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Abstract

The automotive sector is changing. More and more people are buying elec-
tric vehicles. Charging all these vehicles will put a huge load on the elec-
tricity grid, increasing the peak demand on the electricity grid. The peak
demand of today is far below what our electricity grid can handle, but when
a significant amount of people would start to switch over to electric vehicles,
this peak will increase and the electricity grid could become overloaded.

A possible solution for preventing such an overload could be a smart charging
algorithm. Usually, electric vehicles charge as fast as possible, using their
available capacity completely. A smart charging algorithm changes how
electric vehicles charge, spreading out their charging needs over the time
they are parked.

Another way of preventing overload and lowering the demand of electric
vehicle charging is by charging with electricity that is generated nearby.
Electricity generated in residential neighborhoods (usually by solar panels) is
often not entirely used by that neighborhood, causing a surplus of electricity.
This surplus of electricity can be used to charge electric vehicles, which also
lowers the demand on the electricity grid.

This research will present a valley-filling method of managing the charging
of electric vehicles such that the peak load on the electricity grid is lowered
and as much locally produced green energy is used as possible. Lowering the
already existing peak load created by normal residential activity is not in
the scope of this research. We will manage electric vehicle charging on a per
neighborhood basis, dividing the total electricity needs of all vehicles over
the period they are parked. The presented method will be evaluated on a
couple of goals, two already mentioned above. We will look at the decrease
in peak load, usage of locally produced green energy, and charging times
of the electric vehicles. We then show that our method of smart charging
performs well based on these goals.
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Chapter 1

Introduction

Our electricity grid is evolving. From using grey sources of energy, such as
coal and gas, we are now moving towards a more green future using energy
from the sun and wind. We are also changing the way we drive, adopting
more Electric Vehicles (EVs) [5] every year. These EVs have a high impact
on our current electricity grid, using a lot of energy in short time frames
[22]. An example is the Tesla Model S that can be equipped with a 20 kW
charger. To put that in perspective, it uses much more energy than a regular
television, which only uses around 100 Watts (0,1kW). Our electricity grid
is not designed to deal with the extra load caused by EV charging, which is
why we need to come up with a solution.

One solution might be to expand the current electricity grid so that it is
capable of dealing with higher peak demand. An expansion of the current
electricity grid is, however, very costly. Smarter ways to lower the impact
of EVs on the grid are, for example, by using smart charging algorithms
that spread out the total charging needs of EVs over the period they are
parked. Another way to lower the extra load on the electricity grid is by
using locally produced electricity for charging. The electricity produced in a
neighborhood should be used within the same neighborhood. Using locally
produced electricity is favorable because the generated electricity does not
have to travel as far over the electricity grid as it would if it were not used
locally, reducing the impact on the electricity grid.

Wijkie, a start-up company, is trying to achieve these positive effects of
local power usage by sending people notifications when they should (and
should not) use electricity. They have established a system where energy
usage and generation in a neighborhood are monitored and processed by
an algorithm. The algorithm sends out push notifications based on the
current power level within the neighborhood, activating people to use more
electricity when excess electricity is available. Wijkie wants to expand its
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algorithm by controlling smart EV chargers to regulate power usage, letting
cars charge faster if a lot of energy is available. Electric vehicles could
then be used to store this locally generated green electricity before notifying
residents of the neighborhood that they should start using more electricity.

In chapter 2, we will look at Wijkie’s current system and provide some
background information on EV charging. In chapter 3, we will propose an
algorithm to deal with smart EV charging and introduce goals that we will
use in later chapters to evaluate the algorithm. In chapter 4, we will elab-
orate upon our testing environment and show the used test data. Chapter
5 will go into the evaluation of the goals established in chapter 3 and will
provide an overall evaluation of the algorithm. Chapter 6 will provide some
background reading material about smart EV charging and chapter 7 will
provide some future research suggestions. A conclusion will be given in
chapter 8.
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Chapter 2

Background

This chapter contains background information about the topics discussed
in this paper. Wijkie and its current algorithm will be elaborated upon in
section 2.1. Section 2.2 will give an overview of the current EV charging
landscape and will show how Wijkie will fit into this landscape. Section 2.3
will go into the different methods of charging EVs and will show the method
we will be using in the next chapters.

2.1 Wijkie

Wijkie (previously known as Groenewijkstroom) is an organization that
deals with consumer-generated green energy. More specifically, if a lot of
green energy is produced in a neighborhood, this energy should be used
within the same neighborhood. Wijkie offers an application to its customers
that sends out a push notification if more energy is produced than is used
within the customer’s neighborhood. The push notification leads to resi-
dents using more energy when green energy is available and the opposite.
Electricity companies do not have to compensate as much as people change
their electricity usage behavior depending on the level of available green en-
ergy. Another benefit lies in the fact that our current electricity grid is not
built for the amount of load that EVs and green energy sources will put on
the grid. Consuming locally generated electricity is a good way of reducing
the load on the electricity grid.

As previously said, Wijkie has an application that can be installed on mobile
phones. The application notifies people of energy surplus in a neighborhood
through push notifications. It all works by placing a self-designed device in
smart electricity meters in residential neighborhoods. This device sends data
to a central server which then computes the electricity usage in a specific
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area. More on this will be explained in section 2.1.1.

Customers of Wijkie can earn ”Wijkies”, a virtual coin that can be spent
within a customer’s neighborhood. These Wijkies are earned every time a
user decides to use electricity when there is a surplus in the neighborhood.
Wijkie partners up with local entrepreneurs to grow the number of stores
that Wijkies can be spent at.

2.1.1 Wijkie system overview

Currently, Wijkie uses a self-designed device (further called EARN-E) to
pull electricity usage and generation data from smart electricity meters.
The EARN-E connects to a WiFi hotspot within the house, which connects
to a central database that stores all electricity usage data from Wijkie’s
customers. The usage data is pulled from the P1 port on smart electricity
meters. The database connects to the Wijkie app and sends different kinds
of data back and forth between the app and the server. The information
flows are shown in figure 2.1.

P1

Smart fuse box

EARN-E Power generation

Information

Database

Solar power 
predictor

Power generation

Information

Mobile app
Algorithm

Push
notifications

Figure 2.1: Current (trimmed down) diagram of Wijkie’s system

As we can see, the algorithm only uses power usage and generation data
to calculate whether or not to send push notifications. The solar power
predictor is not used within the algorithm. Its sole purpose is to graphically
show the expected amount of photovoltaic energy that will be generated
within the app.

The algorithm used for sending push notifications to Wijkie’s app users
is relatively simple. When electricity generation within a neighborhood is
higher than the electricity used within the same neighborhood, all people
in the neighborhood receive a push notification. The same thing happens
whenever the generated electricity drops to half that of the electricity used
within the neighborhood. We established a formula for the algorithm in
figure 2.2.
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P t
n =



S1 if Gt
n > U t

n ∧ ((∀s<tP
s
n 6= S1 ∧ P s

n 6= S2)∨

(∃s<tP
s
n = S2 ∧ ∀s<r<tP

r
n 6= S1))

S2 if U t
n > 2 ∗Gt

n ∧ ∃s<tP
s
n = S1 ∧ ∀s<r<tP

r
n 6= S2

N otherwise

Figure 2.2: Formula used by Wijkie’s algorithm

The terms used in the formula are explained below.

P t
n = Push notification in neighborhood n at time t

S1 = Signal 1, a notification recommending users to use more energy

S2 = Signal 2, a notification recommending users to use less energy

N = No notification

Gt
n = The energy that is generated within neighborhood n at time t

U t
n = The energy that is used within neighborhood n at time t

A graphical example of an arbitrary neighborhood a is displayed in figure
2.3. The green line represents Gt

a and the black line represents U t
n. On time

t = 3, signal one will be dispatched to the users because G3
a > U3

a and for
all t < 1, P t

n 6= S1 and P t
n 6= S2. The second case is true for time t = 15 as

U15
a > 2 ∗G15

a and there exists a t for which P t
a = S1 (namely t = 3) and for

all times t in between t = 3 and t = 15 P t
n 6= S2.

2.2 EV charging landscape

The commercial EV charging landscape is complex, with many parties reg-
ulating different parts and many protocols supporting communication be-
tween these parties. We will give a brief overview of all the parties involved
with commercial charging poles. This overview will rely heavily on research
by Poll and Van Aubel [26]. For a complete overview, we advise reading the
original paper.

The central parties involved with EV charging are:

• Charge point operators (CPO) operate and maintain charge points.

• E-Mobility service providers (eMSP) resell electricity to consumers.

• Distribution system operators (DSO) manage the electricity grids.
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Figure 2.3: Example of Wijkie’s algorithm

• Clearing houses (CH) offer a standardized platform to communicate
between CPOs and eMSPs (A in figure 2.4). This communication can
also take place without a CH (B in figure 2.4).

• Electricity suppliers (ES) provide the electricity needed to charge EVs.

• Charge point infrastructure operators (CPIO) produce and maintain
charge points. The CPO can also conduct some of the tasks of a CPIO.

A graphical representation of the EV charging landscape can be found in
figure 2.4.

There are many parties involved in commercial EV charging, making the
landscape rather complex. To make it even more complex, all these par-
ties have different protocols to communicate with each other. Important
protocols to note are Open Charge Point Protocol (OCPP) [19] and Open
Smart Charging Protocol (OSCP) [20]. OCPP allows CPOs to communicate
with the charge points (C in figure 2.4). The protocol offers a standardized
way to communicate with supported charge points. OCPP is used to con-
trol remote maintenance of charge points, but it can also be used to set a
maximum load per time frame for charge points. With OCPP, we can thus
control how much current a charger pulls from the electricity grid.

OSCP is used to provide a prediction of the electricity load on a per cable
basis. OSCP provides predictions based on historical electricity usage data.
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BC

Figure 2.4: EV landscape graphically

Historical data is useful for charging EVs because we want to be able to
predict when there is capacity available to charge connected EVs. More on
this will be explained in chapter 3.4.1.

The role of Wijkie in this ecosystem can be resembled by a CPO and an
eMSP, which can be the same entity, according to Poll and Van Aubel [26].
Wijkie will be in control of the charging points by sending charge plans to
the charging points. They will also interact with their customers to provide
them with their services.

2.3 Different ways of smart charging

Smart charging is the intelligent charging of EVs. Charging can be shifted
based on grid loads and in accordance with the vehicle owner’s needs. There
are many ways in which EV charging can occur and which party controls
what EV to charge. This section will explain some of the different ways
smart charging can be regulated. We will summarize which types of smart
charging will be used in the remainder of this paper in section 2.3.4.

2.3.1 Uni- and bidirectional charging

At first, we can distinguish between unidirectional and bidirectional (also
called vehicle to grid, V2G) charging. Unidirectional charging means normal
charging, as one would charge a smartphone. Just plug it into a power outlet
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and begin charging until the battery is full. Bidirectional charging allows
for the EV to supply electricity back to the power grid, meaning we could
regulate the power flow within the power grid by smartly (dis)charging EVs.
Bidirectional charging will not be further discussed as the implementation
of bidirectional charging is not relevant for Wijkie. Bidirectional charging
is still in development, and there is also concern that bidirectional charging
has much impact on the EV’s battery life [6].

2.3.2 Peak shaving and valley-filling

The terms peak shaving and valley-filling are often used with different mean-
ings in different papers [8][12]. We will use the two terms in the following
way. Peak shaving is used when talking about lowering the normal, already
present, load peaks on the grid by using connected EVs. An existing peak
will be lowered by discharging EVs when demand is high. This way, EVs
act like a sort of battery attached to the power grid. For peak shaving to
work, an EV needs to be capable of supplying power back to the electricity
grid. As already noted in section 2.3.1, bidirectional charging is not in the
scope of this paper as the impact of bidirectional charging on the battery
lifespan of an EV is still being researched [6].

Valley-filling is another method of regulating the electricity load so that
the grid does not become overloaded. Valley-filling describes methods to
lower the extra load created by charging EVs and spreading out that load
over some time. Valley-filling algorithms do not necessarily use vehicle-to-
grid technologies but only control the amount of energy an EV charger can
use from the electricity grid at specific time intervals. This research will
include a method of valley-filling to decrease the extra load EVs put on the
electricity grid.

2.3.3 Centralised and decentralized algorithms

Another distinction can be made in ways to decide which vehicles to charge
and the information available. A global distinction can be made between
centralized and decentralized methods of smart charging. A centralized way
usually means that a central party or server controls all EVs within an area.
A benefit of these central algorithms is that an optimized charging schedule
can be found such that the electricity load is lowest. Central algorithms
usually also have a complete set of data available to them and not only a
small set found in local or decentralized algorithms. A downside of central
algorithms lies in the fact that computational time is usually much longer
than that of a decentralized algorithm; this is also the most used argument
to create decentralized approaches to smart charging.
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A decentralized (or local) algorithm usually consists of a lot of different
agents that run the same algorithm. These different agents either only use
their local data to compute an optimal charging plan [17][30] or communicate
with each other to come up with the most optimal charging plan for a larger
area [27]. The benefits of decentralized approaches are scalability and, in
general, much faster computational times. A downside is that often much
infrastructure must be placed in order for these algorithms to work.

To achieve a kind of system that uses a local algorithm would mean that
either the EARN-E has to be expanded to an extent where it can communi-
cate with the EV charger, or another device has to be put inside the homes
of Wijkie’s customers. As we will also see later on, a centralized approach
(based on already existing infrastructure Wijkie has) is more desirable than
a decentralized approach. The algorithm proposed in this paper will thus
be centralized.

2.3.4 Approach used in this paper

Summarizing the points made in previous sections, our algorithm will be
a centralised unidirectional smart charging algorithm that accomplishes
valley-filling. The algorithm will compute charging plans on a central server
run by Wijkie. This central algorithm collects all data send by the EARN-E
devices and will come up with the most optimal charging plan for the next
hours. A complete specification of the algorithm can be found in chapter
3.
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Chapter 3

Demand side EV
management

This chapter will start with a quick explanation of the proposed algorithm in
section 3.1. Section 3.2 will explain the problems noted in previous chapters
in more detail, specifically explaining valley-filling. It will also state the goals
that the algorithm needs to accomplish. In section 3.3, we will discuss the
formalisation used in the following chapters. Section 3.4 will discuss some
of the design decisions made to implement the algorithm into the current
infrastructure. Section 3.5 will explain the proposed algorithm in detail.

3.1 Algorithm summary

This section will provide a brief overview of the algorithm proposed in sec-
tion 3.5. When electric vehicles are connected to the power grid, they will
send a message to a central server that will record what EVs are connected
in which neighborhoods. The proposed algorithm will be executed on a per
neighborhood basis, only the connected EVs in a neighborhood are consid-
ered. The EVs will pass on the amount of electricity they need and when
they expect to leave their chargers. The algorithm then splits the amount
of needed power in chunks of a standard size. These chunks will then be
allocated on time frames where the load is lowest, also keeping in mind when
the EVs need to leave. This way, the total load on the electricity grid is
divided over the amount of time that the EVs are expected to be charged
instead of charging at full capacity when EVs are connected.
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3.2 Goals

There are four goals we want to achieve with the new smart charging system,
listed in order of importance:

1. The EVs should be charged fully when the (expected) departure time
of the EV approaches.

2. The system should decrease the peak load on the electricity grid cre-
ated by simultaneously charging multiple EVs.

3. The EVs should be charged relatively fast until hitting 80% battery
capacity1. This type of fast charging is needed because there may be
times when people suddenly need their vehicle.

4. The system should prefer using green energy generated nearby when
available.

The first goal is that the EVs must be fully charged when their expected
departure times approach. Without the first goal, it would be rather trivial
to create an algorithm that decreases the grid load created by EV charging
as we could just not charge the EVs at all. This first goal only applies if it
is physically possible to charge the EV before its departure time (keeping
in mind the maximum load of the charger and the capacity the EV has to
charge).

The second goal we want to accomplish by regulating EV chargers is valley-
filling. We want to lower the peak load the electricity grid needs to handle
by spreading out that load over a larger time frame (explained in section
2.3.2). In order to decrease the peak load on the electricity grid, we need to
shift EV charging to times where electricity demand is low. As an example,
figure 3.1 displays the average electricity usage of a household on a typical
day [28].

The peak load time is around 18:00. People start coming home from their
work and turning on all different kinds of electrical devices. The maximum
load the electricity grid is capable of handling is higher than the peak load
occurring at around 18:00 each day. A problem occurs when the peak load
exceeds the maximum load the electricity grid is capable of handling. When
electricity demand exceeds the maximum load, power outages can occur.
We should thus avoid creating a higher peak load as this might result in an
overloaded electricity grid.

The third goal we want to accomplish has to do with the usability of the
smart charging algorithm. As we can see in section 3.3, we need a point
in time where the EV needs to be fully charged. This point in time might

1Based on iPhone smart charging [1].
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Figure 3.1: Average electricity usage of a household on a typical day

be predicted or entered by the user. The problem is that an EV might be
charged right before the EV needs to be fully charged. When this is the case,
and the user unexpectedly needs their EV earlier than its original leaving
time, the EV might not be ready to depart because of a non-charged battery.
The time it takes to fully or partially charge an EV is thus important for
the usability of our algorithm. We will take a look at the charging times of
the EVs and see how our smart charging algorithm performs.

The last goal we want to accomplish is using as much green energy within
a neighborhood as possible to charge EVs. Using surplus green energy for
charging EVs is beneficial in two ways. First off, Wijkie does not have to
send as many push notifications via their app as our algorithm already uses
the surplus green energy by charging the EVs. The second benefit is that the
load on the electricity grid created by green energy generation is lowered.

There might be a problem with achieving the last goal. Green energy gen-
erated within a neighborhood is, most of the time, photo-voltaic energy
(energy generated from sunlight). We predict that most of the EVs will be
away from home when solar energy is produced as they are most likely being
used as commuting vehicles, which would mean that there might not be an
opportunity to charge these commuting EVs with solar energy. To charge
cars with sunlight, they need to arrive at home before or during the gen-
eration of photo-voltaic energy. We will use non-commuting vehicles to see
whether our algorithm is capable of dealing with energy generation within
the neighborhood. These non-commuting vehicles will be further explained
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in section 4.3.

3.3 Formalisation

A possible solution for a valley-filling algorithm has been proposed by Van-
dael et al. [27]. The authors solve the issue by flattening the load on both
high and low voltage transformers. The load flattening is done by sending
reservation requests back and forth between these transformers and the EV
charging units. Both the high and low voltage transformers then execute
an algorithm to decrease peak load as much as possible. We will use an
adaptive version of the algorithm to flatten the load in neighborhoods. The
examples that will be used in the next sections will consider computations
in an arbitrary neighborhood.

3.3.1 Terminology

The following terms will be used:

• U t
H : The electricity balance at time t for all households in a neighbor-

hood. Usage and generation of all households in a neighborhood are
included. EV charging usage is excluded.

• Ctotal
e : Total capacity of EV e (for a fully charged battery).

• Cnow
e : Current capacity of EV e.

• Ccharge
e = Ctotal

e − Cnow
e .

• te: Expected leave time for EV e.

• Lmax
e : The maximum load of the charging pole connected to EV e.

This variable depends on the maximum load the EV and the charging
pole can draw from the electricity grid.

• Lt
e: The amount of electricity that the charging pole connected to EV

e uses at time t.

• AUmin: The minimum allocation unit constant. This variable is con-
stant and will be set before the algorithm runs. AUmin is further
explained in section 3.5.

• A: The number of time frames to allocate for. This variable is constant
and will be set before the algorithm runs.

• tw: The time frame width. This variable is constant and will be set
before the algorithm runs.
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Two other terms that we will frequently use are allocation space and the
prediction window. With allocation space, we mean the time we have in
which we can allocate charging for an EV. It is the time between t = 0 and
t = te.

With the prediction window, we mean the amount of time the algorithm
maximally looks into the future for allocating EV charging. When the leav-
ing time of an EV is further in the future than the prediction window, EV
charging will be allocated as if its leaving time is the same as the end of the
prediction window. The prediction window is equal to A ∗ tw.

Current time

tw

te1

Prediction window = A*tw

1 2 3 4 5 6 7 8 10 11 12 14

te2

te1 allocation space

te2 allocation space

Time

Figure 3.2: Prediction window example

Figure 3.2 displays an example of a prediction window with A = 12 and
tw = 1 time step. The leaving time of EV e1 is set at time step 9 and the
leaving time of EV e2 is set at time step 13. The electricity car e1 needs for
a fully charged battery will be allocated between time step 0 and 9 because
time step 9 is in range of the prediction window. Car e1’s allocation space
is thus between t = 0 and t = 9. Car e2’s leaving time is not in range
of the prediction window. This means that the algorithm will allocate e2’s
charging within range of the prediction window, as if te2 = 12. Car e2’s
allocation space is thus between t = 0 and t = 12.

3.3.2 Input

As input to our algorithm, we expect to receive the following:

• U t
H for all t in the the prediction window. All future U t

H will be
predicted. This will be further explained in section 3.4.1.

• Ctotal
e for all EVs e in the neighborhood connected to a charging pole.

• Cnow
e for all EVs e in the neighborhood connected to a charging pole.

• te for all EVs e in the neighborhood connected to a charging pole.
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• Lmax
e for all EVs e in the neighborhood connected to a charging pole.

3.3.3 Output

As the output of our algorithm, we expect to calculate the following values:

• Lt
e for all e in the neighborhood connected to a charging pole and all

t in the prediction window.

3.4 Integration in the current infrastructure

There are a couple of things still left unclear about how our algorithm would
integrate into the current infrastructure. The prediction of U t

H will be ex-
plained in section 3.4.1, and the data flow of our algorithm will be explained
in section 3.4.2.

3.4.1 Prediction of household electricity balance

As specified in section 3.3.2 and 3.4.2, we need to be able to predict the
usage of houses within a neighborhood. We can do this in two ways:

1. We can use the OSCP protocol already mentioned in section 2.2.

2. We can use data stored in Wijkie’s database to make our own predic-
tions.

The first option relies on an implementation of the OSCP protocol within
our algorithm. A DSO is able to predict the amount of capacity that is
available on a per cable basis for specific time intervals and transmit that
information to us via OSCP. An overview of this implementation is given in
figure 3.3.

A significant disadvantage of using the prediction of a DSO for our algorithm
is that the minimal time interval for these predictions is fifteen minutes.

The second option we have is to use data that Wijkie already has. Wijkie
collects data from the P1 port on smart electricity meters and stores this
data on their central server on a per-minute basis. With a large enough
data set of P1 data, Wijkie could be able to predict the electricity usage
per household. The implementation of this option would be similar to the
previous one, but would only require the database of P1 data that Wijkie
has stored. An overview of this implementation is given in figure 3.4.
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Figure 3.4: P1 Database implemented within the proposed algorithm

The prediction of electricity usage could be made with various methods, such
as with neural networks [21], state-space models [11], or just the average over
a couple of weeks.

The preferable way of predicting household electricity balance is by using
the Wijkie database. By using the data Wijkie already has, we can create
a more frequent (and maybe even more precise) prediction than a DSO can
provide us over OSCP.

3.4.2 Data flow

The algorithm we will be using needs a lot of data from different parties.
The car should, for example, provide the amount of power it needs to charge.
A specification of the data flow for our algorithm is given in figure 3.5. An
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explanation will be given below.

1. The car is connected to the charger and will send its total battery
capacity (Ctotal

e ), its current capacity (Cnow
e ), and its maximum load

(Lmax
e ) to the charge point.

2. The charge point collects the information sent by the car. It checks
whether its maximum load is lower than that of the car. If its maxi-
mum load is lower than that of the car, it will send its own maximum
load to the central server. Otherwise, it will forward the car’s max-
imum load to the server. The charge point also adds an expected
leaving time (te). The expected leaving time could be provided in
other ways, which is discussed in section 7.3.

3. The central server runs the algorithm we will describe in chapter 3.5
at regular intervals. It thus waits a couple of minutes before the al-
gorithm computation starts (A in figure 3.5). This time is used to
collect information about all (new) charging cars. Cars are expected
to send their status messages (1 in figure 3.5) regularly. Regular sta-
tus messages are necessary so that the algorithm knows which cars are
connected and which cars left their charging stations. After a regular
interval has passed, the central server will send the prediction window
to the prediction server (A∗tw, A intervals of tw time). The prediction
server is expected to calculate the energy usage prediction for all time
frames in the prediction window.

4. The prediction server returns a prediction for every time-frame t.

5. The central server runs the algorithm and tells all connected cars how
much power they should draw (Lt

e) for the next time frame.

3.5 Proposed valley-filling algorithm

The algorithm we will use for valley-filling will allocate energy loads to
specific time frames. These time frames can have any span but, for the
following example, we will assume they are tw = 1 hour each. At the start
of each time frame, we will loop over all EVs that have requested to receive
a charging plan and allocate charging accordingly by increasing loads that
are smallest. The maximum load for every EV e is set at Lmax

e . We will not
allocate more energy to EV e within a time frame t than Lmax

e , Lt
e ≤ Lmax

e .
The algorithm does the following. For each car e:

1. Split up Ccharge
e into pieces of minimum allocation unit. The AUmin

is defined as a constant of, for example, 1kWh.

2. For each AUmin, do the following:
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Figure 3.5: Data flow for our algorithm

(a) Search the time frame to with the lowest load on the network from
t = 1 until t = min(te, tw ∗A) and with the already allocated load
for EV e below Lmax

e . If there is more than one time frame to,
choose the earliest one.

(b) Reserve a minimum allocation unit on to.

Figure 3.6 displays an example.

As can be seen, the base household load is plotted. The algorithm will assign
charging loads to time frames for every vehicle e. Let’s say, for example,
vehicle e1 needs Ccharge

e1 = 4kWh and has an expected leave time of te1 =
3 hours. The load of 4kWh is then split up and divided over the first and
the second hour as these have the lowest loads in the allocation space of
e1. Vehicle e2 also wants to charge, it needs Ccharge

e2 = 8kWh and has an
expected leave time of te2 = 12 hours. The maximum load of this vehicle is
Lmax
e2 = 2kW (it can draw 2kWh per time frame). This means we have to

divide the energy that needs to be charged into at least four different time
frames because we can only charge 2kWh per time frame at maximum. We
can see that the energy is split up into the time frames 4, 5, 6, 11, and 12.
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Chapter 4

Simulation

This chapter will go in detail how the proposed algorithm will be designed
and implemented into a simulation that is used in chapter 5 to test whether
the goals in section 3.2 have been met. Section 4.1 will show the data used
for the simulation. The prediction of electricity load data will be discussed in
section 4.2. Specifications of the cars used in our simulation will be discussed
in section 4.3, and the settings used for the simulation will be discussed in
section 4.4.

4.1 Test data

The data that will be used for testing our algorithm in chapter 5 is electricity
usage and generation data of twelve households with a time interval of five
minutes. This household data will include several houses in Arnhem and
Ede. We have aggregated the data and will use the usage minus generation
in our simulation. A graphical example of the data can be found in figure
4.1.

As we can see, the average energy balance in figure 3.1 can be recognized
in this diagram. There are peaks in usage around the morning and evening.
Another thing that stands out is the valleys that reach negative values.
These valleys are caused by solar panels generating electricity.

4.2 Simulating the prediction of electricity loads

Section 3.3.2 and 3.4.1 showed us that we need a prediction of the energy
balance in the neighborhoods where our algorithm functions (U t

H). We will
be simulating these predictions when testing our algorithm. The predictor
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Figure 4.1: Test data

will do the prediction simulations. The predictor uses the test data discussed
in section 4.1. The predictor creates predictions by taking the original test
data and adding a random error, simulating real-life prediction performance.

Another feature built into the predictor of the simulation is one that allows
us to specify a smaller error for time steps that are close by and a larger error
for time steps further in the future. For example, if we make a prediction
of twelve hours, we can specify the error rate of the first time step and the
error rate of the last time step. The predictor will then linearly scale the
error rate between the other time steps so that it creates a prediction with
an ever-increasing error rate.

A prediction of twelve hours of the test data can be found in figure 4.2. The
prediction data was generated by allowing a minimum error of 500W and a
maximum error of 2kW.

We can see that the error, indicated by a black line, starts at 500W and
increases until it reaches 2kW at the last data point. The prediction also
starts close to the original test data, but increases in error rate for data
points further in the future.
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Figure 4.2: Prediction of 12 hours of electricity balance

4.3 Simulation of EVs

The simulation we will be running in chapter 5 will make use of a set of
randomly generated cars. For each of these randomly generated cars, a
cycle will be run each day. Each car will leave home and come back once
every day. We make a difference between commuting (these leave early
in the morning and come back in the afternoon) and non-commuting cars
(these leave early in the afternoon and come back a couple of hours later).
Commuting and non-commuting cars will have a different set of randomly
generated values, simulating the different characteristics of both types of
cars. A normal car cycle is graphically shown in figure 4.3.

The simulated cars will use a lot of randomly generated values to create a
real-life scenario. These randomly generated values are used for computing
the connection time, leaving time, and battery capacity left each trip. All
randomly generated values will have an upper and lower bound, as can be
seen in figure 4.3.

The generated cars all have the following properties:

1. The battery capacity of the car (Ctotal
e ).
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Figure 4.3: Cycle of a simulated car

The battery capacity of the car is randomly generated at the start of the sim-
ulation for each car. The upper and lower limits of the randomly generated
battery capacity are set at the start of the simulation.

2. Leaving time of the car each day (te).

The leaving time of a car is generated when it arrives at home each day.
The leaving time is a randomly generated value between a lower and upper
bound. These bounds are set at the start of the simulation.

3. Connection time of the car each day.

As with the leaving time, the connection time of a car is randomly generated
between a lower and upper bound. The connection time is generated when
a car leaves home.

4. Maximum load the car can charge per time step (Lmax
e ).

The maximum load that the car can charge per time step is set at the start
of the simulation.

5. Amount of battery the car drains each trip.

The amount of battery drained by the car each trip is generated at the start
of the simulation and set after each cycle. The amount of battery left is a
randomly generated value between a lower and upper bound. Both bounds
are set at the start of the simulation.
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4.4 Simulation settings

This section will describe the standard settings of the variables we will use
when evaluating our algorithm in chapter 5. The variables are set in the
following way:

• We will use electricity balance data from twelve households.

• We will generate four cars, three used for commuting and one used for
non-commuting purposes.

• All commuting cars will leave at a random time each day. This random
time has a lower bound of 06:00 and an upper bound of 09:00.

• All commuting cars will come home at a random time each day. This
random time has a lower bound of 16:00 and an upper bound of 19:00.

• All non-commuting cars will leave at a random time each day. This
random time has a lower bound of 11:00 and an upper bound of 12:00.

• All non-commuting cars will come home at a random time each day.
This random time has a lower bound of 13:00 and an upper bound of
16:00.

• All cars have a fixed total capacity of 75kWh, based on the Tesla
Model S specifications [7].

• All cars have a fixed maximum load. The maximum load is set at
11kW, based on the Tesla Model S specifications [7].

• All cars have a randomly generated capacity left each time they come
home. This capacity is fixed throughout the simulation. All commut-
ing cars have a randomly generated capacity between 50% and 90%
(these numbers are based on a study about commuting [25]). All non-
commuting cars have a randomly generated capacity between 70% and
90%.

• The simulation has a fixed prediction window. The prediction window
is set at 12 hours.

• The simulation has a fixed minimum allocation unit. This minimum
allocation unit is set at 250Wh.

• The simulation has a fixed error for the predictions made by the pre-
dictor (see section 4.2), this error is set at 500W for the first time step
and 2kW for the last time step (based on the error rates in a paper by
Sandels et al. [23]).

Some tests in chapter 5 will use other variable settings than the ones de-
scribed above. Whenever this is the case, it is explicitly stated in the section
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that uses other variable settings.
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Chapter 5

Evaluation of proposed
algorithm

This chapter will go into detail about the performance of our proposed
algorithm within the created simulation. We will first show some general
test results and compare uncontrolled charging with controlled charging data
in section 5.1. In section 5.2 we will evaluate the goals set in section 3.2 and
see how our algorithm performs.

5.1 Test results

We will first show how the electricity grid balance varies over time when
not using an algorithm to control EV charging. The EVs just start charging
at their maximum when they are connected to the grid. We will compute
results over six days of data. The results can be seen in figure 5.1.

We can see that the peak load on the electricity grid reaches 40kW easily
on multiple days. The overall maximum is 45 576W. The maximum is as
expected as the chargers of our cars are 11kW each and we have three cars
charging at night. The extra load generated by the EVs more than doubles
the electricity load on all days.

We will now run our algorithm to see its effect on the peak load. Figure 5.2
shows the result of one standard run while using our algorithm to optimize
charging and figure 5.3 shows a comparison between optimized and non-
optimized charging from figure 5.1 and figure 5.2.

We can see that the peak load on the electricity grid does not exceed the
19 308W maximum our test data also had. Electricity drawn from the grid is
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Figure 5.1: Standard simulation run with non-optimized charging

spread over the time the cars are connected to their chargers. Most charging
happens at night, after the peak electricity load of the previous day.

5.2 Evaluation of goals

We have seen that our algorithm succeeds in lowering the peak load on the
electricity grid with the specified testing scenario. This section will evaluate
our algorithm based on the goals set in section 3.2 and will test our algorithm
with some other scenarios.

5.2.1 Goal 1

The EVs should be charged fully when the (expected) departure time of the
EV approaches.

During the run of the tests below, all EVs were charged entirely when their
expected leaving times approached. This was our expectation as our algo-
rithm prefers to charge cars when demand is low, but it does not enforce it.
When there are no available time frames in which demand is low, cars will
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Figure 5.2: Standard simulation run with optimized charging

just charge in time frames where demand is higher. When charging a car is
possible, keeping in mind the car’s constraints (such as the maximum load
of the charger, the connection, and leaving times of the car), our algorithm
will charge it before the leaving time approaches. Goal one is thus satisfied.

5.2.2 Goal 2

The system should decrease the peak load on the electricity grid created by
simultaneously charging multiple EVs.

When looking at figure 5.3, we can easily see that the peak load on the
electricity grid is decreased. In table 5.1 we can see that the peak load on
the electricity grid is always less than half of that when using non-optimized
charging. Our algorithm almost always has a maximum of 19 308W, where
the non-optimized charging maximum is around 47kW. Our algorithm has
a maximum of 19 308W because the maximum peak in the test data is
also 19 308W and our algorithm tries not to increase the already existing
maximum peak. In comparison with the non-optimized charging algorithm,
our algorithm performs very well.

When increasing the number of commuting cars, we can see that there is a
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Figure 5.3: Optimized and non-optimized charging

maximum amount of cars before our algorithm starts to allocate spots above
the maximum value of 19.308W in the data. The results of this test can be
seen in table 5.2.

We can see that, when using our algorithm, the peak load on the electricity
grid increases after four cars. The increase in peak load means that our
algorithm can not divide the total load of all cars over the available time
while staying below the already existing maximum peak in the test data.
When not using an algorithm to divide load over the amount of time, the
peak load on the electricity grid gets as high as four times the maximum
in the test data (with seven cars), which again highlights the importance of
regulating EV charging as with only seven cars per twelve households, the
peak load becomes four times higher than it is now.

5.2.3 Goal 3

The EVs should be charged relatively fast until hitting 80% battery capacity.

We will measure the time it takes from plugging in an EV until the battery
is at least 80% charged for all commuting vehicles (the vehicles that need to
charge during the night). The results of this test can be seen in table 5.3.
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Run Optimized charging Non-optimized charging

1 19 308W 45 576W

2 20 640W 50 640W

3 19 308W 49 080W

4 19 308W 45 516W

5 20 868W 50 328W

Table 5.1: Peak load on the electricity grid in normal testing scenario

Commuting cars Optimized charging Non-optimized charging

1 19 308W 25 688W

2 19 308W 36 688W

3 19 308W 47 688W

4 19 308W 56 576W

5 20 280W 67 576W

6 23 688W 77 280W

7 24 636W 88 280W

Table 5.2: Peak load on the electricity grid, varying the amount of commut-
ing cars

For our proposed algorithm, the minimum time until a battery is charged
to at least 80% is seven hours. If someone is to park their car at home at
18:00, the car is, on average, considered usable at 01:00 the next morning.
Such long charging times are acceptable but not desirable as most cars are
parked between ten and fifteen hours each night and will thus be charg-
ing a long time during these hours. As a comparison, when charging at
maximum speeds, the average time to charge to 80% battery is around one
hour. The proposed algorithm is thus much slower at charging the cars than
uncontrolled charging as expected.

We can tweak our algorithm a bit to change the charging times of the cars.
An option we have is to make the prediction window smaller. Making the
prediction window smaller will force cars to charge faster as the allocation
window of the cars decrease. Shrinking the prediction window also highers
the chances of cars using energy at times when it is not the most optimal.
The results of this test are displayed in figures 5.4 and 5.5.

We can see in figure 5.4 that the charging times of the cars start to flatten
after eleven hours. We could explain this by looking at the average time the
cars are parked, which is around ten to fifteen hours. When the prediction
window is larger than the time a car is parked, the prediction window will
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Run Optimized charging (hours) Non-optimized charging (hours)

1 6,79 1,08

2 8,30 1,69

3 7,66 1,19

4 6,83 0,92

5 7,97 1,58

Table 5.3: Time to charge until 80% battery capacity in normal testing
scenario

Figure 5.4: Time to charge until 80% battery capacity with variable amount
of commuting cars

be adjusted to the time the car is parked, which would result in the charging
times flattening, as in figure 5.4.

Another thing to notice in figure 5.4 is that the time to charge one car
is different than for the other amount of cars. With only one car, charging
times are a lot higher. The higher charging times are probably caused by the
nature of our test data and our algorithm: with one car, we do not need to
allocate much load in the test data, which results in the load being allocated
in the lowest time frames in the test data. As we have seen, the electricity
usage overall decreases during the night (after the peak load), which causes
our algorithm to allocate much load at the end of the allocation window,
making the time it takes to charge the car longer. When testing with two
cars, the total load of both cars more than fills the valley after the peak
load, which causes the algorithm to allocate load in time frames that are
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Figure 5.5: Maximum load on the electricity grid with variable amount of
commuting cars

earlier in the test data, resulting in shorter charge times.

The last thing to note is that there is a balance between the time it takes
to charge the cars (in figure 5.4) and the maximum load on the electricity
grid (in figure 5.5). Increasing the prediction window causes a more optimal
use of the available prediction data, decreasing the maximum electricity
demand, but it also causes the charging times of the cars to get higher.

5.2.4 Goal 4

The system should prefer using green energy generated nearby when avail-
able.

To evaluate this goal, we first have to count how much green energy is
available within the test data to later see how much of the available green
energy gets used by our algorithm. We define the term green energy within
our test data to be all negative energy balances, indicating a surplus of
green energy. The total amount of available green energy in our test data
is 11 060Wh. We ran a test with both our algorithm and non-optimized
charging and counted the amount of green energy that was used. Results of
the test can be seen in table 5.4.

The table shows us that the amount of green energy used by our algorithm
is higher than non-optimized charging but is still rather low, only using 33%
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Run Optimized charging Non-optimized charging

1 1 639Wh 0Wh

2 2 272Wh 0Wh

3 3 056Wh 0Wh

4 2 829Wh 0Wh

5 3 700Wh 1 304Wh

Table 5.4: Used green energy in normal testing scenario

of the available green energy in run three. To explain this, we take a look
at figure 5.2 to see where the electricity balance in our data is negative
(meaning more electricity is generated than is used). We can see that, most
of the time, the electricity balance with EV chargers follows the baseline
when more energy is generated than is used. This might be because the
negative valleys (valleys below the x-axis) in our data caused by energy
generation are before 12:00. As we may remember from section 4.4, there
are no cars that start charging shortly before 12:00, causing many cars to
be already full or not connected before the negative valleys in the test data.
We predict that if some cars are connected before the negative valleys in
the data, the algorithm prefers to charge these cars with the green energy
available. To test our prediction, we simulated with three cars, all connecting
shortly before or after the negative valleys in the data started. The results
are shown in table 5.5.

Run Optimized charging Non-optimized charging

1 9 772Wh 9 140Wh

2 10 115Wh 9 722Wh

3 9 343Wh 9 167Wh

4 9 530Wh 9 363Wh

5 9 201Wh 9 163Wh

Table 5.5: Used green energy with cars connecting before valleys

We can see that the algorithm chooses to charge the cars with green energy
in this particular scenario. This is a more than three times improvement
in comparison with the runs in table 5.4. Also, the non-optimized runs
are vastly improved. We may thus conclude that the connection times of
cars maybe matter more than how our algorithm works. In both cases, the
connection times matter very much.

The above conclusion might not be what we expected because our algorithm
seeks the most optimal times to charge. However, due to the nature of our
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testing data, not much solar energy is available to test our algorithm. For
example, if our data would have longer negative valleys, we would expect
to see that our algorithm would choose to charge the cars during the entire
time of the valley. A run without our algorithm would just charge fast at
the beginning of the valley until the car is full. The data we used has too
short valleys to prove our claim. The peak caused by normal charging is as
big or bigger than the length of the valleys in the data, causing the gap in
this test to be very small. More on this will be discussed in section 7.4.

The last test we ran considered the amount of green energy used when
changing the prediction window, just as in goal three. We hypothesize that
the amount of green energy used for charging increases when the prediction
window of the algorithm gets larger. The algorithm can then see negative
valleys that might lie further in the future and allocate car charging to these
valleys. The results of the test are shown in table 5.6.

Prediction window (hours) Green energy usage

1 0Wh

2 0Wh

3 0Wh

4 73Wh

5 255Wh

6 403Wh

7 988Wh

8 1 567Wh

9 1 759Wh

10 1 759Wh

11 1 759Wh

12 1 759Wh

Table 5.6: Amount of green energy used in the normal testing scenario with
a variable prediction window

As expected, we see that the amount of green energy used by our algorithm
increases when the prediction window gets larger.

We have seen that our algorithm uses more green energy than uncontrolled
charging and thus achieves goal four. However, in the second test of this
section, the results show that connection times of EVs matter a lot in the
usage of green energy. We might argue that this is due to the nature of our
testing data (not a lot of solar power is generated in the autumn). It would
be nice if more testing were done with data from the summer because of the
higher amounts of generated solar energy in the summer.
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5.2.5 Summary

There are a couple of things we can conclude from the tests ran above:

• When making the prediction window bigger, the time it takes the cars
to charge until they are 80% full increases.

• When making the prediction window bigger, the amount of green en-
ergy used increases.

• When making the prediction window bigger, the peak load on the
electricity grid decreases.

The problem with the goals is that compliance to all of them is hard as with
only four cars and a prediction window of twelve hours, the peak load is
already increased. There is thus no option in which we choose a prediction
window that complies with all the goals. We need to make a trade-off
between our goals to decide the best possible prediction window.

We can not choose a universal setting for the prediction window in the
algorithm as the baseload, amount of cars and the amount of generated
green energy in a neighborhood all highly influence the above conclusions.
For example, when more energy is generated it might be a better choice to
higher the average charging time of the EVs a bit and to use more green
energy. The optimal prediction window also highly depends on the amount
of commuting and non-commuting vehicles in a neighborhood and when
these vehicles are used. If cars connect long before green energy is produced,
a lower prediction window might cause cars to not charge in times where
green energy is available, but when cars tend to connect shortly before green
energy is produced, cars could benefit from a shorter prediction window.

To what length the prediction window needs to be set should thus be de-
cided on a per neighborhood basis. We might be able to distinguish patterns
between the amount of EVs in a neighborhood, solar panels in a neighbor-
hood, and the optimal prediction window, but in order to recognize these
patterns, further testing is necessary.
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Chapter 6

Related Work

The impact of EV charging is thoroughly described by Gómez et al. [9]
and Clement-Nyns et al. [3]. Clement-Nyns et al. also describe a method
of balancing the grid impact by using quadratic programming. The main
distinction can be made by papers that use quadratic programming methods
to smartly charge EVs and other methods to charge EVs smartly. Some
authors that use other methods for smartly charging EVs are Mets et al.
[17], Sortomme et al. [24] and van Dael et al. [27].

A lot of papers use the same methods as we do [3][17][27]. These methods
assume that we know the leaving times of the EVs, know a prediction of the
household load, and can control cars as we do.

Mets et al. propose two methods for optimized EV charging in their paper.
A local method that only optimizes the load of one household and a global
method that optimizes the load of a residential area. Vandael et al. [27]
propose a different method of decentralized EV management in which they
use low and high voltage transformer regulators to achieve an optimal load.

Another method of optimal charging is deciding whether to charge an EV
based on current electricity pricing (price-signaled charging). An example of
such an algorithm has been proposed by Markel et al. [15]. Charge optimiza-
tion based on electricity pricing is most of the time not that different from
regular load-based optimization as the electricity price is often influenced
by the load on the electricity grid.

A different type of EV charging algorithm uses vehicle to grid (V2G) ca-
pabilities to regulate the load on the electricity grid by not only smartly
charging EVs but also smartly discharging them [13]. Such an algorithm
can be found in a paper by Mets et al. [16].

Vehicle to grid services can put extra load on EV batteries and can cause
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those batteries to fail earlier than expected. An evaluation of EV batteries
and vehicle to grid services can be found in papers by Bishop et al. [2] and
Lunz et al. [14].

Another thing that stands out from the literature is the fact that many
papers use PHEVs (plug-in hybrid electric vehicles) instead of EVs [17][8].
This might be because PHEVs were more common than EVs when these
papers were created. An advantage of using PHEVs is that the usability
aspect we evaluated in this paper is much less relevant because when owners
need their PHEV unexpectedly, they could always use the non-electric fuel
source in their PHEV.

39



Chapter 7

Future work

This chapter will go over topics that were not discussed in this paper but
have come up during the making of it. We will discuss the possible imple-
mentation of bidirectional charging in section 7.1. Privacy issues of storing
electricity usage data are discussed in section 7.2. Possible means of how
to capture the needed data for our algorithm is discussed in section 7.3.
Section 7.4 will elaborate upon the test data we used and the test data used
by other similar research. Section 7.5 will propose some improvements to
our algorithm.

7.1 Bidirectional charging

At the beginning of this paper, we noted that bidirectional charging is in
development and has the potential of being able to reduce the load on the
power grid even more than algorithms that only use unidirectional charg-
ing. Normally, when electricity demand is high, electricity production plants
scale up their production so that more energy is provided to the electricity
grid. With bidirectional charging, this might not be needed as much because
EVs can discharge on-demand. When demand for electricity is high, EVs
within a neighborhood can start discharging to provide the neighborhood
with more electricity. The discharged EVs would be able to recharge their
batteries when demand is low again. As an example, a method for using
bidirectional charging to achieve peak-shaving is proposed in a paper by
Wang et al. [29].
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7.2 Privacy impact of fine-grained P1 data

As we have stated in the previous chapters, for our algorithm to work,
we need an aggregated set of electricity usage and generation data from
neighborhoods. The data can be collected from smart meters, just as Wijkie
does for their algorithm. However, it can be argued that the processing of
consumer electricity data is privacy sensitive. This is also confirmed by
Cuijpers et al. [4] in a paper about the enrollment of Dutch smart electricity
meters. It was confirmed that the enrollment of smart electricity meters
that send usage data to CPO’s violated the Dutch Data Protection Act
(Wet bescherming persoonsgegevens) and article 8 of the ECHR (European
Convention for the Protection of Human Rights and Fundamental Freedoms)
because electricity usage data was considered to be personal data. Electricity
usage data could be used to derive information about lifestyle, presence or
absence and the number of people in a house and is thus considered personal
data. Companies processing electricity usage data should thus also have to
comply with the GDPR.

Moreover, there might be ways in which electricity usage data could be seen
as sensitive personal data, causing companies that process this data to make
a privacy impact assessment (or PIA for short). Two examples are explained
below.

According to a report on smart electricity meter data from the US Congres-
sional Research Service [18], there are two major privacy impacts associated
with smart electricity meter data, one of which can be applied to the way
we use the electricity data. The paper states that electricity usage data
of a house can be used to determine a couple of things about the people
living in that house, such as what electrical appliances they have and their
daily schedule. Even anonymous data can sometimes be traced back to an
individual or a household by using publicly available information [18]. Ac-
cording to the report, electricity usage data could also be used to predict
what kind of medical devices a household uses, linking electricity data to the
physical health of a resident. Data that could be used to identify the mental
or physical health of a person is considered sensitive personal data under the
GDPR. If a company processes sensitive personal data, it is obliged to make
a PIA and access the privacy risks that could occur when some of their data
is stolen.

Another example of how electricity usage data can be used to derive other
facts about a person has to do with religion. Orthodox Jews are not allowed
to operate electrical devices on Shabbat (day of rest, Saturday) [10]. How-
ever, they are allowed to preset their electrical devices before Shabbat so
that they do have lights turned on during Shabbat. This might be reflected
in their electricity usage data, meaning that the electricity usage data could
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be used to derive that a household has Jewish residents. Religion is also
considered sensitive personal data under the GDPR and has the same effect
as mental or physical health data. A company processing data that could
be linked to religion is thus also obliged to make a PIA under the GDPR.

Though the examples above may be considered extreme, they might become
an issue in the future. Advice to companies (including Wijkie) that are using
energy usage data is thus to at least perform a PIA to meet the demands
stated in the GDPR.

7.3 Data gathering from EVs

In section 3.3.2 we specified the input data for our algorithm. The input
data for our algorithm included a lot of data that had to be gathered from
the EVs. To recap, the data gathered from the EVs is the following:

• Ctotal
e for all EVs e in the neighborhood connected to a charging pole,

being the total capacity of a car.

• Cnow
e for all EVs e in the neighborhood connected to a charging pole,

being the current capacity of a car.

• te for all EVs e in the neighborhood connected to a charging pole,
being the leaving time of EV e.

• Lmax
e for all EVs e in the neighborhood connected to a charging pole,

being the maximum load of the charger and the car.

In order to get this information to Wijkie’s servers, we need a protocol that
supports transferring this information from the charge points and electric
vehicles. Protocols that look promising for supplying Ctotal

e , Cnow
e and Lmax

e

are Mode 3 and OCPP. OCPP can even be expanded in functionality to
comply by the using party’s requirements. Mode 3 could be used to provide
communication between EV and charge point (see the example in figure
7.11).

Furthermore, a choice has to be made on how to get data about the leav-
ing times of EVs (te). Wijkie could, for example, decide to expand their
smartphone application in order to give the ability to their users to set leav-
ing times or schedules for their EV usage. Another opportunity lies in the
prediction of te as users might not like entering their leaving times within
an app every day. Smartphones already do something similar predicting
when they will be needed and changing their charging habits based on that
prediction [1].

1Figure 7.1 displays Wijkie as CPO.
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Figure 7.1: Proposed usage of protocols

A combination could be made where Wijkie’s app predicts leaving times of
the EVs, but these leaving times can be overwritten by the users (displayed
in figure 7.1). More research is needed for deciding which methods to use
to gain the required information.

7.4 Test data

A lot of studies about smart EV charging use synthetic load profiles for
testing purposes [3][17][24][27]. Synthetic load profiles are made by elec-
tricity suppliers to predict the energy usage on specific time frames. These
load profiles are an average over the consumer base of an electricity sup-
plier. Electricity suppliers adjust their electricity production based on these
predictions. The usage of synthetic load profiles has advantages and dis-
advantages. It mainly depends on how many houses the electricity usage
data should include. When using entire cities, synthetic load profiles are
probably a good estimation of the total electricity usage. When simulating
the usage of only a couple of households, synthetic load profiles might not
be accurate enough.
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During the making of this paper, we used aggregated data from Wijkie be-
cause real electricity usage data with a short time interval was not easy
to find. The topic of smart EV charging needs a lot more research in the
upcoming years. Real electricity usage data is needed to make more ac-
curate tests for the developed algorithms. Electricity providers and other
parties should provide aggregated electricity usage data to be used for the
development of EV charging algorithms.

Because we did not have a lot of test data available, we were only able to
test our algorithm based on electricity data from a week in November. As
we already stated in section 5.2.4, testing our algorithm with data from
different seasons might bring new insights on how our algorithm performs.

7.5 Algorithm improvements

Our proposed algorithm might be improved in future research. We listed a
couple of points we think our algorithm could profit from.

7.5.1 Removing the minimum allocation unit

We used a minimum allocation unit (AUmin) to allocate charging blocks
for the EVs. We might be able to define our algorithm without using the
minimum allocation unit by using the differences between the minimal time
frames. Figure 7.2 displays an example.

Instead of using the minimum allocation unit for allocating fixed chunks of
charging spots, we allocate charging spots based on the minimal and next
after minimal time frame (1 in figure 7.2). This repeats itself until the car
is completely allocated (2 in figure 7.2). Not using the minimum allocation
unit might let our algorithm allocate EV charging more smoothly.

7.5.2 Better fast charging

Another improvement for our algorithm might be implementing a way to
influence partial car charging. We have shown that by making the prediction
window smaller, cars are charged faster, but this was an indirect consequence
of the smaller prediction window. With this method, we are not able to
guarantee that cars are always 80% charged x hours after they are plugged
in. A possible way to guarantee that cars are charged earlier is to change the
way they charge, using another charging strategy for the first 80%. Smartly
doing this might help with decreasing the charging times and will set a
guarantee that cars are partially charged at a specific moment in time.
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Figure 7.2: Proposed algorithm improvement for removing the minimum
allocation unit

7.5.3 Predicting the connection time of EVs

Our algorithm might also benefit from a prediction of the connection time of
EVs. Knowing beforehand when and how many EVs will be connecting to
the power grid could result in our algorithm scheduling EV charging more
optimally.

7.5.4 Changing the allocation order

The last proposed improvement is a clever trick that might improve the
algorithm and lower the maximum peak. When allocating charging for a
vehicle and two time frames have the same minimal load, it will always
prefer the earliest time frame for charging. An example is displayed in
figure 7.3.

In the left graph, car e2 gets allocated first. Like all cars, it prefers to fill
the earliest time frame if there is more than one minimal time frame. Car
e2 thus prefers time frames one and two over three and four. After car e2’s
allocation, car e1 gets allocated but has a smaller allocation space and can
thus only allocate in time frames one and two. It does so on top of the
already made allocation by vehicle e2 resulting in a higher peak demand
than in the right graph.
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Figure 7.3: Proposed algorithm improvement for optimizing the allocation
order

The right figure displays the allocation the other way around. Car e1 gets
allocated first and allocates itself in time frames one and two. Car e2 will
now allocate in time frames three and four because these time frames are
now minimal. The result is a lower maximum peak than in the left graph.

Allocating the most restricted vehicle first (the vehicle with the smallest
allocation window) might result in lower maximum peaks and more clever
allocation, as seen in the example. Our algorithm used an arbitrary order
in which to allocate EV charging. Sorting the EVs before allocation might
help achieve lower peak loads.
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Chapter 8

Conclusions

Smart charging of electric vehicles is a complex topic. We have seen that
the current household electricity usage is far less than what EV chargers are
predicted to use. With the rising number of electric vehicles, the working of
the current electricity grid has to change in order to prevent it from becoming
overloaded. To this end, many organizations are experimenting with ways
to implement smart car chargers in the current infrastructure. Protocols like
OSCP and OCPP will be much needed in the future to facilitate a smarter
charging infrastructure.

We have shown that an algorithm based on usage prediction can help to lower
the peak load on the electricity grid. Our algorithm was tested by using the
four goals explained in section 3.2. We have shown that the algorithm is
capable of allocating the total load of the EVs in times where demand is
lowest. We have also shown that, when using our algorithm, the peak load
on the electricity grid is much lower compared to uncontrolled charging.

We also experimented with the usage of green energy by our algorithm and
some problems were encountered with the nature of our test data. We
manipulated the connection time of some of the vehicles to show the effect
it had on green energy usage. More research with different electricity usage
data will be needed to show that implementing our algorithm leads to an
increased usage of locally produced green energy. We only tested with data
in one season (namely a week in November). It would be best to test our
algorithm with data from different seasons, as electricity usage tends to
vary between seasons. For example, electricity generation from solar panels
is much higher in the summer.

Our algorithm was initially configured to use a prediction window of twelve
hours (see section 3.3.1 for an explanation of the prediction window and
allocation space). The algorithm could thus maximally use twelve hours of
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prediction data for allocating EV charging. We saw that this setting caused
the charging of the EVs to happen at the end of their allocation windows
(because the load was lowest there). This caused charging times of the
EVs to be rather long. After changing the prediction window, we saw that
the charging times of the EVs became shorter. A downside was that the
maximum peak increased and green energy usage decreased. We thus need
to make a trade-off between charging times, maximum load, and that green
energy usage.

The trade-off we must make should be made on a per neighborhood basis
as the following influence the peak load and green energy usage:

• The number of EVs within a neighborhood: more EVs means more
load, which means the peak load could be potentially lowered by mak-
ing the prediction window longer.

• The usage patterns of EVs within a neighborhood: when a lot of EVs
connect long before the production of green energy, the neighborhood
could benefit from a longer prediction window, but when EVs connect
short before the production of green energy, other EVs could benefit
from a shorter prediction window.

All with all, choosing the right prediction window should be done after
more testing. Maybe a pattern could be distinguished based on the points
made above, or the prediction window could be changed while running the
algorithm. However, more testing is necessary for evaluating and fine-tuning
our algorithm.
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