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Abstract

In this thesis, we look at the process of software development at Ridder
Data Systems in Harderwijk. They do software development in an Agile
and DevOps way. This way of development brings new challenges regarding
security compared to a traditional waterfall model. The goal of this thesis is
to research to get to know the best security practices in Agile and DevOps
development. We are also going to look at the process at Ridder and focus
on what they do with security. With this knowledge, we can then make rec-
ommendations for companies that make software in an Agile and DevOps
way with regards to security and specifically for the process at Ridder.
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Chapter 1

Introduction

In this thesis, we will take a closer look at improvements in the Agile and
DevOps development process at Ridder Data Systems to improve the level
of security. At Ridder, they make an ERP-system called Ridder iQ. ERP
stands for Enterprise Resource Planning. The purpose of an ERP-system
is to automate processes in a business to make the overall process more
efficient.

Recently Ridder became part of a larger organization consisting of mul-
tiple similar companies like Ridder. These companies are now working to-
wards a shared platform to exchange information between customers of these
different companies. This new development led to concerns at Ridder since
the information will be shared through the cloud. Security was not the focus
when developing Ridder iQ. As long as the customer had a decent firewall,
the data was safe. With the new shared platform, this is not the case any-
more.

This leads to the following research question: What are the security
practices that Ridder should be implementing? On top of this, there is an
added layer of complexity. The layer of Agile and DevOps development. At
Ridder, they have used Agile for some time now, while DevOps is still quite
new. This kind of development brings new challenges compared to the tra-
ditional waterfall model. Therefore, we will be looking at general security
practices and practices that are specific to Agile or DevOps.

To answer the research question, we will take a look at other literature to
determine what the best security practices are in the respective fields. Then
we will also look at the current process of developing at Ridder to see how
security is currently implemented and where we can improve. These two
parts then lead to recommendations specifically for Ridder and for software
companies in general.
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The thesis consists of the following chapters. Chapter 2 is a background
on Agile and DevOps development and a comparison between the two.
Chapter 3 will summarise security practices from literature ranging from
general security practices to practices that are more specified for Agile and
DevOps development. The current process of Ridder will be described in
chapter 4. In chapter 5, we give the recommendations based on the litera-
ture and the process at Ridder. We will give suggestions for future work in
chapter 6, and in chapter 7 will be the conclusions.
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Chapter 2

Preliminaries: Agile and
DevOps

In this chapter we describe the key concepts of Agile development in Section
2.1 and DevOps development in Section 2.2. Afterwards we compare these
types of software development and look at their differences and similarities.

2.1 Agile

The term Agile software development is the product of a meeting in Snow-
bird, Utah, between 17 people in 2001. They were all advocates for different
software development methodologies. The meeting was meant to exchange
ideas and see if there are similarities in the way of thinking between the dif-
ferent methods. During the meeting, there were many things they did not
agree on apart from a few things. Together they wrote the Agile Manifesto[2]
on the main points that they did agree on and formed the Agile Alliance[3].

Agile development is not so much a way of working as it is a way of
thinking. This is reflected in the Agile Manifesto. The Manifesto values
individuals and interactions over processes and tools, working software over
comprehensive documentation, customer collaboration over contract nego-
tiation, and responding to change over following a plan. These values are
represented by the 12 principles of Agile software development. Working
software as the primary measure of progress and early and continuous de-
livery are part of those principles.

The focus with Agile development is on the teams and the people that
are part of that team. When the developers are enthusiastic about the prod-
uct that they are building, they make a better product. Also, working in
the same room and speaking face to face helps the process. When you put
the right people together without giving them specific roles, they become a
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self-organizing team.

There are a lot of Agile development methodologies such as Scrum, Ex-
treme Programming, and Feature Driven Development[3]. All these method-
ologies start with the values in the Manifesto. Every team must choose a
methodology that fits with them and adjusts it according to their specific
needs.

2.1.1 Scrum

Scrum is the methodology that is used at Ridder. Therefore we will take a
closer look at this methodology.

Scrum was created by Ken Schwaber and Jeff Sutherland. Both are part
of the Agile Alliance and co-created the Agile Manifesto in 2001. However,
Scrum stems from the 1990s, and it was the reason they were at the meet-
ing. Together they also wrote the Scrum Guide[24] in 2010 with the latest
version coming from 2017. We use this Scrum Guide for this section since
it is made by the creators of Scrum. Schwaber also founded Scrum.org[25]
in 2009 to train people in the correct use of Scrum.

The three core values of Scrum are transparency, inspection, and adap-
tation. Transparency means that every member of the team knows what the
goal is and how to achieve that goal. With frequent inspection, you ensure
that you identify as early as possible if the product is going in the wrong
direction. If it is going in the wrong direction, you can adapt the process to
get the desired outcome.

With Scrum, the work is done in small groups of 5 to 11 people. One of
those people is the Product Owner. The Product Owner is responsible for
the Product Backlog. This is a list of specific tasks that need to be done
and which tasks have the highest priority. Most of the people in the team
are part of the Development Team. These are the people that do the work.
Within the Development Team, there is no specified role, but it must be
cross-functional. This means that all the necessary skills are present in the
team. Another important aspect of the Development Team is that they are
self-regulating. No one tells the team how they should tackle the different
problems they encounter. The last role is that of the Scrum Master. The
Scrum Master facilitates the team and guides them through the Scrum pro-
cess.

The process of Scrum consists of multiple sprints. A sprint is a period
of at most a month. During a sprint, there are four phases. The first phase
is the Sprint Planning. In this phase, the team decides which features will
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be realized at the end of the sprint. This is done using the Product Backlog
and the priority of the tasks on the Backlog. After this, there is a period in
which the sprint is carried out. During this period, there is a Daily Scrum,
which is a short meeting in which everyone tells the rest of the team what he
or she is working on. At the end of the sprint, you have the Sprint Review.
This is used to reflect on the product that came from the sprint. There is
also a Sprint Retrospective for reflecting on the teamwork. This is to make
sure that potential problems that arise during the sprint do not happen
again.

2.2 DevOps

DevOps[11][28][33] is the combination of Development and Operations. De-
velopment is the place where the product is made, and the code is written.
After Development is done and they have working code to be distributed
to clients, it is handed over to Operations. Operations then deploys the
product and handles everything to keep the product running. This includes
handling issues raised by clients, for example. Traditionally these are two
different departments in software companies. DevOps couples these depart-
ments more closely and lets them work together. A common visualization
of this process is as in figure 2.1

Figure 2.1: The DevOps cycle[13]

The book DevOps: A Software Architect’s Perspective[6] gives a clear
definition of DevOps. ”DevOps is a set of practices intended to reduce the
time between committing a change to a system and the change being placed
into normal production while ensuring high quality.” With this definition,
they also found the following five categories of practices that are DevOps
related.
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1. Operations should have a say in the making of the requirements. This
coincides with the plan arrow in figure 2.1. Operations has to main-
tain the code after it is deployed, and having requirements regarding
logging and monitoring can help with that.

2. Shorten the time between observation of an error and the fixing of
that error. This involves making Development responsible for incident
handling for the first period before it is handed over to Operations.

3. Make a standard for deployments and enforce those standards. This
way, you avoid making errors when deploying, and it makes fixing
errors easier. You have a clear history of the codebase and can easily
see where it went wrong and what components most likely caused it.

4. Use a continuous deployment pipeline. This shortens the time between
the commit of a developer and the deployment of code. Automated
testing is often part of this pipeline, which ensures quality.

5. Treat infrastructure the same as application code. Scripts used for
deployment should have the same standards as the code for the appli-
cation. This minimizes the risk of a script being wrong and slowing
down the deployment process.

Another important part of DevOps not mentioned in these categories is
live testing and monitoring. This involves deploying new code and closely
monitoring it. After the new code has passed all the tests, it can be added
to the existing code. This ensures quality.

Using external tools is also a big part of DevOps. Most practices rely on
some tool to do the task. The continuous deployment pipeline, monitoring,
and testing all use different tools.

2.3 Comparison Agile and DevOps

Now that we know what Agile and DevOps are, we can compare them to
each other. We will not go too deep into it since Ridder is using both.

The main difference[10] between the two is that Agile bridges the gap be-
tween development and the end-user, and DevOps bridges the gap between
the different departments inside the company. The focus with Agile is on the
development team, while with DevOps, the focus is on cooperation between
different departments. For example, development and testing. Agile is all
about getting a working product to show to the end-user as fast as possible
so you can adapt to changing requirements. DevOps is about automating
processes to deliver that product as fast as possible.
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Despite these differences, the two are not mutually exclusive. If you want
to have a more efficient process, the goal should be to do both. The core
motivation for both Agile and DevOps is the fast delivery of a product, and
that is why they work well together.
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Chapter 3

Security practices

The purpose of this chapter is to explore what security practices are out
there. We look at practices in general and specifically for practices that
work in an Agile and DevOps environment. This forms the basis for the
recommendations in chapter 5.

In this chapter, we look at three categories of sources for security prac-
tices. We divided the sources into three categories because the motivations
behind the sources are different. In section 3.1, we talk about Maturity
Models with the focus on the BSIMM Security Framework. They describe
how security is handled in different companies. Section 3.2 is about Secure
Software Lifecycle Processes, in particular Microsoft SDL. A lifecycle pro-
cess is a list of practices that you should do without there being an explicit
financial motive. Application Security Testing companies in the last cate-
gory, and they are discussed in section 3.3. These AST companies do have
a financial motive as they want to sell their products to increase security.

A lot of the sources discussed in this chapter are also mentioned in
a paper by Williams at the Cyber Security Body of Knowledge(CyBOK)
called the Secure Software Lifecycle Knowledge Area[32]. CyBOK is an
organization, led by the University of Bristol, that create these knowledge
areas to map established knowledge. In this case, the field of the Secure
Software Lifecycle.

3.1 Maturity Models

Maturity models are the first of the three categories that we look at in this
chapter. The purpose of a maturity model is for companies to compare to
and see in which category they are behind. Often these maturity models
are divided into domains. Such a domain holds a group of practices that
fall in that domain. Each of these practices has different levels. These levels
correspond to the level of maturity that a company has in that practice.
When you go through the model and determine what your levels are for
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each practice, you have a baseline. With this baseline, you can see in which
practice you lack, and you can plan a strategy for improving your security.
Maturity models are also useful for getting ideas for ways to improve your
security. This is also the reason for starting with maturity models because
it gave a helpful checklist to get to know more about security at Ridder.

3.1.1 BSIMM Security Framework

The primary source we looked at is the BSIMM Framework[7], which stands
for Building Security In Maturity Model. The BSIMM was made by experts
at the Synopsys Software Integrity Group. Their idea was to gather data
on Software Security Initiatives (SSIs) at other companies. From this data,
they extracted which initiatives these companies had in common. These
initiatives became the baseline of the first version of the model. They started
with nine companies and have now analyzed over 100 companies. The goal
of BSIMM is not to say how you should do security, but they show what
others are doing for comparison to your own company.

After all the research at the different companies, they created the model.
They took all the 119 initiatives and divided them into four domains. These
domains are then split into three practices, and every practice has three
levels. We will give a short overview of the different domains and prac-
tices below. The full list of domains, practices, and levels can be found in
appendix A.

Governance

The first domain of Governance includes practices for organizing, managing,
and measuring SSIs. Besides that is also the training of staff.

• Strategy and metrics. This practice is all about the division of roles
and responsibilities within the company as well as identifying goals and
setting up metrics to achieve those goals. It is also important to have
everyone involved on the same page concerning security. Examples
are assigning an evangelist for security or internally publishing your
progress.

• Compliance and policy. Compliance and policy has to do with
regulations from the outside world. For example, the GDPR from the
EU and the AVG from the Dutch government. You should know what
these regulations are and how you are going to comply with them.
Examples of SSIs in this practice are combining all regulations in one
internal document, which you then comply with or identifying where
in the application the Personally Identifiable Information is.

• Training. The last practice of this domain is the training of soft-
ware developers and architects. This includes awareness training for

12



everyone but also more specific training.

Intelligence

The Intelligence domain focuses on creating knowledge with regards to se-
curity.

• Attack Models The first practice of Intelligence is Attack Models and
is a part of the knowledge that needs to be created in the company.
You need to know what information you are processing and who your
attackers could be.

• Security Features and Design The second practice concerns the
security features in the product. The biggest part of this practice is
that you should have separate modules for your security features, such
as authentication. This way, you can focus on creating a good and
rigid feature, and you do not have to make the same feature again for
another part of the product with the risk of making mistakes. This
should all be a single well-designed module or pattern.

• Standards and Requirements This last practice has a strong con-
nection with the previous because this practice has initiatives for mak-
ing standards and requirements for the features in the previous prac-
tice. Examples are to make security standards or a secure portal to
exchange knowledge about security.

SSDL Touchpoints

This domain focuses on the analysis and quality assurance of all aspects of
software development.

• Architecture Analysis Architecture analysis comprises capturing
the product in clear diagrams and identifying risks and reviewing high-
risk components, among other things.

• Code Review Code review encompasses the standard code review
but also the use of analysis tools and reviews specifically for security
features. Also, feedback on mistakes is included in this practice.

• Security Testing This practice contains initiatives for improving pre-
release testing. These initiatives include adding security requirements
into the test requirements and edge value testing.

Deployment

Deployment includes practices about external factors such as network set-
tings and firewalls.
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• Penetration Testing This practice consists of initiatives for both
external and internal penetration testing. There is also a distinction
between black-box and white-box testing.

• Software Environment The Software Environment practice is about
the environment in which the product runs. This could be about
reacting to updates of the operating system or monitoring the input
that is given to the product.

• Configuration Management and Vulnerability Management
The last practice concerns itself with patching applications and the
tracking of bugs. Incidents and incident response is also part of this
practice.

3.1.2 Other Maturity Models

Besides BSIMM, there are also other maturity models. We chose BSIMM
as our maturity model because this model, together with the OpenSAMM
model, is the most well known. We ended up with the BSIMM because this
was the first that came to our attention.

Below is a list of other maturity models that might be useful to look
at if you want more information. We did not look in detail at these other
models.

• OWASP OpenSAMM[16]. The OpenSAMM is very similar to the
BSIMM. It has the same structure of practices and levels as the BSIMM.
The original OpenSAMM has four domains with three practices each.
Currently, they are working on the second version, which has five do-
mains with three practices each.

• OWASP DevSecOps Maturity Model[18]. The OWASP DevSecOps
maturity model is the product of a German Master thesis by Timo
Pagel. Because the thesis itself is written in German, and there is not
much explanation on the English website of the project, we chose not
to discuss this model in detail.

• NIST Cybersecurity Framework[14]. This is a framework made by
the National Institute of Science and Technology commissioned by the
US government to improve the critical infrastructure cybersecurity.
We did not look closely at this framework, but because NIST is well-
known in the field of computer science, we thought it was important
to mention it.
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3.2 Secure Software Lifecycle Processes

A secure software lifecycle process[32] is a combination of practices that
say how you should do secure software development. It gives ways to tackle
insecure software at the source rather than tackling security afterward. This
is in contrast to a maturity model. Where a maturity model assesses what
you already do, a lifecycle process tells you what to do to improve security.

3.2.1 Microsoft SDL and secure DevOps

Microsoft has its own lifecycle process called the Microsoft Security Devel-
opment Lifecycle (SDL)[1]. It started as an internal development process
and evolved into the SDL that it is today.

The 12 practices of Microsoft SDL

The Microsoft SDL consists of the following 12 practices.

1. Provide Training. For your product to be secure, everybody that
works on it has to have some knowledge of security. Security is every-
one’s job. However, not everybody has to be a security expert.

2. Define Security Requirements. Next to functional requirements,
you need to have security requirements. These security requirements
also need to be dynamic, and they need to be updated when there
is new information about threats. The optimal time to make these
requirements is during the initial design or planning to minimize dis-
ruption. A good place to start would be the OWASP Top 10[17], for
example.

3. Define Metrics and Compliance Reporting. When you have the
security requirements, you need to check if you comply with those
requirements. Everyone should be aware of the metrics, and code
should pass the metrics before integrating it into existing code.

4. Perform Threat Modeling. Threat modeling consists of five steps.
Define security requirements. Creating an application diagram. Iden-
tifying threats. Mitigating threats. Validating that threats have been
mitigated. This technique should be routinely integrated into your
development process.

5. Establish Design Requirements. When implementing a security
feature, it must have precise requirements. A security feature is often
complicated, and therefore mistakes can easily be made.

6. Define and Use Cryptography Standards. It is crucial to ensure
data protection. Often cryptography is used to encrypt the data. Since
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having bad crypto can have significant consequences, this should be
left for experts. Therefore it is smart only to use encryption libraries
that are verified by experts, and it should be easy to replace such a
library.

7. Manage the Security Risk of Using Third-Party Components.
You should have an inventory of all the Third-Party Components that
you use. Besides that, you should be careful about which components
you use and have a plan in case of a security breach in a component.

8. Use Approved Tools. Make a list of tools that have been cleared to
use on the product, such as compilers. Strive to use the latest versions
of those tools.

9. Perform Static Application Security Testing (SAST)1. Use
some static analysis tool before the compilation of the code to check for
security vulnerabilities. Usually, this is a step in the commit pipeline
but can also be part of the programming IDE.

10. Perform Dynamic Application Security Testing (DAST)2. Sim-
ilar to the previous practice, you should do some dynamic analysis.
That is, with all components compiled and running as the end product
would. The dynamic analysis then searches for possible vulnerabilities,
memory corruption, or privilege escalation.

11. Perform Penetration Testing. An outside company specialized in
penetration testing should do an analysis. They approach the product
from the standpoint of a hacker and try to break it. This is the tech-
nique that finds the most vulnerabilities, but it can be more disruptive
for the development process.

12. Establish a Standard Incident Response Process. A plan should
exist to deal with security breaches. It is essential to know whom to
contact and how you can mitigate risks when there is a breach.

8 practices for secure DevOps

Besides the SDL, Microsoft also has eight practices for secure DevOps. Some
of the practices are also in the SDL, so for these, we will reference the SDL.

1. Provide training. See practice 1 of the SDL.

1Microsoft uses Analysis instead of Application as the A in SAST. However, it is more
common to use Application, so we chose to use this for consistency.

2Microsoft uses Analysis instead of Application as the A in DAST. However, it is more
common to use Application, so we chose to use this for consistency.
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2. Define Requirements. On top of practice two from the SDL, you
should integrate these requirements into your pipeline.

3. Define Metrics and Compliance Reporting. See practice 3 of
the SDL.

4. Use Software Composition Analysis (SCA) and Governance.
This is similar to practice 7 of the SDL. SCA tools can scan these
third-party components and report any known vulnerabilities.

5. Perform Threat Modeling. See practice 4 of the SDL. While threat
modeling can be seen as slow, it is still a good practice to do even if
it is only used in the places that have the most risks.

6. Use Tools and Automation. This is a combination of practice 8,
9, and 10 of the SDL with the added remark that you vet your tools
before using. Tools should integrate into the pipeline, not require
security expertise, and avoid false-positive results.

7. Keep Credentials Safe. Do not store credentials or other sensitive
information in the source files.

8. Use Continuous Learning and Monitoring. Monitor your prod-
uct during the development and after deployment. This way, you can
spot security vulnerabilities early and fix them. It can also help iden-
tify and contain an attack if it occurs.

3.2.2 Other Lifecycle Processes

There are several other lifecycle processes besides Microsoft SDL, which we
discuss in this section. We will not go into much detail here, but it can be
interesting to compare these to the Microsoft SDL.

The reason we chose the Microsoft SDL as our lifecycle process is partly
because it is made and used by Microsoft. Microsoft is a big, well-known,
and successful software company. Besides that, Microsoft SDL was one of
the first lifecycle processes, and it is widely accepted in the industry.

SAFECode

The Software Assurance Forum for Excellence in Code (SAFECode)[19] is
an organization consisting of members of the industry, such as Adobe, Mi-
crosoft, and Google. SAFECode is dedicated to promoting security practices
to increase security in software, hardware, and services.

SAFECode publishes the Fundamental Practices for Secure Software De-
velopment [22], of which currently, the third edition is the newest. In this
document, they summarise a lot of the practices used by the members of
SAFECode.
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Besides this document, they also published other, more specific pa-
pers. This ranges from a paper on security training[20] to a guide for Agile
practitioners[21]. They also started an interesting new series, of which at
the time of writing, only the first part is published, called The Six Pillars
of DevSecOps.

Touchpoints

The seven touchpoints for software security are made by Gary McGraw. He
is well-known in the field of secure software development and is still active
in this field. He was also a co-author of the first version of the BSIMM in
section 3.1.1.

The first time these touchpoints were introduced is in an article in the
IEEE Security & Privacy Magazine[4]. After this, they appeared in a book
written by McGraw called Software Security: Building Security In[9]. Since
they are quite old and not as well maintained as the Microsoft SDL, we
briefly mention the seven touchpoints, but we will not go further into them.
The touchpoints are sorted in order of effectiveness in the experience of
McGraw.

1. Code review

2. Architectural risk analysis

3. Penetration testing

4. Risk-based security tests

5. Abuse cases

6. Security requirements

7. Security operations

3.3 Application Security Testing Companies

In this section, we will discuss practices that are given by companies that
make application security testing tools. These companies make and sell
software to help with increasing the security of your project, so they also
have some secondary motives to make security necessary. Nonetheless, it is
essential to look at their recommendations since they have much experience
in improving security.
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3.3.1 Synopsys

One of the reasons Synopsys[26] is on our list of security companies is that
they are a leader in the Gartner Magic Quadrant for Application Security
Testing[8]. Gartner is a major advisory company that provides insight to
decision-makers to achieve their goals. The Magic Quadrant for AST is for
decision-makers to decide which security company they want to do busi-
ness with. Synopsys is a leader in this Magic Quadrant, which means that
their product is pervasive and easy to implement. Besides Synopsys being a
leader, they are also the company behind the BSIMM Framework in section
3.1.1. This shows that they are also concerned with improving software se-
curity in general.

Synopsys has six main points on which you should focus to increase
security[27].

1. Integrate security into your DevOps environment. This means
that you need to integrate and automate security tools in your pipeline.
It ensures that all the necessary security checks are always run.

2. Build a holistic AppSec program across your organization.
Make sure that your people and technology are all up to date to defend
against threats properly. This includes training employees.

3. Get on-demand security testing for any application. This prac-
tice says that you should hire the experts at Synopsys to do security
testing.

4. Find and fix quality and compliance issues early in develop-
ment. By doing this, you increase the reliability of your product, and
you avoid extensive maintenance at a later point. Besides this, you
make sure that you comply with the relevant regulations.

5. Identify open source, code quality, and security risks during
mergers and acquisitions. This is relevant when buying other com-
panies or merging with them that make software. You need to know
what the vulnerabilities are and how you can respond to them.

6. Assess your AppSec threats, risks, and dependencies. Besides
security testing, you should think of possible attack scenarios and know
what the targets can be for these attacks. This is needed to avoid
security breaches.

3.3.2 Veracode

Veracode[31] is just like Synopsys, a leader in the Gartner Magic Quadrant
for Application Security Testing[8]. They are also a member of SAFECode,
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which is a non-profit organization that is dedicated to improving software
security, as described in section 3.2.2. This shows that Veracode is invested
in increasing security in general instead of only making a profit.

To increase security Veracode has the 5 Essential Steps For Shifting
Security Left [30]. This means that the security is considered as early in the
development lifecycle as possible.

1. Autonomous security from day 1. This means that you should
automate security checks from the beginning of the project. This
way, the necessary security checks are always done without requiring
a developer or an outside team to look at them.

2. Integrate as you code. You should integrate Application Security
Testing as early as possible in the development lifecycle. This provides
a tight feedback loop to fix possible problems.

3. Avoid false alarms. A false alarm is a notification that there is a
security vulnerability when there is not. You want to avoid these false
alarms to minimize the impact of them on the development process.

4. Create security champions. In every Scrum-team, there should
be a security champion. This person is one of the developers on the
team. By giving this person extra training, they become the security
expert for the team. This way, there is always someone present at the
meetings to keep an eye on security.

5. Develop a culture of visibility. This builds on the DevOps philos-
ophy of developers being responsible for live running code. They are
also responsible for the security of the same code. They need to be
able to monitor the security so they can see when something is going
wrong. They also need to know where the critical points in the system
are.

3.3.3 SonarQube

SonarQube is a static analysis tool by SonarSource. SonarQube is used in
development pipelines to find bugs, code smells, and security vulnerabilities.
Code smells are pieces of code that do not necessarily contain bugs but are
not up to the standard and are messy or inconsistent. SonarQube finds these
problems by analyzing the source code and compare that source code to the
rules that are activated. We chose to include SonarQube in this section
because it is one of the main tools that are used at Ridder, as we will see in
section 4.2.

There is a thesis[29] by Jesse van Son in which he uses SonarQube. The
thesis is a case study to increase security in DevOps pipelines. To increase
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the security, Jesse used SonarQube for Static Application Security Testing
by enabling additional rules to check for security vulnerabilities.

The outcome of the research was that enabling these extra rules worked,
and it increased the security of the product. The downside to using the tool
is that it takes a long time to set up and configure properly.
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Chapter 4

Current process at Ridder

The information described in this chapter was gathered by three meetings
of roughly two hours, each with a contact at Ridder. Our contact was the
Technical Product Manager for their product. During these meetings, we
posed a series of questions about the process at Ridder about the Agile
and DevOps methodologies described in chapter 2. The answers to these
questions were the basis for section 4.1 about Agile and section 4.2 about
DevOps. We also used the BSIMM Framework from section 3.1.1 to establish
the level of security at Ridder in section 4.3.

With the information in this chapter together with the practices from
chapter 3, we can make recommendations specific for Ridder in chapter 5.

4.1 Agile at Ridder

At Ridder, the development department is split up in 4 teams of 6 people.
These teams consist of 4 developers, a tester, and a Product Owner. Three
of the teams work on bigger projects, such as a new module, and the other
team tackles the smaller problems that can be done in a couple of days.

The teams work in sprints of two weeks. For the product backlog of
these sprints, the team gets guidelines from product management. They get
their ideas from two places. They either look at new developments on the
market, or they get suggestions from their clients.

Ridder does not have a stringent definition of done. However, there are
a few things that need to happen on every piece of new code. It has to be
unit tested, but there is no minimum percentage of code coverage. Besides
this, it has to be tested by a tester and accepted by the product owner of
the team.

Testers and Product Owners from all teams meet regularly. These meet-
ings are to discuss new developments inside and outside the company and
to keep everyone on the same page. For example, testers need to make sure
that they all test the same way and keep to the same standards. They could
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also discuss new ways of testing if they become available. Product Owners
meet to keep the product as a whole consistent.

4.2 DevOps at Ridder

At Ridder, there is not a distinction between a Development and an Oper-
ations department. In general, everyone is responsible for their code. Most
of the process to release is automated. However, there is one person that
has the task to oversee Operations. He makes sure that everything keeps
working and he takes care of possible alerts that come from the monitoring
software Datadog.

After a piece of code is written, it begins its journey through the pipeline.
All features are developed on a separate feature branch in Gitlab. The first
phase of the pipeline is unit tests and SonarQube. Unit tests run one or
several test cases for small pieces of code. SonarQube is a static analysis tool
that can check the code for bugs, code smells, and security vulnerabilities
based on rules described in section 3.3.3. Ridder uses rules to recognize
security vulnerabilities that are in the OWASP Top 10[17] and the SANS
Top 25[23]. You can find the full list of security rules in appendix C. After
this phase of automated testing, both SAST and unit testing, a review of
another developer is needed.

When the new code passes all the previous steps, it is sent to the tester.
The tester will test the new code using their testing tools and perform unit
tests and sanity tests. Sanity tests exist to make sure the product has rea-
sonable behavior before running the more costly tests. The tester will also
create new automated unit tests. These automated unit tests will be added
to the existing tests that run during the night. Automated tests ensure that
everything still works after adding new code.

After a sprint of two weeks, the new functionality will be released for
the part of the product that runs in the cloud. The part of the product that
runs on the customer’s server has a release every two months. The customer
has to update the software on their server themselves manually. During this
update, the system is down, and the work cannot continue. That is why
Ridder has chosen to release every two months instead of two weeks. For
both the release to the cloud and the customer, it is just a matter of pushing
a button without extra input needed from the developers.

4.3 BSIMM at Ridder

To better understand what level of security there is at Ridder, we filled in
the checklist from the BSIMM Framework in section 3.1.1. The conclusion
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that can be made from this is that Ridder does some things right, but not
in a structured way. Due to this, most of the security practices mentioned
in chapter 3 can have a positive impact on the level of security at Ridder,
so the security practices did not narrow down that much when selecting the
recommendations in chapter 5. You can find the filled-in checklist for Ridder
for level 1 in appendix A.

When going over the checklist, we quickly noticed that there is still much
work to be done to reach level 1 in most of the practices. Because of this
and because it was very time consuming, we only discussed initiatives from
the first level of the practices. It took an hour and a half to discuss these
initiatives. For a full evaluation of the BSIMM at Ridder, you should do all
the levels, since you reach a higher level if you do only one of the initiatives
of that higher level.

Doing this checklist was very useful for establishing the baseline at Rid-
der. Another benefit of doing the BSIMM checklist was a raised awareness
of security. Our contact at Ridder stated that he was much more aware of
security after seeing what you can do to increase security.

During our meetings, we started with filling in the BSIMM Framework,
and after that, we discussed their Agile and DevOps process. Next time we
would do this the other way around. It is easier to understand the level of
security when you know what the development process is.
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Chapter 5

Recommendations

This chapter takes the security practices from chapter 3 and the description
of the process at Ridder in chapter 4 to form recommendations. First, we
make recommendations for software development companies in general. Af-
ter this, we make some additional specific recommendations for the process
at Ridder. We conclude the chapter with a section with some additional
tips.

5.1 General recommendations

In this section, we give recommendations for software companies in gen-
eral that use Agile and DevOps and have about the same level of security
as Ridder. We came to these recommendations by looking at the security
practices in chapter 3 and comparing the different sets of security practices
in that chapter. Most of the recommendations in this chapter are part of
all or most of the sets of security practices and thus deemed them essential.
The selection of recommendations was also based on the level of security at
Ridder, which was very basic, as explained in section 4.3. Furthermore, we
chose recommendations that fit well at Ridder and are easy to implement
there.

We divided the recommendations in this section into three parts. Rec-
ommendations that fit in the Agile methodology, recommendations that fit
in the DevOps methodology, and general security recommendations. The
recommendations in the first two parts can also work in other types of soft-
ware development but are easier to implement when used in their respective
methodologies.
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5.1.1 Agile recommendations

Here we give recommendations that fit in the Agile methodology. The rec-
ommendations can work in other types of software development but are
easier or more intuitive to implement when Agile is used.

• Define security requirements. When creating the backlog for the
project or a sprint, there should be room for security requirements.
These requirements should have the same importance as functional
requirements.

Almost all of the sources in chapter 3 contain some form of this rec-
ommendation. When explicitly defining these requirements, you are
forced to think about security, and you make time free in sprints to
work on them. It is not an afterthought. These are the reasons why
it is important.

• Create security champions in every team. These security cham-
pions are developers that are part of a scrum-team. The security
champion is the security expert in a scrum-team. Other developers in
the team can come to them with questions about security. This way,
you also have someone in the meetings that keeps an eye on security.

Veracode’s 5 Essential Steps For Shifting Security Left from section
3.3.2 is the main source for this recommendation, because they used
the term security champion. The BSIMM Framework from section
3.1.1 also mentions a form of this. We think it is important, because
of the input the security champion can give during team meetings.
The security champion also has the responsibility to make sure the
security is up to the standards.

5.1.2 DevOps recommendations

Here we give recommendations that fit in the DevOps methodology. The
recommendations can work in other types of software development but are
easier or more intuitive to implement when DevOps is used.

• Integrate security testing in your development pipeline. By
security testing, we mean the use of Static Application Security Testing
(SAST) and Dynamic Application Security Testing (DAST) tools, but
also other types of testing like unit testing with security test cases.
You can do this by implementing SAST tools or the OWASP package
checker[15], for example.

The use of tools for security testing is part of all the sources in chapter
3. Once the tools are set up, you do not have to look at them. It does
not require manual labor. They do their job and hopefully help you
make a safer product.
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5.1.3 General recommendations

Here we give general recommendations that are not specific for Agile or
DevOps. These recommendations can work for any type of software devel-
opment.

• Training of employees to create a basic understanding of se-
curity in the whole organization. Developers should get training
to be aware of security and how they can make the product more
secure. Not only should the developers get training, but also manage-
ment should get training to help them understand why you need to
spend time on security.

All of the sources that we looked at had some sort of security training
for developers. Besides that, BSIMM, Microsoft SDL, and Synopsys
state that everybody in the organization should have some basic un-
derstanding of security.

• Know where your weak spots are. You need to identify where
your security is weak. This could be open-source software that you
use or places where user data is being processed.

This is important because when you know where your weak spots are,
you can take action to reduce the risk of those weak spots. This
recommendation is also part of most of the sources in chapter 3.

• Perform penetration testing. This is one of the hardest recom-
mendations to do in an Agile and DevOps environment because the
product is not static. However, it is part of most of the sources from
chapter 3, and we think it is still valuable to get an outside perspective
on your security by security experts. Large parts of the code are not
regularly touched, so vulnerabilities found in those parts are always
valuable.

• Fill in the BSIMM Framework to improve awareness. This is
a recommendation that came from the meetings with Ridder. During
one of the meetings, we discussed the BSIMM Framework, as discussed
in section 4.3. After the meeting, our contact stated that he was much
more aware of the possible ways to increase security. We only discussed
the level 1 initiatives, but for a full evaluation of the BSIMM, you
should do levels 2 and 3 as well.

5.2 Specific recommendations for Ridder

In this section, we discuss some additional recommendations that are specific
for Ridder on top of the recommendations in the previous section.
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• Expand SonarQube rules. This recommendation comes from a
thesis by Jesse van Son discussed in section 3.3.3. He found that using
Sonarqube, the security of the product improved. Since SonarQube is
already used at Ridder for code quality and some security, it can be
useful to look for some additional rules for security. There are external
plug-ins that you can use in SonarQube to get more rules. These rules
are added easily so that it could be a quick win.

• Security champions meeting regularly. We saw in chapter 4 that
the testers and the Product Owners from all teams meet regularly.
This could be expanded to the security champions from the recom-
mendation in section 5.1.1. This is also part of the practice from
Veracode, only they let them meet with the security team. Since there
is no dedicated security team at Ridder, the security champions can
form the security team in this way. They could coordinate on how to
handle specific security requirements and keep up to date with new
attacks.

5.3 Additional Tips

In this section, we give some additional tips that can be useful when imple-
menting the recommendations from the previous sections.

Microsoft has some more information about its SDL practices on their
website[1]. This includes some of the tools with which you can put the SDL
into practice. It also includes other useful links, such as recommendations
for cryptographic protocols.
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Chapter 6

Future Work

This chapter is for ideas that rose during the research but was outside the
scope of this thesis or too big for this thesis.

ISO standards

An interesting angle for increasing security in a company can be to look at
the ISO standards for information security management. These are pub-
lished by the International Organization for Standardization. These are the
standards from the 27000 family. You can get a certificate to show that you
comply with those standards. It can be useful to look at these standards
and see what the requirements are to help plan possible improvements in
security.

BSIMM at other companies

As mentioned in the introduction of this thesis, Ridder is part of a bigger
organization consisting of other companies like Ridder. It can be interesting
to look at these other companies and fill in the BSIMM Framework for them.
With this knowledge, you can compare the different companies, and they
can help each other. If one company is very mature in a practice, then it
can help the other companies become more mature by sharing what they
do.

OpenSAMM and SAFECode

In chapter 3, we looked at BSIMM for lifecycle processes and at Microsoft
SDL for maturity models. However, OpenSAMM and SAFECode for those
categories, respectively, look also very promising. We already gave a short
description in chapter 3, but it could be interesting to look more closely at
these sources and perhaps compare them to the ones we used. We did not
have the time to do this ourselves.
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Chapter 7

Conclusions

In this chapter, we will summarise the research and give conclusions.

7.1 Agile and DevOps

As we have seen in chapter 2, Agile and DevOps are both excellent ways
to have a more efficient development process, and they work well together.
Both Agile and DevOps require a change in the way of thinking when adapt-
ing this in your development process.

Security with Agile and DevOps is harder in some ways and easier in
other ways compared to the traditional waterfall model. It is harder because
you do not have a dedicated period after the product is done to take care of
security. Things like penetration testing are more complicated because the
product is always evolving. It is easier because automating security is more
intuitive than in the waterfall model. When integrated into the development
pipeline, there is no manual labor required. You can spot security flaws
earlier and solve it correctly instead of plugging it after the product is done.

7.2 Sources for Security Practices

During this thesis, we identified three types of sources for security practices:
maturity models, secure software lifecycle processes, and companies that
make application security testing tools. Maturity models assess the cur-
rent level of security, while lifecycle processes and security companies give
guidelines for what you should do to increase security. You can find these
categories and their examples in chapter 3.

We noticed that a lot of the practices we found in the sources either
assume some level Agile or DevOps already, or they steer you in that direc-
tion. Especially the application security testing companies. For example,
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automating security testing like running SAST and DAST tools and au-
tomated unit tests is typical for a DevOps process. DevOps is all about
automating to avoid manual labor.

Another thing we noticed while writing this thesis is the lack of tradi-
tional scientific sources like publications in scientific journals on the topic
of security practices. There are plenty of scientific sources for a single se-
curity practice[5], but not that much on a set of security practices. The
ones we found[12] for the sets of security practices reference the sources like
Microsoft SDL that we used in this thesis.

7.3 Security Recommendations

During the project, we created security recommendations for Ridder Data
Systems. Below we list these recommendations. For a more detailed overview
of these recommendations, we refer to chapter 5.

• Define security requirements.

• Create security champions in every team.

• Integrate security testing in your development pipeline.

• Training of employees to create a basic understanding of security in
the whole organization.

• Know where your weak spots are.

• Perform penetration testing.

• Fill in the BSIMM Framework to improve awareness.

7.4 Reflection on the Process

We had a decent start to the project with many sources to look at. This
resulted in a long list of possibly interesting sources which we went through
one by one. If we found a useful source, we would start by taking a closer
look at that source. Next time, we should put that source aside and first
look at all the other sources. We should do a quick scan through all the
documents and look for the credentials of the writer to determine if a source
is useful. That way, we know earlier which sources are useful ones, and we
can manage our time better. There are some sources we did not get to take
a closer look at because of this. There could also be more sources out there
that are useful, but we did not find them because of this.

Another thing I should do differently next time is to start writing as soon
as possible. I noticed that getting words on paper is not my best quality.
The stress that this causes at the end of the project can be avoided by
forcing myself to start writing earlier.
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Appendix A

BSIMM checklist

In this appendix, we list all the Software Security Initiatives per level per
practice per domain of the BSIMM Framework.

A.1 Governance

A.1.1 Strategy and metrics

Level 1

• Publish process and evolve as necessary. Everyone knows the plan and
is on the same page.

• Create evangelism role and perform internal marketing. Pick someone
to help the teams build more secure software by talking with them.

• Educate executives to convince them to take security seriously.

• Identify gate locations, gather necessary artifacts. Determine what
level of security should be required when releasing without enforcing
it.

Level 2

• Publish data about software security internally.

• Enforce gates with measurements and track exceptions.

• Create or grow a satellite.

• Require security sign-off.
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Level 3

• Use an internal tracking application with portfolio view.

• Run an external marketing program.

• Identify metrics and use them to drive budgets.

• Integrate software-defined lifecycle governance.

A.1.2 Compliance and policy

Level 1

• Unify regulatory pressures. Combine all different regulations into one
set of things to comply to.

• Identify Personally Identifiable Information obligations.

• Create policy to handle with regulations. Everyone should comply to
the policy and don’t have to keep checking all regulations.

Level 2

• Identify PII inventory.

• Require security sign-off for compliance-related risk.

• Implement and track controls for compliance.

• Include software security SLAs in all vendor contracts.

• Ensure executive awareness of compliance and privacy obligations.

Level 3

• Create a regulator compliance story.

• Impose policy on vendors.

• Drive feedback from software lifecycle data back to policy.

A.1.3 Training

Level 1

• Conduct awareness training.

• Deliver role-specific advanced curriculum.

• Deliver on-demand individual training.
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Level 2

• Enhance satellite through training and events.

• Include security resources in onboarding.

• Create and use material specific to company history.

Level 3

• Reward progression through curriculum.

• Provide training for vendors or outsourced workers.

• Host software security events.

• Require an annual refresher.

• Establish SSG office hours.

• Identify new satellite members through training.

A.2 Intelligence

A.2.1 Attack Models

Level 1

• Create a data classification scheme and inventory to see which appli-
cations use the most data or most sensitive data. The higher classifi-
cation uses more data and has a higher priority.

• Identify potential attackers.

• Gather and use attack intelligence. Keep up to date with new attack
models.

Level 2

• Build attack patterns and abuse cases tied to potential attackers.

• Create technology-specific attack patterns.

• Build and maintain a top N possible attacks list.

• Collect and publish attack stories.

• Build an internal forum to discuss attacks.
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Level 3

• Have a science team that develops new attack methods.

• Create and use automation to mimic attackers.

• Monitor automated asset creation.

A.2.2 Security Features and Design

Level 1

• Build and publish security features. Not every team needs to make
the same features for authentication for example.

• Engage the Software Security Group with architecture teams. Have
someone from the SSG present at architecture meetings.

Level 2

• Leverage secure-by-design middleware frameworks and common libraries.

• Create an SSG capability to solve difficult design problems.

Level 3

• Form a review board or central committee to approve and maintain
secure design patterns.

• Require use of approved security features and frameworks.

• Find and publish mature design patterns from the organization.

A.2.3 Standards and Requirements

Level 1

• Create security standards.

• Create a security portal that is easily accessible for everyone. Here
you have all the information regarding security, possibly a wiki page
maintained by the SSG.

• Translate compliance constraints to requirements.

Level 2

• Create a standards review board.

• Identify open source.

• Create SLA boilerplate.
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Level 3

• Control open source risk.

• Communicate standards to vendors.

• Use secure coding standards.

• Create standards for technology stacks.

A.3 SSDL Touchpoints

A.3.1 Architecture Analysis

Level 1

• Perform security feature review.

• Perform design review for high-risk applications.

• Have SSG lead design review efforts.

• Use a risk questionnaire to rank risks of applications.

Level 2

• Define and use AA process.

• Standardize architectural descriptions.

Level 3

• Have engineering teams lead AA process.

• Drive analysis results into standard architecture patterns.

• Make the SSG available as an AA resource or mentor.

A.3.2 Code Review

Level 1

• Have the SSG perform ad hoc review.

• Use automated tools along with manual review.

• Make code review mandatory for all projects.

• Use centralized reporting to close the knowledge loop and drive train-
ing. Bugs found during code review are stored in a central database
so everyone can learn from them.
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Level 2

• Assign tool mentors.

• Use automated tools with tailored rules.

• Use a top N bugs list (real data preferred).

Level 3

• Build a capability to combine assessment results.

• Eradicate specific bugs from the entire codebase.

• Automate malicious code detection.

• Enforce coding standards.

A.3.3 Security Testing

Level 1

• Ensure QA supports edge/boundary value condition testing.

• Drive tests with security requirements and security features. For ex-
ample checking that a user is timed out after repeatedly giving the
wrong password.

Level 2

• Integrate black-box security tools into the QA process.

• Share security results with QA.

• Include security tests in QA automation.

• Perform fuzz testing customized to application APIs.

Level 3

• Drive tests with risk analysis results.

• Leverage coverage analysis.

• Begin to build and apply adversarial security tests (abuse cases).
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A.4 Deployment

A.4.1 Penetration Testing

Level 1

• Use external penetration testers to find problems.

• Feed results to the defect management and mitigation system.

• Use penetration testing tools internally.

Level 2

• Penetration testers use all available information.

• Schedule periodic penetration tests for application coverage.

Level 3

• Use external penetration testers to perform deep-dive analysis.

• Have the SSG customize penetration testing tools and scripts.

A.4.2 Software Environment

Level 1

• Use application input monitoring to see what is given as input when
the software is released to spot possible attacks.

• Ensure host and network security basics are in place.

Level 2

• Publish installation guides.

• Use code signing.

Level 3

• Use code protection.

• Use application behavior monitoring and diagnostics.

• Use application containers.

• Use orchestration for containers and virtualized environments.

• Enhance application inventory with operations bill of materials.

• Ensure cloud security basics.
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A.4.3 Configuration Management and Vulnerability Man-
agement

Level 1

• Create or interface with incident response to react to incidents.

• Identify software defects found in operations monitoring and feed them
back to development.

Level 2

• Have emergency codebase response.

• Track software bugs found in operations through the fix process.

• Develop an operations inventory of applications.

Level 3

• Fix all occurrences of software bugs found in operations.

• Enhance the SSDL to prevent software bugs found in operations.

• Simulate software crises.

• Operate a bug bounty program.

• Automate verification of operational infrastructure security.
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Appendix B

BSIMM checklist at Ridder

In this appendix, we have documented which practices Ridder already does.
The practices in bold are the ones they do.

B.1 Governance

B.1.1 Strategy and metrics

Level 1

• Publish process and evolve as necessary. Everyone knows the plan and
is on the same page.

• Create evangelism role and perform internal marketing. Pick someone
to help the teams build more secure software by talking with them.

• Educate executives to convince them to take security seriously.

• Identify gate locations, gather necessary artifacts. Determine what
level of security should be required when releasing without enforcing
it.

B.1.2 Compliance and policy

Level 1

• Unify regulatory pressures. Combine all different regulations
into one set of things to comply to.

• Identify Personally Identifiable Information obligations.

• Create policy to handle with regulations. Everyone should
comply to the policy and don’t have to keep checking all
regulations.
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B.1.3 Training

Level 1

• Conduct awareness training.

• Deliver role-specific advanced curriculum.

• Deliver on-demand individual training.

B.2 Intelligence

B.2.1 Attack Models

Level 1

• Create a data classification scheme and inventory to see which
applications use the most data or most sensitive data. The
higher classification uses more data and has a higher priority.

• Identify potential attackers.

• Gather and use attack intelligence. Keep up to date with new attack
models.

B.2.2 Security Features and Design

Level 1

• Build and publish security features. Not every team needs
to make the same features for authentication for example.

• Engage the Software Security Group with architecture teams. Have
someone from the SSG present at architecture meetings.

B.2.3 Standards and Requirements

Level 1

• Create security standards.

• Create a security portal that is easily accessible for everyone. Here
you have all the information regarding security, possibly a wiki page
maintained by the SSG.

• Translate compliance constraints to requirements.
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B.3 SSDL Touchpoints

B.3.1 Architecture Analysis

Level 1

• Perform security feature review.

• Perform design review for high-risk applications.

• Have SSG lead design review efforts.

• Use a risk questionnaire to rank risks of applications.

B.3.2 Code Review

Level 1

• Have the SSG perform ad hoc review.

• Use automated tools along with manual review.

• Make code review mandatory for all projects.

• Use centralized reporting to close the knowledge loop and drive train-
ing. Bugs found during code review are stored in a central database
so everyone can learn from them.

B.3.3 Security Testing

Level 1

• Ensure QA supports edge/boundary value condition testing.

• Drive tests with security requirements and security features.
For example checking that a user is timed out after repeatedly
giving the wrong password.

B.4 Deployment

B.4.1 Penetration Testing

Level 1

• Use external penetration testers to find problems.

• Feed results to the defect management and mitigation system.

• Use penetration testing tools internally.
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B.4.2 Software Environment

Level 1

• Use application input monitoring to see what is given as input when
the software is released to spot possible attacks.

• Ensure host and network security basics are in place.

B.4.3 Configuration Management and Vulnerability Man-
agement

Level 1

• Create or interface with incident response to react to incidents.

• Identify software defects found in operations monitoring and feed them
back to development.
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Appendix C

SonarQube Security Rules

In this appendix, we show the security-related rules that are activated in
SonarQube at Ridder. SonarQube divides these rules in two categories:
Vulnerability and Security Hotspot. Therefore, we kept the rules in the two
separate tables below.
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