a certain skill level, we were not able to find an efficient and working
algorithm. We showed what we tried and why this did not succeed.

Future work
The analysis of attack trees with both shared subtrees and SAND gates is
left for future work. The bottom up method is not applicable, because those
attack trees contain shared subtrees. The BDD method as described in this
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thesis is (at least) not directly applicable to attack trees with both shared
subtrees and SAND gates. BDDs represent boolean function, but there is
no way to show a certain ordering with a BDD, for example sub attack 1
comes before sub attack 2. If this BDD method can be extended by adding
more variables to BDD nodes such that it works for attack trees including
SAND gates has to be researched in future work. However, we suspect that
the BDD method can be used to calculate for example the cheapest cost
of the attack tree (not the corresponding attack itself) as SAND gates are
handled the same as AND gates when it comes to cost. How this exactly
works and for what attributes this can work is also left for future work.
Furthermore, in the analysis of attack trees with shared subtrees and no
SAND gates, we assumed that all attributes were fixed. Maybe in real life
situations, these values can change once a certain step is completed, for
example if one basic attack step is executed, the probability of another one
can change if they are not totally independent. The methods we described
do not take this dynamic behaviour into account, so that is something left
for future work.
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