
Bachelor thesis
Computing Science

Radboud University

Java Implementation and Analysis
of Multi-party Private Set

Intersection Protocols

Author:
Michael de Jong
s4788451

First supervisor/assessor:
dr. Simona Samardjiska

simonas@cs.ru.nl

Second assessor:
dr. Asli Bay

A.Bay@cs.ru.nl

June 24, 2020



Abstract

Multi-party private set intersection (MPSI) is a secure multi-party compu-
tation technique that allows a number of parties holding a private dataset
to compute the set intersection of these datasets. None of the parties reveal
any other information to the other parties except the elements in the inter-
section. In this thesis we investigate a newly proposed MPSI protocol based
on Bloom filters and two other relevant MPSI protocols based on Bloom
filters and oblivious polynomial evaluation. We implement these protocols
using the Java programming language and analyze the computational and
communication performances of these protocols by measuring the execution
time and communication required and comparing the results of our bench-
mark. The findings of this analysis indicate that the newly proposed MPSI
protocol performs better than the other two protocols in terms of computa-
tional time, but requires more communication than the protocol based on
oblivious polynomial evaluation.



Contents

1 Introduction 3
1.1 Overview of this thesis . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries 5
2.1 Multi-party private set intersection . . . . . . . . . . . . . . . 5
2.2 Threshold public key encryption schemes . . . . . . . . . . . 5
2.3 Additively homomorphic encryption . . . . . . . . . . . . . . 6
2.4 Threshold Paillier encryption . . . . . . . . . . . . . . . . . . 7
2.5 Bloom filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Oblivious polynomial evaluation . . . . . . . . . . . . . . . . 9
2.7 Semi-honest security model . . . . . . . . . . . . . . . . . . . 10

3 New MPSI protocol 11
3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Theoretical complexity . . . . . . . . . . . . . . . . . . . . . . 14

4 MPSI Protocol (Miyaji, Nishida) 16
4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Theoretical complexity . . . . . . . . . . . . . . . . . . . . . . 19

5 MPSI Protocol (Hazay, Venkitasubramaniam) 21
5.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Theoretical complexity . . . . . . . . . . . . . . . . . . . . . . 24

6 Implementation 25
6.1 Protocol structure . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Threshold Paillier library . . . . . . . . . . . . . . . . . . . . 26
6.4 Measurement framework . . . . . . . . . . . . . . . . . . . . . 27

1



7 Analysis 29
7.1 Vehicle tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.2 Protocol comparison . . . . . . . . . . . . . . . . . . . . . . . 29
7.3 Test criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.4 Computational analysis . . . . . . . . . . . . . . . . . . . . . 32
7.5 Communication analysis . . . . . . . . . . . . . . . . . . . . . 41
7.6 Benchmark tests . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Related Work 48

9 Conclusions 49
9.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2



Chapter 1

Introduction

Multi-party private set intersection (MPSI) is a useful secure multi-party
computation technique that forms the basis for many important privacy-
preserving applications and can be applied in many real-world situations.
Therefore, the research community is constantly investigating, improving
and extending protocols that implement MPSI. In this thesis, we will im-
plement and analyze a newly proposed MPSI protocol that claims to be
the most efficient among existing protocols that are based on public-key
techniques. We will compare it to two other relevant protocols found in
the literature and test the practical performances in terms of computational
costs and amount of communication required.

The future of autonomous cars is bright and will change the lives of
everyone. However, in this age of increasing processing power and data
availability, information privacy is becoming progressively important. In
this thesis, we will use the example of autonomous cars in a system of
smart roads. An important requirement of such a system is the ability to
track specific vehicles without infringing the privacy of other road users
in the case of urgency or criminal activity. In order to learn the set of
vehicles following a certain path, we can reformalize the problem as an MPSI
problem: Each smart road holding a set of vehicles represents a party. These
parties compute the private set intersection of their sets. Each party will
only reveal the vehicles in the intersection and nothing else. Each smart
road could track its vehicles by using smart cameras for example. We aim
to solve this problem by utilizing an efficient MPSI protocol.

Our research question is:
”How does the newly proposed MPSI protocol perform compared
to relevant MPSI protocols?” We will find the answer to this question
based on the results we obtain with our measurement framework and Java
implementations of the various protocols.

3



1.1 Overview of this thesis

In chapter 2 the preliminaries that are needed in order to implement the
protocols will be made clear. Chapter 3 is about the newly proposed MPSI
protocol and its implementation details. Chapter 4 and 5 are about two
other relevant MPSI protocols. Chapter 6 deals with the implementation
details of the MPSI protocols and our measurement framework. Lastly, in
chapter 7 we will compare the three protocols using the practical example
of tracking vehicles on smart roads and analyze the performances.

4



Chapter 2

Preliminaries

This chapter describes all relevant background information and building
blocks needed to understand the various MPSI protocols. In this thesis
we analyze the newly proposed MPSI protocol [1] based on Bloom filters.
The protocol proposed in [2], which is also based on Bloom filters. And a
polynomial based protocol proposed in [3].

2.1 Multi-party private set intersection

Multi-party private set intersection (MPSI) is a generalization of two-party
private set intersection (PSI) to multiple parties. PSI is a cryptographic
technique in the area of secure multi-party computation. Let there be n
parties. Each party i has its own set of elements Si. The goal of MPSI is to
securely compute

⋂n
i=1 Si without leaking any additional information, e.g.

the other elements in S, to other parties, except the cardinality of Si.

2.2 Threshold public key encryption schemes

A threshold public key encryption scheme is a type of public key encryp-
tion scheme (PKE) where the private key is distributed among n parties
such that at least k parties have to cooperate and provide partial decryp-
tions that have to be combined in order to obtain a full decryption of
the ciphertext. Formally, given a security parameter k and two finite sets
M,R ∈ {0, 1}∗, a threshold PKE scheme TΠ is a tuple of (probabilistic)
algorithms (KGen,Enc, ShDec, Comb) described as follows:

KGen(k, n, t, r): Key-generation algorithm that given security parameter
k, number of private keys n, threshold t and random string r outputs
(pk, sk1, sk2, ..., skn) where pk is the public key and ski is the secret key
share of party i.

5



Enc(pk,m, r): Encryption algorithm that given public key pk, message
M ∈ M and random string r ∈ R outputs Enc(pk,M, r), the ciphertext of
message M under public key pk with randomness r.

ShDec(ski, C): Shared decryption algorithm that given a secret key ski
and ciphertext C outputs the decryption share Ci.

Comb(pk, {C1, ..., Ck}): Combining algorithm that given public key pk and
a set of k decryption shares {C1, ..., Ck} where k ≥ t, outputs a plaintext
message M ∈M or ⊥ /∈M to indicate an invalid ciphertext.

2.3 Additively homomorphic encryption

A PKE scheme with message space M and ciphertext space C is said to be
additively homomorphic if for all (sk, pk)← KGen(), all M1,M2 ∈M and
arbitrary scalar α, there exists an efficient homomorphic operation +H over
C that satisfies two properties:

� Dec(sk, Enc(pk, M1) +H Enc(pk,M2)) = M1 +M2

� Dec(sk, αEnc(pk,αM1)) = αM1

Conclusively, the above properties let us define an algorithm that we can
use to rerandomize a given ciphertext C without changing the plaintext of
C. This is especially useful for security purposes that we will elaborate later
in the various protocols.

Algorithm 1: Ciphertext rerandomization algorithm

1 Rerand (C);
2 return C +H Enc(pk, 0)

Another algorithm that we will need is the decryption-to-zero variant
of the shared decryption algorithm, which will let us compute a decryption
share that will lead to a randomized decrypted value if the plaintext is
different than zero. This way, other parties will only be able to tell if the
decrypted value is zero and not learn anything else. This can be achieved
by randomizing the ciphertext by each of the involved parties, combining
the results in a new value, and jointly decrypting this obtained value. The
decryption will result in a decryption of 0 if the ciphertext was an encryption
of 0 and a random value otherwise.

6



2.4 Threshold Paillier encryption

A typical threshold additively homomorphic PKE scheme that we will use to
implement MPSI is Threshold Paillier encryption [4], which is an extension
to the original Paillier cryptosystem proposed by Pascal Paillier [5]. A useful
property for this cryptosystem is that we can use it in our implementations
to perform homomorphic computations on the ciphertexts and use group-
wise decryption. Why this is important will be explained in more detail
later for each specific protocol.

The Threshold Paillier cryptosystem as proposed in [4] is a probabilistic
asymmetric algorithm for public key cryptography with computations in the
group Z∗n2 where n is an RSA modulus consisting of two large primes n = pq
and plaintext space Zn.

Key generation: Find four unique primes p, p′, q, q′ such that p =
2p′ + 1 and q = 2q′ + 1. We then compute n = pq and m = p′q′. In
our implementation we set s = 1 such that the plaintext space will be
Zn. We choose d such that d = 0 mod m and d = 1 mod ns. Also pick
g ∈ Z∗ns+1 such that g = (1 + n)jx mod ns+1 for a known j relatively prime
to n and x ∈ H where H is isomorphic to Z∗n. Then compute the poly-
nomial f(X) =

∑k−1
i=1 αiX

i mod nsm where αi is chosen randomly from
{0, ..., nsm − 1} and α0 = d. The private key of the ith party is si = f(i)
and the public key is n.

Encryption: In order to encrypt a message M ∈ Zn, choose a random
r ∈ Z∗ns+1 and compute the ciphertext c as c = gMrn

s
mod ns+1.

Shared decryption: Given a ciphertext c, the decryption share of the
ith party will be computed as ci = c2∆si where ∆ = l! with l being the
number of decryption servers.

Combining: Given k or more decryption shares, we can combine these
in order to get a decryption of c as follows. Let S be a subset of the k
decryption shares. Then we compute:

c′ =
∏
i∈S

c
2λS0,i
i where λS0,i = ∆

∏
i′∈S\i

−i
i− i′

∈ Z

Conclusively, c′ will be of the form c′ = c4∆2f(0) = c4∆2d and 4∆2d =
0 mod λ and 4∆2d = 4∆2 mod ns where λ = 4M . We conclude:

c′ = (1 + n)4∆2M mod ns+1

Where M is the plaintext of ciphertext c. For more details how M can be
computed from c′ we refer to the original paper [4].

7



2.5 Bloom filter

The Bloom filter is a vital data structure for the MPSI protocols in [1]
and [2]. It is a probabilistic data structure designed with speed and space-
efficiency in mind and was introduced by Bloom in [6]. A bloom filter can
be seen as a space-efficient representation of a certain dataset and can be
used to test whether an element belongs to that set with some false positive
probability. False negatives are not possible.

The bloom filter (BF) consists of a bit array of length m:
BF = (BF[0], ... , BF[m− 1]) and k independent hash functions such that
Hi : {0, 1}∗ → {0, ... , m− 1} ∀i : 1 ≤ i ≤ k.

We define 3 algorithms for the Bloom filter: initialization, element in-
sertion and element membership check:

Algorithm 2: Initializes an empty Bloom filter

1 Initialize ();
2 BF ← bit array of size m
3 for i← 0 to m− 1 do
4 BF [i]← 0
5 end
6 return BF

Algorithm 3: Inserts an element to the Bloom filter

1 Insert (BF, e);
2 for j ← 1 to k do
3 i← Hj(e)
4 BF [i]← 1

5 end
6 return BF

Algorithm 4: Checks whether the Bloom filter includes an element

1 Check (BF, e);
2 for j ← 1 to k do
3 i← Hj(e)
4 if BF [i] = 0 then
5 return False

6 end
7 return True

We can compute the optimal number of bits m and number of hash

8



functions k for a certain false positive rate ε as follows:

m = − n ln ε
(ln2)2

k =
m

n
ln 2

2.5.1 Inverted Bloom filter

The inverted version of a Bloom filter is simply the Bloom filter where the
bits of the bit array are flipped.

Algorithm 5: Inverts a given Bloom filter

1 Invert (BF );
2 IBF ← BF
3 for i← 0 to m− 1 do
4 if IBF [i] = 1 then
5 IBF [i] = 0
6 else
7 IBF [i] = 1
8 end

9 end
10 return IBF

2.5.2 Encrypted Bloom filter

The encryption of a Bloom filter is an array where every entry of the bit
array is encrypted using a public key pk.

Algorithm 6: Encrypts a given Bloom filter

1 Encrypt (BF, pk);
2 EBF ← array of size m
3 for i← 0 to m− 1 do
4 EBF [i] = Encpk(BF [i])
5 end
6 return EBF

2.6 Oblivious polynomial evaluation

Oblivious polynomial evaluation is a fundamental technique that is used
in the MPSI protocol in [3]. The generic oblivious polynomial evaluation

9



protocol is first described in [7] and deals with two parties P1 and P2 where
P1 holds a polynomial Q(·) over some field F and P2 holds an element t ∈ F .
The goal of the protocol is that P2 learns Q(t) and nothing else, while P1

learns nothing at all.
A variant of the oblivious polynomial evaluation protocol that is used in

[3] to perform a two-party private set intersection is described in [8]:

1. Party C holds set X = {x1, ... , xkC} and party S holds set Y =
{y1, ... , ykS} consisting of elements in Zn. Moreover, C holds a secret
key of a homomorphic encryption scheme of which the public key is
known to S.

2. C then computes the coefficients of the polynomial

P (y) =

kC∑
u=0

αuy
u

of degree kC with roots {x1, ... , xkC}. Next C encrypts each of the αu
and sends Encpk(αu) to S.

3. Then S applies the properties of the homomorphic encryption scheme
to compute for every y ∈ Y : Encpk(rP (y)+y) = r·Encpk(

∑kC
u=0 αuy

u)+H

Encpk(y) where r is a random value and +H the homomorphic oper-
ation. S sends the encrypted values to C.

4. Next C computes X ∩Y by decrypting the received values and adding
each x ∈ X to the intersection for which there is a corresponding
decrypted value.

2.7 Semi-honest security model

The security model defines how adversaries are assumed to deviate from the
protocol specification. We differentiate between two security models: Semi-
honest and Malicious security. In the semi-honest security model adver-
saries do not deviate from the protocol specification, but merely cooperate
to infer information about honest parties. In the malicious security model
adversaries may arbitrarily deviate from the protocol and change inputs and
outputs in order to infer information about the other parties. The malicious
security model provides a higher level of security, but is often much less
efficient.

All of the MPSI protocols presented in this thesis are under the assump-
tion of a semi-honest security setting. In our privacy preserving setting this
is appropriate. However, for each protocol there are possible extensions that
make them secure in the malicious setting at the cost of performance.

10



Chapter 3

New MPSI protocol

This chapter deals with the newly designed MPSI protocol in [1]. According
to the paper, this new protocol has the lowest communication and computa-
tional complexity compared to other MPSI protocols found in the literature.
The protocol is a continuation of the PSI protocol introduced in [9] and ex-
tends it from two-party to multi-party.

3.1 Description

The fundamental building blocks of the protocol are Bloom filters and
threshold homomorphic PKE schemes. In this thesis we implemented the
protocol using the threshold Paillier PKE, but other threshold schemes are
possible as well. Let there be t parties involved: P1, ... , Pt where each party
Pi holds a private dataset Si of cardinality ni. The protocol follows a client-
server architecture where parties P1, ... , Pt−1 will be considered the clients
and party Pt will be considered the server. The final set intersection will be
computed by the server.

3.1.1 Input

Each party Pi holds a public key pk and a shared decryption key ski of a
threshold homomorphic PKE with decryption to zero algorithm ShDec0.
The cardinality of each dataset ni is also known to each individual party.

3.1.2 Sequence diagram

Figure 3.1 shows the sequence diagram of the protocol and describes the
communication between server and client, together with all intermediate
stages. The computational steps of each intermediate stage will be specified
in detail below. The steps for each of the clients are identical and happen
in parallel.

11



Client i Server

EIBF generation

InitializationInitialization

EIBFi

Server stage 1

c’j ∀j : 1 ≤ j ≤ nt

CombiningCombining

Client stage 1

rcij ∀j : 1 ≤ j ≤ nt

Server stage 2

cj ∀j : 1 ≤ j ≤ nt

Client stage 2

shi,j ∀j : 1 ≤ j ≤ nt

Shared decryptionShared decryption

Server stage 3

Set intersectionSet intersection

Figure 3.1: New MPSI sequence diagram

12



3.1.3 EIBF generation

Each client Pi where 1 ≤ i ≤ t− 1 computes the encrypted inverted Bloom
filter (EIBFi) of their dataset Si. This is done by first creating a new
Bloom filter BFi as in Algorithm 2. Then inserting each e ∈ Si to BFi as in
Algorithm 3. Next, the BFi is inverted to obtain IBFi using Algorithm 5
and then encrypted using the public key to obtain EIBFi using Algorithm
6.

3.1.4 Server stage 1

let +H be the homomorphic addition operation of the threshold Paillier
scheme, hd represents the dth hash function of the Bloom filter, where k is
the number of hash functions, yj is the jth item in the server dataset.

1. Compute {Ci,j1 , ... , Ci,jk } ∀i, j where Ci,jd = EIBFi[hd(yj)].

2. cij = Ci,j1 +H ... +H Ci,jk ∀i, j

3. c′j = ReRand(c1
j +H ... +H ct−1

j ) ∀j

3.1.5 Client stage 1

Client i performs the first step of the ShDec0 algorithm and randomizes
the received c′j values by raising them by a random exponent such that the
decrypted value is 0 if and only if the encrypted value is an encryption of 0:

1. Let r be a random exponent

2. rcij = ReRand((c′j)
r) ∀j

3.1.6 Server stage 2

The server sends the combined randomized c values back to the client.

1. cj = ReRand(rc1
j +H ... +H rct−1

j ) ∀j

3.1.7 Client stage 2

The client computes its decryption shares:

1. shi,j = ShDec(ski, cj) ∀j

3.1.8 Server stage 3

The final stage where the server computes the set intersection S.

1. D(cj) = Comb(pk, sh1,j , ... , sht−1,j) ∀j

2. S = {yj | D(cj) = 0}

13



3.1.9 Remarks on protocol description and notation

Extra steps have been included to make the decryption-to-zero algorithm
ShDec0 more explicit given the context of the threshold Paillier PKE. This
includes raising the c′j values by a random exponent to achieve the desired
property of ShDec0. Also the protocol has been divided into various client
and server stages, which describe the computations done by the correspond-
ing party. This makes it easier to identify the correspondence with the java
implementation.

3.2 Correctness

The correctness follows from the fact that if yj is included in the intersection,
then all encrypted inverted bloomfilter entries EIBFi[hd(yj)] will clearly be
an encryption of zero. Given the homomorphic properties of the encryption
scheme, the sum and randomization of these values will still be an encryption
of zero, hence all corresponding cij decrypt to zero. If yj is not in the
intersection, then the decrypted values will be random.

Due to the possibility of false-positives in Bloom filters, the final set
intersection has a neglectable small chance to include elements that are
actually not in the true set intersection. However, Bloom filters have no
false-negatives, so it cannot be the case that an element that should be in
the set intersection is missing. The false-positive rate can be decreased by
increasing the Bloom filter size at the cost of performance. See the Bloom
filter section in the preliminaries chapter for more details.

3.3 Theoretical complexity

3.3.1 Theoretical communication complexity

For simplicity, we do not make a distinction between sending or receiving
communication complexity.

The communication complexity of the client is dominated by the size of
its EIBF containing m ciphertexts. Here, m is the size of the Bloom filter,
which depends linearly on the size of the dataset n. Each client sends its
EIBF to the server. Hence, the overall communication complexity of the
client is O(n · S) where S is the size of a ciphertext.

The server has to receive the EIBF of every client, hence the overall
communication complexity of the server is O(n ·S · t) where t is the number
of clients.

14



3.3.2 Theoretical computational complexity

The computational complexity of the client in the initialization phase is
primarily dominated by the size m of the Bloom filter. For each of the ni
elements in the client dataset, the client has to perform a constant amount
of hash functions calls, and encrypt each of the m entries of the Bloom filter,
leading to a complexity of O(ni).

In the first and second stages, the client performs a constant number of
computations for each of the nt elements of the server dataset, leading to a
complexity of O(nt).

The server performs O(nt · t) hash computations in its first stage to
compute the value Ci,jd for each client i ≤ t and each element j ≤ nt in the
server dataset. Furthermore, it performs O(nt · t) homomorphic additions.

The complexity of the server in stage 2 is dominated by the one in stage
1. Finally, in the third stage, it combines t decryption shares for each of the
j ≤ nt elements in the server dataset, resulting in a complexity of O(nt · t).

15



Chapter 4

MPSI Protocol (Miyaji,
Nishida)

This chapter deals with the MPSI protocol presented in [2]. Similar to the
new MPSI protocol of the previous chapter, this protocol also makes use of
Bloom filters.

4.1 Description

The fundamental building blocks of the protocol are Bloom filters and
threshold homomorphic PKE schemes. In this thesis we implemented the
protocol using the threshold Paillier PKE, but other threshold schemes are
possible as well. Let there be n parties involved: P1, ... , Pn where each party
Pi holds a private dataset Si of cardinality ni. Additionaly, a dealer D is
designated in order to reduce the computational complexity of the parties.
Unlike in the new MPSI protocol in the previous chapter, the dealer is not
to be confused with a party or a server that holds a dataset or discovers the
set intersection.

The protocol follows a peer-to-peer architecture where every party will
communicate with every other party and compute the set intersection.

4.1.1 Input

Each party Pi holds a public key pk and a shared decryption key ski of
a threshold homomorphic PKE. The cardinality of each dataset ni is not
known to any individual party or dealer D.

4.1.2 Notation

The following notations are used in the protocol:

1. BFm,k(Si) = [BFi[0], ...,BFi[m− 1]]: Bloom filter on a set Si

16



2. IBFm,k(∪Si) = [
∑n

i=1 BFi[0], ...,
∑n

i=1 BFi[m−1]]: integrated Bloom
filter of n sets {Si}, where

∑n
i=1 BFi[j] represents the sum of all par-

ties’ array.

3. IBFm,k(∪Si)\l = [
∑n

i=1 BFi[0]−l, ...,
∑n

i=1 BFi[m−1]−l](1 ≤ l ≤ n):
l-subtraction from IBFm,k(∪Si).

4.1.3 Sequence diagram

Figure 4.1 shows the sequence diagram of the protocol and describes the
communication between an arbitrary party i and another party j, and the
dealer D. The computational steps of each intermediate stage will be spec-
ified in detail below. The steps for each of the parties are identical and
happen in parallel.

4.1.4 BF construction

Each party Pi where 1 ≤ i ≤ t computes the encrypted Bloom filter
Encpk(BFm,k(Si)) of their dataset Si. This is done by first creating a new
Bloom filter as in Algorithm 2. Then inserting each e ∈ Si to the Bloom
filter as in Algorithm 3. Next, the obtained BFm,k(Si) is encrypted using
the public key to obtain Encpk(BFm,k(Si)) using Algorithm 6.

4.1.5 Dealer stage 1

1. Compute Encpk(IBFm,k(∪Si)) =
∏n
i=1 BFm,k(Si))

2. Let r be a randomly chosen set of integers: [r0, ..., rm−1] ∈ Zmq .

3. Compute Encpk(r(IBFm,k(∪Si)\n)) = (Encpk(IBF(∪Si)))·Encpk(−n))r

where Encpk(−n) = [Encpk(−n), ..., Encpk(−n)]

4.1.6 Party stage 1

The party computes its decryption shares:

1. Compute shi = [sh0
i , ..., sh

m−1
i ] where shji is the jth decryption share

obtained after decrypting Encpk(r(IBFm,k(∪Si)\n))

4.1.7 Party stage 2

The party combines the other decryption shares it receives and computes
the set intersection S:

1. Compute dj = 1⊕ Comb(sk, shj0, ..., sh
j
n) ∀j

(The result is inverted, because an encryption of 0 should be decrypted
to a 1)

17



Dealer Party i Party j 6= i

BF construction

InitializationInitialization

Encpk(BFm,k(Si))

Dealer stage 1

Encpk(r(IBFm,k(∪Si)\n))

n-subtractionn-subtraction

Party stage 1

shi = [sh0
i , ..., sh

m−1
i ]

shj = [sh0
j , ..., sh

m−1
j ]

Shared decryptionShared decryption

Party stage 2

Set intersectionSet intersection

Figure 4.1: Miyaji & Nishida MPSI sequence diagram

18



2. Let F be a Bloom filter with the otained dj values.

3. S = {y | y ∈ Si ∧ Check(F, y)} where Check is the Bloom filter
algorithm 4.

4.1.8 Remarks on protocol description and notation

The protocol has been divided into various party and dealer stages, which
describe the computations done by the corresponding party. This makes it
easier to identify the correspondence with the java implementation. Further-
more, in comparison to the original paper, the protocol has been translated
into a sequence diagram representation to get a better overview and unifor-
mity with the rest of this thesis.

4.2 Correctness

Given the homomorphic properties of the encryption scheme, the product∏n
i=1 BFm,k(Si)) will decrypt to a Bloom filter where all entries have been

added up and thus corresponds with the Bloom filter of the set union ∪Si.
If an element y is in the set intersection, then all the entries mapped by
the k hashes will be an encryption of n, and thus by performing the n-
subtraction, the entries in the Bloom filter corresponding to the elements
in the intersection will be an encryption of 0, which will be decrypted to 1,
or a randomized value otherwise.

4.3 Theoretical complexity

4.3.1 Theoretical communication complexity

For simplicity, we do not make a distinction between sending or receiving
communication complexity. The communication complexity is dominated
by the size of the Bloom filter. Both the communication with the dealer
and parties involve sending m ciphertexts where m is the size of the Bloom
filter, which depends linearly on |Si|.

The dealer sends and receives m ciphertexts to and from each party,
hence the overall communication complexity of the dealer is O(|Si| · n · S)
where n is the number of parties and S is the size of a ciphertext.

The party also sends and receives m ciphertexts to and from each party,
hence the overall communication complexity of the party is O(|Si| · n · S).

4.3.2 Theoretical computational complexity

The computational complexity of the client in the initialization phase is
primarily dominated by the size m of the Bloom filter. For each of the |Si|

19



elements in the dataset, the client has to perform a constant amount of hash
functions calls, and encrypt each of the m entries of the Bloom filter, leading
to a complexity of O(|Si|). The second stage of the party dominates its first
stage: For each of the m entries of the Bloom filter, n decryption shares
are combined. And then each of the |Si| elements are checked if they are
in the decrypted Bloom filter, hence a total computational complexity of
O(|Si| · n).

The computational complexity of the dealer is dominated by computing
the product of m encrypted Bloom filter entries of n parties, thus a total
complexity of O(|Si| · n).

20



Chapter 5

MPSI Protocol (Hazay,
Venkitasubramaniam)

This chapter deals with the MPSI protocol presented in [3]. In comparison
to the previous protocols, this protocol makes use of oblivious polynomial
evaluation instead of Bloom filters.

5.1 Description

The fundamental building blocks of the protocol are oblivious polynomial
evaluation and threshold homomorphic PKE schemes. In this thesis we im-
plemented the protocol using the threshold Paillier PKE, but other thresh-
old schemes are possible as well. Let there be n parties involved: P1, ... , Pn
where each party Pi holds a private dataset Xi of cardinality mi. The pro-
tocol follows a client-server architecture where parties P2, ... , Pt will be
considered the clients and party P1 will be considered the server. The final
set intersection will be computed by the server.

5.1.1 Input

Each party Pi holds a public key PK and a shared decryption key SKi of a
threshold homomorphic PKE with decryption to zero algorithm ShDec0.

5.1.2 Sequence diagram

Figure 5.1 shows the sequence diagram of the protocol and describes the
communication between an arbitrary party i and the server. The computa-
tional steps of each intermediate stage will be specified in detail below. The
steps for each of the parties are identical and happen in parallel.

21



Party i Server

Polynomial construction

InitializationInitialization

Party stage 1

ci1, ... , c
i
mi

Server stage 1

c1
1, ... , c

m1
1

Party stage 2

sh1
i , ... , sh

m1
i

2PC phase2PC phase

Server stage 2

Set intersectionSet intersection

Figure 5.1: Hazay & Venkitasubramaniam MPSI sequence diagram

22



5.1.3 Polynomial construction

Each client Pi where 2 ≤ i ≤ t computes the coefficients of a polynomial
Qi(·) of degree mi with roots set to the mi elements of Xi.

5.1.4 Client stage 1

The client encrypts its coefficients:

1. Compute cij ∀j : j ≤ |Xi|

5.1.5 Server stage 1

1. Compute the combined polynomial Q1 = Q2(·) + ...+Qn(·):
c1 =

∏n
i=2 c

i
1, ..., cmMAX =

∏n
i=2 c

i
mMAX wheremMAX = max(m2, ...,mn)

2. Let ri be a random value where 0 ≤ i ≤ m1

3. Compute for each xi1 ∈ X1 the randomized polynomial evaluations:
c1

1 = r1 ·Q1(x1
1), ..., cm1

1 = rm1 ·Q1(xm1
1 )

5.1.6 Client stage 2

The client computes its decryption shares:

1. Compute sh1
i = ShDec(SKi, c

1
1), ..., shm1

i = ShDec(SKi, c
m1
1 )

5.1.7 Server stage 2

The server combines the decryption shares it receives and computes the set
intersection S:

1. Compute d1
1 = Comb(PK, sh1

2, ..., sh
1
n), ..., dm1

1 = Comb(PK, shm1
2 , ..., shm1

n )

2. S = {xj1 | d
j
1 = 0}

5.1.8 Remarks on protocol description and notation

Like the other protocols, the protocol has been divided into various client
and server stages, which describe the computations done by the correspond-
ing party. This makes it easier to identify the correspondence with the java
implementation. Furthermore, in comparison to the original paper, the pro-
tocol has been translated into a sequence diagram representation to get a
better overview and uniformity with the rest of this thesis. Some steps from
the protocol have been made more clear and explicit, because they were
explained somewhat vague in the original paper. For example, the actual
steps of the modified (π1

FNP , π
2
FNP ) protocol mentioned in the paper are not

made explicit.

23



5.2 Correctness

Correctness follows from the fact that if xi1 is in the intersection, Qj(x
i
1)

evaluates to 0 for all j. More specifically, Q1(xi1) evaluates to 0, because it
is the combined polynomial where all coefficients are added up. Therefore,
ri ·Q1(xi1) evaluates to 0 if xi1 is in the intersection or evaluates to a random
value otherwise.

5.3 Theoretical complexity

5.3.1 Theoretical communication complexity

For simplicity, we do not make a distinction between sending or receiving
communication complexity.

The client sends mi ciphertexts to the server and receives m1 ciphertexts
from the server, hence the communication complexity is O(max(m1,mi) ·S)
where S is the size of a ciphertext.

The server’s communication complexity is dominated by receiving mi ci-
phertexts from each client Pi, thus the communication complexity isO(mMAX ·
n · S) where n is the number of clients and mMAX = max(m2, ...,mn).

5.3.2 Theoretical computational complexity

The initialization phase of the client consists of constructing a polynomial
Qi(·) of degree mi with the roots set to the mi elements. For this O(mi

2)
polynomial multiplications are needed. The first stage of the client requires
O(mi) encryptions and the second stage requires O(m1) decryptions. Hence,
the client has an overall computational complexity of O(mi

2 +m1).
The computational complexity of the server involves combining all poly-

nomials Qi(·), requiring O(mMAX · n) multiplications. And the Q1(·) eval-
uation of m1 elements, requiring a number of multiplications and exponen-
tiations linear in O(mMAX ·m1). This leads to the overall computational
complexity of O(mMAX · n+mMAX ·m1)

24



Chapter 6

Implementation

In this chapter we will describe the details and design considerations of the
implementations and data structures. The complete java implementation
can be downloaded at [10] along with a documentation.

6.1 Protocol structure

Figure 6.1 shows the structure of the java implementation. The way that
the protocol is implemented can be seen as a simulation. Instances of the
server and clients are made and they are run and analyzed sequentially,
while in a real-world application they would run in parallel. This however
does not change the behaviour of the program. The controller manages the
simulation. It drives the server and client stages and handles the network
communication. The Server and Clients implement the actual computations
done at the various stages.

6.2 Data structure

6.2.1 Bloom filter

Our Bloom filter implementation is kept as simple as possible to get the best
possible performance. The Bloomfilter class implements all the algorithms

Controller

Server Client

Datastructures

Figure 6.1: Implementation structure

25



described in section 2.5 with the exception that inversion and encryption are
combined into a single method.

For hashing we use the standard Java HashCode() implementation [11]
for Strings which computes the hash of a string s as

s[0] ∗ 31n−1 + s[1] ∗ 31n−2 + ...+ s[n− 1]

In order to compute the kth hash of an element e we chose to compute
the hash of k‖e, that is the concatenation of the two. This way we need
only one hash function.

While this is a very efficient way of hashing, it is not cryptographically
secure. However, considering that the purpose of hashing in the context of
the Bloom filter is not security, it is acceptable. Its main requirement is
performance, and having an output of only 32 bits, collisions are possible.

Note that the 3 protocols analyzed in this thesis use the same hash func-
tion implementation, hence the choice of a hash function will not influence
the performance differences between them.

6.2.2 Oblivious Polynomial Evaluation

The Oblivious Polynomial Evaluation (OPE) class provides methods
for hashing arbitrary elements, interpolating a polynomial and evaluating a
polynomial.

The elements represent the roots of the polynomial in ZN where N is
the public key of the encryption scheme. We use the same hash function for
OPE as for Bloom filters, the only difference is that the result is computed
modulo N . This makes it possible for the polynomial to represent any type
of element.

The coefficients of the resulting polynomial representing a data set are
obtained by computing a polynomial P (x) =

∏k
i=0(x − ri) where ri corre-

sponds to the hash of the ith element.
In order to reduce the computational overhead of polynomial evaluation,

we chose to apply Horner’s rule in our implementation, which states that

anx
n + an−1x

n−1 + ...+ a0 = ((anx+ an−1)x+ ...)x+ a0

This reduces the number of multiplications needed for polynomial eval-
uation from 2n− 1 to n where n is the degree of the polynomial.

6.3 Threshold Paillier library

Our choice for the implementation of a threshold Paillier PKE is the Pail-
lier Threshold Encryption Toolbox [12] created by the University of Texas
at Dallas Data Security and Privacy Lab. The packages provide a Java im-
plementation of the threshold variant of the Paillier encryption scheme as
laid out in [4].

26



The library provides packages for Paillier encryption with threshold-
ing, public and private key structures including key generation and non-
interactive zero knowledge proofs.

The classes we are interested in are as follows:

� PaillierThresholdKey and PaillierPrivateThresholdKey

Data structures for public and private keys

� KeyGen

Generates the desired number of keys given a threshold, the num-
ber of bits for the prime factor of n and a random seed.

� PaillierThreshold

Main Paillier class implementing encryption and threshold decryp-
tion

� PartialDecryption

Data structure representing a partial decryption

One thing that we encountered while implementing the protocols was
that the library did not have any functionality for ciphertext exponentiation.
However, this was easily added to our own implementation.

6.4 Measurement framework

Our measurement framework drives the simulations given a certain range of
parameters. It measures the execution time of specific phases of the protocol
and keeps track of the sent and received data by each party. This way we
can perform accurate measurements and compare the protocols as fairly as
possible.

A simplified class structure of the framework is shown in figure 6.2. It
shows the basic components and the interaction between them.

The core of this framework is the Measurement class. This class con-
trols and runs the various MPSI Implementations with specific parameters
obtained from the Main class. These parameters include a set of dataset
sizes and number of parties to use for the tests. It calls the DatasetGenera-
tor to obtain a randomized set for each party. After all tests are carried out,
the Measurement class obtains the measurement results from the Perfor-
mance and Network classes and stores them in the ProtocolStats for
each protocol.

27



Main Measurement ProtocolStats

DatasetGenerator

Performance Implementations Data structures

Network Paillier library

Figure 6.2: Framework structure

28



Chapter 7

Analysis

In this chapter we present the results of our performance analysis of the
MPSI protocols in terms of computational and communication complexi-
ties. The results have been measured with the help of our measurement
framework. Using the measurement results we do a comparison of the pro-
tocols and identify their main advantages and disadvantages.

7.1 Vehicle tracking

Our example of vehicle tracking will be applied in our comparisons. Each
smart road will represent a party and holds its own dataset of vehicles. In
our example, this dataset will consist of a list of strings representing the
license plates of the vehicles. We wish to find those vehicles that have been
registered with a set of smart roads, e.g. we compute the set intersection
of the sets of vehicles for each road. We will perform measurements with
varying number of roads and number of vehicles per road. The license plate
of each vehicle will be represented as a randomly generated string that is 10
characters long.

7.2 Protocol comparison

Table 7.1 provides a comparison of the properties of the protocols. It shows
the main properties for each protocol, such as which party learns the final
set intersection, whether the size of the sets is being kept private, what
network model is used, etc. The computational complexity (both for the
initialization and interactive part) and the communication complexity have
also been included.

29



New MPSI M&N MPSI H&V MPSI

Client Server Party Dealer Client Server

Learns intersection 7 3 3 7 7 3

Own dataset 3 3 3 7 3 3

Set size privacy 3 7 3 - 7 7

Network model client-server peer-to-peer client-server

Security model semi-honest semi-honest semi-honest

Data structure Bloom filter Bloom filter Polynomial

Computational complexity

(Initialization)
O(n) - O(n) - O(n2) -

Computational complexity

(Interactive)
O(n) O(nt) O(nt) O(nt) O(n) O(n2 + nt)

Communication

complexity
O(nS) O(nSt) O(nSt) O(nSt) O(nS) O(nSt)

n is the set cardinality, t is the number of parties, S is the size of a
ciphertext.

Table 7.1: Protocol comparisons

We put great effort in comparing the 3 MPSI protocols as fairly as possi-
ble. In doing so, we can reason about the different performances objectively
and accurately, as they do not depend on different implementations or possi-
ble unknown variables that might affect performance. All of the 3 protocols
are implemented in Java and are using the same Paillier encryption library.
Also, the 3 protocols are simulated using the same simulation and measure-
ment framework described in the previous chapter.

As the implementations are not optimized, paralellized or written in
highly efficient languages such as C, the results that will be presented in this
chapter do not represent the best possible results for each of the protocols.
Furthermore, the level of optimization that we use in our implementation
can affect the performance of each protocol differently.

The measurements are from simulated executions of the protocol under
ideal circumstances and do not take extra overhead from real-world measure-
ment results into consideration. For instance, this overhead could include
extra network traffic.

7.3 Test criteria

For our comparisons we have a number of test criteria. Our measurements
will be done for different number of parties and different number of set

30



elements. For instance, while we increase the number of parties according
to the step size, we set the number of set elements constant to the default
value. The minimum and maximum values, the step size and the default
value for the variable parameters used in the measurements can be found in
table 7.2. The constant parameters used can be found in table 7.3. For the
communication measurements, the amount of bytes sent and received are
combined and shown together. The results shown in this chapter have been
obtained by running the measurement framework on an Intel i7-9750H with
16 GB of DDR4-2666 RAM.

Variables Minimum Maximum Step size Default value

Number of parties 5 95 2 5

Set size 500 10000 250 500

Table 7.2: Measurement variables

Constants Value

Prime bits1 60

Randomness bits2 100

Element length 10 bytes

Intersection size 3 elements

Bloom filter FP rate 2−50

1 Number of bits required for the prime factor of n (public key)
2 Number of bits required for random factors or exponents used in the
protocols

Table 7.3: Measurement constants

31



7.4 Computational analysis

7.4.1 Measurement results

Figure 7.1 shows the measurement results of the total execution time from
initialization to final computation of the set intersection with varying set
sizes. The graph shows the execution time for each protocol and for both
the server and the client (dealer and party). Figure 7.2 and figure 7.3 show
the execution times for the initialization phase and interactive phase, re-
spectively. Figure 7.4 shows the results of the total execution time with
varying number of parties. We also included the measurements of the new
MPSI protocol and the H&V protocol for a larger number of parties (see
figure 7.5). Figure 7.6 and figure 7.7 show the execution times for the initial-
ization phase and interactive phase, respectively. All measurement results
correspond to an individual party. For some protocols, the corresponding
plot can abruptly end. This is due to the fact that the computational com-
plexity of that protocol grows much faster than the other protocols and we
decided to stop the measurements of the protocol at that point. Also note
that the servers and dealer are not found in figure 7.2 and figure 7.6, because
they do not have an initialization phase. In the further course the Miyaji &
Nishida protocol will be denoted as M&N, and the Hazay & Venkitasubra-
maniam protocol will be denoted as H&V.

32



0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0

20

40

60

80

100

Number of set elements

T
ot

al
ex

ec
u

ti
on

ti
m

e
in

se
co

n
d

s

new MPSI Server
new MPSI Client

M&N Dealer
M&N Party
H&V Server
H&V Client

Figure 7.1: Total computation time with varying set sizes

33



0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0

2

4

6

8

10

12

14

16

18

20

Number of set elements

In
it

ia
li

za
ti

on
ti

m
e

in
se

co
n

d
s

new MPSI Client
M&N Party
H&V Client

Figure 7.2: Initialization computation time with varying set sizes

34



0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0

20

40

60

80

100

Number of set elements

In
te

ra
ct

iv
e

ti
m

e
in

se
co

n
d

s

new MPSI Server
new MPSI Client

M&N Dealer
M&N Party
H&V Server
H&V Client

Figure 7.3: Interactive computation time with varying set sizes

35



0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

Number of parties

T
ot

al
ex

ec
u

ti
on

ti
m

e
in

se
co

n
d

s

new MPSI Server
new MPSI Client

M&N Dealer
M&N Party
H&V Server
H&V Client

Figure 7.4: Total computation time with varying number of parties

36



90 100 110 120 130 140 150 160 170 180 190

0

5

10

15

20

25

30

35

40

45

Number of parties

T
ot

al
ex

ec
u

ti
on

ti
m

e
in

se
co

n
d

s

new MPSI Server
new MPSI Client

H&V Server
H&V Client

Figure 7.5: Comparison between new MPSI and H&V server with extended
number of parties

37



0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of parties

In
it

ia
li

za
ti

on
ti

m
e

in
se

co
n

d
s

new MPSI Client
M&N Party
H&V Client

Figure 7.6: Initialization computation time with varying number of parties

38



0 10 20 30 40 50 60 70 80 90 100

0

5

10

15

20

25

Number of parties

In
te

ra
ct

iv
e

ti
m

e
in

se
co

n
d
s

new MPSI Server
new MPSI Client

M&N Dealer
M&N Party
H&V Server
H&V Client

Figure 7.7: Interactive computation time with varying number of parties

39



7.4.2 Discussion

Varying set size

In this section we will analyse and discuss the previously obtained measure-
ment results. When comparing the execution times in figure 7.1, we can
immediately see that the H&V server grows relatively fast for increasing set
sizes while the other protocols grow more linearly. The execution time of
the H&V client remains very low, but due to the high server execution time
necessary, the protocol will not be preferred for large set sizes. This already
became evident in the theoretical quadratic time complexity of the protocol.
The reason for this high growth in execution time is due to the polynomial
evaluation, which has a quadratic time complexity in the set size. When
comparing the new MPSI with M&N, we notice that the new MPSI has
the lowest execution time for both the client and server. This difference is
noticable when comparing the execution time of the new MPSI and M&N
in the interactive part as can be seen in figure 7.3, where it is very low for
the new MPSI protocol. The execution time during the initialization (see
figure 7.2) part is similar, because both protocols compute and encrypt the
Bloom filter here. The H&V protocol performs better in the initialization
phase. This can be explained based on the fact that the Bloom filter will
always be much larger than the actual size of the dataset. Overall, we can
observe that the total execution time of the new MPSI server is remarkably
low compared to the other servers.

Varying party size

We will now discuss the measurement results with varying number of parties
as shown in figure 7.4. We observed that the execution time of the M&N
party grows relatively fast for increasing number of parties, making the
protocol not very suitable for applications with a high number of parties.
We also see that the new MPSI server and the H&V server have superlinear
growth in execution time. We found out that this is due to the fact that the
complexity of the combining algorithm of the decryption shares is quadratic
in the number of parties. The explanation for the more amplified growth of
the M&N Party in comparison to the new MPSI server and H&V server is
that in the M&N Party the combining algorithm is called for each entry of
the Bloom filter. This becomes especially a problem when the false-positive
rate is low and thus the Bloom filter size is high.

For lower number of parties, the new MPSI server performs slightly
better than the H&V server. However, we extended the measurements for
those two protocols to 190 parties and noticed that the plots of both servers
grow increasingly closer (see figure 7.5). Unsurprisingly, the execution times
of the new MPSI and H&V client are constant for different number of parties,
because they do not depend on it. The plot of the M&N Dealer might

40



appear constant on first sight, but it does depend on the number of parties.
However, these appear to be very lightweight computations, which is the
reason why the execution time only grows very slow. The initialization time
is constant for all 3 protocol clients/party (see figure 7.6). Once again, the
protocols based on Bloom filters take more time to initialize.

All in all, we can conclude that the H&V protocol is less suited for large
datasets and the M&N protocol is less suited for large numbers of parties.
The new MPSI protocol performs the best when it comes to increasing set
sizes and performs roughly as well as the H&V protocol when it comes to
increasing party sizes.

7.5 Communication analysis

7.5.1 Measurement results

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

0

50

100

150

200

250

300

350

400

Number of set elements

M
eg

ab
y
te

s
se

n
t

+
re

ce
iv

ed

new MPSI Server
new MPSI Client

M&N Dealer
M&N Party
H&V Server
H&V Client

Figure 7.8: Communication with varying set sizes

41



0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

140

160

Number of parties

M
eg

ab
y
te

s
se

n
t

+
re

ce
iv

ed

new MPSI Server
new MPSI Client

M&N Dealer
M&N Party
H&V Server
H&V Client

Figure 7.9: Communication with varying number of parties

42



7.5.2 Discussion

All three protocols show linear growth in the communicaton for both in-
creasing set sizes and number of parties (see figure 7.8 and figure 7.9). Two
exceptions are that figure 7.9 shows that the plots for the new MPSI client
and H&V client remain constant for varying number of parties. This is not
a surprise, because they do not depend on the number of parties directly as
can be seen from the protocol specification. When we look at both results
for varying set elements and number of parties, we notice that the pro-
tocols based on Bloom filters require a much higher communication. This
makes the H&V protocol the most efficient when it comes to communication
complexity. Out of the two Bloom filter based protocols, the new MPSI pro-
tocol requires less communication than the M&N protocol in both graphs.
Moreover, we can observe that the required communication for the M&N
protocol is identical for both the dealer and party, which is due to the peer-
to-peer network model. On the other hand, the new MPSI client requires
less network bandwidth than the server, especially as the number of parties
increases.

7.6 Benchmark tests

In this section we perform 3 benchmark tests in which we set the same
parameters for all 3 protocols and compare the differences in total execution
time and communication required. Our benchmarks will be done with the
same constants as in the previous measurements. The parameters are shown
in table 7.4.

Test Party size Set size

1 10 1000

2 15 2000

3 20 3000

Table 7.4: Benchmark parameters

43



7.6.1 Measurement results

New server New client M&N dealer M&N party H&V server H&V client

−10

0

10

20

30

40

50

60

70

80

90

100

110

0.52 2.05 3.76

12.12 11.48

0.311.59
3.89

8.45

42.59

49.59

0.98
3.24

5.69

13.04

95.34

108.18

2.4

E
x
ec

u
ti

on
ti

m
e

in
se

co
n

d
s

Benchmark 1 Benchmark 2 Benchmark 3

Figure 7.10: Computation benchmark results

44



New server New client M&N dealer M&N party H&V server H&V client

−50

0

50

100

150

200

250

300

350

400

450

500

550

600

650

49.34

5.48

104.52 104.53

1.95 0.22

154.1

11.01

311.38 311.38

6.04 0.43

312.13

16.43

622.34 622.34

12.31
0.65

M
eg

ab
y
te

s
se

n
t

+
re

ce
iv

ed

Benchmark 1 Benchmark 2 Benchmark 3

Figure 7.11: Communication benchmark results

45



New MPSI

Computational

efficiency

Test 1 Test 2 Test 3 Average

M & N
Dealer/Server +623% +431% +302% +452%

Party/Client +491% +995% +1576% +1021%

Total +518% +831% +1114% +821%

H & V Server/Server +2108% +3019% +3239% +8366%

Client/Client -85% -75% -57% -72%

Total +359% +823% +1138% +2320%

New MPSI

Communication

efficiency

Test 1 Test 2 Test 3 Average

M & N
Dealer/Server +112% +102% +99% +104%

Party/Client +1807% +2728% +3688% +2741%

Total +281% +277% +279% +279%

H & V Server/Server -96% -96% -96% -96%

Client/Client -96% -96% -96% -96%

Total -96% -96% -96% -96%

Table 7.5: Benchmark efficiency improvement of the newly proposed MPSI
protocol compared to other protocols

7.6.2 Discussion

To wrap up this chapter and answer our initial research question: based
on our results from section 7.4 and section 7.5, the newly proposed MPSI
protocol is prefered over the other two MPSI protocols when it comes to
computational complexity. This is especially the case when it comes to
large datasets, where it clearly outperforms the other protocols. However,
we observed that due to the nature of Bloom filters, the required communi-
cation will be higher compared than protocols based on oblivious polynomial
evaluation.

In our final benchmark test results (see figure 7.5) we obtain that in
terms of total execution time, the newly proposed MPSI protocol is about
821% more efficient than the M&N protocol and about 2320% more efficient
than the H&V protocol. In terms of communication, we observed that the

46



newly proposed MPSI protocol is about 279% more efficient than the M&N
protocol, but about 96% less efficient than the H&V protocol, based on
the reasoning explained before. All in all, we conclude that in the general
case, the newly proposed MPSI protocol is the preferred one out of the 3
as it scales well with both the number of parties and set sizes. However,
it could be that in specific situations or protocol requirements, one of the
other protocols might be preferred.

47



Chapter 8

Related Work

Over the last few decades, private set intersection has become an increasingly
popular area in research and gradually more protocols for the multi-party
case are being proposed. This chapter discusses relevant MPSI protocols
found in the literature and briefly describes their characteristics.

Inbar, Omri and Pinkas propose a highly scalable MPSI protocol in [13]
based on a variation of Bloom filters called a garbled Bloom filter. The
protocol scales well with the number of parties and elements in the dataset,
uses no cryptographic hardness assumptions and is based on the fact that the
XOR of two garbled Bloom filters is a garbled Bloom filter of the intersection.
The paper also shows performance measurement results based on their Java
implementation of the protocol.

In [14] Kolesnikov, Matania, Pinkas, Rosulek and Trieu propose an MPSI
protocol based on a new primitive, namely oblivious programmable pseu-
dorandom functions. A Bloom filter-based, polynomial-based and a table-
based construct of oblivious PRF are proposed which possess different trade-
offs. The paper also provides a C++ implementation of their protocol.

Kissner and Song propose an MPSI protocol in [15] that is based on
additive homomorphic encryption and oblivious polynomial evaluation.

In [16] Cheon and Jarecki propose an MPSI protocol that follows the ba-
sic idea of the protocol proposed in [15]. Unlike other protocols that require
quadratic computational complexity when using the coefficient representa-
tion, this protocol achieves linear complexity by utilizing a new representa-
tion called point representation and operations over point representation.

48



Chapter 9

Conclusions

In this thesis we have implemented and analysed a newly proposed Bloom
filter based MPSI protocol and two other relevant MPSI protocols. One of
which is also based on Bloom filters while the other is based on oblivious
polynomial evaluation. These protocols have been implemented in Java and
their computational and communication performances were analyzed us-
ing our measurement framework. Our research question has been answered
based on the measurement results that we analyzed. The findings of this
analysis indicate that the newly proposed MPSI protocol performs better
than the other two protocols in the general case. Our benchmark results
show an average computational efficiency improvement of about 821% com-
pared to the other protocol based on Bloom filteres and about 2320% com-
pared to the protocol based on oblivious polynomial evaluation. The average
communication efficiency improvement is 279% compared to the Bloom fil-
ter based protocol, but was much less efficient (96% decrease) compared to
the protocol based on oblivious polynomial evaluation.

9.1 Future work

In future research we could look at some of the other available MPSI pro-
tocols found in the literature. Also, instead of using the Java programming
language, one could focus on more optimized implementations such as C and
analyze the best possible performances of the protocols one could achieve.
In this thesis we focused solely on the Paillier encryption scheme, but other
options are also possible, such as ElGamal encryption. Our performance
criteria depended only on the execution time and communication required,
but more factors can be taken into consideration, such as the total amount
of memory used. Lastly, the protocols that we analyzed all assume the semi-
honest security model. Future research could be spent analyzing extensions
for the proposed protocols in the malicious setting.

49



Bibliography

[1] Asli Bay, Zekeriya Erkin, Jaap-Henk Hoepman, Simona Samardjiska.
Efficient Multi-party Private Set Intersection Protocols.

[2] Atsuko Miyaji, Shohei Nishida. A scalable multiparty private set in-
tersection. NSS 2015: Network and System Security, pages 376–385,
November 2015. https://doi.org/10.1007/978-3-319-25645-0 26.

[3] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam. Scal-
able multi-party private set-intersection. PKC 2017: Public-
Key Cryptography – PKC 2017, pages 175–203, February 2017.
https://doi.org/10.1007/978-3-662-54365-8 8.

[4] Ivan Damg̊ard, Mads Jurik. A Generalisation, a Simplification
and some Applications of Paillier’s Probabilistic Public-Key System.
PKC 2001: Public Key Cryptography, pages 119–136, June 2001.
https://doi.org/10.1007/3-540-44586-2 9.

[5] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. Advances in Cryptology — EUROCRYPT ’99,
pages 223–238, April 1999. https://doi.org/10.1007/3-540-48910-X 16.

[6] Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, July 1970.
https://doi.org/10.1145/362686.362692.

[7] Moni Naor, Benny Pinkas. Oblivious Transfer and Polynomial Eval-
uation. STOC ’99: Proceedings of the thirty-first annual ACM
symposium on Theory of Computing, pages 245–254, May 1999.
https://doi.org/10.1145/301250.301312.

[8] Michael J. Freedman, Kobbi Nissim, Benny Pinkas. Efficient Pri-
vate Matching and Set Intersection. EUROCRYPT 2004: Ad-
vances in Cryptology - EUROCRYPT 2004, pages 1–19, April 2004.
https://doi.org/10.1007/978-3-540-24676-3 1.

[9] Alex Davidson, Carlos Cid. Efficient Private Matching and Set Intersec-
tion. ACISP 2017: Information Security and Privacy, pages 261–278,
May 2017. https://doi.org/10.1007/978-3-319-59870-3 15.

50



[10] Michael de Jong. Java source code. https://github.com/mdejong10/
mpsi.

[11] String (Java Platform SE 7 Documentation) . https://docs.oracle.
com/javase/7/docs/api/java/lang/String.html#hashCode().

[12] University of Texas at Dallas Data Security and Privacy Lab. Paillier
Threshold Encryption Toolbox. http://www.cs.utdallas.edu/dspl/
cgi-bin/pailliertoolbox/.

[13] Roi Inbar, Eran Omri, Benny Pinkas. Efficient scalable multiparty
private set-intersection via garbled bloom filters. SCN 2018: Se-
curity and Cryptography for Networks, pages 235–252, August 2018.
https://doi.org/10.1007/978-3-319-98113-0 13.

[14] Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike Rosulek, Ni
Trieu. Practical Multi-party Private Set Intersection from Symmetric-
Key Techniques. CCS ’17: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security, page 1257–1272,
October 2017. https://doi.org/10.1145/3133956.3134065.

[15] Lea Kissner, Dawn Song. Privacy-preserving set operations.
CRYPTO’05: Proceedings of the 25th annual international con-
ference on Advances in Cryptology, pages 241–257, August 2005.
https://doi.org/10.1007/11535218 15.

[16] Jung Hee Cheon, Stanislaw Jarecki, Jae Hong Seo. Multi-Party
Privacy-Preserving Set Intersection with Quasi-Linear Complexity. IE-
ICE Transactions on Fundamentals of Electronics Communications and
Computer Sciences 2012 Volume E95.A Issue 8, pages 1366–1378, Au-
gust 2012. https://doi.org/10.1587/transfun.E95.A.1366.

51

https://github.com/mdejong10/mpsi
https://github.com/mdejong10/mpsi
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#hashCode()
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#hashCode()
http://www.cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/
http://www.cs.utdallas.edu/dspl/cgi-bin/pailliertoolbox/

	Introduction
	Overview of this thesis

	Preliminaries
	Multi-party private set intersection
	Threshold public key encryption schemes
	Additively homomorphic encryption
	Threshold Paillier encryption
	Bloom filter
	Oblivious polynomial evaluation
	Semi-honest security model

	New MPSI protocol
	Description
	Correctness
	Theoretical complexity

	MPSI Protocol (Miyaji, Nishida)
	Description
	Correctness
	Theoretical complexity

	MPSI Protocol (Hazay, Venkitasubramaniam)
	Description
	Correctness
	Theoretical complexity

	Implementation
	Protocol structure
	Data structure
	Threshold Paillier library
	Measurement framework

	Analysis
	Vehicle tracking
	Protocol comparison
	Test criteria
	Computational analysis
	Communication analysis
	Benchmark tests

	Related Work
	Conclusions
	Future work


