
Bachelor thesis
Computing Science

Radboud University

Optimizing Elephant for RISC-V

Author:
Mauk Lemmen
S4798937

First supervisor:
Bart Mennink

Second supervisor:
Joan Daemen

March 12, 2020

Abstract

Elephant is an authenticated encryption scheme competing in the NIST
lightweight cryptography competition. The mode of Elephant is a nonce-
based encrypt-then-MAC construction. One of the instances of Elephant
is Elephant-Keccak-f [200], also called Delirium, which uses Keccak as its
permutation primitive. We optimize Delirium for a RISC-V RV32IMAC
architecture by exploiting Elephant’s possibility for parallelization by using
a technique called bit-interleaving. This results in an average speedup of
237%.

Contents

1 Introduction 3

2 Preliminaries 4
2.1 Notation . 4
2.2 Authenticated encryption . 4
2.3 Linear-feedback shift register . 5
2.4 RISC-V . 5

3 Elephant 7
3.1 Elephant construction . 7
3.2 Delirium instance . 9

3.2.1 Permutation . 9
3.2.2 LFSR . 10

4 Research 11
4.1 Research angle . 11
4.2 Optimization . 11

4.2.1 Bit interleaving . 11
4.3 Implementation . 13

4.3.1 State representation . 13
4.3.2 State transformation . 13
4.3.3 Keccak-f [200] . 14
4.3.4 LFSR . 14

4.4 Benchmarks and results . 15
4.4.1 Permutation . 15
4.4.2 Varying message lengths 16

4.5 Lower bound . 18
4.5.1 Theoretical amount of cycles 18
4.5.2 Discussion . 19

5 Related Work 20

6 Conclusions 21

1

A Appendix 23
A.1 How to set up the compiler . 23
A.2 How to download and compile and run optimized Elephant . 24

2

Chapter 1

Introduction

Lately there has been great progress in the development of devices for the
Internet of Things, smart devices and other electronic gadgets capable of
communicating via the internet. One thing that lacks in those devices is a
standardized cryptographic algorithm, capable of guaranteeing secure com-
munication. Many of the current standardized cryptographic algorithms
were not designed for the restricted environment of these devices, and thus
often perform poorly with the processing power on board. This is why the
US National Institute of Standards and Technology (NIST) has launched a
competition to find and standardize lightweight algorithms suitable for these
devices.
One of the algorithms participating in this competition is the authenti-
cated encryption scheme Elephant. We implement and optimize Elephant
for RISC-V. RISC-V is an open source instruction set architecture, meaning
it can be freely examined, used and customized by anyone, including the
manufacturers of Internet of Things and smart devices. RISC-V is based on
the Reduced Instruction Set Principles, making it an ideal architecture for
smaller devices.
A general implementation of Elephant exists, but not yet one optimized for
a (32-bit) RISC-V based board. Having an optimized implementation is
important, not only for faster-running code, but for reduced consumption of
power, CPU and memory as well. This is an important property for devices
with limited available resources.
In this paper we optimize Elephant, more specifically the Delirium instance
of Elephant, on RISC-V.

3

Chapter 2

Preliminaries

In this chapter, we will explain several concepts that are necessary to fully
understand this manuscript.

2.1 Notation

We will use the following notation in order to describe functions and defini-
tions.
For n ∈ N, we let {0,1}n denote the set of n-bit strings and {0,1}∗ the set
of arbitrary length strings. For X ∈ {0,1}∗ we define

X1 . . .X`
n←ÐX

to be the function that partitions X into ` = ⌈∣X ∣/n⌉ blocks of size n bits,
where the last block is padded with 0s. The expression “A?B ∶ C” equals B
if A is true, and equals C if A is false. For x ∈ {0,1}n and i ≤ n, we denote
by x≪ i (resp., x≫ i) a shift of x to the left (resp., right) over i positions.
We likewise denote by x≪ i (resp., ≫ i) a rotation of x to the left (resp.,
right) over i positions. We denote by ⌊x⌋i the i left-most bits of x.

2.2 Authenticated encryption

Authenticated encryption is a way of encryption that allows the recipient of
the encrypted message to verify that the ciphertext has not been tampered
with. By calculating a message authentication code (MAC) or tag over a
key and input string, one can later verify the authenticity and integrity
of that input string. This is done by recalculating the tag and checking
if it matches the original tag. Authenticated encryption with associated
data (AEAD) provides this property, but also allows for the verification of
additional authenticated data sent along with the message. This additional
data can be used to send along more information about the message, e.g.

4

the context in which the message is used. This prevents an attacker from
replaying the encrypted message in a different context. An authenticated
encryption scheme may have the following parameters as documented in the
submission requirements for the Lightweight Cryptography competition [1]:

• Encryption:

– input: key K, nonce N , additional data A, and message M .

– output: ciphertext C and a tag T .

• Decryption:

– input: key K, nonce N , additional data A, ciphertext C.

– output: message M if tag T is correct and an error message
otherwise.

The public message number should only be used once as it may be used to
prevent replay attacks or as a nonce in the underlying encryption scheme.
The main purpose of a nonce is to ensure confidentiality, for example by
applying it to a ciphertext to add randomness. Nonces can also be used
as a way to make sure previously sent ciphertexts cannot be used again, as
it will become clear to the recipient of the messages that an already used
nonce has been used again.

2.3 Linear-feedback shift register

A linear-feedback shift register (LFSR) is a circuit represented as a state
of bits, where every cycle each bit value shifts to the right and some cells,
also known as taps, get XORed with the other taps. The output bit is the
rightmost bit, and the input bit is a function of the output bit and the taps.
LFSRs are used amongst other things to generate pseudo-random numbers.
Figure 2.1 is an example of an LFSR with taps on cells 29, 20, 16, 11, 8, 4,
3 and 2.

Figure 2.1: LFSR

2.4 RISC-V

RISC-V is an open-source instruction set architecture, originally developed
as a university project in 2010 by Kryste Asanović at the University of Cal-
ifornia, Berkeley. The idea was to provide a free instruction set architecture

5

(ISA) for academic as well as industrial use. In 2015, the RISC-V Foun-
dation was founded, and as of now comprises of more than 325 members,
working on the project [2]. Already many implementations of RISC-V exist,
with many more in development. In this thesis, we will be using the HiFive 1
development board designed by SiFive, using an E31 CPU with RV32IMAC
support. RV32I means that the processor uses 32-bit instructions and reg-
isters, and MAC means that the processor supports integer multiplication
and division (M), atomic mode for high performance portable software (A)
and compressed mode which used compressed instructions for better code
density (C).

6

Chapter 3

Elephant

3.1 Elephant construction

Elephant is an authenticated encryption scheme, created as an encryption
algorithm for lightweight environments. It has three instances: Dumbo,
Jumbo and Delirium. Each of these instances are parallelisable but also
have a small state size. The Elephant mode is a nonce-based encrypt-then-
MAC construction as depicted in Figure 3.1. It is permutation-based, and
because only the forward direction of the permutation is used, no inverse of
the permutation is needed. Each of the instances use an LFSR to generate
the masks for the scheme. Dumbo and Jumbo both use Spongent as permu-
tation, which performs well on hardware, while Delirium uses Keccak-f [200]
as permutation and is more developed towards software use.

Figure 3.1: Elephant depiction

We now describe the generic authenticated encryption and decryption
mode of Elephant as it is described in the original Elephant specification
paper [3].

7

Let k, m, n, t ∈ N with k, m, t ≤ n. Let P : {0,1}n → {0,1}n be an n-
bit permutation, and ϕ1 : {0,1}n → {0,1}n be an LFSR. Define ϕ2 = ϕ1⊕
id. Define the function mask ∶ {0,1}k ×N2 → {0,1}n as follows:

maska,b
K = mask(K,a, b) = ϕb

2 ○ ϕa
1 ○P(K ∥ 0n−k).

Encryption

The encryption algorithm, as described in Algorithm 1, gets as input key
K ∈ {0,1}k, nonce N ∈ {0,1}m, associated data A ∈ {0,1}∗ and message
M ∈ {0,1}∗, and outputs ciphertext C ∈ {0,1}∣M ∣ and tag T ∈ {0,1}t.

Algorithm 1: Elephant encryption algorithm

input : (K,N,A,M) ∈ {0,1}k × {0,1}m × {0,1}* × {0,1}*
output: (C,T) ∈ {0,1}∣M ∣ × {0,1}t

1: M1 . . .M`M

n←ÐM
2: for i = 1, . . . , `M do

3: Ci ←Mi ⊕ P (N ∥ 0n−m ⊕maski−1,0
K)⊕maski−1,0

K
4: Ci ← ⌊C1 . . .C`M ⌋∣M ∣
5: T ← 0

6: A1 . . .A`A

n←Ð N ∥ A ∥ 1

7: C1 . . .C`C

n←Ð C ∥ 1
8: for i = 1, . . . , `A do

9: T ← T ⊕ P (Ai ⊕maski−1,2
K)⊕maski−1,2

K
10: for i = 1, . . . , `C do

11: T ← T ⊕ P (Ci ⊕maski−1,1
K)⊕maski−1,1

K
12: return (C, ⌊T ⌋t)

Decryption

The decryption algorithm, as described in Algorithm 2, gets as input key
K ∈ {0,1}k, nonce N ∈ {0,1}m, associated data A ∈ {0,1}∗ and ciphertext
C ∈ {0,1}∣M ∣, and outputs message M ∈ {0,1}∣M ∣ if the tag is correct, or a ⊥
sign otherwise.

8

Algorithm 2: Elephant decryption algorithm

input : (K,N,A,C,T) ∈ {0,1}k × {0,1}m × {0,1}* × {0,1}* × {0,1}t
output: M ∈ {0,1}∣C∣ or ⊥

1: C1 . . .C`M

n←Ð C
2: for i = 1, . . . , `M do

3: Mi ← Ci ⊕ P (N ∥ 0n−m ⊕maski−1,0
K)⊕maski−1,0

K
4: M ← ⌊M1 . . .M`M ⌋∣C∣
5: T̄ ← 0

6: A1 . . .A`A

n←Ð N ∥ A ∥ 1

7: C1 . . .C`C

n←Ð C ∥ 1
8: for i = 1, . . . , `A do

9: T̄ ← T̄ ⊕ P (Ai ⊕maski−1,2
K)⊕maski−1,2

K
10: for i = 1, . . . , `C do

11: T̄ ← T̄ ⊕ P (Ci ⊕maski−1,1
K)⊕maski−1,1

K
12: return ⌊T̄ ⌋t = T ?M ∶⊥

3.2 Delirium instance

Delirium or Elephant-Keccak-f [200], is the third variant of Elephant, and the
one we will optimize in this thesis. It has a state size of 200 bits represented
as a 5-by-5-by-8 array. Delirium has an expected security strength of 2217

(measured in the offline complexity) and supports an online complexity of
274 bytes, provided that the Permutation Keccak is pseudorandom and an
attacker cannot evaluate the encryption function twice with the same nonce.
The key and tag lengths are 128 bits, and the nonce size is limited to 96
bits.

3.2.1 Permutation

Similar to the Elephant specification paper, we will now describe Keccak-
f [200]. The permutation, Keccak-f [200], signifies the 18-round Keccak per-
mutation of Bertoni et al [4]. The state X ∈ {0,1}200 is represented as a
5-by-5-by-8 array a ∈ {0,1}5×5×8, where for (x, y, z) ∈ Z5 ×Z5 ×Z8 the bit at
position (x, y, z) is set as

a[x, y, z] =X[8(5y + x) + z].

Keccak-f [200] operates on a 200-bit inputX as follows:

for i = 1, . . . ,18 do
X ← ι ○ χ ○ π ○ ρ ○ θ(X)

9

Where the functions θ, ρ,χ, and ι are defined as follows:

θ ∶ a[x, y, z]← a[x, y, z]⊕
4

⊕
y′=0

a[x − 1, y′, z]⊕
4

⊕
y′=0

a[x + 1, y′, z − 1],

ρ ∶ a[x, y, z]← a[x, y, z + t[x, y]],
π ∶ a[x, y, z]← a[x + 3y, x, z],
χ ∶ a[x, y, z]← a[x, y, z]⊕ (a[x + 1, y, z]⊕ 1)a[x + 2, y, z],
ι ∶ a[x, y, z]← a[x, y, z]⊕RC[i, x, y, z].

For ρ the function t[x, y] is defined as

t x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 153 231 3 10 171

y = 1 55 276 36 300 6

y = 0 28 91 0 1 190

y = 4 120 78 210 66 253

y = 3 21 136 105 45 15

and for ι, the round constants are given by

RC[i, x, y, z] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

rc[j + 7i], (x, y, z) = (0,0,2j − 1),

0, otherwise,

where rc is computed from a binary LFSR.

3.2.2 LFSR

The masks for the scheme are generated by a simple LFSR defined by the
primitive polynomial:

p(x) = x8 + x6 + x5 + x4 + 1.

and in terms of bitwise operations as:

(x0, ..., x24)↦ (x1, ..., x24, x0 ≪ 1⊕ x2 ≪ 1⊕ x13 ≪ 1)

where each xi stands for an 8-bit word.

10

Chapter 4

Research

4.1 Research angle

As mentioned in the specification paper, there is a high degree of parallelism
possible when implementing Delirium. If there are multiple cores available,
multiple blocks can be processed in parallel. If the processor uses 16-or-
more-bit registers, multiple calls to the Keccak function can be combined.
Because the HiFive 1 board uses 32-bit registers, this call-combination tech-
nique should definitely be possible to implement. Also, since the reference
implementation released with the Elephant specification paper was designed
to work on 8-bit processors as well as on processors with bigger CPU-word
sizes, it should definitely be possible to optimize a solely 32-bit version by
using the aforementioned technique.

4.2 Optimization

4.2.1 Bit interleaving

In theory

Being able to process several blocks in parallel can greatly increase efficiency
in Elephant, and since we have 32-bit registers, this is possible. Normally we
process blocks of byte-sized elements, but by making full use of the 32-bit
registers, we can combine four blocks of byte-sized elements into one block of
4-byte elements. This way, our permutation makes full use of the available
32-bit (4-byte) registers, meaning we can process four blocks at the same
time. To do this we use the concept of bit interleaving. Bit interleaving
is a technique described in Keccak implementation overview [5], which we
can apply to our implementation. As demonstrated in Figure 4.1, when
interleaving 4 bytes, the first bit is taken from each of the four bytes and
then are concatenated. The same is done for all of the following bits of
each of the four bytes, and these are concatenated to the result from the

11

earlier bits. This continues until all of the bits from the four bytes have
been interleaved. De-interleaving works by using the position of each bit in
the interleaved 32-bit word to determine to which of the four 8-bit words it
belongs to.

Figure 4.1: Four 8-bit words interleaved into one 32-bit word

Every bit-wise operation that is normally applied to each of the four bytes
separately, can now be applied to the whole 32-bit word as long as that
operation is adapted to work on 32-bit words. For example, a bit-shift of
one now becomes a bit-shift of four. Any XOR or AND operation, that
would normally be applied separately to each byte, now also needs to be
interleaved in order to apply it to the whole 32-bit word at once.

In practice

In practice, it is not a matter of “taking” bits from bytes and “putting”
them somewhere else. This is because evaluating each byte bit-per-bit is
too time consuming and impractical. Instead we realize bit interleaving by
a series of bitshifts, bitwise XOR and bitwise AND operations. Since we
need to go from 4×8 bit, to 1×32 bit, we have to space out each of the 8-bit
words over a 32-bit word, such that bit interleaving is achieved. In order
to do this, we interleave each of the 8-bit words with zeros, so that we get
four 16-bit words with bit values alternating between the bit values from the
8-bit words and zeros. Next, each of the four 16-bit words gets interleaved
with zeros again, so that we now have four 32-bit words, where each of the
original bit values from each of the 8-bit words are now alternated with three
zeros. We visualize this process in Figure 4.2.

Figure 4.2: The 8-bit word “11111111” interleaved with zeros into a 32-bit
word

Now, we perform a right bit-shift on 32-bit word two, three and four by one,
two and three bits respectively. This puts all the values from the original 8-
bit words in the correct position to finally combine the four 32-bit words into

12

one. Now that all values line up, we can perform a bitwise AND operation
on each of the 32-bit words, creating a single 32-bit word consisting of the
four original 8-bit words, now interleaved.

Theoretical improvement

The theoretical improvement of the Keccak-f [200] permutation by process-
ing four blocks, where normally one would be processed, is 400%: no extra
calculations have to be performed inside the optimized permutation. The
only difference with the standard implementation is that instead of working
with 8-bit words in 32-bit registers, Keccak-f [200] now works with 32-bit
words in 32-bit registers. The LFSR can also be adapted to work on blocks
of four, as well as the calculating of the masks for each block, although these
components do not benefit as much from bit interleaving as the permuta-
tion. The process of bit interleaving itself also has a cost of course, but this
process happens relatively few times; once before encryption or decryption,
and once at the end, where we go back from an interleaved state to a normal
state.

4.3 Implementation

In this section, we will describe how the implementation of bit interleaving
works on the different components of Elephant. An implementation in C
can be found at https://github.com/Lemmenm/elephant-riscv.

4.3.1 State representation

The standard version of Elephant has a state size of 200 bits (5-by-5-by-8),
represented as an array of 25 (5-by-5) 8-bit words in the reference imple-
mentation. We only want to work with full 32-bit variables instead of 8-bit
variables, so by replacing all byte variables with uint32 t variables, our state
representation changes to an array of 25 32-bit words (5-by-5-by-32) with a
total size of 800 bits. In this new representation, one block amounts to four
blocks in the standard representation.

4.3.2 State transformation

Since we are using a new internal state representation, but also need to be
able to use normal input data and return normal output data, two trans-
formations of data need to happen: Once before encryption or decryption,
where we receive a series of characters represented in bytes that need to be
represented as a series of 32-bit words, and once after encryption or decryp-
tion where the output has to transform back to a byte representation.

13

https://github.com/Lemmenm/elephant-riscv

Before encryption/decryption

There are two possible cases when transforming blocks to the new represen-
tation. The first and the easiest is when the amount of blocks that need
to be transformed is a multiple of four. This means that all groups of four
blocks consisting of 8-bit words can be interleaved to make one block of
32-bit words.
The second case is when the amount of blocks is not a multiple of four. Since
the new representation needs four “old” blocks to transform into one new
block, we have to use padding blocks filled with zero values to add to make
the amount of blocks to a multiple of four.

After encryption/decryption

When transforming back to a byte representation of the data, we have to
de-interleave each interleaved 32-bit block back to four blocks of bytes. Since
it is possible that the amount of original blocks was not a multiple of four,
we need to take make sure none of the data from the added padding blocks
gets joined in the output data. This can be done by cutting off any output
data which exceeds the message length variable.

4.3.3 Keccak-f [200]

The optimized implementation of Keccak-f [200] is not very different from
the original one, except for the adaptation to support the new state repre-
sentation. The Keccak-f [200] round constants need to be interleaved with
themselves to be applicable to each part of the interleaved state, and the ρ-
offsets and bit rotations need to be multiplied by four for the same purpose.

4.3.4 LFSR

The LFSR can also be changed to work on 32-bit words, but the original
LFSR cannot be completely replaced. The masks of four blocks need to be
interleaved, such that the new LFSR that uses 32-bit words can calculate
the next block’s mask for each of those interleaved masks at the same time.
However, at the start of the algorithm, only the mask of the first block is
known, as it is derived from the key. The second, third and fourth mask
are derived sequentially from the first, which can only be done using the
original LFSR setup. After calculating the masks for the first four blocks,
and interleaving them, the new LFSR can continue calculating the masks
for the next blocks using the 32-bit interleaved masks.

14

4.4 Benchmarks and results

In order to compare the reference implementation from the Elephant speci-
fication paper and the optimized implementation, we count CPU cycles. To
count those in a RISC-V processor, the following assembly code can be used:

. t e x t

. g l o b l g e t c y c l e s

.a l ign 2
g e t c y c l e s :

c s r r a1 , mcycleh
c s r r a0 , mcycle
c s r r a2 , mcycleh
bne a1 , a2 , g e t c y c l e s
ret

By using the getcycles function before and after each encryption or decryp-
tion, we can calculate the difference between those two values and get the
amount of cycles the algorithm took. This can also be used to calculate how
long each permutation or any other operation took inside the algorithm. To
generate test cases, we will use the test vector generation code provided by
NIST for the Lightweight Cryptography Competition [6], with some changes
of parameters to fit our needs.

4.4.1 Permutation

The performance of the permutation is not dependant on the length of the
plaintext or additional data, since it always gets a fixed-size input block.
As shown in Figure 4.3, we found that the original permutation costs 10598
cycles per call, so 42392 cycles for four blocks, while the optimized version
costs 13760 cycles per four blocks. This means we have a speedup of 308%
on the permutation.

15

Figure 4.3: A comparison between the performance of the original Keccak-
f [200] implementation and the optimized Keccak-f [200] implementation
when processing four blocks

4.4.2 Varying message lengths

We will now look at a comparison between the benchmark and optimized
implementation by increasing the plaintext size.

Encryption & decryption

As seen in Figure 4.4, there is not a great difference in encryption and de-
cryption in terms of performance. We do note that messages with a low
message length (under 200 characters) perform worse in the optimized im-
plementation. This is because the effort of interleaving data to process four
blocks simultaneously is wasted if there are very few blocks to process. For
larger messages, the optimized implementation is a fair amount faster. When
measuring the slope of the plots, we notice a slope of around 889.2 for the
original implementation and a slope of 374.8 for the optimized implementa-
tion. To find the difference in growth between the original and optimized
implementation, we divide the slopes of both plots and find 889.2

374.8 = 2.37,
meaning the original implementation grows 2.37 times faster in CPU cycles
than the optimized version, which means that the optimized implementation
is 2.37 times faster.

16

Figure 4.4: A comparison between the performance of the original imple-
mentation (purple) and the optimized implementation (green) in both en-
cryption (left) and decryption (right).

Case distinction

Since our algorithm performs worse than the standard implementation on
messages smaller than 200 bits, we implement a case distinction for messages
below and above message length 200. For any messages with length smaller
than 200, we simply use the standard implementation and for messages
above that length, we use the implementation with bit-interleaving. As
shown in figure 4.5, we now get an implementation that performs either
equal or better to the original implementation.

Figure 4.5: A comparison between the performance of the original imple-
mentation (purple) and the optimized implementation (green) in both en-
cryption (left) and decryption (right), while using the new case distinction

17

4.5 Lower bound

When discussing the performance of an algorithm, having a lower bound of
the amount of computational power it needs to run is a handy way to classify
and judge the algorithm. Keccak-f [200] takes up most of the computational
power of Delirium, and the parallelization of the calls to the Keccak-f [200]
function have been the main optimization in this manuscript. So having
an idea what the theoretical lower bound of the amount of cycles is and
comparing this to the actual performance results, is a good way to get an
idea of the performance of the algorithm.

4.5.1 Theoretical amount of cycles

Each round of Keccak-f [200] consists of five functions executed sequentially:
θ, ρ, π, χ, and ι. Most of these functions are a combination of XOR’s, AND’s,
NOT’s, and the cost of each of these operations can be counted.

Cost of operations

On the RISC-V board, each of the XOR, AND, and NOT instructions cost
1 cycle. The custom ROL function consists of two shifts and a XOR, which
amounts to 3 cycles. The lane size of the optimized Keccak-f [200] matches
the 32-bit CPU word length, so each XOR, AND or NOT operation on a
lane will cost only 1 cycle.

θ-function

The θ-function contains two loops of 25 XOR operations and 5 ROL op-
erations followed by 5 more XOR operations, resulting in a total amount
of:

θ-total = 2 × 25 cycles + 5 × 3 cycles + 5 cycles = 70 cycles.

ρ-function

The ρ-function consists of 25 ROL operations, amounting to a total of:

ρ-total = 3 × 25 cycles = 75 cycles.

π-function

The π-function does not contain any bitwise operations thus is not consid-
ered in the cycle count.

18

χ-function

The χ-function contains a loop of 25 XOR operations, 25 NOT operations
and 25 AND operations amounting to a total of:

χ-total = 25 cycles + 25 cycles + 25 cycles = 75 cycles.

ι-function

The ι-function contains 1 XOR operation, amounting to a total of:

ι-total = 1 cycle.

Total

Each round of Keccak-f [200] consists of each of the function parts executed
sequentially, and one full execution of the whole of Keccak consists of 18
rounds. This amounts to a total of:

total = 18 × (70 + 75 + 75 + 1) = 3.978 cycles.

4.5.2 Discussion

We found a lower bound of 3978 cycles, which is certainly less than the mea-
sured 13760 cycles. The main reason why this is so different, is because while
the ι-step consists of only one XOR operation, that operation is extremely
costly (±500 cycles), since it has to look up the round constant in a list of
18 32-bit (4 interleaved 8-bit) round constants, which cannot all be kept in
the registers, and are stored in memory instead. The round constants of
the original Keccak-f [200] are only 8 bits in size, so they are easier to fit
into the registers, which is why the original implementation suffers less from
this problem. If we take away this giant cost, and treat it as an arbitrary
XOR operation, we come to a total of 4778 measured cycles. The remainder
of the difference between the lower bound and these newly measured cycles
is due to loop control and arithmetic. An improvement of how the round
constants are stored or used may be a good focal point in future work to
further improve the algorithm.

19

Chapter 5

Related Work

There have been no earlier optimizations of Elephant on any platform, but
with the progress of the NIST lightweight cryptography competition, an
increasing amount of candidates are being implemented and optimized on
a RISC-V environment. Research has been done on efficient cryptology
on the RISC-V architecture [7], as well as multiple optimizations of crypto
algorithms on RISC-V, such as SNEIK [8] and Ascon [9].

20

Chapter 6

Conclusions

We have optimized Elephant-Keccak-f [200] for RISC-V by changing the
state representation and functions to be able to process multiple blocks at
the same time. This optimization performs especially well on larger mes-
sage lengths because the cost of interleaving is more efficient with a greater
amount of blocks. For message lengths under 200 bytes, we saw a decrease
in performance, so we made use of the standard implementation of Elephant
for those message lengths. This means that the optimized implementation
performs either as good as, or better than the original.
Future work could include optimizing the usage of the Keccak round con-
stants in the Keccak function or optimizing the two other instances of Ele-
phant, Dumbo and Jumbo.

21

Bibliography

[1] Submission Requirements and Evaluation Criteria for the Lightweight
Cryptography Standardization Process.

[2] “RISC-V Foundation”. https://riscv.org/risc-v-foundation/.

[3] Beyne T., Chen Y.L., Dobraunig C., and Mennink B. “Elephant v1”,
Feb 2019.

[4] Bertoni G., Daemen J., Peeters J., and Van Assche G. “The keccak
reference”. Jan 2011.

[5] Bertoni G., Daemen J., Peeters J., Van Assche G., and Van Keer R.
“Keccak Implementation Overview v3”. May 2012.

[6] NIST Lightweight cryptography. https://csrc.nist.gov/projects/
lightweight-cryptography.

[7] Stoffelen K. “Efficient Cryptography on the RISC-V Architecture”.
Cryptology ePrint Archive, Report 2019/794, 2019.

[8] Markku-Juhani O. Saarinen. “SNEIK on Microcontrollers: AVR,
ARMv7-M, and RISC-V with Custom Instructions”. Cryptology ePrint
Archive, Report 2019/936, 2019.

[9] Jellema L. “optimizing Ascon on RISC-V”. http://www.cs.ru.nl/

bachelors-theses/2019/Lars_Jellema___4388747___Optimizing_

Ascon_on_RISC-V.pdf.

[10] “RISC-V-getting-started”. https://github.com/Ko-/

RISC-V-getting-started/.

[11] “RISCV GNU Toolchain”. https://github.com/riscv/

riscv-gnu-toolchain.

[12] “RISC-V Openocd”. https://github.com/riscv/riscv-openocd.

22

https://riscv.org/risc-v-foundation/
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
http://www.cs.ru.nl/bachelors-theses/2019/Lars_Jellema___4388747___Optimizing_Ascon_on_RISC-V.pdf
http://www.cs.ru.nl/bachelors-theses/2019/Lars_Jellema___4388747___Optimizing_Ascon_on_RISC-V.pdf
http://www.cs.ru.nl/bachelors-theses/2019/Lars_Jellema___4388747___Optimizing_Ascon_on_RISC-V.pdf
https://github.com/Ko-/RISC-V-getting-started/
https://github.com/Ko-/RISC-V-getting-started/
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-openocd

Appendix A

Appendix

A.1 How to set up the compiler

The compiler was installed on a Ubuntu 18.04 with Python 3 as default
python, the used board was a HiFive 1 development board using an E32 CPU
with RV32IMAC support. Following the RISC-V Getting started tutorial
by Ko Stoffelen [10] we took the following steps:

1. Downloading and installing the RISC-V GNU toolchain

(a) Clone the RISC-V GNU Toolchain[11] repository recursively

(b) Install the listed prerequisites in the README

2. Apply the gdb.patch if Python 3 is your default Phython version

3. Configure and compile the GNU toolchain as described in the README
of the repository [10]

4. Installing OpenOCD with RISC-V support

(a) Clone the OpenOCD with RISC-V support repository[12]

(b) Install the listed dependencies in the README

(c) Follow the commands of the ’Building OpenOCD’ section

23

A.2 How to download and compile and run opti-
mized Elephant

The optimized elephant can be found and cloned at https://lemmenm.

github.io/elephant-riscv/. The code can be compiled for RISC-V by
running the ’make’ command. To compile the code locally, run the ’make
local’ command. To flash the code to the Hifive 1 development board, exe-
cute ’./upload.sh main.elf’, and to view the output from the board, execute
’./watch.sh’.

24

https://lemmenm.github.io/elephant-riscv/
https://lemmenm.github.io/elephant-riscv/

	Introduction
	Preliminaries
	Notation
	Authenticated encryption
	Linear-feedback shift register
	RISC-V

	Elephant
	Elephant construction
	Delirium instance
	Permutation
	LFSR

	Research
	Research angle
	Optimization
	Bit interleaving

	Implementation
	State representation
	State transformation
	Keccak-f[200]
	LFSR

	Benchmarks and results
	Permutation
	Varying message lengths

	Lower bound
	Theoretical amount of cycles
	Discussion

	Related Work
	Conclusions
	Appendix
	How to set up the compiler
	How to download and compile and run optimized Elephant

