
Bachelor thesis
Computing Science

Radboud University

Routing Algorithms for
Autonomous Agricultural Vehicles

Author:
Laura Philipse
s4528751

First supervisor/assessor:
dr. Nils Jansen

N.Jansen@cs.ru.nl

Second supervisor:
Johan Kleuskens

johank@phact.nl

Second assessor:
prof. dr. Frits Vaandrager
f.vaandrager@cs.ru.nl

January 22, 2020

Abstract

We investigate a routing problem for autonomous agricultural vehicles. Such
vehicles operate on farmer fields where work needs to be done on tracks and
these tracks need to connected efficiently. We represent the field as a graph
and describe this problem as the Rural Postman Problem (RPP), where
a certain subset of edges is marked as required and the goal is to make
a route with all the required edges. We implement a Monte Carlo based
algorithm for the RPP and compare it to a naive solution, where every
track is just connected to the track next to it. This algorithm turns out
to be an improvement, although we find different values for the parameters
than the original paper.

Contents

1 Introduction 2

2 Research 4
2.1 The problem . 4
2.2 The algorithm . 6
2.3 Results . 9
2.4 Discussion . 13

3 Related Work 14

4 Conclusions 18

A Appendix 21

1

Chapter 1

Introduction

A lot of research has been done into coverage path planning algorithms for
autonomous robots with tasks such as lawn mowing or vacuum cleaning
[3, 9]. For agricultural vehicles, most research has been about optimally
positioning the tracks [15]. Our case however, is different. The company
Phact [2] is currently working on developing software for an autonomous
agricultural vehicle and they are looking for a way to efficiently connect the
tracks that the vehicle needs to do work on. This is more complicated than
it seems, as these vehicles typically cannot make narrow turns, so simply
connecting the nearest tracks might not be efficient. As the fields are often
very big, every improvement in the route can save the vehicle a lot of time
and fuel.

We decided to represent the field as a graph and use a solution for the
so-called Rural Postman Problem, a graph routing problem where a certain
set of edges is marked as required and the goal is to find a route that contains
all the required edges. In this case, the tracks are the required edges, while
all the possible turns between the tracks are edges that are not required.

2

(a) The naive route for field 1,
with length 8648.295

(b) The found route for field 1,
with length 7911.374

Figure 1.1: Example routes for field 1

We implemented a Monte Carlo based algorithm by Fernández de Córdoba
et al. [6] for the Rural Postman Problem. We compared this algorithm to a
naive solution, where every track is just connected to the one next to it. As
it turns out, the length of the route found by the algorithm in Figure 1.1b
is indeed shorter than the length of the naive route in Figure 1.1a.

3

Chapter 2

Research

2.1 The problem

We want to solve a routing problem on farmer fields for autonomous agri-
cultural vehicles. The farming fields have lines where the crops need to be.
We call these lines tracks. We already have these tracks, but they need to
connected into one route for the autonomous agricultural vehicle to follow.
This vehicle has a big turning radius, so just connecting every track to the
track next to it is probably not that efficient.

Our problem can be defined as a graph by attaching a node to the end
of each track and then connect the nodes at the same side of the field to
each other with turns. The weight of each edge is the distance between
the nodes. For the turns, the distance is calculated using Dubins, which is
an algorithm that calculates a path between two points while taking into
account the orientation and turning radius of the vehicle. It can be debated
how useful it is to connect all the nodes at the same side with each other.
It could be the case that only the nearest ones need to be connected.

A field can be defined as a undirected graph G = (V,E) where all the
vertices v ∈ V are the ends of the each line on the field. The edges e ∈ E
consist of the given lines and the turns between the vertices on the same
side of the field. The weight of all e ∈ E is defined as the distance.

Over the years, researchers have defined lots of different routing problems,
such as the Traveling Salesman Problem [7] and the Chinese Postman Prob-
lem [7]. As we defined our problem as a graph, we could use solutions to
existing routing problems to solve it. We have found two problems that
could be useful in this case.

First, the Traveling Salesman Problem (TSP). The TSP aims to find a path

4

(a) A not valid solution that does contain
all nodes

(b) The field with extra poins in the mid-
dle

Figure 2.1: Some examples

where each node is visited exactly once and then returns to the start node.
This could be applicable to our problem, but we need to make sure that each
track is visited instead of just using the turns to visit every point, because
just visiting every point can result in invalid solutions. An example of a
route that contains all nodes, but not all tracks can be seen in Figure 2.1a.
This can be done by giving the tracks a weight of zero or even negative,
which makes it more likely the algorithm will use that edge. Another option
is to add an extra node in the middle of each track, as seen in Figure 2.1b,
as that makes sure that a route can only visit all points if it uses all tracks.
Seyyedhasani et al. [17] used this strategy to solve the vehicle routing prob-
lem with multiple vehicles.

Secondly, the Rural Postman Problem (RPP). The RPP is a variant of the
Chinese Postman Problem (CPP). The CPP aims to find a route where the
start and end point is the same and each edge is traveled at least once. The
RPP aims to visit a certain subset of edges at least once. We could use
this to make the tracks required while the turns are not, but the problem is
that we want to make sure that the tracks are traveled exactly once, while
with the RPP, required edges are visited at least once. To solve this, we
could give tracks a relatively high weight to make sure they are used only
once. Another option is to make sure that all nodes are in the found solution
exactly once.

An overview of some papers that solve these problems can be found in the
Related Works section.

5

2.2 The algorithm

Figure 2.2: The example field

We decided to implement this problem and the Monte Carlo based algo-
rithm described in Fernández de Córdoba et al. [6], which is a randomized
algorithm based on probabilistic choices, in Python. A field consists of edge
points and lines. The field edge points consist of x and y coordinates in a
list. For the example field in Figure 2.2, the field edge points look like this:
[[0,0], [0,9], [5,9], [5,0], [0,0]]. The lines consist of two points,
with both x and y coordinates. The lines of the example field are:
[[[1,6], [1,3]], [[2,6], [2,3]], [[3,6], [3,3]], [[4,6], [4,3]]]

The field coordinates are just used for drawing the outline of the field and
are not considered in planning the route. For both the field and lines, we
converted these structures in a list with the x coordinates and a list with the
y coordinates to make them easier to plot. Then we calculated a distance
matrix, where the distances between each of the points were stored. If a
point is not reachable, the distance is noted as inf. For the turns, we used
a python package called Dubins [1] to calculate the distance. For this, we
need to know the turning radius of the vehicle. We also save the turns in a
separate matrix to be able to plot them later.
The distance matrix for our example field would look like this:

[[0, 3.0, 6.0325, inf, 3.1416, inf, 4.1416, inf],

[3.0, 0, inf, 6.0325, inf, 3.1416, inf, 4.1416],

[6.0326, inf, 0, 3.0, 6.0325, inf, 3.1416, inf],

[inf, 6.0325, 3.0, 0, inf, 6.0325, inf, 3.1416],

[3.1416, inf, 6.0325, inf, 0, 3.0, 6.0325, inf],

[inf, 3.1416, inf, 6.0325, 3.0, 0, inf, 6.0325],

6

[4.1416, inf, 3.1416, inf, 6.0325, inf, 0, 3.0],

[inf, 4.1416, inf, 3.1416, inf, 6.0325, 3.0, 0]]

A possible route is represented as a list of integers, where each integer refers
to a point from the field. We also define a function that can calculate the
length of a solution and a function that checks if the required edges are in
a solution. Then we defined a function to plot the outline of a field and the
points and a function to plot the outline of a field and a solution. We also
defined a naive route to use as a baseline. The naive route for the example
graph in Figure 2.2 is in Figure 2.3.

Figure 2.3: The naive route for the example field

The algorithm has a few parameters: it has the number of nodes, the dis-
tance matrix, the value of α, the number of iterations and the value of x.
The α is part of the formula used to calculate the probability as presented
in the paper. The x, however, only exists because of the way we chose to
implement this. Every iteration, the algorithm generates a route by adding
nodes to a list until the list contains all nodes. It starts by adding a random
node, then if the required edge attached to the last node of the route isn’t in
the route yet, it will select that as the edge to take and adds the node at the
other end of the edge to the list. If that edge is already in the route, it selects
all nodes that are reachable from the last node in the route and aren’t in
the route yet, and randomly chooses one of them based on the probability.
We chose to implement this by making a list with all the options, where the
more often the item is in that list, the more likely it is that that item will
be chosen. This process repeats until the route contains as many nodes as
the number of nodes. Then it checks if the route is a valid route and if the
route is shorter than the one found in previous iterations. If so, it replaces
the shortest route with the one found. After went through the number of

7

iterations, it returns the shortest route.

de f paper41 (nrofnodes , d i s tance , α , i t e r a t i o n s , x) :
shortes tRoute = []
s h o r t e s tD i s t = ∞
for every i t e r a t i o n :

route = []
add a random node to route
for every node i :

i f the r equ i r ed edge i s not in the route yet :
add the other node attached to that edge to

route
else :

opt i ons = []
for every node j :

i f the d i s t anc e from node i to node j i s not
∞ and node j i s not in route :
add node j to opt ions

t o t a l = 0
for every opt ion k :

c a l c u l a t e the p r obab i l i t y o f t h i s edge with
p = 1

(distance[route[i]][k])α

add p to the t o t a l
for every opt ion k :

c a l c u l a t e how many times k should be in the
l i s t with p

total
∗ x

add k that many times to opt ions

choose a random opt ion based on the p r obab i l i t y
from the opt ions l i s t and add i t to the route

i f the route conta in s a l l nodes :
i f the route i s a va l i d route :

i f the l ength o f the route < the l ength o f the
s h o r t e s t route :
s e t t h i s route as the s h o r t e s t route

return the s h o r t e s t route

For our example field, the length of the naive route is 30.0976 while the
length of the route from the Monte Carlo based algorithm described in
Fernández de Córdoba et al. [6] is 22.4248. This is an improvement of
25.4931%.

8

Figure 2.4: The algorithm applied to the example field

2.3 Results

We test this algorithm on three fields as seen in Figure 2.5. These fields are
actual fields that are used by Phact to test their software. Field one is a
relatively square field, just as field two. Field three is a more complex field.
The naive route for field three, as seen in Figure 2.5d, is very long, so for
field three we will often find bigger improvements than for the other fields.
Fields are special cases of graphs, as every node is connected to exactly one
required edge. Because of this, the algorithm may behave differently than
as described in the paper. For example, the paper assumes that it needs to
be possible to visit nodes multiple times, but in our case the algorithm can
always visit all the required edges without doing so. The paper also gives
some simplification routines to optimize routes that contain some edges more
than once, but this also does not happen in our case, so there is no need to
use the simplification routines.

The paper tried several values between 1 and 20 for α and found that around
4 the results were the best, and they used 1000 for the number of iterations.
Because we already saw that we have a special case, it might be better to
use different values. We also need to find out the influence of our newly
introduced parameter x. We ran all tests on a 64-bit laptop with 4 GB
RAM and an Intel Core i5-2520M CPU at 2.50 GHz running Windows 10
Pro. The values in the tables are an average of running the algorithm 100
times, as this algorithm is Monte Carlo based, so the outcomes may vary in
every run. We report the computing time in seconds and the length of the
found route. We also report the length of the naive route as a comparison.
We rounded all values to three decimals.

9

(a) Field 1 (b) Field 2

(c) Field 3

(d) Naive route for field 3

Figure 2.5: The three fields and the naive route for field 3

We start by comparing different values for α with 100 as the number of
iterations and 1000 for x. We only test up to α = 115, as using 120 with
field 3 results in an overflow error.

10

Field Naive solution
α = 4 α = 10 α = 50

Time Solution Time Solution Time Solution

1 8648.295 0.847 8164.692 0.830 8008.982 0.860 7941.379

2 10640.645 1.273 10024.837 1.301 9778.680 1.342 9713.675

3 25714.613 10.302 14357.313 10.394 13459.836 10.436 13187.970

Field Naive solution
α = 65 α = 80 α = 95

Time Solution Time Solution Time Solution

1 8648.295 0.832 7940.997 0.850 7939.252 0.821 7941.619

2 10640.645 1.318 9717.129 1.360 9716.638 1.352 9716.091

3 25714.613 10.422 13232.852 10.459 13229.079 10.521 13203.307

Field Naive solution
α = 100 α = 110 α = 115

Time Solution Time Solution Time Solution

1 8648.295 0.840 7936.453 0.847 7938.828 0.860 7935.594

2 10640.645 1.333 9712.975 1.371 9719.603 1.347 9716.975

3 25714.613 10.472 13193.147 10.552 13215.742 10.420 13171.820

A higher α generally results in better solutions, while the time does not
increase. So while the paper found 4 the best value for α, we opt for 115,
even though for field 2, the shortest route was found using α = 100, because
that might have been due to the randomized nature of this algorithm.

We will now test some values for x with α = 115 and 100 as the number of
iterations.

11

Field Naive solution
x = 10 x = 100 x = 1000

Time Solution Time Solution Time Solution

1 8648.295 0.332 8647.953 0.378 8055.724 0.575 7946.604

2 10640.645 0.645 11503.506 0.703 10080.842 0.981 9747.370

3 25714.613 8.567 30326.396 8.702 20176.747 9.500 14328.179

Field Naive solution
x = 1000 x = 1500 x = 2500

Time Solution Time Solution Time Solution

1 8648.295 0.836 7937.230 1.092 7936.323 1.620 7931.064

2 10640.645 1.336 9717.701 1.686 9706.977 2.324 9697.799

3 25714.613 10.429 13241.632 11.421 12859.505 13.472 12618.310

Field Naive solution
x = 3500 x = 4500 x = 10000

Time Solution Time Solution Time Solution

1 8648.295 2.059 7931.357 2.563 7931.904 5.188 7930.303

2 10640.645 3.036 9695.403 3.739 9696.532 7.316 9692.496

3 25714.613 15.238 12515.713 17.817 12478.326 27.794 12403.260

When x increases, so does the computing time, while the length of the so-
lution route gets shorter. However, at some point the time might increase
too much compared to the improvement in route. What exactly the optimal
value for x is, is up to debate. We will go with 1000 for now.

Now we test some values for the number of iterations with α = 115 and
x = 1000.

Field Naive solution
iterations = 10 iterations = 100 iterations = 200

Time Solution Time Solution Time Solution

1 8648.295 0.085 7978.090 0.877 7938.113 1.683 7928.959

2 10640.645 0.139 9796.326 1.340 9717.450 2.807 9702.650

3 25714.613 1.075 13663.946 10.666 13212.244 21.179 13134.703

Field Naive solution
iterations = 300 iterations = 400 iterations = 1000

Time Solution Time Solution Time Solution

1 8648.295 2.578 7926.705 3.391 7925.173 8.658 7914.822

2 10640.645 3.963 9693.681 5.373 9688.895 13.8112 9674.544

3 25714.613 32.011 13051.831 42.161 13001.729 105.880 12894.209

Just as with x, as the number of iterations increases, the length of the solu-
tion routes gets shorter while the calculation time gets longer.

12

2.4 Discussion

It is not possible to say for sure what the optimal values are for x and
the number of iterations. This is up to debate depending on how long the
calculations is allowed to take and how much time one is willing to sacrifice
for how much improvement. There are also other factors that need to be
taken into account. When the algorithm is run on a better machine, the
calculation time will decrease. It also might be the case that there is a more
efficient way of implementing this algorithm that we have not considered. It
might also be worth it to implement this algorithm in another programming
language to decrease the computing time. We also mentioned before that it
might not be needed to allow turns from every track to all the other tracks,
but that just the first few might do. This can also decrease the computing
time, as the graph will have less edges, so the algorithm has less options to
choose from.

Figure 2.6: A route for field 3 that crosses some tracks

A limitation is that this implementation of the algorithm does not take the
field edge into account, so turns might go outside the edge. It also does
not take into account that the route cannot cross any of the tracks. As
seen in Figure 2.6, it is possible that the algorithm produces a route that
crosses some of the tracks. Future research needs to be done to avoid this.
Our representation of the field currently does not take into account that
the vehicle drives at a slower speed when making a turn compared to a
straight line. The main problem here is that the ’turns’ returned by the
dubins algorithm may contain straight lines, for example when connecting
two tracks that are far apart, and we currently have no way of separating
those parts from the turning parts. If a way to take the speeds into account
is found, it might be possible that other solutions than the ones found now
are more optimal.

13

Chapter 3

Related Work

Seyyedhasani and Dvorak (2017) [17] transformed two fields, a basic rectan-
gular field and a non-convex one, into graphs by adding nodes at the end and
in the middle of every path, and then giving invalid paths a value at least
ten times higher than the cost of any valid path, to make sure these paths
are never used. They then used a modified Clarke-Wright algorithm and
Tabu Search to solve the problem for varying number of vehicles, ranging
from 1 to 10. It costs Tabu Search at least two hours on an Intel i7 processor
to calculate one scenario, while the modified Clarke-Wright algorithm takes
less than a second. While with multiple vehicles Tabu Search performed
better, the differences in performance with just one vehicle were minimal.

Yaghini et at. (2011) [18] compare a Simulated Annealing (SA) algorithm
and an Ant Colony Optimization (ACO) algorithm for finding the shortest
Hamiltonian path. They implemented the algorithms using Java and ran it
on a computer with core2 CPU at 2.66 GHz, 4 Gigabytes of Ram that had
Windows Vista as its operating system. They then tested the algorithms on
the standard problems ulysses16, a280, berlin52, gr666, kroA100, pr1002,
rd100 and u1060. The average best solution relative gap is 0.0736 for SA
and 0.0602 for ACO. The average of the average of the relative gap is 0.104
for SA and 0.071 for ACO. The average CPU time is 22.46 s for SA and
50.23 s for ACO. SA is faster, while ACO generally gets a better solution.
They then ran both algorithms on 1071 Iranian cities. For 1071 nodes, SA
took on average 45.76 CPU seconds, while ACO took 205.89 CPU seconds.
They suggest that it may be possible to get better results by using other
ways to tune the parameters.

Pearn et al. (1995) [16] compared the heuristic Christofides et al. algo-
rithm with a modified and a reverse version for the RPP. The Christofides
et al. algorithm has a complexity of O(|V |3). They have ten sets of 20
problems that they solved using the algorithms. Then they did an addi-

14

tional test with another 50 problems. They ran the algorithms on the PC
486 DX-33 and none of the problems, not even those with 50 nodes, 199
edges and 61 required edges, took more than 0.3 CPU seconds to be solved.
Both the modified and the reverse algorithm produce significantly better so-
lutions than the original algorithm, while the reverse performs better than
the modified algorithm if there are a relatively high number of nodes with
an odd degree.

Corberán et al. (2001) [4] give a cutting plane algorithm for solving the
General Routing Problem, where one wants to find the shortest route where
a set of required edges and a set of required nodes is passed at least once. If
the set of required nodes is empty, this is a Rural Postman Problem. They
coded the algorithm in C and ran it on a machine with a speed comparable
to a 66 MHz Pentium. They had 118 RPP instances in total, 116 of those
were solved to optimality by cutting planes alone and the other 2 were solved
after invoking branch and bound. The longest time seemed to be 109.11 s
for 3 instances.

Ghiani et al. (2000) [11] present a new formulation, polyhedral properties
and a branch-and-cut algorithm for the RPP. They implemented the algo-
rithm in C using the Watcom Integrated Development Environment and the
CPLEX library and they ran it on a PC with a Pentium processor at 90 Mhz
with 16 MB RAM. They then tested their algorithm on the Albaida1 graph
as a real-world example and they also randomly generated three different
types of graphs. Their algorithm can solve instances up to 350 vertices to
optimality, where their main limitation was the memory. The longest time
they reported was 1368.0 CPU seconds for five instances.

Corberán et al. (2007) [5] presented a Branch and Cut algorithm for the
Windy General Routing problem that also can be used for the RPP. They
coded the algorithm in C/C++ using Cplex 9.0 MIP Solver with Concert
Technology 2.0. They ran the tests on a Pentium IV at 2.8GHz machine
with 1GB RAM with a time limit of 10 h. The algorithm solved all RPP
instances to optimality. For the instances that on average have 886.2 nodes
and 2289.9 edges the computing time is on average 3033.7 seconds, while
the instances with on average 665.7 nodes and 1698.41 edges have an aver-
age computing time of 2873.3 seconds. The instances with on average 446.0
nodes and 1128.9 edges have an average computing time of 26.6 seconds.

Fernández et al. (2003) [8] examine three existing mathematical program-
ming formulations of the RPP and then define a new variant that substan-
tially reduces both the number of flow variables and the number of ”link”
constraints. They then present a new algorithm to get lower and upper
bounds for the RPP and test it on various problems. They coded the algo-

15

rithm in C using the CPLEX 6.5 library and ran it on a Sun Ultra2 Model
1200 with two 200 MHz processors but using only one processor (SPECint95
6.90). The longest average CPU time was reported for a group of problems
called Node250 with 232.6 vertices on average, namely 1229.849 seconds,
while Node300 with an average of 277.6 vertices only took 1077.504 seconds
on average. Groups with an average of 181.8 vertices or less took signifi-
cantly less long, with a few exceptions. 160 of the 173 problems were solved
to optimality. For those 13 for which optimality was not proved, the per-
centage gaps between the obtained upper and lower bounds are very small
and always below 1%. There is room for improvement by future work.

Ghiana et al. (2006) [10] present a insertion heuristic for the RPP. They
coded it in C and ran it on a Pentium-1GHz personal computer. They then
compared their heuristic with the classical Frederickson procedure and they
also applied the 2-opt procedure developed by Hertz et al.[13] to the solu-
tions provided by the two constructive heuristics. Without using 2-opt, the
new heuristic was better in 25 cases, worse in 28 and got the same result in
1 case. With 2-opt, it was better in 16 cases, worse in 25 and got the same
result in 13 case. Without 2-opt, the insertion heuristic was slower every
time, while with 2-opt, it was faster in 14 cases. They used instances with
350 vertices or less and the longest time for the insertion heuristic without
2-opt was 20.544 seconds. With 2-opt, the longest time was 9170.910 sec-
onds.

Fernàndez de Córdoba et al. (1998) [6] present a heuristic algorithm based
on Monte Carlo methods for the RPP. They ran it on a Personal Computer
with a Pentium 90 processor. The source code has less than 700 FOR-
TRAN 77 lines (including comment lines) and the executable file has no
more than 150 kbytes. They tested their algorithm on the 24 instances of
Christofides et al. and the 2 Albaida instances and compared the results to
the Christofides et al. heuristic. They tried a few different variations and a
few different values for their parameters, but it is hard to say for sure which
is best as the algorithm is based on randomness. In what they consider the
best version of the algorithm, they got the optimal result in 19 instances. In
the other cases, the solution was not that far from optimality. The longest
time they reported for this version was 8.49 seconds. The algorithm is easily
adaptable to other variations of the problem. The solution may also be used
for algorithms that need an initial solution.

Hertz et al. (1999) [13] present several improvement procedures for the
RPP, including 2-opt. These can be used to construct an initial solution
from scratch, to obtain a feasible solution starting from an infeasible solu-
tion, or to postoptimize a feasible solution. They coded the heuristics in
Pascal and ran them on a Silicon Graphics Indy 194 MHz IP25 Processor.

16

They tested the algorithms on randomly generated instances and on the 24
Instances of Christofides et al., the Albaida Instances and the 10 Corberán
Instances. They compared the results from the Frederickson heuristic with
Frederickson + 2-opt and Construct + 2-opt. When Frederickson wouldn’t
find an optimal solution, the other two versions would find a better one,
although their computation time would be longer. Especially with the Cor-
berán instances the increase in time is significant. Where Fredrickson takes
less than a second to complete any of the instances, the shortest time with
2-opt is 1056 seconds.

Groves et al. (2005) [12] present several heuristics, including a Two-Opt
and a Three-Opt, for the RPP. The heuristics are based on a local search
framework. They use the heuristic of Frederickson (1979), which has com-
plexity O(|V |3), to generate an initial solution and then compare this solu-
tion with the improved solutions found by Two-opt and Three-opt. They
ran their tests on an Intel Pentium IV processor (2.8 GHz) with 512 Mb
memory. They used the 24 instances by Christofides et al. (1986) and the
two Albaida instances. They later omitted instance 18 from the results as
they got a valid solution that is shorter than the reported optimal cost. For
Two-Opt, all times were 0 seconds, while for Three-Opt there were two in-
stances where the time was 2 seconds. They also randomly generated some
new instances that are bigger, ten of those were between 3000 and 5000
vertices and between the 20000 and 30000 edges. The longest time reported
on those instances for Two-Opt is 5901 seconds. They also mention that
the Two-Opt heuristic from Hertz et al. [13] has complexity O(|E|5) per
iteration.

Muyldermans et al. (2005) [14] present several heuristics, including 2-opt re-
verse, which is based on the 2-opt for the TSP and 2-opt dir-opt ◦ flip. They
coded the algorithms in C/C++ and run on a personal computer (Pentium
II, 500 MHz, 128 MB RAM) under Windows 98. They tested the algorithms
on the 24 instances of Christofides et al., the 2 Albaida instances and several
more instances. They then compared the results from Frederickson & 2-opt
and Construct & 2-opt from Hertz et al. [13] with several of their methods.

17

Chapter 4

Conclusions

We solved the routing problem for autonomous agricultural vehicles on
farmer fields by representing the field and the tracks where work needs to
be done as a graph where we need to solve the Rural Postman Problem.
For the Rural Postman Problem, a route needs to be made that contains a
required subset of the edges in the graph. We then implemented a Monte
Carlo based algorithm presented in Fernández de Córdoba et al. [6] and
compared the results to a naive solution, where each track is connected to
the one next to it. The algorithm showed to be an improvement over the
naive solution. We did find that different values than the ones proposed in
the paper for the parameters work better in our case. Future research would
be to make sure the algorithm does take into account that the field edge and
the tracks should not be crossed. Another possible improvement would be
to take into account the driving speeds of the vehicle.

18

Bibliography

[1] dubins. https://pypi.org/project/dubins/.

[2] Phact. https://phact.nl/.

[3] Howie Choset. Coverage for robotics – a survey of recent results. Annals
of mathematics and artificial intelligence, 31(1-4):113–126, 2001.

[4] Angel Corberáan, Adam N. Letchford, and José Maŕıa Sanchis. A
cutting plane algorithm for the general routing problem. Mathematical
Programming, 90(2):291–316, Apr 2001.

[5] Angel Corberán, Isaac Plana, and José M. Sanchis. A branch & cut
algorithm for the windy general routing problem and special cases. Net-
works, 49(4):245–257, 2007.

[6] P. Fernández de Córdoba, L.M. Garcŕıa Raffi, and J.M. Sanchis. A
heuristic algorithm based on monte carlo methods for the rural postman
problem. Computers & Operations Research, 25(12):1097 – 1106, 1998.

[7] Moshe Dror and E. Benavent. Arc routing: theory, solutions and ap-
plications. Kluwer Academic Publishers, 2000.

[8] Elena Fernández, Oscar Meza, Robert Garfinkel, and Maruja Ortega.
On the undirected rural postman problem: Tight bounds based on a
new formulation. Operations Research, 51(2):281–291, 2003.

[9] Enric Galceran and Marc Carreras. A survey on coverage path planning
for robotics. Robotics and Autonomous Systems, 61(12):1258 – 1276,
2013.

[10] Gianpaolo Ghiani, Demetrio Laganà, and Roberto Musmanno. A con-
structive heuristic for the undirected rural postman problem. Com-
puters & Operations Research, 33(12):3450 – 3457, 2006. Part Special
Issue: Recent Algorithmic Advances for Arc Routing Problems.

[11] Gianpaolo Ghiani and Gilbert Laporte. A branch-and-cut algorithm
for the undirected rural postman problem. Mathematical Programming,
87(3):467–481, May 2000.

19

[12] GW Groves and JH van Vuuren. Efficient heuristics for the rural post-
man problem. ORiON, 21(1), 2005.

[13] Alain Hertz, Gilbert Laporte, and Pierrette Nanchen Hugo. Improve-
ment procedures for the undirected rural postman problem. INFORMS
Journal on Computing, 11(1):53, 1999.

[14] Luc Muyldermans, Patrick Beullens, Dirk Cattrysse, and Dirk Van
Oudheusden. Exploring variants of 2-opt and 3-opt for the general
routing problem. Operations Research, 53(6):982–995, 2005.

[15] T Oksanen and A Visala. Path planning algorithms for agricultural
machines. Agricultural Engineering International: CIGR Journal, 2007.

[16] W.L. Pearn and T.C. Wu. Algorithms for the rural postman problem.
Computers & Operations Research, 22(8):819 – 828, 1995.

[17] Hasan Seyyedhasani and Joseph S. Dvorak. Using the vehicle rout-
ing problem to reduce field completion times with multiple machines.
Computers and Electronics in Agriculture, 134:142–150, 2007.

[18] M. Yaghini, M. Momeni, and M. Sarmadi. Finding the shortest hamil-
tonian path for iranian cities using hybrid simulated annealing and ant
colony optimization algorithms. International Journal of Industrial En-
gineering and Production Research, Mar 2011.

20

Appendix A

Appendix

import matp lo t l i b . pyplot as p l t
import math
import numpy as np
import i t e r t o o l s
import random
import t ime i t
import dubins

def readArrays (l i n e s , f i e l d) :
x = []
y = []

a = []
b = []
for i in l i n e s :

x . append (i [0] [0])
x . append (i [1] [0])
y . append (i [0] [1])
y . append (i [1] [1])

for i in f i e l d :
a . append (i [0])
b . append (i [1])

return x , y , a , b

def p lo tPo in t s (x l i n e s , y l i n e s , x f i e l d , y f i e l d) :
f i g , ax = p l t . subp lo t s ()
l i n e1 , = ax . p l o t (x l i n e s , y l i n e s , ’ . ’)
l i n e2 , = ax . p l o t (x f i e l d , y f i e l d)

ax . s e t x l a b e l (”x”)
ax . s e t y l a b e l (”y”)
p l t . show ()

def ca l cu la t eTurns (x l i n e s , y l i n e s , turnRad) :
turns = []
for i in range (0 , len (x l i n e s)) :

m = []

21

for j in range (0 , len (x l i n e s)) :
i f (i%2==0 and j%2==0) or (i%2==1 and j%2==1) :

i f (i%2==0 and j%2==0) :
i f ((x l i n e s [i]− x l i n e s [i +1]) == 0 and (x l i n e s [

j]− x l i n e s [j +1]) == 0) :
t1 = 1/2∗math . p i
t2 = −1/2∗math . p i

e l i f ((x l i n e s [i]− x l i n e s [i +1]) == 0) :
t1 = 1/2∗math . p i
t2 = math . atan (abs (y l i n e s [j]− y l i n e s [j

+1]) /abs (x l i n e s [j]− x l i n e s [j +1]))−math
. p i

e l i f ((x l i n e s [j]− x l i n e s [j +1]) == 0) :
t1 = math . atan (abs (y l i n e s [i]− y l i n e s [i

+1]) /abs (x l i n e s [i]− x l i n e s [i +1]))
t2 = −1/2∗math . p i

else :
t1 = math . atan (abs (y l i n e s [i]− y l i n e s [i

+1]) /abs (x l i n e s [i]− x l i n e s [i +1]))
t2 = math . atan (abs (y l i n e s [j]− y l i n e s [j

+1]) /abs (x l i n e s [j]− x l i n e s [j +1]))−math
. p i

e l i f (i%2==1 and j%2==1) :
i f ((x l i n e s [i]− x l i n e s [i −1]) == 0 and (x l i n e s [

j]− x l i n e s [j −1]) == 0) :
t1 = −1/2∗math . p i
t2 = 1/2∗math . p i

e l i f ((x l i n e s [i]− x l i n e s [i −1]) == 0) :
t1 = −1/2∗math . p i
t2 = math . atan (abs (y l i n e s [j]− y l i n e s [j

−1]) /abs (x l i n e s [j]− x l i n e s [j −1]))
e l i f ((x l i n e s [j]− x l i n e s [j −1]) == 0) :

t1 = math . atan (abs (y l i n e s [i]− y l i n e s [i
−1]) /abs (x l i n e s [i]− x l i n e s [i −1]))−math
. p i

t2 = 1/2∗math . p i
else :

t1 = math . atan (abs (y l i n e s [i]− y l i n e s [i
−1]) /abs (x l i n e s [i]− x l i n e s [i −1])) −
math . p i

t2 = math . atan (abs (y l i n e s [j]− y l i n e s [j
−1]) /abs (x l i n e s [j]− x l i n e s [j −1]))

q1 = (x l i n e s [i] , y l i n e s [i] , t1) #A con f i g u r a t i on
i s (x , y , t h e t a) , where t h e t a i s in radians ,
wi th zero . a long the l i n e x = 0 , and counter
−c l o c kw i s e i s p o s i t i v e

q2 = (x l i n e s [j] , y l i n e s [j] , t2)
dub = dubins . s ho r t e s t pa th (q1 , q2 , turnRad)

else :
dub = None

m. append (dub)
turns . append (m)

return turns

22

def ca l cu l a t eD i s tanceMat r ix (x l i n e s , y l i n e s , turns) :
d i s t ance = []

for i in range (0 , len (x l i n e s)) :
m = []
for j in range (0 , len (x l i n e s)) :

i f i==j :
m. append (0)

e l i f ((i%2==0 and j%2==0) or (i%2==1 and j%2==1)) : #
turn
va l = turns [i] [j] . path l ength ()
m. append (va l)

e l i f ((i%2==0 and j−i==1) or (j%2==0 and i−j==1)) : #
requ i r ed edge
va l = math . s q r t ((x l i n e s [i]− x l i n e s [j]) ∗∗2+(y l i n e s

[i]− y l i n e s [j]) ∗∗2)
m. append (va l)

else :
m. append (math . i n f)

d i s t ance . append (m)
return d i s t ance

def makeBasicRoute (l ength) :
z = l i s t (range (0 , l ength))
for i in range (0 , l ength) :

for j in range (0 , l ength) :
i f (i%4==2 and j%4==3 and j−i == 1) :

swap = z [i]
z [i] = z [j]
z [j] = swap

return z

def plotRoute (route , x l i n e s , y l i n e s , x f i e l d , y f i e l d , turns) :
f i g , ax = p l t . subp lo t s ()
xx = []
yy = []
for i in range (0 , len (route)) :

xx . append (x l i n e s [route [i]])
yy . append (y l i n e s [route [i]])
i f (i+1<len (route) and ((route [i]%2==0 and route [i

+1]%2==0) or (route [i]%2==1 and route [i +1]%2==1))) :
con = turns [route [i]] [route [i +1]] . sample many (0 . 1) #

sample ra t e doesn ’ t change d i s t ance
a = [q [0] for q in con [0]]
b = [q [1] for q in con [0]]
for i in a :

xx . append (i)
for i in b :

yy . append (i)

l i n e , = ax . p l o t (xx , yy)
l i n e2 , = ax . p l o t (x l i n e s , y l i n e s , ’ . ’)

23

l i n e3 , = ax . p l o t (x f i e l d , y f i e l d)
ax . s e t x l a b e l (”x”)
ax . s e t y l a b e l (”y”)
p l t . show ()

def checkRoute (route) :
numPairs = len (route) /2
for i in range (0 , len (route) , 2) :

i f (abs (route [i +1] − route [i]) ==1) :
numPairs −= 1

i f (numPairs == 0) :
return True

return False

def so lut ionLength (so lu t i on , d i s tance , stop) :
l ength = 0
for i in range (1 , len (s o l u t i o n)) :

i f (length>=stop) :
break

l ength = length + d i s t ance [s o l u t i o n [i −1]] [s o l u t i o n [i]]
return l ength

def paper41 (length , d i s tance , alpha , i t e r a t i o n s , x) :
shortes tRoute = []
s h o r t e s tD i s t = math . i n f
for i in range (0 , i t e r a t i o n s) :

route = []
route . append (random . rand int (0 , length −1)) #s t a r t a t

random node
for j in range (1 , l ength) :

i f (route [j−1]%2==0 and route [j−1]+1 not in route) :
route . append (route [j −1]+1)

e l i f (route [j−1]%2==1 and route [j−1]−1 not in route) :
route . append (route [j −1]−1)

else :
opt i ons = []
for q in range (0 , len (d i s t anc e [j −1])) :

i f (d i s t anc e [route [j −1]] [q] !=math . i n f) and (
q not in route) :
opt ions . append (q)

i f (opt ions) :
opt = opt ions
t o t a l = 0
p = []
for k in opt :

a =1/(d i s t ance [route [j −1]] [k]) ∗∗ alpha
p . append (a)
t o t a l = t o t a l + a

for k in range (0 , len (opt)) :
add = p [k]∗ (1/ t o t a l) ∗x
for g in range (0 , int (add)−1) :

opt ions . append (opt [k])

ran = random . randint (0 , len (opt ions)−1)

24

route . append (opt ions [ran])
else : #t h i s case shou ld never happen

print (”no opt ions ”)
break

i f (len (route)==length) :
i f checkRoute (route) :

d i s t = so lut ionLength (route , d i s tance ,
s h o r t e s tD i s t)

i f (d i s t < s h o r t e s tD i s t) :
s h o r t e s tD i s t = d i s t
shortes tRoute = route

return shortes tRoute

25

