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Abstract

We study schemes for creating canned recursion using category theory. We
present an overview of different types of recursion including, (co)iteration,
primitive recursion and course-of-value recursion using catamorphisms, anamor-
phisms, paramorphisms, hylomorphisms and histomorphisms. For all of
these schemes we discuss their origin, prove correctness and then demon-
strate their utility by some examples.
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Chapter 1

Introduction

In functional programming, recursion is one of the most important concepts
to grasp. It is the building block to create more powerful programs. How-
ever, when programming with recursion, we are often prone to make small
mistakes. Furthermore, when performing recursion on a data type, we often
create the exact same function structure for a lot of different functions on this
data type. Hence, researchers have made abstractions for these functions.
Quite early on, these researchers thought of using a branch of mathematics
called “category theory”, using it to abstractly talk about recursively defined
functions. Category theory is centred around objects (types) and arrow
(programs), which thus lends itself very well to functional programming.

There have been many attempts to create this so called canned recursion
using category theory. In 1991 Meijer et al. [8] were one of the first to come
up with methods of using category theory to describe recursive functions
on lists. Since then, creating recursion schemes with category theory has
been a hot topic in theoretical computing science. Many schemes have been
introduced, with most of them aimed at different types of recursion. To
categorize these types and explain them consistently, we provide an overview
of existing methods of creating canned recursion using category theory. We
present this overview in a notation partially derived from Meijer et al. [8],
Uustalu and Vene [11], the PhD thesis of Vene [13] and with the categorical
notation from Pierce [10]. A new notation for proofs has been added to
improve readability and understanding. Also some proofs that have been
skipped in the original papers will be added.

In Part I (Preliminaries) we introduce category theory and its notation.
We start from scratch and work our way through examples and universal
constructions until we have a definition of a Cartesian Closed Category.
We also define the category FPL in which we do most of the work when
defining canned recursion. We then move on to defining Functors and F-
algebras. If all of this is already known, it is advised to read Section 2.1.2 and
Section 2.1.4 where FPL is defined and the notation of proofs is explained.
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In Part II, we describe four forms of canned recursion. In Chapter 3 we
first define initial F-algebras and then we will define the catamorphism and
anamorphism followed by primitive recursion with catamorphisms. Chap-
ter 4 will introduce the hylomorphism where we discuss it in the context
of categories with coinciding initial and terminal objects and in the con-
text of categories that do not have this property. In Chapter 5 we describe
course-of-value recursion, explain how to achieve it using histomorphisms
and demonstrate some of its limitations.
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Part I

Preliminaries
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Chapter 2

Category theory

In this chapter we introduce category theory. Our presentation is mostly
based on Pierce [10] with some additions from Milewski [9].

2.1 Definition of a category

A category is a collection of objects and arrows. An arrow f points from
one object A to another B: f : A→ B. If we have second arrow g : B → C,
we can compose these arrows: (g ◦ f) : A → C. We can very easily present
these categories using diagrams.

A B C
f g

and because arrows compose, we get a third arrow for free.

A B C
f

g◦f

g

We are now ready to define a category rigorously.

Definition 2.1 (Category)

A category C is a tuple (ObC ,ArrC), where:

• ObC is a collection of objects.

• ArrC is a collection of arrows with a domain and codomain, so for
every f ∈ ArrC, there are A,B ∈ ObC with f : A→ B.

satisfies the following laws:

• Composition of arrows as denoted by ◦ behaves such that if f ∈
ArrC : A→ B and g ∈ ArrC : B → C then g ◦ f : A→ C ∈ ArrC.
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• Composition of arrows follows associativity: for any arrows f ∈
ArrC : A→ B, g ∈ ArrC : B → C and h ∈ ArrC : C → D

h ◦ (g ◦ f) = (h ◦ g) ◦ f (Assoc)

• Every object has an identity arrow: for any object A ∈ ObC, an
arrow idA

1 : A→ A exists that satisfies the identity law:

For any f ∈ ArrC : A→ B

idB ◦f = f (Identity-Left)
f ◦ idA = f (Identity-Right)

2.1.1 Example categories

Many fields in mathematics and computing science make use of structures
that fit very well in the definition of a category. To provide some intuition
about what a category is, we will give some examples.

Example 2.2 (The cateogory of sets)
The most obvious category that exists is Set. In the category Set, the
sets are the objects and the total functions are the arrows. Composition
is just composition of functions. Associativity holds because composition
of functions is associative. The identity arrow also exists because that is
the identity function, which is defined for every set.

We can also create categories that look very similar to Set but where the
functions have to preserve more properties on the relation of the elements in
the sets.

1Note that the subscript of arrows like idA will often be dropped such that we just have
id. It will be clear from the context which identity function is used.
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Example 2.3 (The category of posets)
One of these types of sets where the function has to preserve a property
is a partial ordering, also called a poset. A poset consists of a set P and
and a binary relation between elements of the set: ≤P , this relation has
to satisfy reflexivity, transitivity and antisymmetry. The category Poset
is defined as follows:

• ObPoset contain the pairs (P,≤P ) where ≤P is a partial ordering
of P .

• ArrPoset contains the order preserving functions between the sets:
f : (P,≤P ) → (Q,≤Q), if f : P → Q and p ≤P p′ then f(p) ≤Q
f(p′).

Now we need to show that this definition satisfies the defined laws:

• Composition is again composition of functions, but we do have to
show that it preserves the partial orderings in the sets.

Proof. We assume we have two order preserving functions: f :
(P,≤P ) → (Q,≤Q) and g : (Q,≤Q) → (R,≤R). If we now know
p ≤P p′ then from the order preserving nature of f we know that
f(p) ≤Q f(p′). But we now also know from the order preserving
nature of g that g(f(p)) ≤R g(f(p′)). Thus, g ◦ f preserved the
partial order and thus composition is order preserving.

• The identity arrow of an object is just the identity function, it
preserves order trivially.

• Associativity of the composition operator follows from the associa-
tivity of the composition of functions.

We can also turn a Poset itself into a category:

Example 2.4 (The category of one poset)
We now define a category based on one poset P .

• ObP contains the elements p ∈ P .

• ArrP contains an arrow between two objects if there is a relation
between the two elements represented by the object. For any two
elements p, q ∈ P , there is an arrow from p to q iff p ≤ q . Arrows
are thus unique.

Then for the laws

• Composition of arrows holds because ≤ is transitive.
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• The identity arrows exist because ≤ is reflexive.

• Associativity holds because there is at most one arrow between
every pair of elements.

Remark. From this result it also follows that thePoset category is a category
of categories. We will see more of those later on.

2.1.2 Functional programming as a category

Functional programming combines many ideas and concepts originating from
category theory. Translating a basic functional programming language to a
category can be done in a fairly simple way. We will call this category FPL,
which is defined in the following manner
Definition 2.5 (FPL)

The category FPL of a functional programming language is defined as

• Objects are types.

• Arrows are programs.

With the laws proven as follows

• Composition follows from composition of programs.

• The identity arrow is the identity program that just returns its
argument.

• Associativity of composition follows from the associativity of com-
position of programs.2

In this category, we will also have all universal constructions as will be de-
scribed in Section 2.2. With these additions, we can use universal construc-
tions in a functional programming language.3

2.1.3 Dualisation

In category theory, any category C also has a dual category Cop, called C
opposite.

3Defining the category as we did above does have a few problems. First of all some
functional programming languages still have some side effects like exceptions. We will
ignore the existence of these language features. But most prominently we will often
talk about two arrows being equal or an arrow being the unique solution. In almost all
languages programs are only equal if they are exactly the same. In these languages we can
reason about program equality, but this is not part of the language and thus not really
part of the category. This will mostly be ignored as programs being unique does not really
matter for implementing them.
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Definition 2.6 (Dualisation)

For any category C, there exists a dual category Cop. If C has a name
“x”, then the dual category is often called “co-x”. Cop has the same
objects as C, but it has every arrow reversed.

Any construction we build around category theory also comes in pairs,
where one of the pair is just the other with the arrows reversed. Not only
categories and structures are reversed, we can also dualise our proofs. This
often means that, if we have proven something for a category C, it will also
hold for any Cop if we swap the domains and codomains. This so-called
principle of dualisation results in many free theorems.

2.1.4 Notation of proofs

There are two main ways to prove statements in category theory. First, there
are the usual equality proofs in which we start of at one side of the equals
sign and work our way with known laws towards the other side of the equals
sign. However, in category theory researchers also very commonly depict
proofs using diagrams. In these diagrams all needed objects and the arrows
between them are written down. These diagrams commute if nothing is said
otherwise. Below is a definition, first in textual style and then in the form
of diagrams.

Definition 2.7 (Commutativity)

If four arrows f : X → Z, f ′ : W → Y, g : X → W, g′ : Z → Y are said
to commute, then the following holds

f ′ ◦ g = g′ ◦ f Commu

X Z

W Y

f

g g′

f ′

If a diagram is said to commute, then all compositions of arrows that
have the same start and end are equal.

When proving a theorem using diagrams, we will describe the building of
the diagram such that in the end a certain property follows from the diagram.
This is often seen as building the inner squares of a diagram, such that the
outer square commutes. This outer square is then what we want to prove.

When proving a theorem using equational reasoning, we will use a very
specific notation. It starts with zero or more assumptions denoted by symbols
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likeB andI. Following these assumptions, the proof begins with the starting
equation. Then, a rule is given between every two statements that shows why
the two statements are equal.

We will be combining these proof methods to give more clarity. A symbol
in a rectangle in a proof will denote that the commutativity of this rectangle
is equal to the equation named with that symbol. Certain rows in a proof
will also be coloured, these colours correspond to composition paths in the
diagram. The entire path will not always be shown but the important parts
will be. The colors are used to make sure that a line in the proof can easily
be found in the diagram.

We will now prove a simple theorem with the combination of a written
proof and a diagram.

Theorem 2.8 (Combining commutativity)
If the two inner squares of the following diagram commute, then so does
the outer one.

A B C

A′ B′ C ′

f

a

f ′

b c

g g′

Thus, if b ◦ f = g ◦ a and c ◦ f ′ = g′ ◦ b, then c ◦ f ′ ◦ f = g′ ◦ g ◦ a.

Proof.

B b ◦ f = g ◦ a
I c ◦ f ′ = g′ ◦ b

(c ◦ f ′) ◦ f
= – I –

(g′ ◦ b) ◦ f
= – Assoc –
g′ ◦ (b ◦ f)

= – B –
g′ ◦ (g ◦ a)

= – Assoc –
(g′ ◦ g) ◦ a

A B C

A′ B′ C ′

f

a B

f ′

b I c

g g′
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2.1.5 Isomorphisms

Isomorphisms are about arrows that have an inverse.

Definition 2.9 (Isomorphisms)

An arrow f : A → B is an isomorphism if there exists an f−1 : B → A
such that f ◦ f−1 = id and f−1 ◦ f = id. Thus, the following diagram
commutes:

A B

f

id

f−1

id

It is often useful to talk about whether or not two objects are equal.
When they are the exact same object this is quite easy, but there is a more
interesting way to define equality in categories, namely equality up to iso-
morphism.

Definition 2.10 (Equality up to isomorphism)
Two objects are equal up to isomorphism when there exists an isomor-
phism between them.

Example 2.11 (Identity as isomorphism)
An object is equal up to isomorphism with itself because the identity
arrow is an isomorphism with itself. In other words the following diagram
trivially commutes

A A

id

id

id

id

Remark. When talking about equality, the qualification “up to isomorphism”
is often dropped.

2.2 Universal Constructions

Now that we know what a category is, we analyse the properties that these
categories have. In category theory there exist constructions that occur in
many different categories. We can use them to create universal structures
occurring in many different categories.
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2.2.1 Initial and Terminal Objects

Not only arrows have special properties like isomorphisms, there are also
special types of objects. We analyse two of these, the initial object and its
dualisation: the terminal object.

The notion of initial and terminal objects originates in initial and termi-
nal algebras. It often refers to the smallest thing you can have (for initial
objects) or the largest thing (for terminal objects). In category theory we
call the initial object 0 and the terminal object 1.
Definition 2.12 (Initial objects)

An object 0 is initial iff for every object A there exists exactly one arrow
from 0 to A.

Definition 2.13 (Terminal objects)
An object 1 is terminal iff for every object A there exists exactly one
arrow from A to 1.

A lot of categories have initial and terminal objects even when this is not
entirely obvious.
Example 2.14 (Initial and terminal objects in Set)

In the category Set, an initial object is {}, the empty set. This is the case
because one can create only one function from the empty set to any other
set, namely the empty function. A terminal object is {x}, a singleton
set. This is the case because there exists only one total function from
any set to a singleton set: f : A→ {x} with: for all a ∈ A, f(a) = x.

Example 2.15 (Initial and terminal objects in FPL)

In the category FPL, () is a terminal object, as we can only define
programs that return () for every input. The category FPL has no
empty types, thus there are no initial objects.

Terminal objects are often used to define constants. This works because a
terminal object has only one possible element. Thus, we can create exactly
one arrow from a terminal object to any other element of any object. These
arrows are thus used to reason about the contents of an object.

2.2.2 Products and Sums

Products

In both set theory and in functional programming languages, we have the
notion of products. A product is a way to combine two sets or types into
one. We can also express this in category theory. In category theory we
reason about objects and arrows, categorical products should thus consist of
these two things. A product in both sets and FPLs consists of a new set or
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type, often written as A×B, and a pair of functions called the projections:
fst : A×B → A and snd : A×B → B. A product thus consists of an object
and two arrows: (A×B, fst, snd).

We can now combine arbitrary functions to create product functions. We
can combine two functions, f : C → A and g : C → B using 〈f, g〉 : C →
A×B. This notation is defined as 〈f, g〉(x) = 〈f(x), g(x)〉. We can also get
the original functions from 〈f, g〉, fst ◦〈f, g〉 = f and snd ◦〈f, g〉 = g.

Definition 2.16 (Products)
A product of two objects A and B is the object A×B with two arrows
fst : A × B → A and snd : A × B → B, such that for any two arrows
f : C → A and g : C → B, there is exactly one arrow 〈f, g〉, called a
projection arrow, fpr which that the following holds:

fst ◦〈f, g〉 = f (Product-Left)
snd ◦〈f, g〉 = g (Product-Right)

or in other words:

C

A A×B B

f 〈f,g〉 g

fst snd

Using this definition, any object X that has two arrows f : X → A and
g : X → B such that Product-Left and Product-Right hold, creates the
product (X, f, g).

Lemma 2.17 (Equality of products)
Any two products of arbitrary objects A and B are equal up to isomor-
phism.

Proof. We take two arbitrary objects A and B and two arbitrary products
on these objects (X, f1, f2) and (Y, g1, g2). Because X is a product and Y
has arrows from Y to A and B, we have an arrow 〈g1, g2〉 : Y → X, and the
other way around, creating the arrow 〈f1, f2〉 : X → Y .

Now to prove that 〈g1, g2〉 and 〈f1, f2〉 are an isomorphism, we want to
prove that

〈g1, g2〉 ◦ 〈f1, f2〉 = idX

and that
〈f1, f2〉 ◦ 〈g1, g2〉 = idY

14



We will prove the first statement by proving that, for i ∈ {1, 2}

fi = fi ◦ 〈g1, g2〉 ◦ 〈f1, f2〉

Then following from the uniqueness of the projection arrow and the fact that
id is also a valid projection arrow it follows that

〈g1, g2〉 ◦ 〈f1, f2〉 = id



fi

= – Product-Left –
gi ◦ 〈f1, f2〉

= – Product-Left –
fi ◦ 〈g1, g2〉 ◦ 〈f1, f2〉

X

Y

A X B

f1

f2

〈f1,f2〉

g1

g2〈g1,g2〉

f1

f2

The second statement is proven analogous by swapping X and Y and the
associated functions.
Example 2.18 (Products in FPL)

In FPL we have product types, often also called tuples. For any two
types A and B we thus have the product ((A,B), fst, snd).

There is also an operator that can be very useful.
Definition 2.19 (×)

If there is an arrow f : A → B and an arrow g : C → D, then there
exists the arrow

f × g : A× C → B ×D

This arrow is defined as

f × g = 〈f ◦ fst, g ◦ snd〉 (Product-×)

Sums

When defining a new structure in category theory, there always exists a dual
version of it. For products, the dual is sums. Instead of two objects combined
in one, we have an object that is one of two objects.

A sum consists again of an object and two functions. This time, if we
have an object called A + B, we need two function inl : A → A + B and
inr : B → A+B.

15



Definition 2.20 (Sums)
A sum of two objects A and B, is an object A + B with two arrows
inl : A → A + B and inr : B → A + B, such that for any object C, if
f : A → C and g : B → C, the unique arrow [f, g] : A + B → C, called
the join, exists such that the following holds:

[f, g] ◦ inl = f (Sum-Left)
[f, g] ◦ inr = g (Sum-Right)

or in other words:

A A+B B

C

inl

f
[f,g]

inr

g

Lemma 2.21 (Equality of sums)
Any two sums of the same two objects are equal up to isomorphism.

Proof. This proof is dual to the proof of Lemma 2.17.

Example 2.22 (Sums in FPL)
In FPL we also have sum types. Two often occurring ones are Eithers
and Maybes. An Either is a sum with the two programs inl and inr:
(EitherA B, inl, inr).

For the Maybe it is a bit less obvious why it is a sum. With a
Maybe we either have a value of type A or we have no value represented
by a constant. No value can be seen as a terminal object 1 because it
can only have one value. So, a Maybe is actually a 1 + A sum. We
can take the functions nothing and just, to complete our definitions:
(MaybeA, nothing : 1→ MaybeA, just : A→ MaybeA).

Of course there also exists a dual version of the × operator.
Definition 2.23 (+)

If there is an arrow f : A → B and an arrow g : C → D, then there
exists the arrow

f + g : A+ C → B +D

This arrow is defined as

f + g = [inl ◦f, inr ◦g] (Sum-+)

16



2.2.3 Exponential objects

We have seen how tuples and eithers are represented as categorical con-
structs, but there is one very important part of any functional programming
language that we have not seen yet, arrow types or programs as objects. In a
categorical sense, we get an object that is the collection of all arrows from B
to A. The object containing all arrows f : B → A is called the exponential
object AB.

However, in category theory we do not use elements or contents of objects.
We use arrows instead.

We can characterize an exponential object by a new special arrow eval :
(AB × B) → A that is defined as eval(f, b) = f(b). To create a proper
categorical definition, we need one more arrow, for any arrow g : (C ×B)→
A, curry(g) : C → AB. The arrow curry partially applies the first argument
of the product to the arrow resulting in a new arrow, thus currying it. We
will also write curry(g)(b) as gb : C → A.

Definition 2.24 (Exponential object)

For any two objects A and B, an object AB is an exponential object if
there is an arrow eval : AB×B → A such that for any arrow f : C×B →
A there is a unique arrow curry(f) : C → AB where the following equality
holds:

g = eval ◦(curry(g)× id) (Exponential-Eval)

Or the following diagram commutes:

AB ×B A

C ×B

eval

curry(g)×id g

Remark. Not all categories have exponential objects but the categories we
mostly use, Set and F-Alg do.

Example 2.25 (const)

We have a function const : (A × B) → A that ignores the B it is given.
We thus get the following diagram

17



AB ×B A

A×B

eval

curry(const)×id const

We can now use a curried version of const to ignore incoming values

const1(5) = 1

Now that we have defined the most important universal constructs, we
can use them in many of our definitions. However, not all categories have
these constructs but the ones that do get a special name.

Definition 2.26 (CCC )

A Cartesian Closed Category (CCC) is a category that has terminal
objects, products, sums and exponential objects.

Both Set and FPL are cartesian closed.

2.3 Functors

We have seen that several mathematical and programmatic structures behave
like categories. However, there is one mathematical structure we have not
yet tried to capture into a category, that is a categories of categories, we
will call it Cat. In Cat our objects will be categories, our arrows will be
structure preserving functions called functors.

To give more of an intuition about what functors are, we will start with
an example:

Example 2.27 (Maybe functor)
We will start with the functor Maybe : FPL → FPL. Our functor
FPL takes every object A ∈ FPL to the object 1 + A ∈ FPL. A
function f : A → B will be taken to the function [inl ◦ id, inr ◦f ]. Thus,
Maybe(f) = id+f .

Now that we have a more intuitive understanding, we can define a functor:

Definition 2.28 (Functor)
A functor F : C → D is a map taking an object A in C to an object B
in D: F(A) = B, such that for any f : A → B, F(f) : F(A) → F(B).
The functor of f : A → B, g : B → C and id arrows should hold to the
following laws

18



• The identity function is preserved through the map: for any A ∈
ObC ,

F(idA) = idF (A) (Functor-ID)

• Composition is preserved through the map: for any A,B,C ∈ ObC
and f : A→ B, g : B → C, h : A→ C ∈ ArrC ,

g ◦ f = h→ F(g) ◦ F(f) = F(h) (Functor-Comp)

Thus, if the following diagram commutes

A B C
f

id

h

g

then so should this diagram

F(A) F(B) F(C)
F(f)

F(id)

F(h)

F(g)

Remark. We will often leave out the mapping of functions when defining
a functor, this mapping of functions can be inferred from the mapping of
objects that is done.

2.3.1 F-algebras

The notion of F-algebras originates in attempts to encode algebras in cate-
gory theory.

For an algebra we need an object and a set of arrows. We will be using
monoids as an example. For the object, we use Nat (the object of all natural
numbers and arrows like the successor and addition). We also need two
arrows for a monoid. A binary operation • : Int× Int→ Int and a unit arrow
e : 1→ Int for the identity element. These are defined as, • = + and e = 0.
Diagrammatically this is shown as follows

Int× Int

1 Int

•

e

19



However, we can actually combine these functions into one object using sums.

1 + Int× Int Int× Int

1 Int

[e,•]

inl

•inr

e

We now have an object that holds a monoid expression and an evaluation
function [e, •] that evaluates it. The monoid expression object can be repre-
sented as a functor M(X) = 1+X ×X. We have now arrived at the essence
of an F-Algebra: we have a functor M, an object Int and an evaluation func-
tion [e, •]. This is denoted as the M-algebra (Int, [e, •]). An F-algebra is thus
a way to represent taking a combination of objects to a single object. In
terms of FPL, we have a structure containing elements of a specific type
and combine that structure into a (new) element of that type.

Definition 2.29 (F-Algebra)

Given a functor F : C → C, an F-Algebra is a pair of (A ∈ ObC , ϕ :
F(A)→ A)

F(A)

A

ϕ

The notion of F-algebras ends up being surprisingly useful for not just
evaluation type functions. To see just how useful they are, we will first apply
one of the oldest tricks in category theory, try to create a category of it. We
thus want to make a category of F-algebras:

Definition 2.30 (Category of F-algebras)
The category of F-algebras, F-Alg consists of:

• ObF-Alg contains F-algebras, (A,ϕ).

• ArrF-Alg contains F-algebra homomorphisms. A homomorphism
is an arrow that preserves structure. A homomorphism from F-
algebra (A,ϕ) to F-algebra (B,ψ) is an arrow f : A → B, such
that

ψ ◦ F(f) = f ◦ ϕ (FAlg-Arrow)
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In other words the following diagram4 should commute

F(A) F(B)

A B

ϕ

F(f)

ψ

f

The laws for a category hold as follows.

• If we have the arrows f : (A,ϕ) → (B,ψ), g : (B,ψ) → (C,χ) ∈
ArrF-Alg, then we want to show that g ◦ f : (A,ϕ) → (C,χ) is an
arrow in F-Alg. Thus, we want to show that

F(f ◦ g) ◦ χ = ϕ ◦ f ◦ g

Proof.

B ψ ◦ F(f) = f ◦ ϕ
I χ ◦ F(g) = g ◦ ψ

F(f ◦ g) ◦ χ
= – Functor-Comp –

F(f) ◦ F(g) ◦ χ
= – Theorem 2.8 – ψ ◦ F(f)

= – B –
f ◦ ϕ χ ◦ F(g)

= – I –
g ◦ ψ

ϕ ◦ f ◦ g

F(A) F(B) F(C)

A B C

F(f)

ϕ

F(f◦g)

B

F(g)

ψ I χ

f

f◦g

g

• The associativity of arrows in F-Alg follows directly from the as-
sociativity of arrows in the domain and codomain of F.

• The identity arrow always exists because we can construct it as
follows for any F-algebra (A,ϕ) ∈ ObF-Alg:
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F(A) F(A)

A A

ϕ

F(idA)=idF(A)

ϕ

id

Because id ◦ ϕ = ϕ ◦ id, this is an arrow in F-Alg.

Thus, we have defined the category of F-algebras.

We can now apply one of the universal constructions on this new category,
Initial objects. The consequences of initial objects in F-algebras will kick-
start our research into recursion schemes.

4We will be using a lot of diagrams in definitions and proofs associated with F-Alg,
however do note that these diagrams are often in the domain and codomain of these
functors and not in the actual category F-Alg itself. Also when describing an arrow
f : (A,ϕ) → (B,ψ) this arrow is actually present in the domain of the functor.
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Part II

Canned recursion5

5Meijer et al. [8] came up with the term canned induction. The term canned recursion
is based on the same principle.
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Chapter 3

Iteration, Co-Iteration and
Primitive Recursion

The main ideas for iteration in a categorical context where first coined by
Meijer et al. [8]. This paper has been the ground work for lots of other
research into canned recursion. However, for this chapter we will be using
the the PhD thesis by Vene [13] as the main source, the main results of which
also appear in a paper by Uustalu and Vene [11]. Some proofs and examples
that are given are our own.

3.1 Catamorphism

In this chapter, we will start of with iteration, e.g. recursion where we only
get the result of the arrow one step back. When we apply this to the natural
numbers, it results in a recursion scheme as follows:

f(0) = c()

f(n+ 1) = h(f(n))

Applying this to lists results in:

f(nil()) = c()

f(cons(x, xs)) = h(x, f(xs))

This kind of recursion follows very naturally from the category F-Alg when
we look at initial objects in this category. We will first go through some
lemmas and a complicated theorem, but then we will see its usefulness.
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3.1.1 Initial F-algebras

An initial object in F-Alg should have a unique arrow from it to every
object. Thus, an initial F-algebra (µF, in) if it exists1, should make the
following diagram commute for any F-algebra (C,ϕ):

F(µF) F(C)

µF C

in

F(f)

ϕ

f

As this arrow is unique, it can only depend upon (C,ϕ), thus we will call
this arrow LϕM2. This is called a catamorphism and the arrows are called
banana’s (named by Meijer et al. [8]). This arrow f has to be unique, thus
the following should also hold

f ◦ in = ϕ ◦ F(f) ≡ f = LϕM (cata-Charn)

If we assume that (µF, in) is an initial F-algebra, then we can show that
some very useful lemmas hold for this F-algebra:

Lemma 3.1 (Cata-Self )

For any F-algebra (C,ϕ : F(C) → C) and initial F-algebra (µF, in :
F(µF)→ µF), we get the the catamorphism LϕM : µF→ C for which the
following law holds

LϕM ◦ in = ϕ ◦ FLϕM (cata-Self)

In other words, the following diagram commutes:

F(µF) F(C)

µF C

in

FLϕM

ϕ

LϕM

1Not every F-algebra category has initial objects. Any F-algebra where F is polynomial,
built up from products, sums, Identity functors and constant functors, does however have
an initial object. Any functors that we will use in this thesis will have an initial object.

2When applying the functor over a catamorphism we will often drop the brackets of
the functor as they already look like brackets themselves.
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Proof. This lemma follows directly from the definition of an arrow in F-
Alg.

Lemma 3.2 (Cata-Repl)

For any initial F-algebra (µF, in : F(µF) → µF) we get a catamorphism
from itself to itself, LinM, for which the following holds

id = LinM (cata-Repl)

In other words, the following diagrams commutes:

F(µF) F(µF)

µF µF

in

F(id)

FLinM

in

id

LinM

Proof. We know that id ◦ in = in ◦F(id). But then following from cata-Charn
with ϕ = id, it follows that id = LinM.

Lemma 3.3 (Cata-Fusion)

For any F-algebras (C,ϕ : F(C) → C) and (D,ψ : F(D) → D) with
arrow f : C → D and initial F-algebra (µF, in : F(µF)→ µF), we get the
two catamorphisms LϕM : µF→ C and LψM : µF→ D, where

f ◦ ϕ = ψ ◦ F(f) ⇒ f ◦ LϕM = LψM (cata-Fusion)

In other words, the following diagram should commute:
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F(D) F(C) F(µF)

D C µF

ψ ϕ

F(f)

FLψM

FLϕM

in

f

LψM

LϕM

Proof.

B f ◦ ϕ = ψ ◦ F(f)

f ◦ LϕM
= – cata-Charn –

f ◦ LϕM ◦ in

= – FAlg-Arrow –
f ◦ ϕ ◦ FLϕM

= – B –
ψ ◦ F(f) ◦ FLϕM

= – Functor-Comp –
ψ ◦ F(f ◦ LϕM)

LψM

F(D) F(C) F(µF)

D C µF

ψ ϕ

F(f)

FLψM

F(f◦LϕM)

FLϕM

in

f

LψM

LϕM

With these three lemmas we can prove the most important theorem of
catamorphisms, Lambeks theorem. Lambeks theorem is about a very import
property of any initial F-algebra (µF, in), namely that in is an isomorphism.

Theorem 3.4 (Lambek [6])

For the initial F-algebra (µF, in : µF→ FµF), in is an isomorphism with
in−1 defined as:

in−1 = LF(in)M

Proof. We will have to show that the identity laws hold for in−1 and LF inM.
We start with the first one:
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in ◦LF inM
= – cata-Fusion – in ◦F(in)

= – Equality of arrows –
in ◦F(in)

LinM
= – cata-Repl –

id

FµF F(FµF) FµF

µF FµF µF

in F in

F in

FLinM

FLF inM

in

in

LinM

id

LF inM

Thus, in ◦LF inM = id
Now we will prove it for the other equation:



LF inM ◦ in

= – cata-Self –
F in ◦FLF inM

= – F-functor –
F(in ◦LF inM)

= – see above –
F id

= – F-functor –
id

FµF F(FµF) FµF

µF FµF µF

in F in

F in

FLinM

FLF inM

in

in

LinM

id

LF inM

F



FµF F(FµF) FµF

µF FµF µF

in F in

F in

FLinM

FLF inM

in

in

LinM

id

LF inM
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Thus, for any initial F-algebra in−1 always exists and is LF inM.

From this theorem it follows that for any initial F-algebra (µF, in) in F-
Alg, µF is a fixed point up to isomorphism under application of in. In other
words, we can switch between functor and non-functor representation of an
object. Thus, an initial F-algebra is often an object that consists of some
combination of itself, for example a binary tree that consists of either a leaf
or two more binary trees.

Now that we proved all these lemmas and theorems we can put them to
good use. We can use Lambeks theorem to redefine our catamorphism in
terms of itself:

LϕM = ϕ ◦ FLϕM ◦ in−1

In other words, the following diagram commutes:

F(µF) F(C)

µF C

FLϕM

ϕin−1

LϕM

This is now a proper recursive definition of LϕM that we can implement and
calculate.

3.1.2 Application

Now that we have a proper definition of LϕM, we can utilise it. We will start
by showing how we can apply the theory on numbers:

The Nat object

Let us sy we have an object Nat that repres the natural numbers in any
Cartesian Closed Category C, where such an object object can exist.

Definition 3.5 (Nat object)
An object is a Nat object if it has the following arrows: zero : 1 → Nat,
succ : Nat→ Nat and prev : Nat→ 1 + Nat where:

prev ◦ zero = inl

prev ◦ succ = inr

such that

[zero, succ] : 1 + Nat→ Nat
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is an isomorphism with the inverse prev, thus

[zero, succ]−1 = prev

Or the following diagram commutes:

1 Nat Nat

1 + Nat

zero

inl

prev

succ

inl

[zero,succ]

Example 3.6 (Nat object in Set)
The Nat object in Set is quite intuitive, as object we take the set N.
zero is a function from {x} to N where

zero(x) = 0

and succ is a function from N to N where

succ(n) = n+ 1

prev is a function from N to N ∪ {x} where x is not a number. prev is
defined as

prev(n) =

x if n = 0

n− 1 otherwise

The initial object of N-Alg where N(X) = 1+X happens to have these
properties.
Lemma 3.7 (Initial N-algebra)

The initial object of N-Alg is a Nat object.

Proof. The initial object of N-Alg is the N-algebra (µN, in). Here, in is of
the type 1+µN→ µN, thus in is of the form [c : 1→ µN, h : µN→ µN]. We
take c = zero and h = succ.

That [zero, succ] is an isomorphism with [zero, succ]−1 = Lid+[zero, succ]M
follows directly from Lambeks theorem (Theorem 3.4).

We then have to prove the two laws for Nat objects

Lid+[zero, succ]M ◦ zero = inl

Lid+[zero, succ]M ◦ succ = inr
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Lid+[zero, succ]M ◦ zero

= – Sum-Left –
Lid+[zero, succ]M ◦ [zero, succ] ◦ inl

= – Isomorphism –
id ◦ inl

= – Identity-Left –
inl

Lid+[zero, succ]M ◦ succ

= – Sum-Right –
Lid+[zero, succ]M ◦ [zero, succ] ◦ inr

= – Isomorphism –
id ◦ inr

= – Identity-Left –
inr

1 + Nat 1 + (1 + Nat)

Nat

Nat 1 + Nat

1

[zero,succ]

id+Lid+[zero,succ]M

id+[zero,succ]

succ

inr

Lid+[zero,succ]M

[zero,succ]

id

zero

inl

Thus, the initial N-algebra is (Nat, [zero, succ]).

Now that we have an initial N-algebra, we can put it to use by defining a
few arrows. Let us start with some arrows that take the product of two Nat
objects and end up in one.

Example 3.8 (Add)
We would like to define an arrow add : Nat × Nat → Nat, that adds the
two numbers together using only the arrows we have defined so far. Let
us start by giving the recursive equations of add:

addy ◦ zero = consty

addy ◦ succ = succ ◦ addy

To create a catamorphism, we need an N-algebra (Nat, ϕ) such that
LϕM = add. We thus need to define a ϕ : 1+Nat→ Nat such that 1 gives
back our y and Nat gives back the successor:

addy = L[consty, succ]M

With the following diagram for the catamorphism:

1 + Nat 1 + Nat

Nat Nat

[zero,succ]

id+L[consty ,succ]M

[consty ,succ]

L[consty ,succ]M
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We can also define the multiplication arrow mul : Nat × Nat → Nat
in the same manner:

mul(x, y) = L[zero, add ◦〈id, consty〉]M(x)

But we can also create catamorphisms to any other N-algebra we can
think of.
Example 3.9 (Boolean catamorphism)

Let us say there exists an object Bool, encoding true false values, that
has the following three arrows: true : 1 → Bool, false : 1 → Bool and
not : Bool→ Bool. They are defined as follows:

not ◦ true = false

not ◦ false = true

Now any N-algebra we create with Bool is also a catamorphism from
Nat to Bool. Lets say we have the N-algebra (Bool, [true, not]). The
catamorphism from Nat to Bool we can now create is:

L[true, not]M

with the diagram:

1 + Nat 1 + Bool

Nat Bool

[zero,succ]

id+L[true,not]M

[true,not]

L[true,not]M

This is actually the arrow isEven, that returns true if the value is even
and false otherwise.

In general, if we have a set of recursive equations of the following form
with c : 1→ A and h : A→ A such that

f ◦ zero = c

f ◦ succ = h ◦ f

Then we can create a catamorphism for f as follows:

f = L[c, h]M
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The List object

We will now assume we have a ListA object in a category C that represents
a list of things of object A.
Definition 3.10 (List object)

An object is a List object if it has the following arrows: nil : 1 → ListA,
cons : A×ListA → ListA, head : ListA → 1+A and tail : ListA → 1+ListA,
where:

head ◦ nil = inl

tail ◦ nil = inl

head ◦ cons = inr ◦ fst

tail ◦ cons = inr ◦ snd

Or the following diagram commutes:

1 + ListA ListA

1 ListA A× ListA

1 +A A

inr

inl

nil

inl

tail

head

cons

snd

fst

inr

And
[nil, cons] : 1 +A× ListA → ListA

is an isomorphism where the following holds for the inverse:

(id+ fst) ◦ [nil, cons]−1 = head

(id+ snd) ◦ [nil, cons]−1 = tail

Thus, the following diagram commutes

1 +A× ListA

1 +A ListA 1 + ListA

(id+ fst)

[nil,cons]

(id+ snd)

head

[nil,cons]−1

tail
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Example 3.11 (List object in FPL and Set)
A List object in FPL is the type of a list containing objects of type A
with the necessary programs. In Set, the ListA object is the set of all
finite tuples of elements of the set A. The functions are easily derived
from this representation.

We can now find our Nat object in F-Alg for some F.

Lemma 3.12 (Initial List object)

The initial object of LA-Alg with LA(X) = 1 +A×X is a List object.

Proof. The initial object of LA-Alg is (µL, in : 1 + A × µL → µL). Thus,
in is of the form [c : 1 → µL, h : A × µL → µL]. We will take c = nil and
h = cons.

That [nil, cons] is an isomorphism with [nil, cons]−1 = Lid+(id×[nil, cons])M
follows from Lambeks theorem (Theorem 3.4).

We then have to prove that

(id+ fst) ◦ Lid+(id×[nil, cons])M ◦ nil = inl

(id+ snd) ◦ Lid+(id×[nil, cons])M ◦ nil = inl

(id+ fst) ◦ Lid+(id×[nil, cons])M ◦ cons = inr ◦ fst

(id+ snd) ◦ Lid+(id×[nil, cons])M ◦ cons = inr ◦ snd
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(id+ fst) ◦ Lid+(id×[nil, cons])M ◦ nil

= – Sum-Left –
(id+ fst) ◦ Lid+(id×[nil, cons])M ◦ [nil, cons] ◦ inl

= – Isomorphism –
(id+ fst) ◦ id ◦ inl

= – Identity-Left, Sum-+ –
[inl ◦ id, inr ◦ fst] ◦ inl

= – Sum-Left –
inl ◦ id

= – Identity-Left –
inl

(id+ snd) ◦ Lid+(id×[nil, cons])M ◦ nil

= – Sum-Left –
(id+ snd) ◦ Lid+(id×[nil, cons])M ◦ [nil, cons] ◦ inl

= – Isomorphism –
(id+ snd) ◦ id ◦ inl

= – Identity-Left, Sum-+ –
[inl ◦ id, inr ◦ snd] ◦ inl

= – Sum-Left –
inl ◦ id

= – Identity-Left –
inl

1 +A× ListA 1 +A× ListA 1 +A× ListA

1 +A ListA 1 + ListA

1 1

id+ fst

[nil,cons]

id+ snd

head

Lid+(id×[nil,cons])M

tail
inl

inl
nil

inl
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(id+ fst) ◦ Lid+(id×[nil, cons])M ◦ cons

= – Sum-Right –
(id+ fst) ◦ Lid+(id×[nil, cons])M ◦ [nil, cons] ◦ inr

= – Isomorphism –
(id+ fst) ◦ id ◦ inr

= – Identity-Left, Sum-+ –
[inl ◦ id, inr ◦ fst] ◦ inr

= – Sum-Right –
inr ◦ fst

(id+ snd) ◦ Lid+(id×[nil, cons])M ◦ cons

= – Sum-Right –
(id+ snd) ◦ Lid+(id×[nil, cons])M ◦ [nil, cons] ◦ inr

= – Isomorphism –
(id+ snd) ◦ id ◦ inr

= – Identity-Left, Sum-+ –
[inl ◦ id, inr ◦ snd] ◦ inr

= – Sum-Right –
inr ◦ snd

1 +A× ListA 1 +A× ListA 1 +A× ListA

1 +A ListA 1 + ListA

A ListA A× ListA

id+ fst

[nil,cons]

id+ snd

head

Lid+(id×[nil,cons])M

tail

inr

inr

fst

cons

snd

inr

Thus, the initial L-algebra for LA-Alg is (List, [nil, succ]).

Now that we have an initial L-algebra we can put it to use by defining a
few arrows. We will start with some arrows on lists of numbers.
Example 3.13 (Sum)

We would like to take the sum of a list of numbers. The recursive equa-
tions defined for sum : ListNat → Nat:

sum ◦ nil = zero

sum ◦ cons = add ◦(id× sum)

To create sum as a catamorphism we need to create a LA-algebra (Nat, ϕ :
1+Nat×Nat→ Nat) such that LϕM = sum. ϕ has to consist of a join, [c, h],
thus we have to create two arrows c : 1→ Nat and h : Nat×Nat→ Nat.
Because c is the case sum ◦ nil and h is the case sum ◦ cons, we can derive
both from the recursive equations:

c = zero

h = add

Thus, we have defined ϕ and we can define sum:

sum = L[zero, sum]M
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With the following diagram:

1 + Nat× ListNat 1 + Nat× Nat

ListNat Nat

[nil,cons]

id+(id×L[zero,sum]M)

[zero,sum]

L[zero,sum]M

However, there are also several arrows we can define for a list with an
arbitrary carrier.

Example 3.14 (Length)
We will define the arrow length : ListA → Nat, this arrow will count the
amount of elements in the list. This arrows has the following recursive
equations:

length ◦ nil = zero

length ◦ cons = succ ◦ snd ◦(id× length)

The catamorphism associated with it is

length = L[zero, succ ◦ snd]

The diagram is

1 + Nat× ListA 1 + Nat× Nat

ListA Nat

[nil,cons]

id+(id×L[zero,succ ◦ snd]M)

[zero,succ ◦ snd]

L[zero,succ ◦ snd]M

Example 3.15 (Map)

We will define the arrow map : BA×ListA → ListB, this arrow will apply
another arrow to every element of the list. This arrow has the following
recursive equations for an arrow f : A→ B:

mapf ◦ nil = nil

mapf ◦ cons = cons ◦(f × id) ◦ (id×mapf )

We will be defining a catamorphism for the partially applied version of
map, mapf with f : A→ B. To define this catamorphism we need to find
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a suitable LA-algebra (ListB, ϕ : 1 + A × ListB). As previously we need
to do a join for ϕ, [c, h]. We can then derive c and h from the recursive
equations:

c = nil

h = cons ◦(f × id)

Thus, we have defined ϕ and we can give the definition of mapf :

mapf = L[nil, cons ◦(f × id)]M

with the following diagram:

1 + Nat× ListA 1 + Nat× ListB

ListA ListB

[nil,cons]

id+(id×L[nil,cons ◦(f×id)]M)

[nil,cons ◦(f×id)]

L[nil,cons ◦(f×id)]M

For List and L we can also create a general structure. If we have a set of
recursive equations with c : 1→ B and h : A×B → B

f ◦ nil = c

f ◦ cons = h ◦ (id×f)

Then we get the following catamorphism:

f = L[c, h]M

3.2 Anamorphism

Just as we have seen with initial objects and products, we can also look at
the dual version of the catamorphism. However, to reach that point we will
first have to cover a few subjects that support it.

3.2.1 Terminal F-coalgebras

F-coalgebras are F-algebras but with the arrow reversed.

Definition 3.16 (F-coalgebra)

Given a functor F : C→ C, an F-coalgebra is a pair of (A,ϕ : A→ F(A))
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A

F(A)

ϕ

We can again create a category of F-coalgebras.

Definition 3.17 (Category of F-coalgebras)
The category of F-coalgebras, F-Coalg consists of:

• ObF-Coalg contains F-coalgebras (C,ϕ).

• ArrF-Coalg contains F-coalgebra homomorphism. A homomorphism
from F-coalgebra (C,ϕ) to F-coalgebra (D,ψ) is an arrow f : C →
D, such that

F(f) ◦ ϕ = ψ ◦ f (FCoalg-Arrow)

In other words, the following diagram should commute

C D

F(C) F(D)

ϕ

f

ψ

F(f)

The laws for a category hold analogous to those of F-Alg.

Finally, we will look at terminal objects in F-Coalg. A terminal object
in F-Coalg should have a unique arrow from every F-coalgebra that ends
up in it. Thus, for every F-coalgebra (C,ϕ) and the terminal F-coalgebra
(νF, out), the follow diagram should commute:

C νF

F(C) F(νF)

ϕ

f

out

F(f)
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Just as with the catamorphism, we have a special name for f , an anamor-
phism (ϕ). The brackets are called lenses, both these names are again devised
by Meijer et al. [8]. We can again state the uniqueness of f in the form of
an equation:

f ◦ ϕ = out ◦F(f) ≡ f = (ϕ) (ana-Charn)

There is also a set of useful lemmas we can now prove about terminal F-
coalgebras. These will be very similar to the lemmas of the catamorphism
and all proofs will go analogous.

Lemma 3.18 (Ana-Self )

For any F-coalgebra (C,ϕ : C → F(C)) and terminal F-coalgebra (νF, out :
νF→ F(νF)), we get the anamorphism (ϕ), following the equation

(ϕ) ◦ ϕ = out ◦F(ϕ) (ana-Self)

In other words, the following diagram commutes:

C νF

F(C) F(νF)

ϕ

(ϕ)

out

F(ϕ)

Lemma 3.19 (Ana-Repl)

For any terminal F-coalgebra (νF, out : νF→ F(νF)

id = (out) (ana-Repl)

In other words, the following diagrams commutes:

νF νF

F(νF) F(νF)

out

id

(out)

out
F(id)

F(out)
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Lemma 3.20 (Ana-Fusion)

For any F-coalgebras (C,ϕ : C → F(C)) and (D,ψ : D → F(D)) with
arrow f : C → D and terminal F-coalgebra (νF, out : νF→ F(νF)

ψ ◦ f = F(f) ◦ ϕ ⇒ (ψ) ◦ f = (ϕ) (ana-Fusion)

In other words, the following diagram commutes:

C D νF

F(C) F(C) F(νF)

ϕ

f

(ϕ)

ψ

(ψ)

out

F(f)

F(ϕ)

(ψ)

There also exists a dualisation of Lambeks theorem, the proof is analo-
gous to that of the original.

Theorem 3.21 (Dual of Lambek [6])

The terminal F-coalgebra out : νF → F(νF) is an isomorphism with
out−1 defined as:

out−1 = (F(out))

With all this work done we can define the anamorphism properly:

(ϕ) = out−1 ◦ F(ϕ) ◦ ϕ

3.2.2 Application

An anamorphism creates a possible infinite structure from a seed. The arrow
generates from an object C, a new part of the infinite structure and a new
seed. We will see how this comes into action by looking at streams.

The Stream object

Definition 3.22 (Anamorphism on streams)
An object is a Stream object if it has the following arrows, cons : A ×
StreamA → StreamA, head : StreamA → A and tail : StreamA → A.
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Where

head ◦ cons = fst

tail ◦ cons = snd

Such that
〈head, tail〉 : A× StreamA → StreamA

is an isomorphism with

〈head, tail〉−1 = cons

Or the following diagram commutes:

StreamA

A A× StreamA StreamA

head〈head,tail〉tail

fst

cons

snd

Example 3.23 (Stream object in Set)
In Set the StreamA object is the set of infinite tuples carrying elements
of A. The functions are then trivially defined.

The initial object of the functor SA(X) = A×X happens to have these
properties
Lemma 3.24 (Initial SA-algebra)

The initial object of a SA-algebra is a Stream object.

Proof. This proof is analogous to the proof of the dual of Lemma 3.7.

Now that we have the terminal SA-coalgebra (StreamA, 〈head, tail〉, we will
show how to go from a recursive scheme to an anamorphism:
Lemma 3.25 (Anamorphism from recursive equations)

For any f : A → StreamB with the following recursive equations and
c : A→ B, h : A→ A

head ◦f = c

tail ◦f = f ◦ h

It holds that with the SA-coalgebra (A, 〈c, h〉),

f = (〈c, h〉)
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Proof. We assume that we have the arrows c : A → B, h : A → A and
f : A→ StreamB with

head ◦f = c

tail ◦f = f ◦ h

We now want to prove that
f = (〈c, h〉)

Following from head ◦f = c, it holds that

head ◦f = id ◦ fst ◦〈c, h〉

And following from tail ◦f = f ◦ h, it holds that

tail ◦f = f ◦ snd ◦〈c, h〉

We can combine these two equations into

〈head, tail〉 ◦ f = (id×f) ◦ 〈c, h〉

Then following from ana-Charn we get that

f = (〈c, h〉)

Example 3.26 (Stream of natural numbers)
We would like to create the infinite stream of natural numbers following
the recursive equations with nats : Nat→ StreamNat:

head ◦ nats = id

tail ◦ nats = nats ◦ succ

To create an anamorphism for nats, we need a SNat-coalgebra (Nat, ϕ :
Nat→ Nat× Nat) such that

nats = (ϕ)

Following from Lemma 3.25, ϕ = 〈id, succ〉. Thus,

f = (〈id, succ〉)
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Nat StreamNat

Nat× Nat Nat× StreamNat

〈id,succ〉

(〈id,succ〉)

〈head,tail〉

id×(〈id,succ〉)

Example 3.27 (Zip two streams)
We would like to zip two streams such that they alternate. The arrow
zip : StreamA×StreamA → StreamA has the following recursive equations:

head ◦ zip = head ◦ fst

tail ◦ zip = 〈snd, tail ◦ fst〉

Thus, we get the following anamorphism

zip = (〈head ◦ fst, 〈snd, tail ◦ fst〉〉

StreamA × StreamA StreamA

A× StreamA × StreamA A× StreamA

〈head ◦ fst,〈snd,tail ◦ fst〉〉

(〈head ◦ fst,〈snd,tail ◦ fst〉〉)

〈head,tail〉

id×(〈head ◦ fst,〈snd,tail ◦ fst〉〉)

3.3 Primitive recursion

Now that we have shown how iteration works in category theory, we attempt
to do the same for more interesting types of recursion. This section focus on
primitive recursion. Using the natural numbers, primitive recursion looks as
follows:

f(0) = c()

f(n+ 1) = h(f(n), n)

Thus, not only does a step in our function depend upon the result of the
previous step, it also depends on the argument currently given.

Thus, for a step in an arrow µF→ C every step in our recursive function
should not just take F(C) but also F(µF). Our evaluation arrow ϕ thus
becomes an arrow of type F(C × µF)→ C and has the following diagram:
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F(µF) F(C × µF)

µF C

F〈f,id〉

in ϕ

f

We can create the factorial function in this recursive scheme by taking
F = N, µF = Nat and C = Nat with

ϕ = [one,mul ◦(id× succ)]

resulting in the following diagram

1 + Nat 1 + (Nat× Nat)

Nat Nat

id+〈fact,id〉

[zero,succ] [one,mul ◦(id× succ)]

fact

However, as this is not a well-defined catamorphism, we do not yet have
a definition for fact. Fortunately if we have a diagram such as the one above
the catamorphism exists.

Corollary 3.28 (Primitive recursion in a catamorphism [7])

For any initial F-algebra (µF, in) and two arrows f : µF → C and ϕ :
F(C × µF)→ C, the following holds:

f ◦ in = ϕ ◦ F〈f, id〉 ≡ f = fst ◦L〈ϕ, in ◦F(snd)〉M (cata-PrimRec)

Or the following diagram commutes

F(µF) F(C × µF)

µF C

F〈f,id〉

in ϕ

f

iff
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F(µF) F(C × µF)

µF C × µF

C

FL〈ϕ,in ◦F(snd)〉M

in 〈ϕ,in ◦F(snd)〉

L〈ϕ,in ◦F(snd)〉M

f
fst

Thus, we can create a proper catamorphism for our fact arrow:

fact = fst ◦L〈ϕ, in ◦F(snd)〉M

To be able to reason about paramorphisms, a bit of notation is introduced
to capture this recursion more compactly.

Definition 3.29 (Paramorphism)

For a functor F with an initial F-algebra (µF, in) and an F-algebra (C,ϕ),
the paramorphism is defined as

〈ϕ〉= fst ◦L〈ϕ, in ◦F(snd)〉M (para-Def)

Remark. The paramorphism named as such originally appeared in a paper
by Meertens called Paramorphisms [7]. Primitive recursion was also analysed
in a paper by Geuvers [2]. He analysed the precise differences in a categorical
sense between iteration and primitive recursion and dualised them.

Example 3.30 (Factorial as paramorphism)
We can now very easily write our factorial function as a paramorphism

fact = 〈 [one,mul ◦(id× succ)]〉

We can create many types of recursion using catamorphisms and anamor-
phisms. We have shown how to create iteration and primitive recursion.
However, catamorphisms are actually more powerful than just those two op-
tions. We will be looking at an expansion on cata- and anamorphisms in the
next chapter.
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Chapter 4

Hylomorphism

The Hylomorphism was first coined in a paper by Meijer et al. [8]. However,
to have the hylomorphism be the unique solution to its recursive equations,
the category and funtor had to have coinciding initial F-algebras and ter-
minal F-coalgebras. This method will be discussed first. Recently however,
Capretta et al. [1] did work on finding a way around these restrictions by
proving that for certain F-coalgebras the recursive equations are unique. We
will show these proofs and theorems too.

4.1 Hylomorphism

We have seen how to create arrows from an initial F-algebra to any F-algebra
and how to create an arrow from any F-coalgebra to a terminal F-coalgebra.
However, sometimes we would like to create a recursive arrow from any F-
coalgebra to any F-algebra. One example of when this is useful, is with quick
sort.

qsort : ListA → ListA recursive equations are as follows:

qsort ◦ nil = nil

qsort ◦ cons = concat ◦〈qsort ◦ filter≤, cons ◦〈fst, qsort ◦ filter>〉〉
which is also written as

qsort ◦ cons(a, l) = concat(qsort(l≤a), cons(a, qsort(l>a)))

Where filter≤ : (A × ListA) → ListA creates a list of all elements smaller
than or equal to a and filter> : (A× ListA)→ ListA does the same but with
elements larger than a.

One serious problem with transforming these equations into a catamor-
phism, is that the input is transformed before we do our recursive call and
after. Thus a simple catamorphism or anamorphism is insufficient. What
we can do instead, is combine the cata and anamorphism. We do this by
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first using an anamorphism to build up a temporary useful structure which
we then collapse using a catamorphism.

We find the structure for the catamorphism and anamorphism by rewrit-
ing our second recursive equations.

qsort ◦ cons = concat ◦〈fst ◦ snd, cons ◦(id× snd)〉
◦ (id× qsort× qsort)

◦ 〈fst, 〈filter≤, filter>〉〉

The middle line looks very much like the structure of a binary tree. Thus,
we may use a recursive function like:

qsort = qconcat ◦TA(qsort) ◦ qpartition

with

TA(X) = 1 +A×X ×X
TA(f) = [id, id×f × f ]

qpartition : ListA → 1 +A× ListA × ListA

qpartition = [inl, 〈fst, 〈filter≤, filter>〉〉]

qconcat : 1 +A× ListA × ListA → ListA

qconcat = [nil, concat ◦〈fst ◦ snd, cons ◦(id× snd)〉]

and a diagram that looks like:

1 +A× ListA × ListA 1 +A× ListA × ListA

ListA ListA

TA(qsort)

qconcatqpartition

qsort

Here, qsort is the unique solution to the equation f = qconcat ◦TA(f) ◦
qpartition. Thus, because qsort is unique and only depends on qconcat and
qpartition we will define qsort as Jqpartition, qconcatK. This is called a hy-
lomorphism and the JK are called envelopes as named by Meijer et al. [8].
However, there are some restrictions when talking about hylomorphisms.

That qsort is the unique solution to the equation f = qconcat ◦TA(f) ◦
qpartition, is not as trivial as with the cata- and anamorphism. The cata- and
anamorphism could use the properties of the initial and terminal F-algebras,
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however both (ListA, qpartition) and (ListA, qconcat) are not terminal or ini-
tial. In some categories this is easily solved, when the initial F-algebra and
terminal F-coalgebra coincide we can very easily show that the equation has
a unique solution.

If we split up qsort in two parts, an anamorphism and a catamorphism,
then

qsort = LqconcatM ◦ (qpartition)

with the following diagram, where Tree is the object of the initial TA-algebra
and terminal TA-coalgebra

1 +A× ListA × ListA 1 +A× Tree× Tree 1 +A× ListA × ListA

ListA TreeA ListA

TA (qpartition)

in

TALqconcatM

concatqpartition

(qpartition)

out

LqconcatM

This is, as mentioned above, the technique commonly used when describ-
ing hylomorphisms and this the way that Meijer et al. originally coined them
[8]. However, having coinciding initial F-algebras and terminal F-coalgebras
is a very strong restriction, our main category of interrest FPL does not
have this property for example.

For this reason Capretta et al. came up with the idea of using so-called
recursive F-coalgebras to be able to prove uniqueness of a hylomorphism. A
recursive F-coalgebra intuitively breaks up its object into smaller parts, thus
always resulting in a well defined function.
Definition 4.1 (Recursive F-coalgebra)

An F-coalgebra (C,ϕ) is recursive iff for every F-algebra (D,ψ) there
exists a hylomorphism. Thus, the following equation holds:

f = ψ ◦ F(f) ◦ ϕ ≡ f = Jψ,ϕK (hylo-Charn)

Or in other words

F(C) F(D)

C D

FJψ,ϕK

ψϕ

Jψ,ϕK
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Remark. Capretta et al. used a different notation in their paper [1]. Hylo-
morphism are instead called coalgebra-to-algebra morphisms and are denoted
by fixF,ϕ(ψ). However, we will be using the original notation from Meijer et
al.

Thus, we can actually use any TA-algebra as the second part of a hy-
lomorphism if we have a recursive F-coalgebra. If we for example take the
TA-algebra (Bool, qsearchp : 1 +A×Bool×Bool→ Bool) with p : A→ Bool
and

qsearchp = [false, or ◦(p× id× id)]

Then Jqpartition, qsearchpK will check if there is an element in a list that
satisfies p. Thus, the trick now becomes finding recursive F-coalgebras.

4.2 Recursive F-coalgebras

The first and very obvious way to find a recursive F-coalgebra is by using
the technique used by Meijer et al.

Lemma 4.2 (Recursiveness in special cases)

If for a functor F it holds that the initial F-algebra (µF, in) and terminal
F-coalgebra (νF, out) coincide, they have the following properties

νF = µF

in−1 = out

Any F-coalgebra is recursive.

Proof. We take an arbitrary functor F where the initial F-algebra (µF, in)
and terminal F-coalgebra (νF, out) coincide. We then take an arbitrary F-
coalgebra (C,ϕ), we have to prove that for any F-algebra (D,ψ), the hylo-
morphism Jϕ,ψK exists.

We can construct the anamorphism from (C,ϕ) to our terminal F-coalgebra:
(ϕ) : C → νF

F(C) F(νF)

C νF

F(ϕ)

ϕ

(ϕ)

out

We can also construct the catamorphism from our initial F-algebra to
(D,ψ): LψM : µF→ D
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F(µF) F(D)

µF D

in

FLψM

ψ

LψM

We can then combine our anamorphism and catamorphism to create an
arrow from C to D: (ϕ) ◦ Lψ]M, we will denote µF and νF as µνF

F(C) F(µνF) F(D)

C µνF D

F(ϕ)

in

FLψM

ψϕ

(ϕ)

(ϕ) ◦ LψM

out

LψM

Thus, following from the uniqueness of the anamorphism and catamor-
phism, it follows that (ϕ) ◦ Lψ]M is the unique arrow from C to D and thus
following from hylo-Charnthe hylomorphism from an arbitrary C to an ar-
bitrary D exists.

However, we would also like to say something about the case that an F-
coalgebra is recursive and the initial and terminal F-algebra and F-coalgebra
don’t coincide. We provide a few lemmas with which to show that an F-
coalgebra is recursive without that restriction.

We first need a starting point from which we can prove that an F-
coalgebra is recursive. This starting point is the initial F-algebra.

Lemma 4.3 (Recursive inital F-algebra)

If a functor F has an initial F-algebra (µF, in), then (µF, in−1) is a recur-
sive F-coalgebra.

Proof. For a functor F with an initial F-algebra (µF, in) and F-algebra (C,ϕ),
there exists a unique arrow from µF to C. This arrow is the catamorphism
LϕM. This catamorphism is the unique arrow, thus it is also also the hylo-
morphism from (µF, in−1) to (C,ϕ).

We now want to have some way to prove that another F-coalgebra is
recursive from an existing recursive F-coalgebra.
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Lemma 4.4 (Reduction of recursiveness)

Let F : C→ C be a functor, (A,α) a recursive F-coalgebra and (B, β) a
F-coalgebra.

If there are F-coalgebra morphisms h : A → B and k : B → F(A)
such that β = F(h) ◦ k, then (B, β) is recursive.

In other words, if the following diagram commutes for any F-algebra
(C,ϕ)

C A B

F(C) F(A) F(B)

F(F(A))

Jα,ϕK

α

h

k
βϕ

FJα,ϕK

F(α)

F(h)

F(K)

Then so does this diagram

C B

F(C) F(B)

ϕ

Jβ,ϕK

β

FJβ,ϕK

Proof. For a functor F with a recursive F-coalgebra (A,α) and a F-coalgebra
(B, β) with F-coalgebra morphisms h : A→ B and k : B → F(A) such that
β = F(h) ◦ k. We take an arbitrary F-algebra (C,ϕ). We then want to prove
that the hylomorphism Jβ, ϕK exists.

Thus, we want to prove that there exists a unique f equal to Jβ, ϕK.
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B F(α) ◦ k = F(k) ◦ β

f

= – B, hylo-Charn –
ϕ ◦ FJα,ϕK ◦ k

= – hylo-Charn –
ϕ ◦ F(ϕ ◦ FJα,ϕK ◦ α) ◦ k

= – F-functor –
ϕ ◦ F(ϕ ◦ FJα,ϕK) ◦ F(α) ◦ k

= – B –
ϕ ◦ F(ϕ ◦ FJα,ϕK) ◦ F(k) ◦ β

= – F-functor –
ϕ ◦ F(ϕ ◦ FJα,ϕK ◦ k) ◦ β

= – B, hylo-Charn –
ϕ ◦ F(f) ◦ β

= – hylo-Charn –
Jβ, ϕK

C A B

F(C) F(A) F(B)

F(F(C)) F(F(A))

Jα,ϕK

α
k

β

f

Jβ,ϕK

ϕ

FJα,ϕK

F(α)

B

F(f)

F(K)
F(ϕ)

F(FJα,ϕK)

To show that f is unique, suppose that there exists another hylomorphism
f ′ : B → C. Then if we take f ′◦h, we can prove this is equal to ϕ◦F(f ′◦h)◦α.
But from the unicity of Jα,ϕK, it follows that f ′ = f .



B β ◦ h = F(h) ◦ α

f ′ ◦ h
= – hylo-Charn –

ϕ ◦ F(f ′) ◦ β ◦ h
= – B –

ϕ ◦ F(f ′) ◦ F(h) ◦ α
= – F-functor –

ϕ ◦ F(f ′ ◦ h) ◦ α

C A B

F(C) F(A) F(B)

Jα,ϕK

α

h

β

f ′

ϕ

FJα,ϕK

F(h)

F(f ′)

The previous is one of the most import ones, we will use it prove some
small lemmas to allow us to prove recursiveness of F-coalgebras more easily.

Lemma 4.5 (Recursiveness over functors)

If a functor F has a recursive F-coalgebra (C,ϕ) then (F(C),F(ϕ)) is also
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recursive.

Proof. We apply Lemma 4.4 with h = ϕ and k = idF(C).

To demonstrate how this recursiveness property of F-coalgebras is used,
we will show how to create a hylomorphism that goes back one or two steps,
instead of just one. We will begin by proving a lemma and then show how
we can use this lemma by creating the Fibonacci function.

Lemma 4.6 (namePararecursive reduction)

If a functor F has a recursive F-coalgebra (A,α), then (A,F〈idA, α〉 ◦ α)
is a recursive F(ID× F)-algebra.

Proof. We take a functor F with a recursive F-coalgebra (A,α), and an
arbitrary F(ID × F)-algebra (C,ϕ). For clarity we let ϕ× = 〈ϕ,F(fst)〉 :
F(C × F(C)) → C × F(C) We also let f = fst ◦Jα,ϕ×K, we then want to
prove that

f = JF〈id, α〉 ◦ α,ϕK

.

F(C × F(C))
F((C×F(C))×
F(C × F(C)))

F(A× F(A))

F(C × F(C))
F((C×F(C))×
(C × F(C)))

F(A×A)

F(C × F(C)) F(C × F(C)) F(A)

C C × F(C) A

F(fst×F(fst))

F(id×〈ϕ,F(fst)〉)

F(Jα,ϕ×K×F(Jα,ϕ×K))

F(f×F(f))

F(fst× snd)

F(id×α

F(Jα,ϕ×K×Jα,ϕ×K)

ϕ

F〈id,id〉

ϕ×

F〈id,α〉

F〈id× id〉

FJα,ϕ×K

fst Jα,ϕ×

f

α
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B ϕ× = 〈ϕ,F(fst)〉
I f = fst ◦Jα,ϕ×K

f

= – I –
fst ◦Jα,ϕ×K

= – hylo-Charn –
fst ◦ϕ× ◦ FJα,ϕ×K ◦ α

= – B –
fst ◦〈ϕ,F(fst)〉 ◦ FJα,ϕ×K ◦ α

= – Product-Left –
ϕ ◦ FJα,ϕ×K ◦ α

= – paring –
ϕ ◦ F(fst× snd) ◦ F〈id, id〉 ◦ FJα,ϕ×K ◦ α

= – pairing –
ϕ ◦ F(fst× snd) ◦ F(Jα,ϕ×K× Jα,ϕ×K) ◦ F〈id, id〉 ◦ α

= – hylo-Charn –
ϕ ◦ F(fst× snd) ◦ F(Jα,ϕ×K× (ϕ× ◦ FJα,ϕ×K ◦ α)) ◦ F〈id, id〉 ◦ α

= – F-functor –
ϕ ◦ F(fst× snd) ◦ F(id×ϕ×) ◦ F(Jα,ϕ×K× FJα,ϕ×K) ◦ F(id×α) ◦ F〈id, id〉 ◦ α

= – B –
ϕ ◦ F(fst× snd) ◦ F(id×〈ϕ,F(fst)〉) ◦ F(Jα,ϕ×K× FJα,ϕ×K) ◦ F(id×α) ◦ F〈id, id〉 ◦ α

= – Product-Left –
ϕ ◦ F(fst×F(fst)) ◦ F(Jα,ϕ×K× FJα,ϕ×K) ◦ F(id×α) ◦ F〈id, id〉 ◦ α

= – I, Product-Left –
ϕ ◦ F(f × F(f)) ◦ F〈id, α〉 ◦ α

= – hylo-Charn –
JF〈id, α〉 ◦ α,ϕK

f is unique as a consequence of Jα,ϕ×K being unique.

Using these lemmas, we will define an example function to show how
these lemmas can be applied.

Example 4.7 (Fibonacci using a hylomorphism)
We will define the Fibonacci function fib : Nat → Nat. fib has the

55



following well known recursion scheme:

fib ◦ zero = one

fib ◦ succ ◦ zero = one

fib ◦ succ ◦ succ = add ◦〈fib ◦ succ, fib〉

We start by applying Lemma 4.3 to the functor N with initial N-
algebra (Nat, [zero, succ]) as per Lemma 3.7. This results in the recursive
F-coalgebra (Nat, prev). By Lemma 4.6 we get the recursive N-coalgebra
(Nat, (id+〈id, prev〉) ◦ prev), we will call the arrow of the N-coalgebra,
fibpre : Nat → 1 + Nat× (1 + Nat). Concretely fibpre applies prev either
one or two times depending on its input and thus gives back a sort of
tuple of the previous two numbers.

Now that we have our recursive N-coalgebra we can find an N-algebra
such that we follow our recursion scheme.

fibpost = [zero, [succ ◦ zero ◦ snd, add] ◦ distr]

Thus, our fibonacci function is

fib = Jfibpre, fibpostK

F(Nat) F(Nat)

Nat Nat

FJfibpre,fibpostK

fibpostfibpre

Jfibpre,fibpostK
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Chapter 5

Histomorphism

In this chapter we will be discussing course-of-value recursion as described
by Uustalu and Vene in [11] and later expanded upon by Vene in his PhD
thesis [13].

Course-of-value recursion is recursion where every previous results can be
used. Using the natural numbers course-of-value recursion has the following
recursion scheme:

f(0) = c()

f(n+ 1) = h(f(0), f(1), · · · , f(n))

This recursion scheme allows us to define some more new functions like the
Fibonacci function.

However, to define a structure that captures this new information, like
we did before, is a bit more difficult in this case.

5.1 The codata structure

If we have an arrow f : Nat → C that uses course-of-value recursion, we
would have a diagram

N(Nat) N(X)

Nat C

N(g)

in ϕ

f

We would like X to capture the result of f for every previous value and g to
create that structure. We will first focus on X.

Thus, we would like to create an object that captures the structure of
Nat but annotated with every previous value of f . This would result in a
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tree like structure, where every node has a value and zero or one branch. A
layer of this tree could thus be represented by an object X with the arrow

〈value, branch〉 : X → C × (1 +X)

Where value goes to the value of the function for the number represented
by the current layer of X. branch goes to either nothing if we represent 0
or another layer for any other number. We can write this more generally in
terms of N as follows:

〈value, branch〉 : X → C × N(X)

We can now abstract away from our original Nat object and look at any F
with initial F-algebra (µF, in) and arrow f : µF→ A with the diagram

F(µF) F(X)

µF A

N(g)

in ϕ

f

We would thus get an object X with an arrow

〈value, branch〉 : X → A× F(X)

Now every layer of our tree branches with the amount of branches the functor
creates. For N this is 1, however e.g. for Tree this would be 2.

Now that we have some specifications for our object X, we can start
looking at our arrow g. g should, for a given µF, create our object X.
Building up a tree from some value happens to be something an anamorphism
is very good at. However, for an anamorphism to work, we first need a functor
where our X is the terminal object.

Definition 5.1 (F×
A functor)

Given a functor F and an object A, F×A is defined as

F×A (X) = A× F(X)

F×A (f) = id×F(f)

With the terminal F×A -algebra

(νF×A , out : νF×A → F×A (νF×A ))
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From this definition it follows that out = 〈value, branch〉 and out−1 is an
arrow that constructs a tree from an A and a F(νF×A ).

Now that we have all parts, we can finally construct our g as an anamor-
phism on the functor F×A :

g = (
〈
f, in−1µ F

〉
)

This anamorphism is explained by the following diagram

νF×A µF A

F×A (νF×A ) F(µF) F×A (µF)

out

(〈f,in−1〉)
f

〈f,in−1〉
in−1 fst

snd

F×A (〈f,in−1〉)

Thus, we have now arrived at our finished diagram for course-of-value recur-
sion:

F(µF) F(νF×A )

µF A

F(〈f,in−1〉)

in ϕ

f

This diagram consists of a morphism between the initial F-algebra and
what is called a F-cvA-algebra.

Definition 5.2 (F-cvA-algebra)

Given a functor F, an object A and the companying F×A functor, an F-
cvA-algebra is a pair

(A,ϕ : F(νF×A )→ A)

With this final definition, we can define our histomorphism as the unique
solution of f for a course-of-value recursion diagram.

Definition 5.3 (Histomorphism)

Given a functor F and a F-cvA-algebra (A,ϕ), {ϕ}, called a histomor-
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phism, is the unique arrow making the following diagram commute

F(µF) F(νF×A )

µF A

F(〈{ϕ},in−1〉)

in ϕ

{ϕ}

Or the following equation holds

f ◦ in = ϕ ◦ F(
〈
f, in−1

〉
) ≡ f = {ϕ} (histo-Charn)

Thus, the histomorphism computes the histomorphism for all smaller
pieces of the the argument in an anamorphism and then computes the final
step using ϕ.

5.2 Application

We will show how a histomorphism is applied to a few problems in the functor
N. With the functor N and an object C, we get the following definition for
our N×C functor

N×C (X) = C × (1 +X)

And we get the terminal object νN×C , with the arrow as seen in the previous
section

〈value, branch〉 : X → C × (1 +X)

Our anamorphism diagram will look like

Nat νN×C

C × (1 + Nat) C × (1 + νN×C)

(〈{ϕ},in−1〉)

〈{ϕ},in−1〉 out

id×(id+(〈{ϕ},in−1〉))

And the histomorphism diagram will look like
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1 + Nat 1 + νN×C

Nat C

N(〈{ϕ},in−1〉)

in ϕ

{ϕ}

Example 5.4 (Fibonacci using a Histomorphism)
We will use the same definition of the Fibonacci function as in Exam-
ple 4.7:

fib : Nat→ Nat

fib ◦ zero = one

fib ◦ succ ◦ zero = one

fib ◦ succ ◦ succ = add ◦〈fib ◦ succ, fib〉

We will use a histomorphism from Nat to Nat, thus we get the following
diagram, with ϕ : N νN×Nat → Nat:

1 + Nat 1 + νN×Nat

Nat Nat

N (〈{ϕ},in−1〉)

in ϕ

{ϕ}

Thus, we now need to define ϕ. It has to start with a join between the
1 and the νN×Nat. In the case of 1 the result is one as per the first line
of the recursion scheme. In the case of νN×Nat we have to do additional
work.

ϕ = [one, s0 : N×Nat → Nat]

We can first unpack the colist with out and then distribute the output
from the previous application over 1+N×Nat to obtain the type Nat× 1+
Nat×N×Nat. We can again join this type. In the case of Nat×1, the result
is again one as per the second line of the recursion scheme. In the other
case we again need to do some additional work.

s0 = [one ◦ snd, s1 : Nat× N×Nat → Nat] ◦ distr ◦ out

s1 is the recursive case from the recursion scheme. Thus, we need to add
the result of the previous application and the result before that. The
first element of the product we get as input is the result of the previous
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application of the function. The value of the colist is the result of the
application that precedes it. Then we add those two values together

s1 = add ◦(id× value)

Thus,
ϕ = [one, [one ◦ snd, add ◦(id× value)] ◦ distr ◦ out]

Which we can show diagrammatically

1 1 + νN×Nat νN×Nat

Nat× (1 + νN×Nat)

Nat× 1 Nat× 1 + Nat× νN×Nat Nat× νN×Nat

1 Nat× Nat

Nat

inl

one
ϕ

inr

out

distr

inl

snd

[one,add ◦(id× head)]

inr

id× value

one

add

And our final function becomes:

f = {[one, [one ◦ snd, add ◦(id× head)] ◦ distr ◦ out]}

5.3 Colist recursion

However, we can do more with our colist of previous values than just look
back a fixed number of times. We can actually look through the entire list
every time. It is, however, no longer possible to apply value and branch a set
number of times to get the previous values needed. We need some recursion
to look through the entire colist. This creates a bit of a problem, the colist
we have created is the terminal object of the F×C -coalgebra, it is not the
initial object. Thus, we cannot perform a catamorphism or any derivative
of it on the F×C -coalgebra. To bypass this, Kabanov and Vene described in a
later paper that they where working in a category where initial and terminal
objects coincide [5]. This is however not the case in our category FPL.

However, to show how recursion on a colist could be used we will give an
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example where we do assume that the initial and terminal objects coincide.

Example 5.5 (Defining f(n) = 2n)

We will define the function f(n) = 2n. which can be written as

f(n+ 1) = 1 +
n∑
i=0

f(i)

Our function will be a histomorphism of Nat, thus we start by deciding
how many base cases we need. We need at least one base case with a
histomorphism and in this case no more with f(0) = 1. Thus, we can
start with defining our function

f(n) = {[one, ϕ]}
ϕ : νN×Nat → Nat

We want to add all elements of νN×Nat and then take the successor for the
+1.

ϕ = succ ◦ sum

We would like to define sum as a catamorphism. As our functor we
take N×C and the initial N×C -algebra is (νN×C , out−1). We can create our
catamorphism diagram with the F-algebra (C, [fst, add] ◦ distr) to define
sum

A× (1 + νN×C ) A× (1 + C)

νN×C C

out−1

N×C L[fst,add]◦distrM

[fst,add]◦distr

L[fst,add]◦distrM

Thus, our entire function becomes

f = {[one, succ ◦L[fst, add] ◦ distrM]}

We can show that the type of this function is correct with the following
diagram
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1 1 + νN×Nat N×Nat

Nat

Nat

inr

one
[one,succ ◦ sum]

inl

sum

succ

Thus, we have defined our function using a histomorphism.
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Chapter 6

Conclusions

We have seen how we can define recursive functions in a functional pro-
gramming language using the building blocks of category theory. We have
detailed a few methods of achieving this. We started with the work of Meijer
et al. [8] in which the authors describe the basic building blocks of recur-
sion and co-recursion, catamorphisms and anamorphism. We showed how
these building blocks work and what laws apply to them. We then used
them to create a few example functions with different functors as carriers.
We showed how these two arrows can be combined to create many different
functions. We also studied when we can combine them and when not as per
the work of Capretta et al. [1]. Lastly, we showed a fourth technique to
create course-of-value recursion by Uustalu and Vene in their paper [11] and
later in Vene’s PhD thesis [13].

6.1 Future work

There are more canned recursion schemes out there. Future work could focus
on the line of work initiated by Vene with both Uustalu and Capretta. A
closer look at monads and comonads as described in both the paper about
hylomorphism from Capretta et al. [1] and a paper about recursion schemes
from comonads from the three of them [12] could be fruitful. Kabanov and
Vene analysed a expansion on histomorphisms, dynamorphism [5]. Hinze et
al. proposed a new scheme [4], the conjugate hylomorphism. Hinze et al.
also worked on expanding the histo- and dynamorphism in their paper [3].

All these canned recursion schemes and expansions of existing ones could
be incorporated in a larger overview.
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