
Bachelor thesis
Computing Science

Radboud University

Exploring taint analysis methods
for the grey-box learning of Java

systems

Author:
M. F. L. (Maris) Galesloot
s4634098
m.galesloot@student.ru.nl

First supervisor/assessor:
Prof. Dr. F. W. (Frits)

Vaandrager
f.vaandrager@cs.ru.nl

Second supervisor/assessor:
B. (Bharat) Garhewal MSc

b.garhewal@cs.ru.nl

August 21, 2020

Abstract

Model learning is a branch of research involved in inferring interface seman-
tics of software components, where semantics are often captured in register
automata. Grey-box dynamic taint analysis has proven useful to reduce the
number of actions needed to both construct a representative automaton as
well as verify its correctness. We show that the technique used in Python can
also be exploited in other languages, that is in Java, albeit with some exten-
sions and modifications to the language. The implementation in its current
state proves limited to equality relations. However, we show that our taint
analysis implementation of the tree oracle results in a large improvement
in the number of inputs needed to learn the interfaces of the java.util

library classes compared to the black-box methods of RALib. Furthermore,
limitations of the current implementation in Java and alternative tainting
techniques for Java are discussed.

Contents

1 Introduction 3
1.1 Models . 3
1.2 Research context . 4
1.3 Outline . 4

2 Preliminaries 5
2.1 Model learning . 5

2.1.1 Black, grey, and white-boxes 5
2.1.2 Models, learners and teachers 6

2.2 Automata Theory . 7
2.2.1 From DFA’s to EFSM’s 7
2.2.2 Data Languages . 8
2.2.3 Guards . 9
2.2.4 Register Automata . 9

2.3 Tree Queries . 11
2.3.1 Symbolic Decision Trees 12

2.4 SMT Solvers . 13
2.4.1 Generalising to SMT 13

3 Dynamic Taint Analysis 15
3.1 Extracting information . 15
3.2 Information flow . 16
3.3 Symbolic execution . 16

3.3.1 Concolic execution/testing 17
3.4 Control flow on tainted inputs 18

3.4.1 Inferring semantics from comparisons 18

4 Java 20
4.1 Java context . 20

4.1.1 Inherent support & research context 20
4.1.2 Java design principles 21
4.1.3 Library components and generics 23

4.2 Tainting Java . 24

1

4.2.1 Java library classes . 24
4.2.2 Manifold System & Operator Overloading 26
4.2.3 Complications of tainting operations 28
4.2.4 Arithmetic . 28
4.2.5 Limitations . 29

4.3 Bytecode & ASM . 30
4.3.1 Bytecode comparisons 30
4.3.2 Phosphor . 31

5 Experiments 33
5.1 Introduction . 33
5.2 Set-up . 33
5.3 Results . 34
5.4 Discussion . 34

6 Related & Future Work 36
6.1 Related Work . 36
6.2 Future Work . 37

7 Conclusions 38

References 39

A Appendix 42
A.1 Comparisons from TaintInteger 42
A.2 Symbolic Execution Example 43
A.3 R-indistinguishability of Data Languages 44
A.4 Overhead experiment . 44

2

Chapter 1

Introduction

1.1 Models

Software analysis and verification provides the basis on which we trust the
applications we use. In our daily lives we constantly use all different sorts
of machines, from the simple kitchen device that prepares your morning
coffee to the complex systems your smartphone consists of and the inter-
communicating applications your respective device runs. All these systems
have some sort of control mechanism that define their behaviour for certain
inputs. Your coffee machine reacts to your input and you decide on these
operations because, as a human, systematic derivations of possible inputs
and output of such a simple system are easily constructed.

These conceptual models that we create are not as easily constructed by
computer systems. In the research area of model learning, methodologies
are being designed to improve a computer’s capability of constructing such
a state diagram. These models are constructed to represent a model of
the program’s behaviour. The program or system learned is also known as
the System Under Learning (SUL). These models can be inferred without
access to the SUL’s source code, also known as a black-box setting. In
this setting, the program can only be referenced by observing and recording
output values to certain input values. In black-box environment settings,
these algorithms often depend on a trial-and-error approach to figure out
what outputs correspond to what inputs. Scalability becomes an obstacle,
since the number of membership queries grows cubic in the size of the model,
and the number of test queries grows exponential in the number of states
of the SUL [1]. Meaning that the more complex a learned system gets,
the more state transitions have to be learned by providing different inputs.
This is due to the fact that in a black-box setting, providing plain inputs
results in plain outputs. A goal in model learning research is to extract as
much information as possible out of the system, such that the algorithms
can decide on entering a valid and interesting value while also reducing

3

the number of possible input values. There are a number of valid ways to
incorporate extra information in the model learning process. This extra
information, such as relations between input values, can often be formalised
as constraints and presented to a solver. The reason for doing this, is that
solving for the constraints on input values produces a concrete assignation
to these values that, when presented to the SUL, could produce system
behaviour to gain knowledge about.

1.2 Research context

In this thesis we look at taint analysis and the process of tainting input ob-
jects within the approach of dynamic analysis, which can reduce the number
of (inputs in) queries necessary to construct a model, specifically for the
Java language. Essentially, we try to extract run-time information on the
behaviour of programs. With this information we are able to, with the help
of learner algorithms such as the RaLib [2] framework based on SL∗, and
with making certain assumptions about how variables are processed during
execution and to what extend this influences what locations of the program
are reached, hypothetically use less interactions to learn models. Because
we need less queries to construct a model, we can also move to hypothe-
sis construction earlier. Which in turn leads to a quicker result: either a
finished model or a counter example that will help adapting faulty states
and or transitions of the model. As real-life applications of model learning
include the refactoring of legacy software components, the relevance of the
extension of taint analysis methods for learning industry languages such as
Java is evident. Beyond this, we will look into extending the taint process to
incorporate richer data operations, e.g. with arithmetic operations such as
addition, multiplication, division and subtraction. Current automata learn-
ers do not support the inclusion of these “rich” operations, but SMT solvers,
such as Z3, provide sufficient computational solving power to use arithmetic
relations as an asset for future model learning endeavours.

1.3 Outline

In the second chapter (2), we provide the preliminaries in understanding the
techniques that underlie this thesis. In the third chapter (3) tainting meth-
ods are discussed and in the fourth chapter (4) a tainting implementation
for Java is demonstrated. In the fifth chapter (5), we show the experiments
that were done to evaluate the results of the research. In the sixth chap-
ter (6), we show our understanding of the research area by elaborating in
related works and similar implementations. Also, future work is presented
based on limitations in this thesis and possible further research. In the final
seventh chapter (7), we conclude and discuss our research.

4

Chapter 2

Preliminaries

In this chapter, we present the prerequisites to understanding the concepts
of this thesis.

2.1 Model learning

2.1.1 Black, grey, and white-boxes

Model learning can be utilised to infer program behaviour from computer
based systems, that is, systems whose behaviour is prescribed by computer
programs. Since learning of program models is the most prevalent use case.
Model learning techniques can be applied to computer systems that have
predictable behaviour. When you input certain values, the resulting output
then is based on a set of internal instructions (i.e. code) of the program.
Most of the time this is invisible for the user, imagine your coffee machine
again, but there is an underlying model to be inferred that specifies the
system’s behaviour. As mentioned before, there are two types of scenarios

Input Variables Output VariablesBlack-box

Figure 2.1: Black-box setting, only perceived entities are input and output
variables.

in software analysis, namely white- and black-box settings. The black-box
techniques for model learning assume that everything inside the target ma-
chine is hidden. White-box techniques depend on certain information to be
gathered out of a program’s inner workings. In this thesis we focus on active
model learning using dynamic analysis. This means we actively construct
partial models and queries that we base on the information we have gathered

5

during dynamic analysis in a white-box setting. A white-box setting often
means you have access to the code/program you are analysing. Sometimes,
there is a mix between the two, were only part of the program is visible (i.e.
white-box) and another part is hidden (i.e. black-box). This is also known as
a grey-box environment. Dynamic analyses methods often introduce grey-
box methods of learning, where part of the program state becomes available
to the learning algorithm. Theoretically this would include constraints on
input variables and other program state constraints. Only this particular
context of information about the program execution is then known to the
learner on top of the input and output values, not necessarily the entirety
of information one could possibly deduce from reasoning about the source
code. Contrary to classic black-box I/O approaches, the grey-box settings
implies there is extra information being gathered apart from input and out-
put values. As an example of code you do not have access to, think of a
program that uses standard library functions you do not have the sources
of, or uses a third-party dependency with a public API but a private source
code repository. Moreover, consider the examples of embedded devices, such
as coffee machines and electronic passports. If not specified, assume in this
thesis the context implies a grey-box setting.

Grey-box
Input

Output

Constraints

Figure 2.2: Grey-box setting, input variables produce output variables and
a set of constraints. The constraints can help formalise new input variables.

2.1.2 Models, learners and teachers

If we practice model learning, we assume a learner and a teacher from the
Minimally Adequate Teaching framework (MAT) [3]. The framework, as
seen in Figure 2.3 together with the well known algorithm L∗ (for learn-
ing DFA’s) from 1987, is a fundamental model learning paradigm. Whilst
there are also other learning paradigms, a large part of contemporary model
learning research work still builds on the theories and groundwork that were
produced. In essence, it is the teachers responsibility to interact with the
model (SUL). The learning is done in the learner, which sends membership
and equivalence queries to the teacher. Membership queries contain input
values that the teacher should present to the model, the teacher then re-
ceives some returned output value, which it translates to the language the
learner understands. When a certain limit of membership queries is reached,

6

Outputs

Model

Teacher
Inputs

hypotheses
Learner

yes or
counterexample

Figure 2.3: Minimally Adequate Teacher framework for automata learning.

which can be numerical or some set of constraints, the learner presents its
learned model to the teacher. The teacher then formulates a set of equiv-
alence queries that determines whether the learned model and the actual
program behaviour is deemed equivalent. If yes, the hypothesis of the model
is correct and learning is done. If no, the teacher calculates a counter ex-
ample that reveals an error in a state and/or transition and thus disregards
the hypothesis model. Learning must then continue.

Concluding, most of the optimisation for learning frameworks is realised
by:

• reducing the number of inputs in membership queries, and

• extracting as much information as possible from the execution be-
haviour with each membership query.

The second point in itself improves the criterion of the first point, since we
can provide more intelligent queries to the teacher. These bullet-points also
apply to the eventual equivalence queries.

2.2 Automata Theory

2.2.1 From DFA’s to EFSM’s

The MAT framework and the L∗ algorithm for learning Deterministic Fi-
nite State Automata, which have been successfully used to learn behavioural
models of software components [4], also have their limitations. DFA’s, with
their finite input alphabet, struggle to deal with parameterized actions,
whose input values can range over large or infinite domains [5]. Also, these
classical automata lack the tools to model control flow in programs. For
many applications, models should express control flow, which are the states
of the program that is being learned, data flow, which translates to the
constraints on data parameters that are distributed between a component’s

7

internal and external variables and when the component interacts within the
context it has access to. On top of that, the interactions between the control
and data flow of a to be modelled component are vital characteristics that
such a model should describe [6]. These factors become more prevalent in
modern software, which employs more complex data structures and ranges
over more various input variables. Consider the follow simple example of
control flow in three lines of standard Java code. Assume that there is some
arbitrary maximum size of the set, one in this case:

java . u t i l . HashSet<T> hashset = new HashSet<>() ;
hashset . add (x) ; // t rue
hashset . add (x) ; // f a l s e

Figure 2.4: Java HashSet with two add operations.

The symbolic variable x is added to the java.util.HashSet, and then
variable x is added again. The first time, the value of the variable is hashed
and stored in the set. In this case the add operation returns true. We would
record, and possibly inform the teacher depending on the query, that the
action was successful. The second time, the set refuses to store the variable
since it already exists and returns false. In this case, the query to add value
x again is not unaccepted behaviour. It simply means that when we add
the same variable again, the automaton should register for this transition
that the output for input variable x1 and local register value x0 is accepted
when x0 = x1. Simple program behaviour like this is not captured easily
in classical automata, who have no guards on their transitions. In order to
capture simple but essentially complex to learn behaviour like this, we use
extended finite state machines that can store, compare and manipulate data
values. In the case of the active learning framework RALib [2], which is a
library based on the SL∗ algorithm for EFSM’s, these are Register Automata
(see 2.2.4).

2.2.2 Data Languages

When we learn certain programs or protocols, we define a theory within we
learn the automata that defines the model. In our model learning setting,
we parameterize the learning algorithm with a certain theory, which is a pair
〈D,R〉 where D is a domain of data values and R is a set of relations on D.
The arity of the relations can be of arbitrary length. Arithmetic operations
(++,−,+) can be defined by relations on data values [1], constants can be
expressed with relations of arity one. An example of a simple theory is the
following:

• 〈Z, {=}〉, theory of the set of integers with respect to the equality
relation. We can also say: “the equality theory of integers”.

8

We assume a set of actions Σ that takes a set of parameters {d1, . . . , dn}
from the domain D, depending on its arity n. A data word w then is a
collection of data symbols. A data symbol is a term α(d) with α ∈ Σ and
d ∈ D. The data symbol represents an action that is performed on a certain
data value. A data language L is a set of data words. Data languages are
often represented as a mapping from the set of words to the tuple {+,−}.
Representing an accepting or rejecting computation, e.g. see the λ map of
definition 1 of the Register Automaton. The acceptance of data words can
be determined with an EFSM such as a Register Automaton.

2.2.3 Guards

Assume we have some countably infinite set of variables V = {v1, v2, . . . },
that represent program variables. Also assume some variable p 6∈ V , which
is the formal parameter of input symbols. A guard is a conjunction of
(negated) relation symbols over variables V . We define guards inductively
as defined in [6]:

• If r ∈ R is a n-ary relation on input variables {x0, . . . , xn−1} from
V ∪ p, then r{x0, . . . , xn−1} and ¬r{x0, . . . , xn−1} are guards.

• if g0, g1 are guards, then g2 = g0 ∧ g1 is also a guard.

Guards commonly range over binary (dis)equality relations, such as one of
{==, !=, <}. In this case, guards are conjunctions of these binary con-
straints.

2.2.4 Register Automata

Now that we know how to represent more complex input values as data
symbols and have defined guards, we can look at the definition of a Register
Automaton:

Definition 1 (Register Automaton). A register automaton A is defined
by the tuple A = {L, l0,X ,Γ, λ}, where:

• L is a finite set of locations, with l0 ∈ L the initial location,

• X maps each location to a finite set of registers X (l) with X (l0) = ∅,

• Γ is a finite set of transitions of the form 〈l, α(p), g, π, l′〉, where

- l and l′ ∈ L are source and target location respectively,

- α(p) is a paramaterized symbol, with action α and data value p,

- g is a guard on data value p and X (l),

- π, an assignment mapping from X (l′) to X (l)∪{p}, updates reg-
isters in X (l′) with the parameters from p and X (l), and

9

• λ maps every location l ∈ L to the set {+,−}.

Instead of “normal” state machines, such as finite state machines with-
out registers, register automaton have differing states and locations. In a
register automaton a state is defined by the pair 〈l, i〉 where l ∈ L is the
location and i is the assigning function of the registers of that location. In
simpler terms: i is a valuation of the set of registers for some location l.
For example, if X (l1) = {x1, x2, x3} and i valuates this set of registers to
{2, 4, 8} then the state of the register automata would be described as fol-
lows: 〈l1, {x1, x2, x3} 7→ {2, 4, 8}〉. It becomes clear that whether a certain
transition is chosen can depend on the values of the variables in the regis-
ter for some location. This means that the same action (e.g. add(x)) can
induce different transitions depending on the state. As we can see can Reg-
ister Automata, being part of the set of Extended Finite State Machines,
describe much richer models, including control flow paradigms such as S0
:= if expr then S1 else S2 and the storage of data values. For instance,
a Register Automaton can capture the third line of code from code example
2.4 as a different transition, remembering whether symbolic variable x was
already added before.

Inputs and Outputs

When we discuss action with data symbols, we generally imply I/O actions
to and from the model. We often describe a textual action to the teacher,
such as “input variable x to the model” as IPut(x). Generally, data sym-
bols that input something start with I and as expected start with O for
certain outputs. When we “put” something for example, the general ex-
pected outcome is either “succes” or “rejected”, these are represented by
OOK() and ONOK() Then, the teacher translates this to the (code) model in
a way it understands. In the case our code example of Figure 2.4, you would
think the output false leads to a not accepting state. This is not the case
however, since the internals of the HashSet function properly and adding
the same value twice is completely normal behaviour, but does not result
in the value actually being in the set two times. Ideally we would record
that, when putting a value in the set twice, we would capture the transition
guard on the input constraint derived from these two values (the internal
HashSet value and the input value).

We can see in Figure 2.5 how we translate symbols to actual actions on
the model. We would encapsulate the set model in Java class, we will leave
the interaction between the wrapper class and the model to your imagi-
nation, since it does not really matter for this level of abstraction. The
statement add(x) represents the call to the HashSet and true represent
the return value of the actual component under testing, not necessarily the
return value you would translate and return to the learner. Keep in mind
we generally represent error or failures with ONOK(), so if for example the

10

Symbol: IPut(x) OOK() -> IPut(x) OOK()

| ^ | ^

V | V |

Program: add(x) -> true add(x) -> false

Figure 2.5: Schematic overview of the relation between symbols and code
that is called on the model.

model for whatever reasons throws some Java exception this would be the
way to represent this. Occurrence of ONOK() would also be the case when
we would add any other variable y after adding x, since the maximum size is
set to one. We would not actually try to insert y but merely return ONOK().
The following data words demonstrate the difference:

(i) IPut(x) OOK() IPut(y) ONOK()

(ii) IPut(x) OOK() IPut(x) OOK()

Both traces are accepted queries in the model of the Java HashSet of size
one.

Example

See Figure 2.6 for a learned model of a Java.util.HashSet with a artificial
maximum size of one.

2.3 Tree Queries

As we have now established, active learning concerns the process of an au-
tomaton Learner that sends queries to a Teacher which then can formulate
these queries and communicate them with the target system, the System
Under Learning (SUL). As we explained, in the classical L∗ algorithm, the
target language is a regular language over some finite alphabet. Contrary
to the learning of regular languages, the answer to membership queries in a
data language, for example using the algorithm SL∗, is determined by the
relations between data values. Not necessarily the concrete values them-
selves [2]. The discovery of this relation is done via tree queries, where
several membership queries can be grouped in to a single tree query.

In tree queries we presume input as a list of two certain entities:

- Prefix : A data word w which is a collection of data symbols (α(d)).
Recall that α is an action and d a parameter from some domain D.

- Suffix : A sequence of not instantiated data parameters.

11

l0

l1

IAdd(p1)
r1=p1,

l4

IRemove(p1)

l5

OOK

l2 l3

ONOK

IAdd(p1)
r1==p1

l6

IAdd(p1)
r1!=p1

IRemove(p1)
r1!=p1

l7

IRemove(p1)
r1==p1ONOK

OOK

Figure 2.6: Learned model of HashSet with maximum size one.

2.3.1 Symbolic Decision Trees

The answer to such a query is a Symbolic Decision Tree (SDT). As with
other decision trees, it is a tree data structure which can represent control
statements as a branch in the tree. In this case, the values of the tree are
symbolic. This means they are not actual concrete values but rather define
program structure for some input language (i.e. data language). Using the
tree, data values of the prefix are stored in registers. The edges of a SDT are
similar to the transitions of a Register Automaton. In the branches, these
data values are compared to the parameters of the suffix. Doing this, we
can determine from the comparisons of the relations of the prefix and the
suffix whether the subsequent paths of the prefix exists in the target data
language.

Example

Consider the example from the code example of Figure 2.4 again. Assume
we have a prefix IAdd(x) and a symbolic suffix IAdd(p) IRemove (p), then
the tree from Figure 2.7 show the accepting and non accepting computations
of this query. After the prefix the state of the registers is {x1}. The right

12

sub-tree is never accepted, since the first action involves adding a value to
the set of size one that is not already in the set. The other side of the tree
involves adding an equal value, as seen by the guard p = x1. Then the IGet

action decides whether the trace is accepted (i.e. it reaches state {+}), the
action is only valid iff p = x1.

{x1}

−

IGet(p)

−+

IGet(p)
p = x1

IGet(p)
p 6= x1

IAdd(p)
p = x1

IAdd(p)
p 6= x1

Figure 2.7: Symbolic Decision Tree for prefix IAdd(x) and symbolic suffix
IAdd(p) IGet(p) for a java.util.HashSet of maximum size one.

2.4 SMT Solvers

As mentioned before, SMT solvers have the potential to play a large part
in the learning process. This is because the learning method in grey-box
setting, whether using tree queries or otherwise, aims to produce a list of
constraints after every input query. We know that Boolean satisfiability
(SAT) is defined as the problem of determining whether there exists a valu-
ation for a Boolean formula such that the result of the formula yields true.
If this is the case, the formula is satisfiable. Which means there is a certain
set of concrete assignments to the variables in the formula such that all the
constraints in the formula are met.

2.4.1 Generalising to SMT

In our context, this translates to the following: there exists some input value,
data word w = α(p1) · α(p2) · . . . · α(pn) that satisfies the conjunction of the
inverse of every constraint ¬φ1∧¬φ2∧ · · ·∧¬φm derived from the inputs on
the model, where these constraints describe relations between input variables
within a certain theory. In relation to the tree queries of section 2.3, we stop
the querying process and formalise a SDT when there does not exists such

13

an input. Because the target language of the systems under learning nat-
urally are not always part of the language of Boolean expressions, we need
some sort of generalisation of the logic that can translates to other (more
elaborate) data languages, such as integers or Strings. Satisfiability modulo
theories (SMT) is a generalisation of the Boolean satisfiability problem by
adding support for first-order theories, such as arithmetic and equality rea-
soning [7]. SMT solvers enable us to reason about complex input languages
and the constraints on the input domain returned from the model. Because
these solvers can range over a set of complex data types, the bottleneck of
learning often comes from the actual learning algorithm itself. Currently,
the Z3 solver is the prevalent SMT solver. The biggest challenge of grey-box
active automata learning is to extend learning algorithms, either by extend-
ing the algorithm itself or extensive analysis surrounding the algorithm, to
interpret constraints from complex relations that can be solved by a SMT
solver such as Z3.

14

Chapter 3

Dynamic Taint Analysis

In this chapter, our research into dynamic analysis methods is presented. In
particular, we are interested in taint analysis, which can be seen as a subset
of dynamic analysis methods, and its usage in a learning setting.

3.1 Extracting information

Taint analysis aim to extract run-time information about certain systems,
commonly computer programs. The main usage of taint analysis revolves
around the propagation of certain taint values, in either a control or data
flow sense. It often involves modification of program assets or platform
sources, since tainting is not inherently supported in most programming
languages (except for Ruby and Pearl). Some of the challenging aspects of
dynamic taint analysis are the following:

- The tainting process, interaction between tainted entities, and eventual
analysis of taints, should not influence program behaviour, and

- Tainting should ideally be as resource efficient as possible.

The first item should make sense, since we intent to observe the output gen-
eration of a certain software component, not influence program behaviour
or introduce other observable program artefacts. This is essential as we are
generating a model based on the semantics of the interface of the model. If
the taint analysis mechanics would interfere with the program’s behaviour,
the learned model would not be deemed correct. The second item concerns
possible slowdowns of the run-time speed of the software component, when
taint analysis methods are applied to its internals. While relatively slow
tainting techniques that reduce the number of inputs required are definitely
desired, as the complexity of the program provides a greater challenge than
the run-time, the overhead should be within certain bounds of the com-
ponent’s performance decrease. Concluding, ideally an implementation is
found that satisfies the aspects mentioned in this paragraph.

15

3.2 Information flow

In a security setting tainting is typically an information flow problem, re-
garding the propagation between input and output values. If a certain pro-
gram value has been entered where there could be malicious intent, such
as user input, then this value should be tainted. When this tainted source
value interacts with any other instance of the program assets, the tainted
flag should be duplicated to this other value. Most often this involves some
propagation function that decides how taint marks are distributed between
interacting variables. This way you can check during, or before, run-time
execution whether there is some flow of information from source inputs that
could cause program havoc. The objective then is to make sure possibly ma-
licious inputs from source states cannot enter “sink states”, that is, states
that perform actions which could be used for malicious intent (I/O, system
calls, etc.) [8]. Taint flags are added to program variables and propagated on
interactions. You could say that tainted variables “infect” other values with
the taint flag, therefore you can observe the spread of tainted input values.
The results of this information flow analysis, is that after termination of the
program the taint flags of the input and output variables can be analysed,
and a trace of input to output variables can be constructed. Commonly,
this only includes the information that variable x interacted with variable
y. When y is an output variable and x and input variable we say that y
has a dependency on x. Ideally, we would also know the actual interaction
between the two values, how y can be constructed from x and possibly other
values in the component. We would then focus on constructing constraints
on external variables, i.e. I/O variables, not internal program variables.

3.3 Symbolic execution

Symbolic execution is a software execution method where program variables
are not concretely instantiated but symbolically. This means that the vari-
ables do not represent a concrete parameter, but rather a symbolic data
value. Symbolic values are propagated throughout the executed program
without actually directly influencing program execution. For example, an
if-statement inducing some control flow on a symbolic variable would intro-
duce the separate execution of two different paths. One path would have the
constraint of the if-statement added to its list of guards (with or without a
symbolic variable as argument), while the other execution path would have
the negation of the constraint of the if-statement added to its guards. The
latter execution path would then also skip the semantics of the body of the
if-statement, since the assertion of the guards would render the statement
unreachable. This automatic execution method has a high coverage of test
inputs [9], since traversing all program paths creates a list of input con-

16

straints that can be translated to a list of concrete input values. Meaning
all control statements should be methodically reached.

In the research setting of model learning, the path constraints PC that
are returned from symbolic execution frameworks such as the Symbolic Path
Finder (SPF) [10] can be reasoned about. In particular, we would translate
the path constraints returned from the symbolic execution run to actual I/O
(input output) constraints. The learner focuses on external variables, i.e.
input and output variables instead of internal variables. You can translate
a constraint on internal and external variables to a I/O constraint by quan-
tifying the internal variables. The resulting constraint would then apply to
either the input or output variable, which is information essential to feed
to the learner. We would then evidently know what variables, and with
what operations, influenced the outcome of the program’s execution. For

void symbexc () {
a = input () ;
a = a ∗ 5 ;
b = a + 17 ;
output (b) ;

}

Figure 3.1: Pseudo-code Java I/O program.

instance, instead of constructing counterexamples in the Equivalence Oracle
in random fashion, e.g. the random walk algorithm from RALib [2], path
constraints PC can be solved using an SMT solver, such as Z3, for a certain
theory. Figure 3.1 is a pseudo-code example of a Java program that takes
an input value and produces an output value. When we would execute said
program symbolically we would retrieve a path constraints of the form of the
following [example inspired by email communication with Frits Vaandrager
(2020)]:

PC := a0 = vin ∧ a1 = 5 ∗ a0 ∧ a2 = a1 + 17 ∧ vout = a2

Because we want to constrain I/O variables and not internal variables, we
can quantify (∃a0,a1,a2∈V PC (a0, a1, a2)) these and construct an I/O con-
straint:

vout = vin ∗ 5 + 17

3.3.1 Concolic execution/testing

Difficulties in symbolic execution methods lie in path explosion. When pro-
grams reach a certain level of cyclomatic complexity, e.g. nested statements,
the number of paths to explore becomes incredibly large. Instead of explor-
ing every available path, which means diverging at every branch, a symbolic

17

value can made concrete by solving the current path constraints with an
SMT solver. The branch can then be executed normally as if the program
had actually reached that state in plain execution. By instantiating the
symbolic values, a depth-first approach to reaching all program states can
be achieved since the amount of breadth of symbolic execution is limited by
actually execution branch paths concretely. In learning, concolic execution
is used. Symbolic paths are calculated from concrete execution. Before actu-
ally learning the SUL with queries, a concolic execution run would generate
a list of path constraints, these path constraints would be suitable to trans-
late to a list of information on the control flow operations extracted from the
SUL. That is, generate a list of I/O constraints. Symbolic execution tools
already make use of SMT-solvers to solve intermediate constraints. Another
version is the so called concolic testing method. Usage is in input generation
for test cases such that all possible program states are reached. Similarly
in active automata learning, it can be used to generate counter examples to
the hypothesis by traversing the SUL whilst gathering input values. Then
these generated inputs, that are theoretically guaranteed to access all pro-
gram states in the SUL, can be fed or traversed in the hypothesis model (e.g.
register automaton) to see whether the inferred semantics of the interface
matches the actual behaviour of the SUL.

3.4 Control flow on tainted inputs

As became evident earlier in this chapter, the most useful information about
program execution is gathered when regarding control flow of the respective
program. If you need to infer the behaviour of some program P , a great
part is managing to actually reach all possible states of P . Part of the
process of reaching new states is done by computing new input values. The
constraints that were learned by previous runs can solved and provide input
values that can learn new behaviour. Ideally, as we need to feed inputs (in
the form of tree queries or otherwise) to the SUL anyway, constraints are
recorded on inputs objects. We then do not need to do separate runs for
path constraint generation and actual input. An efficient way to both learn
similar constraints of the symbolic execution methods and to not incorporate
an execution in advance of a run is to record comparisons on tainted objects.

3.4.1 Inferring semantics from comparisons

We can keep track of operations, i.e. binary comparisons, on the inputs
we process from the input symbols of the tree queries. We can assign taint
values to input values from the data symbols in the tree query, starting
from zero and incremented by one every time. Then, if we have a list of
comparisons made on an input value, and the associated taint values of
these values we can construct constraints on the input value. Assume x1

18

with taint value one was fed to the SUL, and in the same tree query variable
x2 is added and compared to x1. We would then retrieve the comparison, e.g.
x1 == x2. We would then know that these variables were tested on equality.
With each query, we analyse these comparisons to construct constraints. If
x1 is actually equal to x2, i.e. the program variables they represent are
equal, we record a constraint that x1 = x2. Otherwise, x1 6= x2. Also, due
to the differing taint values for every input, even if we have more than two
variables that all have the same concrete value, we still know which variables
were actually compared.

Constraints from tainted membership queries

In Section 2.1.2, we discussed the MAT framework for learning. In a con-
text based on [6] which in turn is implemented on SL∗, the framework uses a
tainted tree oracle and a tainted equivalence oracle. The extension is based
on MAT but uses two external oracles that use membership queries to either
form an SDT in the tree oracle, or a CE/accepted hypothesis in the equiv-
alence oracle. Tree queries consist of several membership queries that use
variables as their parameters and return yes/no as well as a set of constraints
on the variables. The same goes for the tainted equivalence oracle, where
the parameters of the input symbols are tainted. In doing this, the SDT
from Figure 2.7 can be derived. The taint analysis shows us that variable
from suffix IAdd(p) was compared to some value in the register of the SUL
x1. We can deduce from the comparison that the parameter and register
value were checked for equality. It can then analyse that suffix IAdd(p),
where p 6= x1 is not accepted and can finish the right side of the tree. Also,
because of the analysis of the constraints, we know that after the suffix ac-
tion IGet(p) for some parameter p 6= x1 the check p = x1 is done. It learns
the non-accepting (right) state from the left sub-tree and can verify the ac-
cepting left side with action IGet(p) where p = x1. Otherwise, without
dynamic analysis, it would not be known why the “get” action failed and
presumable multiple queries would be needed to derive that the parameter
must equal the value in the register to produce an accepting data word.

19

Chapter 4

Java

4.1 Java context

The target of this thesis is a non-trivial set of Java systems. Because the do-
main of our learning setting is Java systems, we need to practice our dynamic
taint analysis within the context of the Java programming language. In this
chapter, we discuss our research in to tainting Java for learning purposes.

4.1.1 Inherent support & research context

Out of the box, Java does not have any pre-designed support to use tainting
inside Java programs. As we discussed in the control flow Section 3.4.1, we
want to record the relational and arithmetic operations that are applied to
the input values we query to the SUL. This means we want to instrument or
add some code when any of the relation and arithmetic operators are used
on our input objects. This code should add some value that records the
binary operation and the two objects involved, and store it in some data
structure inside the object. Most academic and industry tools available to
taint Java programs are focused on information flow.

Python reference

Earlier efforts for learning register automata using taint analysis were re-
searched for the Python language [6], [11], [12]. In Python, comparison
analysis was done via an available package taintedstr. A “tainted String”
object tstr o basically consists of the tuple (s, t, comps), where

1. s is the original String value,

2. t is the associated taint integer value,

3. comps is the list of comparison that consists of each comparison made
on o. Each comparison c ∈ comps consists of a tuple (lhs, rhs, op)

where:

20

(a) lhs represents the object on the left side of the operation (copy
of o),

(b) rhs the object on the right hand side, and

(c) op the operation between the two objects.

The __eq__, __lt__, . . . functions that are called when relational operators
are used are overloaded to:

1. Add the comparison type, and the two objects involved to the list of
comparisons, and then

2. Return the usual relational method implementation of the Python
String class as to not interfere with ordinary program behaviour.

4.1.2 Java design principles

Java, with its unique virtual machine bytecode interpreter design and widespread
usage, does not always relate to other common programming languages such
as Python and C++. Java is used in all sorts of systems, mostly because
of the virtualisation approach of machine instructions and embedded object
oriented design. These features make it portable and usable in many sce-
narios and settings. At the foundation of these features are some design
principles that make one’s life easier or harder, depending on the context.
Java was designed with simplicity in mind, removing some features from
its predecessor languages C and C++. At its core, Java is presented as a
“small, simple language” that is “still sufficiently comprehensive to address
a wide variety of software application development”1. In our case, where we
would ideally translate the Python taint implementation to Java, the design
principles of Java do not really benefit the process. Fortunately, there some
ways to circumvent these limitation in practise.

Primitive types

Java primitive types, int, boolean, float, long for example, are not
represented as objects in the language. They do not play a part in the
java.lang.Object hierarchy, where every instance of a Java class is a sub-
class of the Object class. There are primitive wrapper classes however, such
as Integer, Boolean, Float, that all extend the java.lang.Number class.
In turn, the java.lang.Number class extends the java.lang.Object class.
These primitive wrapper classes encapsulated primitive types in Java ob-
jects, providing implementations of common Object methods (e.g. toString())
and methods with extended functionality (e.g. Integer.valueOf(java.lang.String),
which returns the Integer value of a String value). In ordinary Java, there

1As read on https://www.oracle.com/java/technologies/simple-familiar.html

21

https://www.oracle.com/java/technologies/simple-familiar.html

is no way to explicitly interact with primitive types. In most cases prim-
itive types are either boxed to the wrapper classes or vice versa, where
the wrapper classes are unboxed to the primitive type inside the wrapper.
This automatic (un)boxing is done by the Java compiler, naturally during
compile-time. In Figure 4.2, we can see the compiled bytecodes of a nu-

pub l i c c l a s s Example {
pub l i c Example () {}

pub l i c boolean comp(I n t e g e r a , I n t e g e r b) {
re turn a > b ;

}
}

Figure 4.1: Example of Java compiler unboxing when comparing two in-
stances of java.lang.Integer.

meric comparison. After the variable is pushed to the stack, the compiler
optimises such that virtual method Integer.intValue() is invoked on the
Integer objects. The relational comparisons is thus called on the primitive
int type, not on the wrapper class.

Compiled from ”Example . java ”
pub l i c c l a s s Example {

pub l i c Example () ;
Code :

0 : a load 0
1 : i n v o k e s p e c i a l #1 // Method java / lang / Object .”< i n i t

>”:()V
4 : re turn

pub l i c boolean comp(java . lang . Integer , java . lang . I n t e g e r) ;
Code :

0 : a load 1
1 : i n v o k e v i r t u a l #2 // Method java / lang / I n t e g e r . intValue

: () I
4 : a load 2
5 : i n v o k e v i r t u a l #2 // Method java / lang / I n t e g e r . intValue

: () I
8 : i f i c m p l e 15

11 : i c o n s t 1
12 : goto 16
15 : i c o n s t 0
16 : i r e t u r n

}

Figure 4.2: Compiled byte-code instructions of Figure 4.1

22

Final Classes

Possibly induced by this behaviour, all the primitive wrapper classes of Java
that represent Integers and Strings et cetera are protected by the final key-
word. These classes are immutable and can not be extended or sub-classed.
Java as a language, contrary to most other languages, limits the freedom of
expressing standard classes as super-classes, either from a security or main-
tainability principle. We can however produce a variant of the Oracle JDK
or OpenJDK by compiling our own .java source files and re-archiving these
to the same structure as the original .jar they originated from. If using the
OpenJDK, which is open source, a possible solution would be to compile a
patched JDK from source. Alternatively, we can just override the respective
.jar, in the case of java.lang.Integer this is rt.jar, from the JDK with our
modified version. Patching the JRE is done by specifying the boot classpath
(-Xbootclasspath:<directories and archives> at run-time, the classes
from the modified .jar will then override the default JRE source class files.
This is supported for JDK’s up to and including JDK-8, since from 9 on out
the JDK has become modular. The --patch-module flag, which should be
able to patch the java.base modules and provide the same behaviour as
the boot classpath option, interferes with our addition of a compiler plugin2.
Therefore, in the case of JDK-9+, a patched OpenJDK can be built. Then,
we can extend the Integer class and add our own code for tainted Integer
objects. Modifying JDK library classes is also how Chin et al. managed to
propagate taints on String’s and String related builders/buffers in 2009 [13].

4.1.3 Library components and generics

Although the extension of Java’s wrapper classes is highly discouraged, it is
necessary to capture and store the relations we retrieve from operators, as
well as the control over the equals, compareTo and hashCode functions for
our tainted Integer class. Especially if the target model is one of Java’s li-
brary components. Because of generics, comparison heuristics in the equals
and compareTo methods need to be tracked and the hashCode needs to be
overridden to always return the same value in order to learn the Java library
classes from java.util that use the hash function. Most of the comparisons
to be recorded from these library classes is based on the equality of objects,
to be gathered in the equals method. If the target system makes use of the
hashCode method, it should always return the same value in order to ensure
tainted Integer’s are actually compared on equality instead of the value of
the hash.

2This was patched as a result of our findings in Manifold 2020.1.24, making the
--patch-module option viable again.

23

Operator Overloading

Operator overloading is something available in most industry-wide languages,
but not in Java. Java does not allow user-defined overloaded operators by
design. Operator overloading from programming languages has both advan-
tages and disadvantages. Some of the advantages lie in the fact that they
allow programmers much more freedom in expressing semantics of their pro-
grams. One of the disadvantages that comes with freedom is that it intro-
duces a whole range of possible misuses of the language. This in turn often
leads to confusing and buggy code. On the other hand, one could argue
that the misuses introduced by operator overloading can be equated with
any other custom public method behaviour. The only form of overloading
available is method and class overloading. Method overloading is recom-
mended for similar behaviour to overloading operators (e.g. implementing
and overloading custom greaterThan(T other) methods), but is not sup-
ported for Java’s primitive relational and arithmetic operators. Exceptions
to the above paragraph are String concatenation, as well as some other op-
erations on primitive Boolean and integral types. These however are a form
of internal overloading. Resulting, there are no possible ways to override
operators in vanilla Java. Thus, we need to look in to instrumenting and
the manipulation of source code and the compiler instance of the JDK.

There are however some external modifications to incorporate overload-
ing in to the language. The original implementation for Java was built for
specific versions of the JDK and is not actively maintained. The following
paper [14] was published alongside the release of the compiler extension,
and includes semantics of overloading operators in Java. The implementa-
tion can be summarised as follows, the jar library produced by the operator
overload project is added to the class path of the Java compiler. The library
uses a form of annotation processing to attach itself to the compilation
procedure. There the extensions of the compiler classes are added to the
respective compile stages. This implementation, although interesting and
unique at the time, was not really versatile as it had to be developed for
specific versions.

4.2 Tainting Java

4.2.1 Java library classes

As we hinted at in Section 4.1.3, learning library components that make use
of generics force us to look at the set of {equals, compare} from the Object
class and Comparable interface respectively. We can gain knowledge on how
to taint these components by looking at their source code. Operators are
never called on generics, because evidently the type is unknown. We can

24

however extract useful information from these components. If we take the
HashSet for example again, we can learn the constraints on the behaviour of
its internal code by recording the equals method call. If we set the hashCode
of every tainted Integer to 42, the objects must be compared for equality.
In doing this we can record these equality comparisons. Another example
is when we would look at a PriorityQueue, which uses either the natural
ordering of the parameters it receives as input or the order as specified by a
custom Comparator. From the source code we can see the code snippet from
Figure 4.3, which shows the code of the method call the queue executes when
an item is inserted. We see that the comparison of the items is evaluated
as greater than or equal to zero. From this, we infer that the item to be
inserted is compared to items in the queue with the ≥ relation. Capturing
these inferred comparisons is done by specifying a custom Comparator as
argument to the queue instantiation. The code snippet below shows how

p r i v a t e void siftUpUsingComparator (i n t k , E x) {
whi le (k > 0) {

i n t parent = (k − 1) >>> 1 ;
Object e = queue [parent] ;
i f (comparator . compare (x , (E) e) >= 0)

break ;
queue [k] = e ;
k = parent ;

}
queue [k] = x ;

}

Figure 4.3: Internal “upsifting” method of java.util.PriorityQueue

such an instantiation would look like:

new Prior ityQueue<TaintInteger >((taintL , taintR) −> {
Comparison<?,?> c = new Comparison<>(taintL , taintR , ”GE”) ;
ta intL . getComparisons () . add (c) ;
r e turn ta intL . compareTo (taintR) ;

}) ;

Some of the limitations of these kind of white-box methods to capture rela-
tions from compare methods is that in a PriorityQueue the same procedure
is also used for the “sifting” down method. Only, in the downwards move-
ment the result of the compare method is compared as less than or equal to
zero. This would imply a “LE” comparison would need to be captured in
this case, instead of “GE”. Finding out what relation is used on the result
of the compare method is a hard problem.

25

4.2.2 Manifold System & Operator Overloading

The Manifold System3 is a Java Compiler plugin that extends the Java lan-
guage with extra features, support the JDK/JRE range of 8 to 14. It adds
features to the language by manipulating the default compiler using the
defined Java compiler plugin framework. Therefore it is a more versatile
approach than [14]. It is specified at compile-time to the compiler via the
-Xplugin:Manifold option. Using Manifold’s compiler plugin, we can over-
load relational and arithmetic operators for custom classes by implementing
the CompareToUsing<T> interface. Relational operations that are overloaded
by Manifold are handled via the compareToUsing(T other, Operator op)

method, where the comparison of the object is handled via the compareTo

method from the default java.lang.Comparable interface. Equality (==
and !=) is then handled by one of three possibilities: the return boolean of
the equals() method, whether the return from the compareTo() method
was zero, or the reference equality ==.

pub l i c c l a s s Ta int Intege r extends I n t e g e r implements
ComparableUsing<Integer> {
. . .
@Override
pub l i c boolean compareToUsing (I n t e g e r that , Operator op) {

t h i s . getComparisons () . add (new Comparison<>(th i s , that ,
op . t oS t r i ng ())) ;

r e turn ComparableUsing . super . compareToUsing (that , op) ;
}
@Override
pub l i c EqualityMode equalityMode () {

re turn EqualityMode . CompareTo ;
}
. . .

}

Figure 4.4: Methods overridden from the Manifold compareToUsing inter-
face.

We can implement the Manifold interface and override the operator func-
tion for our tainted objects as shown in Figure 4.4, as well as implement the
override-able equals method. Doing so makes us able to record what rela-
tional operations were called on the object. In the case of the tainted tree
oracle, which supports equality constraints currently [6], we capture the re-
lations on the tainted object we instantiate out of the parameters we receive
from the learner. When a program call in a HashSet is done for equality
on objects, this is registered. If x1, x2 are tainted Integer’s with taint value
one and two respectively, and they represent some arbitrary concrete value,

3See http://manifold.systems/

26

http://manifold.systems/

and x1.equals(x2) is a call from the internals of the HashSet to check for
equality, we can deduce the constraint x1 = x2 or x1 6= x2 by checking the
comparisons of the tainted Integer’s.

Algorithm 1: Constraint generation of comparisons made in SUL.

Data: List of tainted parameters P from an action and list of
tainted parameters currently in the SUL S

Result: List of constraints C
Initialise C;
for p in P do

for c in p.comparisons do
lt = c.left.taint;
if c.right is tainted then

rt = c.right.taint;
if c.left and c.right in S then

if not lt == rt then
φ = (lt, rt, inverse(c));
Add φ to C;

end

end

else
φc = (lt, c.right, inverse(c));
Add φc to C;

end

end

end
return C;
The actual comparison is stored in x1. When we construct the con-

straints as demonstrated by Algorithm 1, we loop over the list of tainted
inputs from the list of input actions, enter a second loop of the list of com-
parisons per tainted object and construct the derivable constraints. If both
sides of the comparison equate to a tainted object, we can compare the taint
values and construct a constraint on the operation, otherwise we encoun-
tered a constant (Integer). We inverse the operation as show in Algorithm
2: if the operation between the (concrete) values of the (tainted) objects
yield true, then the comparison is added to the set of constraints as is. Oth-
erwise the inversion of the relational operations is added as the constraint.
If for example we have the comparison x1 <= x2 recorded in the program,
where the taint values are the variable index and x1 = 7 , x2 = 5, then the

27

constraint would be x1 > x2 because 7 6≤ 5.

Algorithm 2: Construct constraint

Data: A comparison c from a tainted parameter
Result: An operation ω
l = c.left, r = c.right, op = c.op;
if the operation on l and r yields true then

ω = op;
else

ω = invert(op);
end
return ω

Due to the incremented nature of the taint values, i.e. no variable has
the same taint value, a trace of constraints between the variables can be
constructed. Whether two different inputs had the same concrete assignment
does not influence the trace.

4.2.3 Complications of tainting operations

i f ((! x1 . equa l s (x2)) | | x2 <= x3) {
// do something

}

Figure 4.5: The inverse operator ’ !’ and possibly the RHS of the “or” are
out of reach relations on tainted objects.

There are some inherent complications when using relational dynamics
on tainted objects in constraint generation. Consider the code example
of Figure 4.5, there are two operation calls that can be out of reach for
an implementation based on object tainting. First of all, the ! operator
inverting the results of the equals call is not recorded by any of the tainted
objects in the equation. Secondly, as a result of Boolean optimisation, the
RHS of the || (“or”) operator is not evaluated when the LHS equates to
true. Rather the valuation is short circuited because the RHS has no effect
on the outcome of the valuation, since the LHS already valuates the entire
equation to true.

4.2.4 Arithmetic

Future learning algorithms might be able to wonder about complex rela-
tions like (non-)linear arithmetic. Symbolic execution methods as discussed
in Section 3.3 allow us to derive input constraints from operations such as
arithmetic. In the example of Figure 3.1 we showed how a symbolic execu-
tion method would come to this constraint. In Figure 4.6, we see how we

28

can use the Manifold Operator Overloading to also capture arithmetic oper-
ations. We can see that 42 = 17+25 = 17+5∗5⇒ vout = 17+5∗vin. Simi-
larly to the symbolic execution method, we can reason about the arithmetic
relations between input variables. Arithmetic operators are overloaded with

Taint Intege r a = new Taint Intege r (5 , 0) ;
a = a ∗ 5 ;
a = a + 17 ;
printComparisons (a) ;

Object Value : 42 , Taint Value : −1
Le f t : Object Value : 5 , Taint Value : 0 | Right : 5 | Operation : ∗
Le f t : Object Value : 25 , Taint Value : −1 | Right : 17 | Operation :

+

Figure 4.6: Source code and output of arithmetic comparisons.

the Manifold plugin by defining methods for add, times, div and minus.
These methods are structurally defined, you can overload these operators
separately for every type you wish to support the operation for.

4.2.5 Limitations

The limitations of this implementation are the following:

- Unboxing: If the compiler receives two Integer’s (or instances of other
wrapper classes), these are unboxed and compared on primitive level.
The overload from the Manifold plugin does not reach the primitive
operation between int’s. Subsequently if some function f receives
two Integer parameters a and b, which are actually tainted Integers,
to compare with some operator the compiler still translates the In-
teger’s to their primitive value. Possible solutions involve compiler
modification, such that the unboxing of these Integer’s does not hap-
pen. A problem that would then occur is that the arithmetic of the
wrapper classes is defined as the arithmetic of their primitive values.
Because of this, the modification of the compiler must only modify
unboxing when a subclass of the java.lang.Integer is found (e.g.
a TaintInteger). Leaving ordinary Integer comparisons defined by
their primitive counterpart.

- Primitive types: If a program requires a primitive type of input and
a wrapper class is supplied, the same unboxing happens as discussed
above. Also, when we define the operator overload for a sub-class of the
Integer class, overloading of the comparative operations between the
Integer sub-class and other primitive types (double, long, . . .) is not
defined. If a component is learned within a numeric domain other than

29

the set of integers, a solution is needed. Possible resolutions for this
problem are to extend the java.lang.Number class which super-classes
al numeric (wrapper) classes. Then, the overload of the operators
would be defined for all instances of the Number class.

- Shortened operators: In programs involving arithmetic operations
are often shortened, i.e. a = a + b is written as a += b where +

could be any operator from the set of Java operators. In Java, this
is a form of syntactic sugar that also involves a cast. Unfortunately,
the Manifold system currently does not reach the operations in this
syntax. Resolving this would involve the extension of the Manifold
plugin.

Concluding, we can not record all of the desired comparisons as of yet. For
all of the limitations a possible solution and reconsideration is presented. A
more brute approach to solving the problems would be to change the types
of the SUL from Integer to TaintInteger. Whilst this would solve most of
the problems, and program behaviour would be identical due the nature of
our presumably purely additive modifications, this would involve the mod-
ification and recompilation of the source code of the software component
to be learned which is generally not very versatile and not a good practice
when inferring semantics of software components.

4.3 Bytecode & ASM

In this section we will look at the bytecode level of comparisons in Java
programs, and how these bytecode instruction might be able to provide
an alternative implementation to the one we implemented with the use of
operator overloading and standard Java methods.

4.3.1 Bytecode comparisons

Java source code generates byte-codes when compiled and runs on the Java
Virtual Machine, which translates the abstract byte-codes to machine code.
There are numerous different instructions, some of which are of interest to us
when executed. In particular, the byte-codes that introduce branches such
as if icmp<condition>4. If we look at the compiled boxing example of the
code example of Figure 4.2, we see that actual comparison of the byte-code
instruction if icmple is done on the primitive types of the Integer class.
First, the arguments of the method are loaded on to the stack, and, as
we discussed in the boxing section are unwrapped to their primitive value.
Then, the if icmple instruction is executed to compare the two top most

4See “6. The Java Virtual Machine Instruction Set” at https://docs.oracle.com/

javase/specs/jvms/se14/html/index.html

30

https://docs.oracle.com/javase/specs/jvms/se14/html/index.html
https://docs.oracle.com/javase/specs/jvms/se14/html/index.html

variables on the stack. The result of this instruction decides whether a
constant zero or one is pushed to the stack before returning (the constant).
The primitive Boolean type is represented as either zero (false) or one (true).

4.3.2 Phosphor

Phosphor5, “Dynamic Taint Tracker for the JVM” [15], is a instrumentation
tool that can be used to instrument JDK/JRE’s to enable these to have a
taint tracking feature. It works by instrumenting the source files with addi-
tional tags, and uses the ASM library API6 to propagate taint values during
run-time at the bytecode level. It does this by analysing the instructions
called, and pushing the taint values of the object to the stack in order to
propagate these when they interact. If the control tracking extension is
enabled, Phosphor also propagates taint markings to values that depend
on the branch statement. The propagation (control and data flow options)
only includes information dependencies however, so if vt is a tainted value,
then there is a list of dependency variables dep(vt) = {v0, v1, . . . , vn} for
all n variables that vt interacted with. This does not include the relational
dependencies between the variables, only that variable vt depends on the
value of some arbitrary value vi from the set. If the variables from the
set dep(vt) are also tainted, thus have a list of dependencies, a recursive
scheme of dependencies is formed. This scheme can be used to interpret
the variables that influenced vt. To illustrate, we can construct an output
{vt � v0, v0 � v1, . . . , vn−1 � vn}, where � is some unknown relation
between the variables and variables v0 . . . are parents of vt in the recursive
dependency scheme. If the relation between the variables is known, then
input constraints can be derived from the dependency relations.

An alternative to our implementation would be to override Phosphor’s
ControlFlowManager class, and push an object to the stack that contains
the relation, as derived from the bytecode instruction, and the variables that
were on on the stack when this instruction was called. Limitations include
the complexity of such an implementation compared to the overload method,
and the slowdown of Phosphor’s control flow instrumentation. Adding on
top of the already slow propagation logic would induce even more overhead.
Some possible resolution would be to limit the extensive propagation logic
of Phosphor in a custom extension of Phosphor’s code base, only focusing
on the information necessary to us. That is, the information necessary to
construct a constraint on (input or output) parameters for specific types or
data structures.

Alternatively, a custom dynamic bytecode analyser could be developed.
One possible implementation would be to create a custom instance of ASM’s
MethodVisitor class, to analyse the instructions of the methods of the SUL.

5Found at https://github.com/gmu-swe/phosphor.
6https://asm.ow2.io/

31

https://github.com/gmu-swe/phosphor
https://asm.ow2.io/

This approach would be similar to RALib’s class-analyser, although the
analyser is built on the restrictive interface of the Java Reflection API. Thus,
with ASM, dynamic analysis could be accomplished by building on top of
a similar system to the class-analyser but with the inclusion of analysis of
comparisons on variables in the instruction source of the SUL.

32

Chapter 5

Experiments

5.1 Introduction

In order to test our implementation of tainting for Java, we run some bench-
marks and compare the number of inputs to the number of inputs RALib [2]
uses without any tainting. Instead of the black-box method of RALib, the
setup from this thesis uses tainted inputs when querying the membership
queries necessary to deduct an SDT as also seen in [6]. As for the equiva-
lence oracle, both instances use the original random walk equivalence oracle
from RALib. The equivalence testing part is thus equal for both instances.
Hypothetically, when the optimisations of the two implementation are of
equal significance, our tainted tree oracle should outperform the black-box
oracle of RALib in learning the libraries from java.util. In particular, we
will focus on a FIFO and LIFO (LinkedList) model and a SET (HashSet)
model.

5.2 Set-up

In their paper introducing RALib [2], they used a maximum artificial size
of three for their models. In our setting, we use a SUT that encapsulates
the model and translates (input/output) actions to actual execution calls.
Subsequently, in order to compare the results, our SUT’s are also set to
a maximum size of three. The FIFO and LIFO models are represented as
a java.util.LinkedList, the SET model is a java.util.HashSet. The
tainted implementation makes use of equality relations on input parameters.
We do not consider execution times in these experiments. In order to evalu-
ate the execution times rightfully, one must consider that the current set-up
to learn Java components from tainted inputs uses a rather latency-heavy
construction. As we stated in the preliminaries, most is gained from min-
imising the amount of interactions with the model, i.e. inputs and resets.
The benchmarks run on twelve different seeds, where the only optimisation

33

method enabled on both instances is a cache. Some of the SET-03 sets were
not learned by the non-tainted implementation as they timed-out. Addi-
tionally, the LIFO-03 model with random seed 20 was not learned by both
instances of the tree oracle. These cases have not been included into the
tabled and graphed results. An input represents the handling of an action,
a reset represents the clean slate of the system before a membership query
is processed.

5.3 Results

Model Tree Oracle Inputs Resets

(locs/trans) Mean Std. Dev. Mean Std. Dev.

FIFO-03 RALIB 1.54e+03 8.52e+02 2.80e+02 1.36e+02

(14/16) TAINTED 5.19e+02 6.82e+01 1.42e+02 1.45e+01

LIFO-03 RALIB 8.42e+03 1.30e+04 9.37e+02 1.20e+03

(14/28) TAINTED 6.36e+02 1.65e+02 1.62e+02 2.70e+01

SET-03 RALIB 4.39e+06 9.45e+06 3.63e+05 7.65e+05

(14/16) TAINTED 2.79e+04 2.93e+04 2.74e+03 2.10e+03

Table 5.1: Number of inputs and resets and total actions on the models for
RALib with and without the tainted tree oracle. These totals include the
inputs and resets for both the membership and test queries.

The benchmarks run for every seed and twice for every model. Once
with the tainted tree oracle and once with RALib’s black-box oracle. The
equivalence oracles are both from RALib, this also means that the testing
phase produces the near exact same results in terms of inputs and resets.
Difference from the number of inputs and resets comes from the difference
in the tree query process.

5.4 Discussion

As we can see from Table 5.1 and Figure 5.1, the tainted tree oracle dras-
tically improves on the black-box method of RALib, greatly reducing the
number of interactions on the model. The results of the tainted oracle on
FIFO-03 and SET-03 are very similar to those of the Python taint implemen-
tation from Garhewal et al.[6], the reason is clear: the Java implementation
is based on the framework that was produced in Python and uses a great part
of the code that was developed. Essentially, in Java we execute the member-
ship queries and return the comparisons and whether the query was accepted

34

to the Python implementation for further processing. Moreover, the Java
version is thus also able to learn the FIFO-05 model with the tainted tree
oracle. Part of the reason for the significant difference between the results
of the black-box tree oracle and the tainted tree oracle is that the black-box
oracle of RALib has a hard time finding the necessary queries within the
constraints on inputs compared to our implementation. Also, much of the
improvements of RALib are realised by their optimisation techniques and
their custom class analyser. In these benchmarks, we focus purely on the
difference between a black-box (RALib) and a grey-box (tainted) setting.
Concluding, these results indicate that the tainting technique proves signifi-
cant improvement over the black-box learning of the three measured models.

Figure 5.1: Graph with results from tainted and RALib tree oracle per
learned model, y-axis is logarithmic.

35

Chapter 6

Related & Future Work

6.1 Related Work

There have been a wide variety of works focusing on tainting Java (or the
JVM/JRE) or using dynamic analysis methods or symbolic execution for
learning purposes. In a learning setting, our input constraints derived from
comparisons on tainted inputs is best compared to procedures that incor-
porate symbolic execution methods. As stated previously, most practices
of dynamic tainting methods are in a security context. Difference is made
between static and dynamic taint analysis, static analysis focuses on appli-
cation source code to find the information flow risks of all execution paths.
Dynamic taint analysis focuses on dynamic analysis in a run-time environ-
ment, tracking taints on actual input. In Tainer [16], a similar approach to
Phosphor [15] of byte-code taint instrumentation is used on top of ASM.
Both in the user’s Information flow of taints in handled by creating a new
field for every object of a class that concerns its tainted state. However, as
it is an information flow taint tracking framework similarly to Phosphor, the
use-case does not correspond to input constraint generation. In Sigma∗ [17],
they extend Angluin’s L∗ algorithm [3] as Σ∗ to symbolically execute tar-
geted components. Input constraints and the terms generating output val-
ues are derived from the symbolic path predicates. Scaling is out-of-the-box
supported by the dynamic symbolic execution, as it does not require a con-
crete input alphabet. Abstractions of program behaviour are built however,
which require algorithmic processing to derive finite state machines. More-
over, symbolic execution methods are costly [1] compared to the lightweight
dynamic taint tracking methods of input values also demonstrated in this
thesis. In PSYCO [18], L∗ is also combined with symbolic execution. The
symbolic execution instance is based on the Java PathFinder (JPF) [10],
and is developed as an extension of JPF named jpf-psyco. None of the
works on dynamic input constraint generation for Java are based on the
overloading of operators.

36

6.2 Future Work

This thesis manifests the portability of the tainting implementation to Java.
With that, it become evident that the dynamic analysis method on com-
parisons improved on the methods from RALib. It also shows that tainting
is in some ways more complex in languages other than Python, since the
language properties of looseness in type and overload restrictions can not be
relied upon in every other language. Some of the future work stems from
the limitations mentioned in Section 4.2.5, while others range to problems
associated with the tainting implementation chosen in this thesis. First
of all, when the direction of overloading is deemed promising enough, the
limitations of the current implementation need to be lifted. Currently, the
tainting implementation only suffices for equality relations. Complications
with the interaction between the overloaded operators and the primitive
types in Java need to be further investigated. Either an extensions of the
Manifold plugin must be made or other means of compiler modification must
be sought in order to properly deal with the issues related to primitive types
in Java. Also, possible further endeavours are to investigate the option to
use an implementation of the Comparable class to find relations in a Prior-
ityQueue for example. Currently, the tainted tree oracle only supports the
presence of equality relations and respective constraints. When tainting for
Java additionally fully supports the recording of other relations examined
in this thesis, the tree oracle needs to be extended to also account for these.
Possibly another direction must be examined, as, after providing the limita-
tions in Section 4.2.5, we hinted at other implementations in the subsequent
section in chapter four. These include an extension of Phosphor to record
the instruction of the comparison atop of the already implemented taint
propagation, or a custom framework either analysing AST’s from the Java
compiler or byte-code instructions from methods with ASM. Furthermore,
an initial step towards a re-implementation of the tainted equivalence oracle
[12] was made in Java. The current state however was too buggy to include
in the experiments. Efforts should be made to debug, and possibly extend
with richer relations, the tainted oracle for the Java language.

The above paragraph focused mostly on the techniques discussed in this
thesis. In Section 3.3, we discussed symbolic execution methods. The direc-
tion of this thesis was mostly fixed on capturing comparisons from inputs in
Java, which was accompanied with quite a number of technical obstacles. A
future endeavour for tainting Java in a learning setting might benefit from
an approach focusing on symbolic execution.

37

Chapter 7

Conclusions

We have shown that we are able to port the dynamic taint analysis methods
to the Java language domain, be it with several limitations. Possible solu-
tions to these limitations have been given, as well as options for alternative
implementations for achieving the same goal. We manifested how a compiler
plugin modification and extension of Java source classes can enable us to
achieve I/O constraints from tainted Java objects, and learn real sets and
(F|L)IFO models from their java.util library representation. Additionally,
we have demonstrated how we can extend the taint analysis to keep track
of arithmetic, and the relation to symbolic execution methods. We can thus
conclude that the grey-box taint analysis learning framework is also suited
for Java, one of the most used languages in the industry. In doing so we also
connected our tainting implementation, together with the framework from
Garhewal et al. [6], to the register automaton learning library RALib [2].
This means that the framework in theory could also be used to extend taint
analysis to other widely industry-used languages such as C++. As from the
experimental evaluation: compared to the black-box approach of RALib,
the grey-box methods does significantly better in constructing models from
the Java library in terms of the number of inputs and resets required. How-
ever, as the solution was proven not to be able to fully capture all desired
comparisons in its current state, there is still work to be done to improve
upon the tainting implementation for Java.

38

References

[1] F. Howar, B. Jonsson, and F. W. Vaandrager, “Combining black-box
and white-box techniques for learning register automata,” in Comput-
ing and Software Science - State of the Art and Perspectives, ser. Lec-
ture Notes in Computer Science, B. Steffen and G. J. Woeginger, Eds.,
vol. 10000, Springer, 2019, pp. 563–588. doi: 10.1007/978-3-319-
91908-9_26. [Online]. Available: https://doi.org/10.1007/978-
3-319-91908-9%5C_26.

[2] B. J. Sofia Cassel Falk Howar, “Ralib: A learnlib extension for inferring
efsms,” in International Workshop on Design and Implementation of
Formal Tools and Systems, 2015.

[3] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, pp. 87–106, 1987. doi: 10.1016/0890-
5401(87)90052-6. [Online]. Available: https://doi.org/10.1016/
0890-5401(87)90052-6.

[4] R. Alur, P. Cerný, P. Madhusudan, and W. Nam, “Synthesis of inter-
face specifications for java classes,” in Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2005, Long Beach, California, USA, January 12-14,
2005, J. Palsberg and M. Abadi, Eds., ACM, 2005, pp. 98–109. doi:
10.1145/1040305.1040314. [Online]. Available: https://doi.org/
10.1145/1040305.1040314.

[5] F. Howar, M. Isberner, B. Steffen, O. Bauer, and B. Jonsson, “Infer-
ring semantic interfaces of data structures,” in Leveraging Applications
of Formal Methods, Verification and Validation. Technologies for Mas-
tering Change - 5th International Symposium, ISoLA 2012, Heraklion,
Crete, Greece, October 15-18, 2012, Proceedings, Part I, T. Margaria
and B. Steffen, Eds., ser. Lecture Notes in Computer Science, vol. 7609,
Springer, 2012, pp. 554–571. doi: 10.1007/978-3-642-34026-0_41.
[Online]. Available: https://doi.org/10.1007/978-3-642-34026-
0%5C_41.

[6] B. Garhewal, F. Vaandrager, F. Howar, T. Schrijvers, T. Lenaerts, and
R. Smits, “Grey-box learning of register automata,” To appear in Pro-

39

https://doi.org/10.1007/978-3-319-91908-9_26
https://doi.org/10.1007/978-3-319-91908-9_26
https://doi.org/10.1007/978-3-319-91908-9%5C_26
https://doi.org/10.1007/978-3-319-91908-9%5C_26
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/1040305.1040314
https://doi.org/10.1145/1040305.1040314
https://doi.org/10.1145/1040305.1040314
https://doi.org/10.1007/978-3-642-34026-0_41
https://doi.org/10.1007/978-3-642-34026-0%5C_41
https://doi.org/10.1007/978-3-642-34026-0%5C_41

ceedings 16th International Conference on integrated Formal Methods
(iFM), pp. 16–20, 2020. [Online]. Available: https://www.sws.cs.
ru.nl/publications/papers/fvaan/TaintingRALib/document.

pdf.

[7] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337–340, isbn: 978-3-540-78800-3.

[8] V. Haldar, D. Chandra, and M. Franz, “Dynamic taint propagation
for java,” in 21st Annual Computer Security Applications Conference
(ACSAC 2005), 5-9 December 2005, Tucson, AZ, USA, IEEE Com-
puter Society, 2005, pp. 303–311. doi: 10.1109/CSAC.2005.21. [On-
line]. Available: https://doi.org/10.1109/CSAC.2005.21.

[9] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Commun. ACM, vol. 56, no. 2, pp. 82–90, 2013. doi:
10.1145/2408776.2408795. [Online]. Available: https://doi.org/
10.1145/2408776.2408795.

[10] C. S. Pasareanu and N. Rungta, “Symbolic pathfinder: Symbolic exe-
cution of java bytecode,” in ASE 2010, 25th IEEE/ACM International
Conference on Automated Software Engineering, Antwerp, Belgium,
September 20-24, 2010, C. Pecheur, J. Andrews, and E. D. Nitto, Eds.,
ACM, 2010, pp. 179–180. doi: 10.1145/1858996.1859035. [Online].
Available: https://doi.org/10.1145/1858996.1859035.

[11] T. Schrijvers, “Learning register automata using taint analysis,” Bach-
elor’s Thesis, Radboud University, 2018.

[12] R. Smits, Software science research internship, 2019.

[13] E. Chin and D. A. Wagner, “Efficient character-level taint tracking
for java,” in Proceedings of the 6th ACM Workshop On Secure Web
Services, SWS 2009, Chicago, Illinois, USA, November 13, 2009, E.
Damiani, S. Proctor, and A. Singhal, Eds., ACM, 2009, pp. 3–12. doi:
10.1145/1655121.1655125. [Online]. Available: https://doi.org/
10.1145/1655121.1655125.

[14] A. Melentyev, “Java modular extension for operator overloading,”
CoRR, vol. abs/1406.4087, 2014. arXiv: 1406.4087. [Online]. Avail-
able: http://arxiv.org/abs/1406.4087.

[15] J. Bell and G. E. Kaiser, “Phosphor: Illuminating dynamic data flow
in commodity jvms,” in Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages &
Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR,
USA, October 20-24, 2014, A. P. Black and T. D. Millstein, Eds.,

40

https://www.sws.cs.ru.nl/publications/papers/fvaan/TaintingRALib/document.pdf
https://www.sws.cs.ru.nl/publications/papers/fvaan/TaintingRALib/document.pdf
https://www.sws.cs.ru.nl/publications/papers/fvaan/TaintingRALib/document.pdf
https://doi.org/10.1109/CSAC.2005.21
https://doi.org/10.1109/CSAC.2005.21
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/1655121.1655125
https://doi.org/10.1145/1655121.1655125
https://doi.org/10.1145/1655121.1655125
https://arxiv.org/abs/1406.4087
http://arxiv.org/abs/1406.4087

ACM, 2014, pp. 83–101. doi: 10.1145/2660193.2660212. [Online].
Available: https://doi.org/10.1145/2660193.2660212.

[16] M. Ashouri, “Practical dynamic taint tracking for exploiting input
sanitization error in java applications,” in Information Security and
Privacy - 24th Australasian Conference, ACISP 2019, Christchurch,
New Zealand, July 3-5, 2019, Proceedings, J. Jang-Jaccard and F. Guo,
Eds., ser. Lecture Notes in Computer Science, vol. 11547, Springer,
2019, pp. 494–513. doi: 10.1007/978-3-030-21548-4_27. [Online].
Available: https://doi.org/10.1007/978-3-030-21548-4%5C_27.

[17] M. Botincan and D. Babic, “Sigma*: Symbolic learning of input-
output specifications,” in The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013, R. Giacobazzi and R. Cousot, Eds.,
ACM, 2013, pp. 443–456. doi: 10.1145/2429069.2429123. [Online].
Available: https://doi.org/10.1145/2429069.2429123.

[18] D. Giannakopoulou, Z. Rakamaric, and V. Raman, “Symbolic learning
of component interfaces,” in Static Analysis - 19th International Sym-
posium, SAS 2012, Deauville, France, September 11-13, 2012. Proceed-
ings, A. Miné and D. Schmidt, Eds., ser. Lecture Notes in Computer
Science, vol. 7460, Springer, 2012, pp. 248–264. doi: 10.1007/978-3-
642-33125-1_18. [Online]. Available: https://doi.org/10.1007/
978-3-642-33125-1%5C_18.

41

https://doi.org/10.1145/2660193.2660212
https://doi.org/10.1145/2660193.2660212
https://doi.org/10.1007/978-3-030-21548-4_27
https://doi.org/10.1007/978-3-030-21548-4%5C_27
https://doi.org/10.1145/2429069.2429123
https://doi.org/10.1145/2429069.2429123
https://doi.org/10.1007/978-3-642-33125-1_18
https://doi.org/10.1007/978-3-642-33125-1_18
https://doi.org/10.1007/978-3-642-33125-1%5C_18
https://doi.org/10.1007/978-3-642-33125-1%5C_18

Appendix A

Appendix

A.1 Comparisons from TaintInteger

Taint Intege r t a i n t I n t e g e r = new Taint Intege r (0 , 0) ;
Ta int Intege r t a i n t I n t e g e r 1 = new Taint Intege r (1 , 1) ;
I n t e g e r i n t e g e r = new I n t e g e r (0) ;
I n t e g e r i n t e g e r 1 = new I n t e g e r (1) ;
t a i n t I n t e g e r . equa l s (i n t e g e r) ;
i f (t a i n t I n t e g e r > t a i n t I n t e g e r 1) {}
i f (t a i n t I n t e g e r <= t a i n t I n t e g e r 1) {}
i f (t a i n t I n t e g e r > i n t e g e r 1) {}
i f (t a i n t I n t e g e r <= i n t e g e r 1) {}
i f (t a i n t I n t e g e r > 5) {}
f o r (Comparison<?,?> c : t a i n t I n t e g e r . getComparisons ()) {

System . out . p r i n t l n (c) ;
}

Le f t : Object Value : 0 , Taint Value : 0 | Right : 0 | Operation
: EQ
Lef t : Object Value : 0 , Taint Value : 0 | Right : Object Value :
1 , Taint Value : 1 | Operation : GT

Lef t : Object Value : 0 , Taint Value : 0 | Right : Object Value :
1 , Taint Value : 1 | Operation : LE

Le f t : Object Value : 0 , Taint Value : 0 | Right : 1 | Operation
: GT
Lef t : Object Value : 0 , Taint Value : 0 | Right : 1 | Operation
: LE
Le f t : Object Value : 0 , Taint Value : 0 | Right : 5 | Operation
: GT

Figure A.1: Demonstration of captured comparisons on tainted integers.
Above is the code, below is the output.

42

A.2 Symbolic Execution Example

1 void main (S t r ing [] a rgs) {
2 i n t x = input ()
3 i n t y = input ()
4 f oo (x , y) ;
5 }
6

7 void foo (i n t a , i n t b) {
8 c = 2∗a ;
9 i f (c == b) { // i f (2∗ a == b)

10 i f (a + 10 > 2∗b) {
11 output ()
12 } e l s e i f (a∗b > a+b) {
13 throw new RuntimeException () ;
14 }
15 }
16 }

Figure A.2: Java program to run Symbolic Execution on.

2 ∗ a == b

a = 0, b = 1 a+ 10 > 2 ∗ b

a = 3, b = 6a ∗ b > a+ b

a = 5, b = 10unsat

Exception!

false true

truefalse

truefalse

Figure A.3: Symbolic Execution Tree of code example of Figure A.2

43

A.3 R-indistinguishability of Data Languages

Definition 2 (Data Languages). Any two data words w and w′ are R-
indistinguishable if they have the exact same sequence of values that can not
be distinguished by any of the relations in R. Then, a data language L is a
set of data words that hold the following property:

if w and w′ are R-indistinguishable then w ∈ L ⇐⇒ w′ ∈ L.

A.4 Overhead experiment

In order to ensure the tainting implementation does not provide too much
overhead, we ran some experiments to experiment on this property. We
ran a for loop of one million iterations on a java.util.HashSet<Integer>

with four operations, two add’s and two remove’s. Both the additions and
removes of on the set impose relational comparisons captured on the tainted
objects. The results proved that the additional operations done when the
operators are overloaded and the extensions of the Integer class do not im-
pose a great performance decrease when these tainted Integer objects are
short-lived. In our setting, the live span of such an object only spans the
trace of a membership query. Naturally, the more comparisons you would
add to the benchmark, the worse the distinction between the tainted and
ordinary Integer becomes. In this case, were there are two comparisons
done on the tainted Integers per iteration which translates to two million
comparisons, the slowdown is 16%.

Object Execution time (avg. seconds) Standard deviation

Integer 8, 06117 · 10−2 4, 2763 · 10−3

TaintInteger 9, 32241 · 10−2 4, 1684 · 10−3

Table A.1: Benchmark of the tainted and ordinary Integer.

44

	Introduction
	Models
	Research context
	Outline

	Preliminaries
	Model learning
	Black, grey, and white-boxes
	Models, learners and teachers

	Automata Theory
	From DFA's to EFSM's
	Data Languages
	Guards
	Register Automata

	Tree Queries
	Symbolic Decision Trees

	SMT Solvers
	Generalising to SMT

	Dynamic Taint Analysis
	Extracting information
	Information flow
	Symbolic execution
	Concolic execution/testing

	Control flow on tainted inputs
	Inferring semantics from comparisons

	Java
	Java context
	Inherent support & research context
	Java design principles
	Library components and generics

	Tainting Java
	Java library classes
	Manifold System & Operator Overloading
	Complications of tainting operations
	Arithmetic
	Limitations

	Bytecode & ASM
	Bytecode comparisons
	Phosphor

	Experiments
	Introduction
	Set-up
	Results
	Discussion

	Related & Future Work
	Related Work
	Future Work

	Conclusions
	References
	Appendix
	Comparisons from TaintInteger
	Symbolic Execution Example
	R-indistinguishability of Data Languages
	Overhead experiment

