
Bachelor thesis
Computing Science

Radboud University

The usefulness of automated, style-related
feedback to object-oriented programming

students

Author:
Rick van der Wal
s1005618

First supervisor/assessor:
Sjaak Smetsers

S.Smetsers@cs.ru.nl

Second assessor:
Erik Barendsen

Erik.Barendsen@ru.nl

June 25, 2020

Abstract

To help students learn about code quality, the object-oriented programming
course at the Radboud University deployed a new tool that automatically
gives feedback on style-related aspects in submitted Java programs. The
software performs generic style checks, such as the use of consistent nam-
ing conventions, but also more specific feedback based on the assignments,
for example to see if certain classes are properly decomposed. This thesis
investigates how useful such a tool can be to the students, by determin-
ing its accuracy, how the students make use of it, and how they value the
feedback. We conducted semi-structured interviews with eight first-year
students, which were held in three iterations, distributed evenly over the
duration of the course. After each iteration, we improved the tool based
on the students’ feedback. Finally, after performing qualitative analysis on
the results, we concluded that the tool is accurate and quite useful to the
students.

Contents

1 Introduction 4
1.1 Problem Description . 4
1.2 Purpose . 5
1.3 Approach . 5
1.4 Overview . 5

2 Background 6
2.1 Code Quality . 6
2.2 Personal Prof . 6

2.2.1 Background . 6
2.2.2 Purpose . 6

2.3 Related Work . 7
2.3.1 Negative Outcome . 7
2.3.2 Positive Outcome . 8

2.4 Interview . 8
2.5 Analysis . 9

3 Goal 10
3.1 Research Question . 10
3.2 Research Subquestions . 10

4 Methodology 11
4.1 Initialization . 11
4.2 Data Collection . 11

4.2.1 Choice of Questions 11
4.2.2 Choice of Assignments 12
4.2.3 Participants . 13
4.2.4 Interviewing . 13

4.3 Data Analysis . 14
4.3.1 Interview . 14
4.3.2 Rubric . 15
4.3.3 Adaptation Phases . 15

4.4 Combining Results . 15

1

5 Results 16
5.1 Summary . 16

5.1.1 Codes . 16
5.1.2 Grades . 20

5.2 First Iteration . 20
5.2.1 Quality . 20
5.2.2 Personal Prof . 23
5.2.3 Feedback on the course in general 25
5.2.4 Rubric Grades . 26
5.2.5 Personal Prof Adaptations 27

5.3 Second Iteration . 27
5.3.1 Quality . 28
5.3.2 Personal Prof . 31
5.3.3 Feedback on the course in general 33
5.3.4 Rubric Grades . 35
5.3.5 Personal Prof Adaptations 35

5.4 Third Iteration . 36
5.4.1 Quality . 37
5.4.2 Personal Prof . 39
5.4.3 Feedback on the course in general 41
5.4.4 Rubric Grades . 44

5.5 Combining Results . 44
5.5.1 Accuracy . 44
5.5.2 Usage . 44
5.5.3 Opinion . 45

6 Conclusion 46
6.1 Research Subquestions . 46
6.2 Research Question . 47

7 Discussion 48
7.1 Reflection on Findings . 48

7.1.1 Quality Perception . 48
7.1.2 Meeting Expectations 48
7.1.3 Issue Recognition . 49
7.1.4 Course Feedback . 49

7.2 Reflection on Methods . 50
7.2.1 Number of Participants 50
7.2.2 Participant Bias . 50
7.2.3 Zero Measurement . 50

7.3 Implications for Practice . 51
7.4 Future Research . 51

Bibliography 52

2

A Interview 54

B Consent Form 55

C Rubric 57

D Snake assignment 58

E Snake Template 63

F Snake Example Solution 71

3

Chapter 1

Introduction

1.1 Problem Description

One important aspect of software development is knowing how to write high-
quality source code. It has been shown that low-quality software increases
the amount of time spent on adding new features, debugging, and main-
taining code in the long run (Akour & Falah, 2016). Therefore, investing
extra time and effort into developing high-quality code is likely worth it.
However, when teaching computing science students how to program, code
quality often does not get enough attention (Wiese, Yen, Chen, Santos, &
Fox, 2017). This can be due to to the fact that some aspects of quality
are subjective or prone to change, or because teaching beginners about its
importance is difficult, as they have not yet worked on larger projects where
code quality is vital.

For this purpose, the object-oriented programming course at the Radboud
University has deployed Personal Prof, a tool that automatically gives feed-
back on the quality of source code. Whenever a student hands in their
assignment, the tool analyzes the Java code and identifies common quality
issues such as missing access modifiers or inconsistent naming conventions.
It also runs specific checks for each of the assignments, allowing it to com-
ment on issues such as missing or redundant classes, or on dependencies
that should be moved elsewhere. The generated feedback is then sent back
to the student within about five minutes. They are allowed to adapt their
assignment as often as they want before it gets graded, so they can choose
to resolve all indicated quality flaws. Since this software was introduced for
the first time this year, we would like to investigate its usefulness to the
students.

4

1.2 Purpose

If Personal Prof works as intended, it can trigger the students to put extra
thought into the quality of their code, and help them solve their quality-
related issues. This could prevent the aforementioned problems that might
arise in low-quality code. The purpose of this research is to determine how
effective this approach is.

1.3 Approach

We analyzed the Personal Prof usage of eight students from the object-
oriented programming course. These students were split up into three
groups, each of which took part in one of three iterations, distributed evenly
over the duration of the course. Each iteration, the corresponding students
were interviewed about their views on code quality and the feedback they
received. Moreover, we assessed the code quality of their assignment from
that week. The responses to the interview were used to determine the stu-
dents’ knowledge about code quality aspects, their usage of the tool, and
their opinions on the feedback loop. The assessments were used to deter-
mine how accurately Personal Prof can detect quality issues. At the end of
each iteration, we analyzed the data and used the intermediate results to
adapt the tool, in order to resolve any issues the students had while using
it, and to improve the tool for later iterations.

1.4 Overview

Chapter 2 provides all background information needed for this thesis, in-
cluding other papers’ findings on the subject. Chapter 3 describes and de-
composes the research question this thesis attempts to answer. A detailed
description of how this research was conducted is given in chapter 4. Chap-
ter 5 lists all obtained results. In chapter 6 we draw our conclusions and in
chapter 7 we discuss the implications of these findings for the course of ob-
ject oriented programming. At the end of the thesis is a list of appendices,
including the interview we conducted, the accompanying consent form, a
rubric used to judge software quality, and one of the course’s assignments,
followed by its template and example solution.

5

Chapter 2

Background

2.1 Code Quality

There are many possible definitions for the notion of code quality. To avoid
confusion, we will henceforth use the definition of Akour and Falah (2016):
code quality or code readability is a metric defined by how easily source
code can be understood, maintained, and adapted. We will make use of
the rubric created by Stegeman, Barendsen, and Smetsers (2016) to judge
the quality of submitted assignments. This rubric consists of ten generally
agreed upon code quality aspects, and proposes a score distribution between
one and four points for each of them.

2.2 Personal Prof

2.2.1 Background

Personal Prof is software written by doctoral candidate M. Klinik at the
Radboud University. Its purpose is to give feedback on programming as-
signments written by students for the object-oriented programming course.
The tool is written in Rascal (CWI Amsterdam, 2014), a metaprogramming
language that provides a layer of abstraction over many different program-
ming languages, allowing us to reason about code the same way in any of
those languages, which makes porting Personal Prof to other languages for
use in other courses easier. Personal Prof uses a rule-based classifying system
to give feedback on general aspects like omitted access modifiers and broken
naming conventions, as well as more specific details per assignment, such as
the absence of certain classes or classes with unjustified dependencies.

2.2.2 Purpose

The goal of Personal Prof is to improve the feedback loop of the object ori-
ented programming course, by reducing the amount of time between when

6

the students submit their work and when they receive feedback, and by fil-
tering as many of the style-related issues as possible before the assignments
get graded by a teaching assistant. This saves the assistants time correcting
small, unnecessary mistakes and allows them to focus more on the function-
ality of the code, hopefully resulting in better feedback. Moreover, this more
direct approach of providing feedback might improve the quality of the code
written by students, both for the assignments and for future projects.

2.3 Related Work

Similar experiments, where tools are used to indicate software quality issues
in code written by students, are described below. The results of these exper-
iments are very different, and are highly dependent on the circumstances.
What separates this research from the others is the fact that Personal Prof
was specifically designed for the assignments of the object-oriented program-
ming course. The specific feedback rules for each assignment should make
the feedback more relevant and the tool more interesting to use. Moreover,
the assignments are graded after the students hand them in, which should
persuade the students to solve any issues they come across before that hap-
pens.

2.3.1 Negative Outcome

Keuning, Heeren, and Jeuring (2017) analyzed a large number code frag-
ments from students collected by the BlueJ IDE (King’s College London,
2009). To determine the quality of these samples, they also made use of the
rubric created by Stegeman et al. (2016). Namely, for some of the quality
aspects listed in the rubric, they determined whether or not a code snippet
fulfilled that standard using PMD. PMD is a static analysis tool that rec-
ognizes many bad practices using rules, not unlike Personal Prof’s rulesets.
One of these rules, for example, checks if a variable is declared prematurely,
which can cause confusion as demonstrated by Sasaki, Higo, and Kusumoto
(2013), while another rule checks if a module contains too many methods.
They also checked what happened to the code fragments over time to see
if the issues get solved. Moreover, they analysed the effect certain BlueJ
extensions had on solving them, most notably Checkstyle and PMD itself.
They found that students create a large number of code quality issues, and
that the usage of tools had little effect on how often they fix them. This is
especially concerning considering that the PMD extension should tell them
exactly what they have to change to be rated with high-quality. This is rel-
evant to our research, as it shows that access to an automatic style-feedback
tool like Personal Prof might not be enough to improve the quality of code
written by students. For this reason, this thesis will also focus on the feed-
back on students’ assignments and the assignment descriptions, to make sure

7

the students realize the importance of writing high-quality code. Moreover,
Personal Prof also gives feedback specific to each of the assignments, which
may be more relevant and may therefore make Personal Prof more alluring
to use than the static analysis tools used by Keuning et al. (2017). Finally,
this research uses a different metric to determine code quality than the tool
that also helps students with their code quality, in order to measure the
effect more objectively.

2.3.2 Positive Outcome

The research conducted by Cardell-Oliver et al. (2010) focuses only partly
on software readability as defined above. However, that part is relevant
to our thesis. In their research, they allowed students to use the Eclipse
IDE (Eclipse Foundation, 2001) with Checkstyle. Much like Keuning et al.
(2017), they also used Checkstyle to later determine the effectiveness of these
tools. Unlike Keuning et al. (2017), however, the results of this research were
more promising, showing significantly improved submitted programming as-
signments. This difference can be explained by the fact that the BlueJ code
snapshots are not necessarily from people following courses on programming,
while the students of this research received a lecture, tutorial, and labora-
tory session each week, just like the students at the Radboud University.
One notable difference between this research and the research of Cardell-
Oliver et al. (2010), is that the tools their students used can automatically
indicate and resolve the quality issues they find, even without the program-
mer noticing. While their results are quite positive, we cannot guarantee
that the improved code quality of the submitted assignments is due to a
better understanding of software quality, or merely because the tools fil-
tered most issues. Personal Prof’s feedback is therefore uploaded after the
submission, as it stimulates the students to think about the quality of their
code beforehand, and eliminates the possibility that the tool resolved the
issues automatically.

2.4 Interview

The main source of data for this research is collected through an interview.
There are three main categories of interviews: structured, semi-structured,
and unstructured. Structured interviews consist of a list of predefined ques-
tions and generally do not sway from their original order or content, while
unstructured interviews do not have such a list, but usually ask relevant
questions on the fly. Semi-structured interviews are somewhere in the mid-
dle, which is what we will be using for this research. We prepared a list
of questions, but in cases where students mention important or ambiguous
details, we should be able to ask follow-up questions. This way we can gain
a deeper understanding of their opinions on code quality, on the feedback

8

they received, and on the tool itself. The interview was composed as de-
scribed by Oates (2006) regarding content validity, construct validity and
reliability.

2.5 Analysis

For this research, we will be performing qualitative analysis on the data
generated from the interviews. This will be done through the use of codes
(not to be confused with software code) that describe one particular type of
event, such as a specific type of warning from Personal Prof, or a problem
the students had when making the assignment. Appropriate fragments of
the data are then marked with these codes to easily find each occurrence
of said events. Codes can be defined in two main ways: inductively, where
the statements from the students are turned into codes when they are en-
countered, or deductively, where codes from an existing framework are used
where they apply in the data. Inductively defined codes are continuously
updated as the researcher’s understanding of the data improves. For ex-
ample, in some cases two codes turn out to be so similar, that it might be
better to join them, or in some cases one code might be overgeneralized and
should instead be split into two different codes. This process makes sure
the code framework always represents the data as well as possible, given the
knowledge at that time.

To simplify the process of performing the qualitative analysis, we will make
use of ATLAS.ti (ATLAS.ti Scientific Software Development GmbH, 1993).
ATLAS.ti is software that helps perform qualitative research or analysis by
providing tools that simplify finding complex patterns in unstructured data.
In particular, it simplifies the process of marking fragments of audio files
with codes, splitting and combining codes, and finding all occurrences of a
code, among others.

9

Chapter 3

Goal

3.1 Research Question

The research question we answer in this thesis is:

How useful is automatic, style-related feedback to students of object-oriented
programming?

As this question is difficult to answer directly, we will be looking at the
accuracy of the tool, the students’ usage of the feedback, and their opinion
on its usefulness. Combined, these points give an indication of the useful-
ness of the tool in general. We translated these aspects into the following
subquestions:

3.2 Research Subquestions

• How well does the feedback tool recognize quality flaws?

• What do the students do with the generated feedback?

• How do the students value the automated feedback?

10

Chapter 4

Methodology

4.1 Initialization

We started by enabling all students to access the tool as follows: when
handing in the assignment of that week, the code is automatically checked
by Personal Prof, which sends its feedback after about five minutes. After
reading the feedback, the students are allowed to hand in a new version,
which Personal Prof can correct again, etcetera. When the students are
done, their code is checked by a teaching assistant for the final grade.

4.2 Data Collection

To determine the effect of Personal Prof, we conducted eight interviews:
two for the first iteration and three for the second and third. The first
iteration had one fewer because finding participants proved to be a challenge
during the start of the coronavirus pandemic. We did the interview with
every volunteering student soon after they received the feedback for the
corresponding week. Along with the interview, we graded their assignment
of that week using the rubric created by Stegeman et al. (2016), which can
be found in appendix C, to get an idea of their level of writing high-quality
code at that time.

4.2.1 Choice of Questions

The interview was split up into three main sections: one about the students’
views on code quality, one about the performance of Personal Prof and one
about the feedback of the course in general.

Students’ views on code quality

In this section, the students were first asked to name the three most impor-
tant aspects of code quality in their opinion. We deemed this information

11

important, as it is hard to write good code without knowing what conditions
it should satisfy in order to be considered high-quality.

The second question of this section asks the students to motivate their choice
from the previous question. It was important to verify that the students
were not simply regurgitating memorized code quality aspects, but were
really motivated to write good quality code themselves.

Personal Prof ’s performance

If the interviewees used Personal Prof to get feedback on their latest assign-
ment, we asked them what feedback the tool gave them and what changes
they made in their code as a result. We verified their answers by running
the tool over their code and analysing the output.

The students were then asked whether Personal Prof gave them unclear
feedback or feedback that they did not agree with, to see if the issues that
Personal Prof does pick up on are handled well. The previous question
verifies the completeness of the tool, i.e. does the tool find all issues in the
code? This question verifies its soundness, i.e. are all found issues actually
issues?

Feedback effectiveness

In the last section, we asked the students which parts of all feedback they
received, both from Personal Prof and from the student assistants, were
particularly useful to them. Moreover, we asked them for suggestions on
how to improve the overall feedback loop of the course.

Quality Aspects

When grading the assignments, we mainly focused on the ‘names‘, ‘idiom‘
and ‘decomposition’ rows of the rubric by Stegeman et al. (2016), because
either the tool did not have builtin features to check the other rows or
because those rows were not applicable to these assignments. However, the
rows ‘comments’, ‘formatting’ and ‘expressions’ were also kept in mind as
such checks were possible to implement if necessary.

4.2.2 Choice of Assignments

We chose to analyze the 6th, 9th and 11th assignment. Data collection didn’t
start until the assignment of week 6 about recursive data types, as it was the
earliest assignment containing a sufficient amount of object oriented code
to grade the quality of and because this allowed us to ask questions about
earlier assignments in case Personal Prof gave little feedback for this one.
The assignment of week 9 was about JavaFX and, since many programmers

12

consider it best practice to separate the user interface from the business
logic (Akour & Falah, 2016), this week was a good opportunity to test
whether the tool could pick up on those principles. Finally, week 11 was
about object oriented design patterns, which are an important aspect of
creating maintainable and high-quality code in general, and therefore a good
indicator to see how the tool performs. Another plus for these specific
assignments was that there was a two or three week break between each of
them, which gave us time to adapt the tool where needed.

4.2.3 Participants

Originally, we planned to find interviewees by attending the tutorial lectures
and picking students at random to ask whether they would like to partici-
pate. However, now that the university was closed, we had to use another
method. We then chose to find participants using convenience sampling:
we made an announcement that asked the students whether they would like
to help improve Personal Prof and the feedback for object orientation in
general. It received little attention, so after several attempts we had to
bribe students with a free snack, after which we were able to find enough
volunteers. We attempted to include both people who were quite adept and
people who had trouble with the assignments in each iteration, so that we
could try to improve the experience for each of them. Moreover, all of the
participants had made use of Personal Prof for the assignment they were
interviewed for. Table 4.1 lists for each of the participants what they study
and what their average grade for the assignments was. While these grades
appear to be quite high, the assignments are graded with a 0 if they were
not made seriously, a 1 if they had serious problems, 2 if there were a few
small issues and a 3 otherwise. While these students certainly knew well
what they were doing, this relatively simple grading scheme quickly results
in relatively high grades, and their grades are quite representative of the
entire group.

4.2.4 Interviewing

We conducted each interview as soon as possible after the student received
all feedback on that assignment, both from Personal Prof and the grading
teaching assistant. However, due to the university being closed, the first
iteration had a slow start, resulting in a delay of one week between the
feedback and the interview. Moreover, the interviews were held using either
Skype or Discord, whichever the interviewee preferred. After having them
sign the consent form found in appendix B digitally, we started the semi-
structured interview found in appendix A.

13

Study Average Assignment Grade

1 CS 79%

2 AI 70%

3 AI 85%

4 CS 70%

5 AI 85%

6 AI 88%

7 CS 91%

8 CS 70%

Table 4.1: The average assignment grade of each of the participants, which is
representative of the entire group (AI: Artificial Intelligence, CS: Computing
Science).

4.3 Data Analysis

After each iteration, we analysed the data to improve the codes of our qual-
itative analysis. This research relies on a combination of inductive and
deductive codes. A large number of codes related to code quality was de-
ducted from the rubric by Stegeman et al. (2016), each row contributing
between one and three codes as some categories grouped multiple events,
while some students also brought up quality aspects that were not present
in the rubric, resulting in inductively defined codes. The majority of codes
for this research is inductive, as the feedback given by the students is often
specific to the circumstances around the Radboud University, which makes
most existing frameworks inadequate for this situation.

4.3.1 Interview

Each of the questions from the interview was used for a specific reason,
as described below. The first section of the interview determines whether
students have both the knowledge and motivation to write high-quality code,
the second section checks Personal Prof’s capability to aid them in this
process, and the last section gauges how satisfied the students were with
the feedback loop in general, which gives us more information about other
aspects that might influence the final results. The rubric was used as an
independent opinion on the quality of the code written by the students.

Students’ views on code quality

The number of named quality aspects from the rubric served as an indication
of how well the students know what quality guidelines to follow. If this

14

number was too low, we would consider adaptations to Personal Prof that
should help the students understand these quality aspects better. Otherwise,
this data was used to verify that the tool works as expected. The reasons the
students mentioned for their quality aspects were mainly used for discussion.
Most reasons can be considered fine, as long as the students mention it out
of their own free will, and not because they learned it was important.

Personal Prof’s performance

The results of this section of the interview were used to remedy any problems
the students had with the tool, such as flawed rulesets or unclear feedback
descriptions, and to find possible improvements for further iterations. They
were also used to determine how content the students were with the software.

Feedback effectiveness

This final section was used to determine whether there were other factors
that might have had impact on the way students think about software qual-
ity. Other issues regarding software quality that might have obstructed the
students were also addresses with this data.

4.3.2 Rubric

We used these results to determine how well Personal Prof can detect quality
issues in source code. If Personal Prof does not find any issues with some
code while the rubric does, we could add functionality to the tool in order to
improve the students’ ability to adhere to those aspects as well. Otherwise,
if Personal Prof and the rubric are both positive about a program, it serves
as confirmation that Personal Prof is working as intended. All assignments
were graded by the same person in order to minimize the effects of personal
preference.

4.3.3 Adaptation Phases

After analysing the data each iteration, we used the break to adapt the tool
in an attempt to resolve any issues the students might have had while using
it, and to improve its performance for the next iteration.

4.4 Combining Results

After having analysed the data of the last iteration, we combined and com-
pared portions of the results that were relevant to answering the research
questions, in order to clarify our conclusions.

15

Chapter 5

Results

5.1 Summary

This section contains a summary of all data collected in this research. For
a detailed analysis for each iteration, please refer to the next three sections.

5.1.1 Codes

5.1 lists all of the codes used in this research, along with how many of the
students mentioned it each iteration. The codes under ‘Quality aspects from
rubric’ and ‘Feedback on the assignment’ were deducted from the rubric of
Stegeman et al. (2016) and Personal Prof’s source code, respectively. The
other codes were all inductively defined according to the responses of the
participants during the interview.

Code 1 2 3

Quality

Quality aspects from rubric

(Comments) there should be clear and concise comments
explaining parts of the code

1 1 0

(Decomposition) each function/class has one clear task
only

0 2 0

(Flow) there is little to no duplicate code 1 2 1

(Formatting) the code should be indented properly and
easy to read

1 0 1

(Headers) the code should have clear and accurate
documentation

1 0 1

16

(Layout) the positioning of elements within the source
code is logical and easy to follow

1 0 0

(Modularization) the code is separated into logical
modules, with limited communication between them

0 1 1

(Names) functions and classes should have clear and
concise names

1 2 3

Quality aspects from students

Functions should be relatively short 0 3 1

Lines should be relatively short 0 1 0

The code should be abstract 0 1 0

The code should run efficiently 1 0 1

The code should work as expected 1 0 0

Reasons for quality aspects

The student prefers more concise code 0 0 1

The student has trouble finding variables sometimes 0 0 1

The student learned that it is important 0 2 0

The student argues that it makes debugging easier 0 0 1

The student argues it makes the code more flexible 0 1 0

The student argues that it makes the code easier to
understand for other people

2 3 1

The student considers it easier to get back to after a
break

2 1 2

The student argues that it can be read more quickly 0 1 1

Personal Prof

Feedback on the assignment

Class A should be the only one to use B 0 1 0

Errors found, did not check 0 0 1

Issue with access modifiers 2 0 2

Issue with naming convention 1 0 0

17

Issue with handing in 0 0 1

Tests are missing or failing 1 0 0

Redundant class 1 0 0

Class missing 0 0 1

No issues found 2 3 1

Student’s reaction on the feedback

The student fixed larger issues, but kept smaller ones 0 0 1

The student chose not to adapt the hand-in 0 0 1

The student kept adapting the code until Personal Prof
approved

2 3 1

Complaints

The student was sometimes unable to find the feedback 1 0 0

Personal Prof takes too long to check the assignment 0 1 0

Personal Prof complained about code only used for
testing

1 0 0

Personal Prof didn’t check the code because there was a
compile time error

0 0 1

Personal Prof enforced overriding all inherited methods 0 0 1

Personal Prof should perform more checks 0 1 0

Personal Prof sometimes takes much longer to provide
feedback

0 1 0

Compliments

It is clear how to use Personal Prof 0 1 0

It is easy to follow the feedback from Personal Prof 0 2 0

It is nice to have the assignment pre-checked before you
get graded

0 2 0

Personal Prof can warn you if there is a large part of the
assignment missing

0 0 1

Personal Prof helps fixing small issues 2 3 2

18

Feedback on the course in general

Points of improvement

An example solution would help 1 0 0

Assistants disagree on how the code should be 1 1 0

The student was unaware that code should be split into
separate files

0 0 1

Personal Prof mentions missing classes that were not
specified in the assignment

0 0 1

Personal Prof gave positive feedback while the assistant
did not

1 1 0

The assignment description is unclear 1 0 0

The assignment is too strict about how to solve a
problem

0 0 1

The feedback of the assistant is too brief 0 1 3

The lectures and tutorial were out of sync 0 0 1

The lectures were not recorded 0 0 1

The slides contain a lot of code and little explanation 0 0 1

When receiving negative feedback, it is unclear how it
should have been done instead

1 1 0

Compliments

Even when the assignment was well done, the assistants
still give points of improvement

0 0 2

Snake assignment

The student had difficulty with the observer pattern - 2 -

The assignment was fun - 1 -

The assignment description was vague - 1 -

The template was very large - 1 -

Table 5.1: All codes from the analysis, along with how many
students mentioned it in each of the three iterations.

19

5.1.2 Grades

The style grades according to the rubric of Stegeman et al. (2016) for each
student can be found in table 5.2. Since each of the six categories gets a
minimum of one point, we calculated the grades by subtracting six from the
achieved score and dividing that by eighteen rather than twenty-four.

Score Style Grade Average Assignment Grade

1 21/24 83% 79%

2 22/24 89% 70%

3 21/24 83% 85%

4 21/24 83% 70%

5 20/24 78% 85%

6 21/24 83% 88%

7 20/24 78% 91%

8 21/24 83% 70%

Table 5.2: Graded work of all iterations of students, according to the rubric.

5.2 First Iteration

After performing the qualitative analysis, we ended up with a list of cate-
gories, all of which are split up into subcategories of codes, which we will
describe in detail below. Each of the codes has a short explanation and/or
one or two quotes to illustrate why it was added to the list of codes. More-
over, for each of the codes is noted how many students mentioned it applied
to them.

5.2.1 Quality

Quality aspects from rubric

Note that these codes were deducted from the rubric from Stegeman et al.
(2016) and that only codes that applied to at least one of the students are
included. For a better understanding of these codes, please refer to the
rubric itself in appendix C.

• (Comments) there should be clear and concise comments explaining
parts of the code

Every function or every few lines of code should have at least one
comment explaining the effect it has on the state or parameters.

20

“I just think it’s very important that every part of the pro-
gram has comments that explain what that part does, be-
cause that makes it easier to find things.” - Student 1

• (Flow) there is little to no duplicate code

All code segments should be reused where possible. Duplicate code
segments can be confusing as changing just one of the duplicate in-
stances does not change the program in the way it is expected to,
because in some cases it will use the other instance(s) and reproduce
the old behavior instead.

“The code should contain little duplication (. . .) because it’s
hard for other people to work with if they have to change
something” - Student 2

• (Formatting) the code should be indented properly and easy to read

The code should adhere to the indentation conventions of the lan-
guage it is written in, and use blank lines where needed to improve
the readability.

“It should be well-formatted and readable, as that allows
other people to read your code more quickly.” - Student 1

• (Headers) the code should have clear and accurate documentation

Each module of the code has clear documentation on how to use the
parts related to that module.

“I would say the documentation, so that it’s clear what the
code does. So if you look at the code after half a year, you
can quickly see what the code does, and others can also
quickly see what the code does.” - Student 1

• (Layout) the positioning of elements within the source code is logical
and easy to follow

The positioning of methods relative to each other, and of expressions
within methods, is easy to follow. Related methods should be grouped,
such as Java’s getters and setters, while constructors and other special
methods should have consistent locations throughout the program.

“It should be structured, so if you look at it after, say, a
year, or when someone else looks at your code, that you
don’t have to think very long about where to find things.” -
Student 2

21

• (Names) functions and classes should have clear and concise names

Clear method names can increase productivity, as searching for the
right methods is easier when the method has an obvious name. More-
over, a clear name can diminish the need for documentation (Akour &
Falah, 2016).

“And for clear function names, it just makes it easier to
understand what the code does, so learning how it works
can be done more quickly.” - Student 2

Quality aspects from students

Some students named aspects of code quality that didn’t fit any of the
rubric’s categories. Those aspects are listed here.

• The code should work as expected

One of the students argued that the best aspect of software quality is
that the software works.

“It’s most important that it works, because that’s the reason
you do it at all.” - Student 1

• The code should run efficiently

One of the students mentioned that code that runs more efficiently
can be considered of higher quality, even if efficiency comes at a cost
of more complex code to a certain extent.

“If it spends an hour to calculate one plus one, then it’s not
of much use either.” - Student 1

Reasons for quality aspects

The following is a list of codes about the main reasons students thought the
aforementioned aspects were important. In this case, both of these codes
are linked to all of the mentioned quality aspects from the rubric, including
duplicate code. The students associate high quality with code that is easy
to use for people who are not familiar with it, whether those are people new
to the code in general, or themselves after a break.

• The student argues that it makes the code easier to understand for
other people

“It’s useful that if you look at the code again after half a
year, you can quickly see what it does and that someone else
can also quickly see what it does.” - Student 1

22

• The student considers it easier to get back to after a break

“It should just be clear for yourself and others, so if you look
at the code the next week or after a long break, you won’t
have to think long about what it means.” - Student 2

Note that the students do not mention an increased risk of flaws in lower-
quality software, even though this is apparent in case of duplicate code
segments.

5.2.2 Personal Prof

Feedback on the assignment

These codes describe the feedback Personal Prof gave the students for the
corresponding assignment. Note that these codes were deducted from Per-
sonal Prof itself.

• Issue with access modifiers

Either some fields or methods have missing access modifiers (public,
protected or private) or use them in a way that may cause problems,
such as non-final attributes being public.

“We wrote one of our static constants in uppercase letters,
but without final modifier, even though it should have been
final, so that was useful feedback.” - Student 1

• Issue with naming convention

For Java, almost everything is written in camelCase by default, ex-
cept for class names, which also start with an uppercase letter, and
constants, which are written in SCREAMING SNAKE CASE. Breaking this
convention will trigger this warning.

“That a static final constant should be written in uppercase
characters.” - Student 2

• Tests are missing or failing

This code combines warnings having to do with test cases: either there
aren’t enough test cases defined, or not all of them are passing.

“One of our tests failed, but that was kind of intentional.” -
Student 2

23

• Redundant class

This warning is triggered when the student created a class that is not
needed to complete a specific assignment. It may be too strict, as it
is usually used to prevent the student from making any classes other
than what the assignment tells them to.

“I created an inner class that extends comparator to sort
the list. This wasn’t strictly necessary, but it was useful
for testing, as it’s easier to see if two sorted lists contain
the same elements. However, Personal Prof said I wasn’t
allowed to make that class.” - Student 1

• No issues found

If Personal Prof cannot find any issues with the code, this is the out-
put it gives. All of the students interviewed received this feedback
eventually.

Student’s reaction on the feedback

This category contains codes having to do with what the students choose
to do with Personal Prof’s feedback, i.e. do they improve their code, ignore
the feedback, or do something in between?

• The student kept adapting the code until Personal Prof approved

So far, all of the students reacted to the feedback in the same way:
they kept adapting the code until Personal Prof said it looked good.

Complaints

This category hosts codes having to do with complaints the students had
about Personal Prof.

• The student was sometimes unable to find the feedback

Though student 2 should have been able to see the feedback from
Personal Prof, the location might be unclear.

“Yes, I used Personal Prof, but the problem is that I often
couldn’t find the feedback. But the person I work with was
always able to find it.” - Student 2

• Personal Prof complained about code only used for testing

Personal Prof may have been too strict on the aforementioned redun-
dant comparator class that student 1 used for testing. On the other
hand, the class that was only used for testing should not have been
included in the program itself.

24

“So Personal Prof said I wasn’t allowed to use the inner com-
parator class, but the reason I disagree with that is because
we learned about inner classes this week, so apparently the
inner class wasn’t bad after all.” - Student 1

Compliments

Fortunately, the students were quite enthusiastic about Personal Prof as
well, as can be seen from the following code:

• Personal Prof helps fixing small issues

The students were both quite content about Personal Prof helping
them fix smaller issues (mainly access modifiers).

“I kept forgetting to use public or private, so it was very
nice that Personal Prof reminds you of these things (. . .)
it’s just really nice, even though they’re just small things,
they’re usually easy to correct and the TA won’t have to
waste time on them after that.” - Student 2

5.2.3 Feedback on the course in general

Points of improvement

Finally, this category accumulates all feedback the students gave on the
feedback loop of Object Orientation in general.

• An example solution would help

Example solutions are usually never published because students tend
to put them online, which gives problems when the teacher wants to
reuse old assignments. However, it is important that the students
know how to improve their code after they receive feedback.

“How someone would go about implementing the so-called
perfect solution, like an example solution or something, would
really help me understand how to improve on the things I
did wrong, and I think it would help others who are having
trouble as well.” - Student 2

• Assistants disagree on how the code should be

What qualifies as high quality code is a relatively subjective manner.
This also applies to the teaching assistants as can be seen from this
example:

25

“We were making an assignment during the tutorial and got
help from one of the teaching assistants, who eventually told
us our solution was very good, while another TA, who graded
the assignment, deducted points because they thought the
implementation wasn’t that good. The tastes differ quite a
bit apparently, which I think is weird.” - Student 2

• Personal Prof gave positive feedback while the assistant did not

The feedback from Personal Prof is meant to help students with smaller,
mostly style-related issues and cannot replace feedback from the teach-
ing assistants. This may be somewhat unclear.

“Sometimes you can see that Personal Prof does give feed-
back on certain issues but the TA doesn’t, or the other way
around.” - Student 1

• The assignment description is unclear

Sometimes the assignment description is interpreted in a different way
than intended.

“The biggest annoyance I have doesn’t really have to do
with the student assistants or Personal Prof, but sometimes
the requirements of an assignment turned out to be different
than what I understood from the assignment description” -
Student 1

• When receiving negative feedback, it is unclear how it should have
been done instead

This code is linked to the example solution, which the student proposed
to solve this issue.

“As a point of improvement, I’d say that it’s difficult to know
how to improve the code after getting negative feedback. We
quickly hear things that could have been done better, but
how to improve it is often so ambiguous or general that I
just don’t know how to go about implementing it. I do
understand the feedback, I just don’t know how to improve
my work afterwards.” - Student 2

5.2.4 Rubric Grades

We graded the style of each of the students’ assignments with the rubric.
For this relatively small assignment, there were very few issues, though some
might argue that comments could be used more generously. The resulting
grades can be found in table 5.3.

26

Names Idiom Decomposition Comments Format Expression

1 4/4 3/4 4/4 2/4 4/4 4/4

2 4/4 4/4 4/4 2/4 4/4 4/4

Table 5.3: Graded work of the first iteration of students, according to the
rubric.

5.2.5 Personal Prof Adaptations

UI separation

For the next iteration, all students made two assignments related to JavaFX.
Assigment 9 is about programming a basic snake game with a graphical
user interface. The template the students first started with mixed the user
interface and input handlers with the game logic. For a small project as this,
doing so is fine, but most purists will argue it is bad for code quality in larger
projects (Akour & Falah, 2016). However, it can be difficult to come up
with an architecture that separates these nicely, especially for students that
have not been programming for long. We decided to adapt the assignment
description and starting template and added a specific ruleset to Personal
Prof for assignment 8 that helps the students achieve an architecture where
the game logic and graphics are separated. The assignment description can
be found in appendix D, while the starting template and example solution
can be found in appendices E and F, respectively. Credit goes to the course
organizers for providing the initial template.

Assignments 8 and 9 were the only assignments Personal Prof did not have
rulesets for, so adding a few was necessary for this research. The reason we
strayed further from our original plan by not only changing Personal Prof
but also changing the assignment is because we consider this a nice test of
how Personal Prof can guide the students as well as a good opportunity for
the students to learn different architecture design.

Completion check

In response to the feedback from this iteration, we also added a list of key
functionality points that the program should contain to the assignment. If
an assignment checks all those points, it can be considered done. This way,
we hope the goal of the assignment is more clear to the students.

5.3 Second Iteration

Like in the previous iteration, here is a categorized list of all codes that are
relevant to the research so far, followed by the adaptations to Personal Prof

27

that were inspired by the feedback. The results from the previous iteration
are excluded. The biggest differences of this iteration are summarized here.

Compared to the first iteration, none of the participants mentioned format-
ting, documentation or the positioning of elements within the source code
as important aspects of code quality in this iteration, but unlike previous
iterations, aspects like decomposition and modularization were mentioned
this time. For the quality aspects not included in the rubric, the students
from this iteration did not mention efficiency nor correctness, but they did
value abstraction and shorter functions and lines. Their reasoning behind
certain code quality aspects was broader than just making the code easier
to understand, as improved flexibility was also named this iteration, which
was one of the reasons to adapt this iteration’s assignment.

Issues with access modifiers, naming conventions or missing classes were
not present in this iteration, rather there was one case where Personal Prof
mentioned that a certain class should not use a specific dependency, which
was unjustified and fixed later.

Some of the students of this iteration had issues with how long Personal
Prof took to grade the assignments. On the other hand, they also mentioned
that they were pleased with the fact that they could have their assignment
checked before it is graded, and how easy it is to use Personal Prof.

None of the participants mentioned that an example solution was neces-
sary or that the assignment description was unclear, points of focus that
were addressed in the previous iteration by changing the snake assignment.
Rather, some of the students pointed out that the feedback they got from
the teaching assistant was quite brief.

Finally, we decided to ask each of the students from this iteration to give
feedback on the snake assignment, to see if they encountered problems mak-
ing it. Many students considered the assignment difficult, mostly due to the
observer pattern. These codes can be found near the end of this section.

Like in the previous iteration, the style grades of the participants from this
iteration can be found in table 5.4 at the end of this section. Note that the
starting template largely determined most of these aspects, as the assign-
ment only required students to implement specific parts of the program.

5.3.1 Quality

Quality aspects from rubric

• (Comments) there should be clear and concise comments explaining
parts of the code

“And if a code segment does more than one thing, you should
use comments to describe what’s happening.” - Student 5

28

• (Decomposition) each function/class has one clear task only

Two of the students actively tried to keep their methods focused on one
task, rather than having one large method that does multiple things.

“I usually split large functions up into different smaller ones
that perform one operation each, to make it a bit more struc-
tured for myself.” - Student 4

“Functions shouldn’t be too long, they should be split up
into smaller functions that do one thing each.” - Student 5

• (Flow) there is little to no duplicate code

“The code should contain little replication, as those can
cause errors when you change one part but forget to change
the replica as well.” - Student 3

• (Modularization) the code is separated into logical modules, with lim-
ited communication between them

One of the goals of adapting the snake assignment was to teach stu-
dents that grouping related parts of the code, such as functionality
around libraries, into modules and minimizing their use in other mod-
ules can improve the quality of the software. One of the three students
mentioned this during the interview.

“Keeping similar things in separate modules, like the graph-
ics from snake, but maybe it can be done for other things as
well.” - Student 3

• (Names) functions and classes should have clear and concise names

“I think the names are most important: they allow you to
know what a function does even if the function itself is un-
clear.” - Student 5

Quality aspects from students

• Functions should be relatively short

All students mentioned that they try to keep their methods short.
This is similar to the decomposition code from the previous category,
but there is a difference keeping functions short and making sure each
function is responsible for exactly one action, hence the separate code.

“In the beginning, there was a large emphasis on keeping
functions short.” - Student 3

29

• Lines should be relatively short

Long lines can cause trouble reading, which can in turn make the code
harder to understand.

“If you write a line of code, make sure that you don’t move
past the line NetBeans indicates as the maximum line length.”
- Student 5

• The code should be abstract

While most professional software developers will argue that premature
optimization or abstraction is a bad thing for productivity, abstrac-
tion can improve the readability of code significantly and can lower
the probability of encountering issues (Sadou, Tamzalit, & Oussalah,
2005).

“During the OOP sessions, they really try to push ‘abstrac-
tion, abstraction, abstraction,’ so that’s important I guess.”
- Student 4

Reasons for quality aspects

• The student learned that it is important

Though undesirable, some of the quality aspects mentioned by stu-
dents were only mentioned because they were taught it was important.

“I mentioned separating concerns because I learned it is im-
portant, I don’t completely understand why.” - Student 3

• The student argues it makes the code more flexible

“Replication because otherwise you can’t really update it,
if you want to change it, you have to change it everywhere
and that’s a bit chaotic.” - Student 3

• The student argues that it makes the code easier to understand for
other people

“It should be clear what it does so other people can look
into it as well.” - Student 3

• The student considers it easier to get back to after a break

“If you make extra functions so each of them is shorter, it
makes changing the code much easier for yourself.” - Student
4

30

• The student argues that it can be read more quickly

One student also considered how much time can be saved by keeping
functions clear and lines short.

“If everything is nice and compact, you can see ‘oh, this
function does that and this function does that’ much more
quickly.” - Student 5

5.3.2 Personal Prof

Feedback on the assignment

• Class A should be the only one to use B

The new ruleset for the snake assignment disallowed the use of an inner
class instead of a lambda expression. Since the Java documentation
does not comment on which is the preferred way of doing it, this was
later changed to allow for inner classes as well.

“Using an inner class rather than a lambda expression to add
input listeners would result in Personal Prof saying those in-
ner classes are not allowed to depend on listeners.” - Student
4

• No issues found

Student’s reaction on the feedback

• The student kept adapting the code until Personal Prof approved

Like in the previous iteration, all participants kept improving the as-
signment they handed in until Personal Prof said it looked good.

Complaints

• Personal Prof takes too long to check the assignment

While not giving students access to Personal Prof directly but rather
through a five minute delay was an intended design choice, it does
have its side-effects.

“A tiny point of improvement would be that, because it
takes a few minutes before Personal Prof gives its feedback,
you already think to yourself ‘ah, finally done programming’
and immediately close your laptop. Then after an hour you
realize you forgot about the feedback.” - Student 4

31

• Personal Prof should perform more checks

One teaching assistant deducted points from this student’s assignment
because they prefixed interface methods with public, which is redun-
dant according to the Java documentation (Gosling, Joy, Steeleand
G. Bracha, & Buckley, 2015). She justly mentions that Personal Prof
should have noticed that, but in reality, Personal Prof would have ad-
vised against omitting the access modifiers, as it is programmed to
check whether they are always explicit. We adapter Personal Prof for
this reason.

“We used public methods in an interface, and the TA said
that wasn’t allowed, which is something Personal Prof should
have mentioned in my opinion.” - Student 3

• Personal Prof sometimes takes much longer to provide feedback

For one of the pairs, how long it takes for Personal Prof to upload
the feedback appeared to be inconsistent, and sometimes it took much
longer than it should.

“Sometimes we got the feedback very quickly and sometimes
it took really long. It seemed to be quite inconsistent. Even-
tually we just stopped waiting.” - Student 5

Compliments

• It is clear how to use Personal Prof

The choice to embed Personal Prof into BrightSpace can be convenient.

“It’s just very clear, you just have to upload your assignment
as usual, and you automatically get the feedback after about
five minutes.” - Student 4

• It is easy to follow the feedback from Personal Prof

The students indicate that Personal Prof mostly giving feedback on
small issues they can correct quickly is a good thing.

“The feedback you get is usually not feedback you have to
think about very long, it’s obvious what you should change.”
- Student 4

• It is nice to have the assignment pre-checked before you get graded

While Personal Prof provides very little correctness or completeness
checks, other than running tests and asserting the existence of cer-
tain classes, these students are more confident about their code after

32

receiving positive feedback from Personal Prof. Like the code about
Personal Prof being positive while the teaching assistant was not, this
code should be kept in mind as Personal Prof cannot fully check the
assignment requirements, so this sense of reassurance may be unjusti-
fied.

“I just liked the feeling of having your assignment checked
before you actually have your assignment checked, it feels
reassuring.” - Student 4

“Because this course is more difficult than Programming 1
or 2, I like the fact that you get a small check-up. When I get
positive feedback from Personal Prof, I know that I probably
got at least the basics of the assignment.” - Student 5

• Personal Prof helps fixing small issues

“What I like is that it corrects small mistakes that you can
correct easily, which can improve your grade, even though
you still know you understood it correctly but just needed
to pay closer attention. These corrections quickly teach you
not to make these kinds of mistakes.” - Student 4

5.3.3 Feedback on the course in general

Points of improvement

• Assistants disagree on how the code should be

“We often get very different feedback, probably from differ-
ent TAs because they think very differently about our code.”
- Student 5

• Personal Prof gave positive feedback while the assistant did not

“It did happen that Personal Prof said the assignment was
well done but the TA almost gave us an insufficient.” - Stu-
dent 3

• The feedback of the assistant is too brief

While hard to do for a course with over 600 participants, some students
might profit from more elaborate feedback.

“For Programming 1 and 2 we got more specific feedback
with a long explanation what could be improved, which was

33

nice, while here it’s usually just a short description of what’s
wrong, without explanation on how to improve it.” - Student
3

• When receiving negative feedback, it is unclear how it should have
been done instead

“For that feedback, I need an explanation on how to improve
the assignment.” - Student 3

“I didn’t always know how to improve the assignment, so I
had to ask a TA or someone else first.” - Student 5

Snake assignment

• The student had difficulty with the observer pattern

The observer pattern gave many students a hard time, both because
they were not familiar with it and because it was unclear to them why
it was used in the first place. The assignment description was adapted
to reflect on this.

“I didn’t really understand 5.3, the part about the listener,
it was a difficult section.” - Student 3

“The concept of listeners was a bit vague for me in the be-
ginning. It did improve a little, but I still don’t understand
them a hundred percent.” - Student 4

• The assignment was fun

Fortunately, some considered the assignment more fun than other as-
signments.

“Because the assignment was interactive, it was more fun to
play around with than the other assignments.” - Student 5

• The assignment description was vague

This student had trouble with the assignment description in general.
While a large part of the assignment is the same as it was before, the
section on the observer pattern is completely new. We hope that the
added explanation will prevent this issue in the future.

“I thought the assignment description was a bit vague, I
had to look through the lecture and the tutorial thoroughly.
Maybe it was the wording or a lack of details, but I didn’t

34

really understand what to do. But with some help, I was
able to do it eventually, but there was a lot of searching
involved, especially in the beginning.” - Student 5

• The template was very large

The assignment template is also largely the same as it used to be,
what is present is relatively minimal code required for a snake game.
While the large amount of template code could possibly be a problem,
solving it is beyond the scope of this thesis.

“Of course, we started with quite a bit of code already, so
inserting new functionality is quite difficult because you first
need to understand what all the other code does.” - Student
4

5.3.4 Rubric Grades

Names Idiom Decomposition Comments Format Expression

3 4/4 4/4 4/4 1/4 4/4 4/4

4 4/4 4/4 4/4 1/4 4/4 4/4

5 4/4 4/4 4/4 1/4 3/4 4/4

Table 5.4: Graded work of the second iteration of students, according to the
rubric.

5.3.5 Personal Prof Adaptations

Inner classes

The volunteers provided plenty of feedback on the adapted Snake assign-
ment. One point of improvement was that the mouse and keyboard han-
dlers in InputHandler didn’t necessarily have to be added through a lambda
expression; an inner class would also be acceptable and, in some cases,
even preferable. However, our implementation of the Personal Prof ruleset
would then complain that InputHandler should be the only class depend-
ing on JavaFX’s input handler classes. We adapted the rule to check if
InputHandler or any of its dependencies are the only classes depending on
input handlers.

Access modifiers

Due to the substantial number of times the students received feedback hav-
ing to do with access modifiers, we noticed that Personal Prof forced students

35

to also add public access modifiers to methods in an interface and private
access modifiers to enum constructors, even though these are redundant and
discouraged (Gosling et al., 2015). Moreover, at least one of the students we
interviewed so far received a lower grade due to marking interface methods
public while the TA argued doing so was bad. We decided to add exclusions
to Personal Prof’s current access modifier rules and added new warnings to
notify students when their code contains redundant access modifiers. We
also notified the students of this change in order to prevent confusion.

5.4 Third Iteration

Unlike the previous iterations, this final iteration does not have a section on
Personal Prof adaptations, as any changes will not affect the remainder of
this research. The results from this section will still be used to improve the
feedback of the course, but it will not be logged here. A short summary of
notable differences compared to the last iteration will follow.

The students from this final iteration named formatting and documentation
as important aspects of code quality, but did not mention comments or
decomposition, unlike previous iteration. Regarding quality aspects that
are not present in the rubric, the students from this iteration mentioned
efficiency as a good code quality metric.

There is a larger variety of motivations behind programming high-quality
code than in the previous iterations. Among others, the students mentioned
conciseness, trouble finding variables and ease of debugging as reasons to
maintain code quality. Moreover, none of them said that they do it solely
because they learned it was important.

In contrast to previous iterations, this iteration did have students that re-
acted to Personal Prof’s feedback in a different way than fixing the issues,
choosing not to implement some or all of Personal Prof’s suggestions.

There were relatively few compliments for Personal Prof this iteration, but
also few complaints.

The students of this iteration had quite a few points of improvement for
the course in general. Most notably, all of the students mentioned that the
feedback of the teaching assistant was too brief. The assignment being to
strict about how to solve problems, Personal Prof expecting classes that were
not mentioned in the assignment, and the slides from the lectures containing
too much code and too little explanation were also mentioned. The students
did note that they appreciate getting small points of improvement from the
assistants, even if their assignment was well done.

The grades for the final iteration’s assignment can be found in table 5.5.
Like in the previous iterations, there were few issues with the code. The

36

lack of comments is not a big problem in this context as the purpose of the
code for any specific assignment is already clear to both the students and
the teaching assistants.

5.4.1 Quality

Quality aspects from rubric

• (Flow) there is little to no duplicate code

“I think it’s also important that stuff isn’t repetitive. So
that you make functions that you can reuse and maybe alter
in a slight you so that you don’t have to write four classes
for four things, but just one and then have it do different
things depending on what you want. So don’t repeat stuff.”
- Student 6

• (Formatting) the code should be indented properly and easy to read

“Of course formatting, because that makes it quicker to
read.” - Student 8

• (Headers) the code should have clear and accurate documentation

“For me personally, it’s documentation, because making your-
self documentation makes it way easier to debug your system
in the end. If you always write down what a function does,
then you can go through your code way faster.” - Student 8

• (Modularization) the code is separated into logical modules, with lim-
ited communication between them

“I’m not sure about the name, but having private or public
and that kind of stuff in front of every variable and function
and so on. That way you cannot access things that you
shouldn’t have access to” - Student 6

• (Names) functions and classes should have clear and concise names

“Sometimes I cannot find variables because I gave them
weird names, so maybe it’s important to give variables good
names.” - Student 7

37

Quality aspects from students

• Functions should be relatively short

“If you have too much code somewhere, you should make
a separate function to keep it clear, so that you can also
understand what you did previously.” - Student 7

• The code should run efficiently

“If you can do something to make the code run faster, then
you should do so. Currently, we’re learning about running
two processes simultaneously, so something like that.” - Stu-
dent 7

Reasons for quality aspects

• The student argues that it makes the code easier to understand for
other people

“I’d say just naming of variables and methods, so just giving
them logical names that other people can understand and
you can understand yourself if you look at your code two
weeks later. Not just a, b or x, y or something.” - Student 6

• The student argues that it makes debugging easier

As mentioned before by student 8, proper documentation can make
code easier to debug.

• The student considers it easier to get back to after a break

As mentioned before by student 7, as a reason to keep functions short
and readable.

• The student argues that it can be read more quickly

“I have it so often that it took me so long to read someone
else’s code, you know? You can always run through your
own code very fast, but if you look at someone else’s code it
can take between minutes and hours depending on how you
format and how you name the things.” - Student 8

• The student prefers more concise code

As mentioned before by student 6, keeping repetition to a minimum
makes your code shorter.

38

• The student has trouble finding variables sometimes

As mentioned before by student 7, a reason to give variables and func-
tions proper names.

5.4.2 Personal Prof

Feedback on the assignment

• Errors found, did not check

In some cases, it might be useful for Personal Prof to perform checks
even if there are compile-time errors.

“There was a warm-up exercise where we had to turn a class
into a class with generics. There was an error in the code,
but a runtime error, and we had to change it so that it would
be a compile-time error. That was the exercise. I did that
and I uploaded it and the first feedback was that there were
compile errors, and nothing else. So when there are compile-
time errors apparently there is nothing else Personal Prof
looks at, so we had to comment that part out and upload it
again to get feedback.” - Student 6

• Issue with access modifiers (public, protected, private)

“After reuploading, it told me that there were some access
modifiers missing, and that I should remove some, because I
had some in an interface and it told me that I should remove
them.” - Student 6

“It said something was redundant for an enum constructor.”
- Student 7

• Issue with handing in

While this will not be a problem for the future, as the assignments
from previous year will already have been checked, Personal Prof does
not grade reused assignments.

“Because I handed in a text file with my name to reuse
the assignment from last year, but I can live with that.” -
Student 8

• Class missing

To clarify, their enum was called ‘constant’, without a capital letter,
which is why Personal Prof did not find it.

39

“And we got ‘there should be an enum called Constant’, but
I thought we had that.” - Student 7

• No issues found

Student’s reaction on the feedback

• The student chose not to adapt the hand-in

One of the students from this iteration mentioned ignoring the feed-
back if they think their solution is good or even better.

“With this feedback, we didn’t do much, because we found
out later that we did something differently with an enum
than intended, but we thought the way we solved it was
pretty good. We’ve done that before: if Personal Prof says
something about it but we think ‘our solution works as well
and, in our eyes, looks better’, then we usually don’t do
much with the feedback.” - Student 7

• The student fixed larger issues, but kept smaller ones

One of the students does fix the larger issues mentioned by Personal
Prof, but might skip the smaller ones to save time.

“I look at it before the deadline and I look if I have such big
mistakes, and then I look it up and look if I can do something
better. Sometimes I’m skipping it, for things like ‘it should
be not all caps’, you know? The problem is I have many
subjects this quarter and I am a little bit overwhelmed so I
don’t have the ability to dig that deep into subjects. (. . .)
I will not change it for this assignment, but for the future
assignments, I’m a little bit smarter.” - Student 8

• The student kept adapting the code until Personal Prof approved

Complaints

• Personal Prof didn’t check the code because there was a compile time
error

“The only thing that was a bit annoying is that it only
told me this won’t compile, and, I mean this wasn’t in any
of the other assignments and once you did this you could
just do the other stuff, but the fact that the Personal Prof
didn’t check for anything else because there were compile
time errors, that was a bit annoying, because I had to change
it and then reupload it again.” - Student 6

40

• Personal Prof enforced overriding all inherited methods

This issue was fixed before the first iteration, but earlier Personal Prof
enforced that subclasses override all methods from superclasses.

“I think it was fixed already, but we had an exercise with
a bunch of abstract classes and subclasses, and there were
like three methods in the superclass, and in the subclass we
override one of them. Then the Personal Prof told us we
actually had to implement all three, but the whole point
of inheriting methods from classes is so that you don’t im-
plement them again, so that was a bit strange.” - Student
6

Compliments

• Personal Prof can warn you if there is a large part of the assignment
missing

While it did not help the student in question in this case unfortunately,
Personal Prof can warn you about missing parts of the assignment.

“The first assignment I made, I downloaded the template, I
made it and handed it in. I was a bit confused from the feed-
back I got from Personal Prof, because it says ‘you should
use this class and this class’, and I was like ‘I did’. Then
someone told me this Personal Prof is still learning, so I
thought maybe it needs to learn, because it was the first as-
signment. But in the end we found out that I totally handed
in the original template.” - Student 8

• Personal Prof helps fixing small issues

“I think the Personal Prof is just useful because it quickly
gives you very obvious things that you just forget. So if you
have, like, ten classes and a bunch of methods, then you
quickly forget that stuff. So it is pretty useful I would say,
when it’s done well.” - Student 6

5.4.3 Feedback on the course in general

Points of improvement

• The feedback of the assistant is too brief

“Getting more feedback or more precise feedback would of
course always be good, but I don’t think that the TAs could

41

go that deeply into everyone’s code and suggest every little
change they could make.” - Student 6

“Generally speaking, we didn’t get very much feedback, usu-
ally just a few lines, which is a shame.” - Student 7

“I’ve only gotten feedback like ‘great implementation’, ‘okay’
or ‘reuse’, so it could be a little more elaborate.” - Student
8

• The student was unaware that code should be split into separate files

For the students unfamiliar with Java, the first lecture should mention
that each class should preferably be in a separate file.

“For the first assignment we got a fail because we didn’t
know that we had to split our program into separate files,
which was never mentioned in the lecture. Since we did
everything before in c++, this came out of nowhere for us.”
- Student 7

• Personal Prof mentions missing classes that were not specified in the
assignment

The assignment description should always make it clear what Personal
Prof expects from a solution, but in this case a clarification is needed.

“One time we heard that there had to be a specific interface,
but we solved it differently, and the assignment didn’t even
specify that we had to use such an interface. And since we
already did it our own way, we didn’t change it.” - Student
7

• The assignment is too strict about how to solve a problem

Usually, the assignments propose one way to solve a problem, which
is useful for students that would otherwise have difficulty solving the
problem themselves. For students that like to solve a problem their
own way, however, such an approach can be considered too strict.
The teaching assistants always agreed with the students in question
however, so it is not much of a problem, even though Personal Prof
might give unrelated feedback in such a case.

“Sometimes we didn’t agree with the feedback, but that’s
because the assignment listed one specific way to solve the
problem that you had to use, but that we didn’t agree with.
So that’s not really Personal Prof’s fault but more the as-
signment’s fault.” - Student 7

42

• The lectures and tutorial were out of sync

One of the students mentioned that the tutorial was one week behind
schedule compared to the lectures at some point in the course, but
that it is no longer the case.

“One thing about the course in general was that at some
point in the course, the lectures and the tutorial were kind
of out of sync. So the lecture was about this topic and the
tutorial was about the topic that we had the week before,
so they were all kind of not synchronized in a way, so that
was kind of weird. But I think it’s good now.” - Student 6

• The lectures were not recorded

Due to the university being closed, all lectures are recorded now, but
this student would prefer that to always be the case.

“Now it doesn’t matter, but when the lectures weren’t recorded,
that was kind of annoying. Especially because the lecture
room we were in was too small for all participants, and then
they wouldn’t even record it.” - Student 6

• The slides contain a lot of code and little explanation

One of the students has had problems with a lack of structure in the
slides of the course, as they contain many slides with code and little
explanation. As a possible solution, he proposed that the students
could use their laptop to try things during the lecture, where the
lecturer guides them.

“The slides are very overwhelming and very unexplaining.
This week was about streams, and this week it was good
because it was split up into starting, intermediate and ter-
minal streams, which were explained well. But the other
weeks it was totally chaos, you don’t know what he’s talk-
ing about, what he wants to tell me. There are just way too
many slides with code.” - Student 8

Compliments

• Even when the assignment was well done, the assistants still give points
of improvement

One thing that multiple students seemed to appreciate was that teach-
ing assistants always tried to give points of improvement, even if the
assignment was well done.

43

“The feedback from the TAs was mostly just positive for my
group, but often we would get little suggestions like ‘this is
fine but you could also do it that way which would be more
efficient or cleaner or whatever’. So in general I think the
feedback is pretty useful.” - Student 6

“What I did find useful is that if you get a good mark, that
you are told ‘okay, it was very good, but maybe you can
change this and this’, so they give you extra options or they
explain little things that maybe weren’t completely right. I
think that’s nice.” - Student 7

5.4.4 Rubric Grades

Names Idiom Decomposition Comments Format Expression

6 4/4 4/4 4/4 1/4 4/4 4/4

7 4/4 4/4 3/4 1/4 4/4 4/4

8 4/4 4/4 4/4 2/4 4/4 3/4

Table 5.5: Graded work of the third iteration of students, according to the
rubric.

5.5 Combining Results

5.5.1 Accuracy

From the grades found in table 5.2 and the more detailed grades described
in each iteration, we see that the code quality of these eight students was
quite good. Most points were lost due to a lack of comments, but the
students were never asked to comment their code, and it is not much of
a problem here as the teaching assistants know the assignments very well.
On rare occasions, expressions could be simplified and functions could be
clarified by splitting them up, but overall there is little to comment on. This
corresponds to the positive feedback that Personal Prof gave to the students
most of the time. Moreover, on several occasions, the students mentioned
quality issues that would have decreased their style grade if Personal Prof
had not warned them. This includes issues with naming conventions, issues
with access modifiers, and missing classes.

5.5.2 Usage

As can be seen from the ‘Personal Prof’ sections, each of the eight students
said they always read the automatically generated feedback. Six of them

44

always fixed all issues Personal Prof indicated, one only fixed the larger
issues if they lacked time, but still learned from the smaller issues mentioned,
and one mentioned fixing the issues only if they agreed that it was better.
Therefore, each of them used the automatic feedback to their advantage:
they either critically looked at the feedback and decided which was the better
way to implement something, or they accepted Personal Prof’s feedback as
the better solution and learned from the process of improving it, both of
which are desirable.

5.5.3 Opinion

In the ‘Complaints’ sections, and in the overview of table 5.1, we see that
the students named a total of seven complaints about Personal Prof. None
of these points were mentioned more than once, and two of them were re-
solved during one of the Personal Prof adaptation phases. Two other points
described very specific cases around intended compile time errors and test-
ing. This leaves us with the possibility of students not being able to find the
feedback, which can be resolved with a simple announcement, the possibility
that Personal Prof might sometimes take much longer to upload feedback,
which might have something to do with a server issue, and the fact that Per-
sonal Prof usually takes about five minutes to upload feedback, which was
a conscious design choice. Overall, the students had quite few complaints
about the new software. On the other hand, the ‘Compliments’ sections
show a total of thirteen cases where Personal Prof was praised, often more
than once per category. Helping students fix small code issues was by far the
most well-received quality of Personal Prof, and the general tone towards
the new tool was enthusiastic as well.

45

Chapter 6

Conclusion

6.1 Research Subquestions

How well does the feedback tool recognize quality flaws?

The tool gave positive feedback in cases where the rubric of Stegeman et
al. (2016) was positive as well, and it gave negative feedback in cases where
the rubric would have been negative. In that sense, Personal Prof and the
rubric agree to a certain extent on what is, and what is not high-quality code.
Therefore we conclude that Personal Prof can accurately recognize software
quality issues corresponding to the ‘names‘, ‘idiom‘ and ‘decomposition’ rows
of the rubric.

What do the students do with the generated feedback?

The students always read the feedback they receive from the tool, and the
majority of them fix all quality issues it mentions. Some choose to ignore
part of the feedback in case they consider their own solution high-quality
already. We can conclude that the students use the feedback to improve
their own code, and as a second opinion on its quality.

How do the students value the automated feedback?

The students mentioned relatively few complaints about the tool, and some
of them have already been resolved. Moreover, the tool received a large
number of compliments as well, mostly on how it helps the students fix
small issues with their code. Overall, we can conclude that the students’
response to the automated feedback is positive.

46

6.2 Research Question

How useful is automatic, style-related feedback to students of
object-oriented programming?

Because the tool appears to be accurate, and the students make extensive
use of Personal Prof and respond positively to the feedback it gives, we can
conclude that automated feedback on code quality can be quite useful to
object-oriented programming students.

47

Chapter 7

Discussion

7.1 Reflection on Findings

7.1.1 Quality Perception

While the number of quality aspects from the rubric named during the in-
terviews remained more or less constant throughout the research, we did
notice a slight increase in confidence when the students talked about the
quality of their code in later iterations. Especially the snake assignment
seemed to trigger the students to think about issues like decomposition and
modularization more. Moreover, as can be seen from the participants’ feed-
back: issues with access modifiers, naming conventions, tests and redundant
classes mostly occurred during the first few weeks of the course, and quickly
became less common. Since Personal Prof was the only source of feedback on
these issues, as they were fixed by the participants before they were graded
by an assistant, it could be that the students learned this from Personal
Prof. However, as this is a beginners course, it can also be explained by the
students improving their programming abilities.

7.1.2 Meeting Expectations

We noticed that there was only one case where a student expected Personal
Prof to filter an issue that the teaching assistant lowered their grade for,
namely using public modifiers for interface methods. This should indeed
have been noticed by Personal Prof, and was solved later. While the lack
of this kind of feedback does not guarantee that Personal Prof indeed filters
all the issues it should filter, it does likely mean that these students did not
mind the cases where it might have failed to do so. Moreover, every student
who had trouble with the feedback tool had the opportunity to talk about in
an interview. The lack of participants might indicate that either no one was
particularly interested, or that there were few problems with it in general.
Either way, Personal Prof seems to be meeting the students’ expectations,

48

whether those were high or low.

7.1.3 Issue Recognition

We concluded that Personal Prof can accurately indicate issues related to
names, idiom or decomposition, but the rules related to names and decom-
position are hard-coded per assignment. This works well in cases where the
student follows the assignment description closely, which most students do.
However, different names or different classes can be just as good as the in-
tended solution quality-wise, but these are harder for Personal Prof to pick
up on. While this does not pose a problem for the majority of students, it
is important to keep this in mind in cases where assignments can be solved
in many ways.

7.1.4 Course Feedback

The students named a large number of points of improvement for the course
in general, as can be seen from the 12 ‘Points of improvement’ listed in
chapter 5. About half of these points can be addressed with little time
investment by:

• mentioning that code should be split in separate files in Java,

• listing which classes Personal Prof expects in the assignment descrip-
tion,

• clarifying that positive feedback from Personal Prof does not guarantee
that the teaching assistant is positive as well,

• encouraging students to solve assignments in different ways than de-
scribed, and

• making sure the lectures and tutorials stay in sync.

The other half, however, is more difficult to resolve. Making teaching as-
sistants agree on what high-quality code entails is difficult, as some aspects
of software quality can be subjective. Other points are solvable but re-
quire a large time investment. What stood out to us was that the code
‘The feedback of the assistant is too brief’ gradually became more common
throughout the iterations. All of the students mentioned this in the final
iteration. This may be caused by the fact that the students of that iteration
received little feedback in general due to them doing the assignments well,
as can be seen from the code ‘Even when the assignment was well done, the
assistants still give points of improvement’, which applied to two of them.
Another explanation could be that the assignments gradually get more dif-
ficult and require more feedback, while the time investment for the grading
assistants cannot grow as much.

49

7.2 Reflection on Methods

7.2.1 Number of Participants

The first thing to discuss about the methodology is the number of partici-
pants. Due to this being a qualitative analysis, the number of participants
is quite small. The conclusions we pulled from the collected data applies to
the eight students we interviewed, and while there are undoubtedly other
people following the object oriented programming course with similar expe-
riences, we cannot generalize this small sample size to the entire group of
over 400 students.

7.2.2 Participant Bias

The convenience sampling method used for this research naturally attracts
students that either have a strong opinion about Personal Prof, or were
very interested in the snack as reward. This may have affected the results
of the research to be more extreme in the former case, or more indifferent
in the latter. We do not consider this a problem for this research, as we are
confident the students did not do it solely for the reward, and more extreme
opinions still allow us to determine how Personal Prof affects the students
and how it can be improved. However, it should be noted regardless. If the
university was not closed due to the coronavirus, we would have preferred
our original plan of randomly selecting students during the tutorial sessions,
as this would result in fewer issues with the number of participants, less
time in between interviews of the same iteration, and less bias in general.

7.2.3 Zero Measurement

Due to Personal Prof being active for the entire duration of the course, we
were unable to perform a proper zero measurement. Therefore, we cannot
guarantee that the measured positive effects were definitively caused by Per-
sonal Prof, rather than another source. For example, it is possible that the
feedback of the teaching assistants improved now that style-related issues of
students’ code can partially be filtered before grading, which could explain a
better understanding of code quality, although the participants often consid-
ered the feedback of the assistants too brief. Another explanation would be
that the students simply became more adept at programming, causing them
to understand how certain quality issues might arise. Moreover, we do not
know if the students now have a better understanding of the style-related
issues that Personal Prof commented on than they normally would.

50

7.3 Implications for Practice

Despite the aforementioned uncertainties, Personal Prof proved to be a
promising enhancement to the feedback loop of object oriented programming
regardless, and will continue to be used and improved the coming years. Now
that its practical use has been tested, it can be deployed on other schools or
universities, provided they implement rulesets for their coding assignments.
This could significantly improve the tool as well, as there would be more
data to learn from. Moreover, with a few adjustments, Personal Prof can
also be used to judge assignments written in languages other than Java us-
ing the same rulesets, making it easily accessible for other courses on the
Radboud University or other institutions. The professor of the imperative
programming course has expressed interest in using the software, which will
likely be the next step.

7.4 Future Research

One of the shortcomings of this research is the inability to generalize the
outcome to a larger group of people. The small number of participants
and the possibility of bias due to the sampling method makes it difficult
to reason about the entire population of students. However, the qualitative
analysis did provide us with an extensive list of codes describing possible
difficulties, behaviors and opinions. Now that we know more about the
possible effects static analysis tools can have on students, we can use these
results to conduct quantitative research to give us better insight in what
codes occur more often. This can be done through a questionnaire, for
example. Such data can be used to see if certain problems occur often, if
previous problems have been fixed successfully, or if the quality perception
of students improves over time, which was not directly visible from this
research.

Furthermore, it would be interesting to see whether or not static analy-
sis tools can give useful feedback on all quality aspects from the rubric
of Stegeman et al. (2016). This has proved to be a challenge before, but
previous attempts had little information on what the programmer was im-
plementing. An approach where the tool has access to the details of the
assignment might make this goal more accessible. Such a tool would not
be as useful for everyday programming tasks, which is why this field of
static analysis receives little attention, but for educational purposes it can
be helpful.

51

Bibliography

Akour, M., & Falah, B. (2016). Application domain and programming
language readability yardsticks. In 2016 7th international conference
on computer science and information technology (csit) (p. 1-6).

ATLAS.ti Scientific Software Development GmbH. (1993). Atlas.ti.
https://atlasti.com/. (Accessed: 2020-05-19)

Cardell-Oliver, R., Zhang, L., Barady, R., Lim, Y. H., Naveed, A., & Wood-
ings, T. (2010, 4). Automated feedback for quality assurance in soft-
ware engineering education. In 2010 21st australian software engineer-
ing conference (p. 157-164). doi: 10.1109/ASWEC.2010.24

CWI Amsterdam. (2014). Rascal. https://www.rascal-mpl.org/. (Ac-
cessed: 2020-03-26)

Eclipse Foundation. (2001). Eclipse. https://www.eclipse.org/. (Ac-
cessed: 2020-06-15)

Gosling, J., Joy, B., Steeleand G. Bracha, G., & Buckley, A. (2015).
In The java language specification, java se 8 edition (pp. 272, 288-289).
Oracle.

Keuning, H., Heeren, B., & Jeuring, J. (2017). Code quality issues in stu-
dent programs. In Proceedings of the 2017 acm conference on innova-
tion and technology in computer science education (p. 110–115). New
York, NY, USA: Association for Computing Machinery. Retrieved
from https://doi.org/10.1145/3059009.3059061 doi: 10.1145/
3059009.3059061

King’s College London. (2009). Bluej. https://www.bluej.org/. (Ac-
cessed: 2020-06-03)

Oates, B. J. (2006).
In Researching information systems and computing. SAGE Publica-
tions.

Sadou, N., Tamzalit, D., & Oussalah, M. (2005). A unified approach for
software architecture evolution at different abstraction levels. In Eighth
international workshop on principles of software evolution (iwpse’05)
(p. 65-68).

Sasaki, Y., Higo, Y., & Kusumoto, S. (2013). Reordering program state-
ments for improving readability. In 2013 17th european conference on
software maintenance and reengineering (p. 361-364).

52

https://atlasti.com/
https://www.rascal-mpl.org/
https://www.eclipse.org/
https://doi.org/10.1145/3059009.3059061
https://www.bluej.org/

Stegeman, M., Barendsen, E., & Smetsers, S. (2016). Designing a rubric
for feedback on code quality in programming courses. In Proceedings
of the 16th koli calling international conference on computing edu-
cation research (p. 160–164). New York, NY, USA: Association for
Computing Machinery. Retrieved from https://doi.org/10.1145/

2999541.2999555 doi: 10.1145/2999541.2999555
Wiese, E. S., Yen, M., Chen, A., Santos, L. A., & Fox, A. (2017). Teaching

students to recognize and implement good coding style. In Proceedings
of the fourth (2017) acm conference on learning @ scale (p. 41–50).
New York, NY, USA: Association for Computing Machinery. Retrieved
from https://doi.org/10.1145/3051457.3051469 doi: 10.1145/
3051457.3051469

53

https://doi.org/10.1145/2999541.2999555
https://doi.org/10.1145/2999541.2999555
https://doi.org/10.1145/3051457.3051469

Appendix A

Interview

Students’ views on code quality

1. What are, in your opinion, the three most important aspects of code
quality?

2. Why do you consider these aspects important?

Personal Prof’s performance

3. Did you use the Personal Prof automatic code quality testing tool?

(a) What feedback did you receive and what did you do with it?

(b) Did you get feedback that you don’t agree with or feedback that
was unclear?

Feedback effectiveness

4. Regarding all feedback you got for this course, what did you consider
particularly useful and which points of improvement would you sug-
gest?

54

Appendix B

Consent Form

Name research: The Effect of Personal Prof on the Feedback of Object
Orientation

Researcher: Rick van der Wal

I, a bachelor student of the Radboud University, am conducting research on
the effectiveness of the Personal Prof automatic code quality feedback tool,
under supervision of Sjaak Smetsers. This interview is held with several
students after getting feedback on the 6th, 8th or 10th assignment. This
form provides an explanation on this research.

Purpose and execution of the research

The purpose of this research is to determine the effect of Personal Prof on
the quality of feedback given to first year students for object orientation.
As of this year, Personal Prof is used to provide style-related feedback on
assignments before they are graded by student assistants, allowing the stu-
dents to improve their code before they get a final grade. The participants
of this research will receive several questions to determine how well Personal
Prof works in this context. Their answers will be recorded. Additionally,
their assignment will be graded on style. This data will be used to improve
Personal Prof for future iterations.

Risks and inconveniences

This research poses no threat regarding your health or safety.

Confidentiality of the research data

This research acquires data in the form of audio recordings and style-grades
of assignments. The spoken text from the audio recordings will be written

55

down and anonymized. Along with the grades, this anonymous data will be
included in the resulting thesis of this research, which will be accessible by
everyone. All data will be stored securely on an encrypted ssd and will be
destroyed when the research is done at the end of this semester.

Voluntary service

Participation in this research is completely voluntary. You can choose to
withdraw at any moment. All data gathered so far will then be destroyed.

Questions about the research

Should you have any questions, feel free to ask at any time. You can also
contact me by email: R.vanderWal@student.ru.nl

Thank you for participating in this research!

Sincerely,

Rick van der Wal

Participant declaration

I received an explanation about the purpose of this research. I was allowed
to ask questions. My participation in this research is on a voluntary basis. I
understand that I may choose to withdraw from this research at any moment.
I understand how the data of this research is stored and how it will be used.
I agree to participate in this research.

Name:

Date of birth:

Date:

Signature:

Researcher declaration

I declare that I correctly informed the participant and will adhere to the
guidelines for researchers.

Name:

Date:

Signature:

56

LEVEL 1 2 3 4

names names	appear	unreadable,	
meaningless	or	misleading

names	accurately	describe	the	
intent	of	the	code,	but	can	be	
incomplete,	lengthy,	misspelled	or	
inconsistent	use	of	casing

names	accurately	describe	the	
intent	of	the	code,	and	are	
complete,	distinctive,	concise,	
correctly	spelled	and	consistent	
use	of	casing

all	names	in	the	program	use	a	
consistent	vocabulary

headers headers	are	generally	missing	or	
descriptions	are	redundant	or	
obsolete;	use	mixed	languages	or	
are	misspelled

header	comments	are	generally	
present;	summarize	the	goal	of	
parts	of	the	program	and	how	to	
use	those;	but	may	be	somewhat	
inaccurate	or	incomplete

header	comments	are	generally	
present;	accurately	summarize	
the	role	of	parts	of	the	program	
and	how	to	use	those;	but	may	
still	be	wordy

header	comments	are	generally	
present;	contain	only	essential	
explanations,	information	and	
references

comments comments	are	generally	missing,	
redundant	or	obsolete;	use	
mixed	languages	or	are	
misspelled

comments	explain	code	and	
potential	problems,	but	may	be	
wordy

comments	explain	code	and	
potential	problems,	are	concise

comments	are	only	present	where	
strictly	needed

layout old	commented	out	code	is	
present	or	lines	are	generally	too	
long	to	read

positioning	of	elements	within	
source	files	is	not	optimized	for	
readability

positioning	of	elements	within	
source	files	is	optimized	for	
readability

positioning	of	elements	is	
consistent	between	files	and	in	
line	with	platform	conventions

formatting formatting	is	missing	or	
misleading

indentation,	line	breaks,	spacing	
and	brackets	highlight	the	
intended	structure	but	erratically

indentation,	line	breaks,	spacing	
and	brackets	consistently	
highlight	the	intended	structure	

formatting	makes	similar	parts	of	
code	clearly	identifiable

flow there	is	deep	nesting;	code	
performs	more	than	one	task	per	
line;	unreachable	code	is	present

flow	is	complex	or	contains	many	
exceptions	or	jumps;	parts	of	code	
are	duplicate

flow	is	simple	and	contains	few	
exceptions	or	jumps;	duplication	
is	very	limited

in	the	case	of	exceptions	or	
jumps,	the	most	common	path	
through	the	code	is	clearly	visible

idiom control	structures	are	
customized	in	a	misleading	way

choice	of	control	structures	is	
inapproriate

choice	of	control	structures	is	
appropriate;	reuse	of	library	
functionality	may	be	limited

reuse	of	library	functionality	and	
generic	data	structures	where	
possible

expressions expressions	are	repeated	or	
contain	unnamed	constants

expressions	are	complex	or	long;	
data	types	are	inappropriate

expressions	are	simple;	data	
types	are	appropriate

expressions	are	all	essential	for	
control	flow

decomposition most	code	is	in	one	or	a	few	big	
routines;	variables	are	reused	for	
different	purposes

most	routines	are	limited	in	length	
but	mix	tasks;	routines	share	
many	variables	instead	of	having	
parameters

routines	perform	a	limited	set	of	
tasks	divided	into	parts;	use	of	
shared	variables	is	limited

routines	perform	a	very	limited	
set	of	tasks	and	the	number	of	
parameters	and	shared	variables	
is	limited

modularization most	code	is	in	one	or	a	few	large	
modules;	or	modules	are	
artificially	separated

modules	have	mixed	
responsibilities,	contain	many	
variables	or	contain	many	
routines

modules	have	clearly	defined	
responsibilities,	contain	few	
variables	and	a	somewhat	
limited	amount	of	routines

modules	are	defined	such	that	
communication	between	them	is	
limited

-	for	each	criterion,	circle	the	level	that	is	most	representative	of	the	features	that	are	present
-	no	need	to	circle	a	level	that	is	not	relevant	to	the	assignment
-	level	2	implies	that	the	features	in	level	1	are	not	present,	level	4	implies	that	the	features	in	level	3	are	also	present

Appendix C

Rubric

Appendix D

Snake assignment

58

Assignment Snake

Object Orientation

Spring 2020

1 Snake
In this assignment you implement a JavaFX snake game. The snake can be turned left
or right using the keyboard while it also moves forward at a quick pace. The user has
to direct the snake towards the food. When the snake eats the food, its length increases
by one and the food item is moved to a random location. Clicking the screen moves the
food to the mouse position. The game ends when the snake collides with its own body
or the playing field boundaries.

Figure 1: Example of a finished product. The snake is made up of green rectangles and
a red head. The food item is a blue circle.

2 Learning Goals
After doing this exercise you should be able to:

• Use a Timeline to periodically execute code.
• Use keyboard handlers to process input.
• Know how and why to separate the game data, user interface, and input handler

in GUI applications

1

3 Problem Sketch
The core functionality of this exercise consists of three major parts: the game data,
the user interface and the input handler. The game data consists of all game logic,
while the user interface handles all the visual representations on the screen and the
input handler handles key presses and mouse clicks. For this assignment it is important
that these three concepts are separated well. This implies that the game logic, the
JavaFX objects and the EventHandlers are in separate modules/classes, using property
binding to communicate between them. The project template on Brightspace should
help achieving this.

While it is quite common for games to make game objects directly drawable, this
practice is considered unidiomatic for user interface design, which is why, for the
purposes of this assignment, you should try to keep them separated. There are other
reasons for this, but one very practical reason is that many programming languages
can run on multiple different platforms, but the libraries that handle visuals or input
are often platform-specific (for example, the JavaFX library handles both visuals and
input for us, but it doesn’t work on Android, even though Android runs Java). When
you port software to a different platform, or want to switch certain libraries for another
reason, you only have to change the modules that use those libraries, so keeping them
well-contained reduces the amount of work and increases the flexibility of your software.

4 Classes
The project template on Brightspace contains a total of 8 classes:

• Main creates a new JavaFX application
• World represents the complete state of one snake game.
• Segment represents the location of one segment of the snake.
• Snake represents the head of the snake and keeps track of all body segments.
• Food represents the location of the food item.
• InputHandler contains all functionality regarding keyboard- and mouse input

and adapts the given world instance accordingly.
• SnakeGame is a JavaFX Pane that handles displaying the given world instance
• Direction is a simple enumeration you should use to indicate the direction in

which the snake is currently moving. It contains two helper functions to rotate
any direction 90 degrees to the left or right.

5 Assignment
For this assignment, you should implement the following functionality:

5.1 Timeline
The movement of the snake should be triggered by a Timeline every DELAYmilliseconds
with an infinite cycle count. The timeline should play or pause depending on the game’s
running state.

2

5.2 Movement
In every step, you should calculate the potential new position of the head of the snake.
There are three different possibilities for this:

• If the snake head would collide with its own body or the field boundaries, it’s
game over and the animation should stop. You don’t have to implement restarting
the game.

• If the snake head would collide with the food, the snake should grow in length
and the food should be moved to a random location.

• Otherwise, the snake moves to the new position, dragging its body with it.

5.3 Graphics
There is no explicit function for drawing the game elements, all visible elements should
be JavaFX objects, such as Circle or Rectangle, located in SnakeGame. When the
game data changes, the user interface should be updated automatically by binding the
locations of the JavaFX objects to the location properties of the objects. Keep in mind
that the coordinates of the visual representations change by a larger amount than the
game coordinates of objects, due to them being scaled.

Keeping positions of shapes in sync with the game data can be accomplished using
property bindings. But if the snake eats the food, it grows an additional segment,
for which an additional square must be drawn on the screen. Growing the snake is
implemented in the game logic. How should the graphical representation know that it
has to create a new square for the new segment? We do not want to implement this
functionality in Snake, because only SnakeGame may contian JavaFX code.

The solution is to implement a callback mechanism in Snake. Whenever the snake
grows, it calls a registered function with the new segment as argument. SnakeGame has
to register a function there on program startup, and this function can have JavaFX code.
This function must create a new square and bind its location to the segment position.

In particular, this means:

1. In SnakeGame, implement Snake.SnakeSegmentListener. You can do this in a
number of ways, for example by letting SnakeGame itself implement SnakeSeg-
mentListener, or by creating a private inner class that implements SnakeSeg-
mentListener, or by using a lambda expression.

2. In the program initialization code, register it to Snake’s list of listeners.
3. In Snake, call onNewSegment(segment) every time a new segment is created.

This pattern, called the observer pattern, is a simplified version of how property binding
works behind the scenes. It allows us to accurately represent every object in SnakeGame
without breaking the barrier between user interface and game data. In this exercise
there will only be one listener, but in general there could be many. That’s why Snake
has a list of listeners, even though only SnakeGame will be listening.

5.4 Controls
Keyboard input should be handled in InputHandler. When the user presses ’s’, the
program should pause if it wasn’t paused already and resume otherwise. You can use
the pause() and play() functions from Timeline for this. When the user presses ’a’
or ’d’, the snake should turn left or right, respectively.

3

5.5 Mouse
Mouse input should be also handled in InputHandler. When the user clicks the screen,
the food should be teleported to its location, provided that it is on the field.

5.6 User Interface
There should be two lines of text on the screen. One should display “G points", where
G should be the current score. The other should indicate whether or not the game is
paused. If the game hasn’t started yet, it should read "Press ’s’ to start" instead. The
user interface should update automatically when the game state changes using property
binding.

6 Finished Product
After implementing the features above, verify the following:

1. The snake moves forward every DELAY milliseconds.
2. Pressing ’a’ or ’d’makes the snake turn left or right, respectively, while pressing
’s’ toggles between pause and running.

3. Clicking the screen teleports the food to the mouse location.
4. Eating the food increases the length of the snake by one and teleports the food to

a random new location.
5. Biting your own tail or the wall pauses the game.
6. The user interface displays up-to-date information about the score and whether

or not the game is paused.

If you get an error message about the missing JavaFX library, create a new global library
of that name, and add all JavaFX jar files to it. Detailed instructions on how to do that
can be found in the pie charts assignment text.

7 Submit Your Project
To submit your project, follow these steps.

1. Use the project export feature of NetBeans to create a zip file of your entire
project: File → Export Project → To ZIP.

2. Submit this zip file on Brightspace. Do not submit individual Java files. Do not
submit any other archive format. Only one person in your group has to submit it.
Submit your project before the deadline, which can be found on Brightspace.

4

Appendix E

Snake Template

snake–template/Main.java

1 package snake ;
2
3 import j ava fx . app l i c a t i o n . App l i ca t ion ;
4 import j ava fx . geometry . I n s e t s ;
5 import j ava fx . scene . Scene ;
6 import j ava fx . scene . layout . BorderPane ;
7 import j ava fx . scene . layout . Pane ;
8 import j ava fx . s tage . Stage ;
9

10 pub l i c c l a s s Main extends Appl i ca t ion {
11
12 @Override
13 pub l i c void s t a r t (Stage primaryStage) {
14 World world = new World (25) ;
15
16 BorderPane root = new BorderPane () ;
17 SnakeGame game = new SnakeGame(world) ;
18 Pane u i = SnakeGame . c r e a t eU s e r I n t e r f a c e (world) ;
19
20 game . s e t S t y l e (”−fx−background−c o l o r : #30B080 ; ”) ;
21 u i . setPadding (new In s e t s (10)) ;
22
23 root . s e tL e f t (game) ;
24 root . s e tRight (u i) ;
25
26 Scene scene = new Scene (root) ;
27
28 InputHandler inputHandler = new InputHandler (world) ;
29
30 scene . setOnKeyPressed (inputHandler . getKeyHandler ()) ;
31 scene . setOnMouseClicked (inputHandler . getMouseHandler ()) ;
32
33 primaryStage . s e tT i t l e (”Snake”) ;
34 primaryStage . s e tScene (scene) ;
35 primaryStage . show () ;
36 }

63

37
38 pub l i c s t a t i c void main (S t r ing [] a rgs) {
39 launch (args) ;
40 }
41 }

snake–template/InputHandler.java

1 package snake ;
2
3 import j ava fx . event . EventHandler ;
4 import j ava fx . scene . input . KeyEvent ;
5 import j ava fx . scene . input . MouseEvent ;
6
7 /∗∗
8 ∗ Handles c on t r o l s o f a snake game , where the ’ a ’ and ’d ’ keys

can be used to move and ’ s ’ (un) pauses the game
9 ∗/

10 pub l i c c l a s s InputHandler {
11
12 p r i va t e f i n a l EventHandler<KeyEvent> keyHandler ;
13 p r i va t e f i n a l EventHandler<MouseEvent> mouseHandler ;
14
15 pub l i c InputHandler (World world) {
16 Snake snake = world . getSnake () ;
17
18 keyHandler = keyEvent −> {
19 // TODO: Implement c on t r o l s
20 keyEvent . consume () ;
21 } ;
22
23 mouseHandler = mouseEvent −> {
24 // TODO: Implement mouse
25 mouseEvent . consume () ;
26 } ;
27 }
28
29 pub l i c EventHandler<KeyEvent> getKeyHandler () {
30 return keyHandler ;
31 }
32
33 pub l i c EventHandler<MouseEvent> getMouseHandler () {
34 return mouseHandler ;
35 }
36 }

snake–template/SnakeGame.java

1 package snake ;
2
3 import j ava fx . scene . c on t r o l . Label ;
4 import j ava fx . scene . layout . Pane ;
5 import j ava fx . scene . layout .VBox ;
6

64

7 /∗∗
8 ∗ A JavaFX Pane that d i s p l a y s the snake game repre s ented by the

g iven world
9 ∗/

10 pub l i c c l a s s SnakeGame extends Pane {
11
12 pub l i c s t a t i c f i n a l i n t SCALE = 16 ;
13
14 pub l i c SnakeGame(World world) {
15 s e tP r e f S i z e (world . g e tS i z e () ∗ SCALE, world . g e tS i z e () ∗

SCALE) ;
16
17 // TODO: Implement g raph i c s
18 }
19
20 pub l i c s t a t i c Pane c r e a t eU s e r I n t e r f a c e (World world) {
21 VBox ui = new VBox() ;
22
23 Label scoreText = new Label () ;
24 Label runningText = new Label (”Press ’ s ’ to s t a r t ”) ;
25
26 // TODO: Implement user i n t e r f a c e
27
28 u i . ge tChi ldren () . addAll (scoreText , runningText) ;
29
30 return u i ;
31 }
32 }

snake–template/World.java

1 package snake ;
2
3 import j ava fx . beans . property . BooleanProperty ;
4 import j ava fx . beans . property . Intege rProper ty ;
5 import j ava fx . beans . property . SimpleBooleanProperty ;
6 import j ava fx . beans . property . S imple IntegerProperty ;
7
8 import java . u t i l .Random ;
9

10 /∗∗
11 ∗ World keeps t rack o f the s t a t e o f a snake game
12 ∗/
13 pub l i c c l a s s World {
14
15 pub l i c f i n a l s t a t i c i n t DELAY = 200 ;
16
17 p r i va t e f i n a l i n t s i z e ;
18
19 p r i va t e f i n a l Snake snake ;
20 p r i va t e f i n a l Food food ;
21
22 p r i va t e f i n a l Random random = new Random() ;
23

65

24 p r i va t e f i n a l BooleanProperty running = new
SimpleBooleanProperty (f a l s e) ;

25
26 p r i va t e f i n a l Intege rProper ty s co r e = new

Simple IntegerProperty (0) ;
27
28 pub l i c World (i n t s i z e) {
29 t h i s . s i z e = s i z e ;
30
31 snake = new Snake (s i z e / 2 , s i z e / 2 , t h i s) ;
32 food = new Food () ;
33
34 // TODO: Implement t ime l i n e
35
36 moveFoodRandomly () ;
37 }
38
39 pub l i c void moveFoodRandomly () {
40 do {
41 food .moveTo(random . next Int (s i z e) , random . next Int (

s i z e)) ;
42 } whi le (snake . i sAt (food . getX () , food . getY ())) ;
43 }
44
45 pub l i c void endGame () {
46 running . s e t (f a l s e) ;
47 }
48
49 pub l i c void setRunning (boolean running) {
50 t h i s . running . s e t (running) ;
51 }
52
53 pub l i c void s e tSco r e (i n t s co r e) {
54 t h i s . s c o r e . s e t (s c o r e) ;
55 }
56
57 pub l i c boolean isRunning () {
58 return running . get () ;
59 }
60
61 pub l i c i n t g e tS i z e () {
62 return s i z e ;
63 }
64
65 pub l i c i n t getScore () {
66 return s co r e . get () ;
67 }
68
69 pub l i c Snake getSnake () {
70 return snake ;
71 }
72
73 pub l i c Food getFood () {
74 return food ;

66

75 }
76
77 pub l i c BooleanProperty getRunningProperty () {
78 return running ;
79 }
80
81 pub l i c IntegerProper ty getScoreProperty () {
82 return s co r e ;
83 }
84 }

snake–template/Segment.java

1 package snake ;
2
3 import j ava fx . beans . property . Intege rProper ty ;
4 import j ava fx . beans . property . S imple IntegerProperty ;
5
6 /∗∗
7 ∗ Represents one body part o f a snake
8 ∗/
9 pub l i c c l a s s Segment {

10
11 p r i va t e f i n a l Intege rProper ty x , y ;
12
13 pub l i c Segment (i n t x , i n t y) {
14 t h i s . x = new Simple IntegerProperty (x) ;
15 t h i s . y = new Simple IntegerProperty (y) ;
16 }
17
18 pub l i c void s e tPo s i t i o n (i n t x , i n t y) {
19 t h i s . x . setValue (x) ;
20 t h i s . y . setValue (y) ;
21 }
22
23 pub l i c i n t getX () {
24 return x . get () ;
25 }
26
27 pub l i c i n t getY () {
28 return y . get () ;
29 }
30
31 pub l i c IntegerProper ty getXProperty () {
32 return x ;
33 }
34
35 pub l i c IntegerProper ty getYProperty () {
36 return y ;
37 }
38 }

snake–template/Snake.java

67

1 package snake ;
2
3 import java . u t i l . L inkedLis t ;
4 import java . u t i l . L i s t ;
5
6 /∗∗
7 ∗ Snake c o n s i s t s o f segments , where t h i s head segment keeps

t rack o f the other body segments
8 ∗/
9 pub l i c c l a s s Snake extends Segment {

10
11 pub l i c i n t e r f a c e SnakeSegmentListener {
12 pub l i c void onNewSegment (Segment segment) ;
13 }
14
15 p r i va t e D i r e c t i on d i r e c t i o n = Di r e c t i on .RIGHT;
16
17 p r i va t e f i n a l World world ;
18
19 p r i va t e f i n a l L i s t<Segment> body = new LinkedList<>() ;
20
21 p r i va t e f i n a l L i s t<SnakeSegmentListener> l i s t e n e r s = new

LinkedList<>() ;
22
23 pub l i c Snake (i n t x , i n t y , World world) {
24 super (x , y) ;
25 t h i s . world = world ;
26 }
27
28 pub l i c void move () {
29 i n t newX = getX () + d i r e c t i o n . getDX () ;
30 i n t newY = getY () + d i r e c t i o n . getDY () ;
31
32 // TODO: Implement movement
33 }
34
35 pub l i c void addLis tener (SnakeSegmentListener l i s t e n e r) {
36 l i s t e n e r s . add (l i s t e n e r) ;
37 }
38
39 pub l i c void s e tD i r e c t i o n (D i r e c t i on newDirect ion) {
40 d i r e c t i o n = newDirect ion ;
41 }
42
43 pub l i c boolean isAt (i n t x , i n t y) {
44 f o r (Segment segment : body) {
45 i f (segment . getX () == x && segment . getY () == y) {
46 return true ;
47 }
48 }
49
50 return f a l s e ;
51 }
52

68

53 pub l i c D i r e c t i on ge tD i r e c t i on () {
54 return d i r e c t i o n ;
55 }
56 }

snake–template/Food.java

1 package snake ;
2
3 import j ava fx . beans . property . Intege rProper ty ;
4 import j ava fx . beans . property . S imple IntegerProperty ;
5
6 pub l i c c l a s s Food {
7
8 p r i va t e f i n a l Intege rProper ty x = new Simple IntegerProperty

() , y = new Simple IntegerProperty () ;
9

10 pub l i c void moveTo(i n t x , i n t y) {
11 t h i s . x . s e t (x) ;
12 t h i s . y . s e t (y) ;
13 }
14
15 pub l i c i n t getX () {
16 return x . get () ;
17 }
18
19 pub l i c i n t getY () {
20 return y . get () ;
21 }
22
23 pub l i c IntegerProper ty getXProperty () {
24 return x ;
25 }
26
27 pub l i c IntegerProper ty getYProperty () {
28 return y ;
29 }
30 }

snake–template/Direction.java

1 package snake ;
2
3 pub l i c enum Di r e c t i on {
4 UP(0 , −1) ,
5 RIGHT(1 , 0) ,
6 DOWN(0 , 1) ,
7 LEFT(−1 , 0) ;
8
9 p r i va t e f i n a l i n t dX, dY;

10
11 p r i va t e D i r e c t i on (i n t dX, i n t dY) {
12 t h i s .dX = dX;
13 t h i s .dY = dY;

69

14 }
15
16 pub l i c i n t getDX () {
17 return dX;
18 }
19
20 pub l i c i n t getDY () {
21 return dY;
22 }
23
24 pub l i c D i r e c t i on r o t a t eL e f t () {
25 switch (t h i s) {
26 case UP: re turn LEFT;
27 case LEFT: re turn DOWN;
28 case DOWN: return RIGHT;
29 d e f au l t : r e turn UP;
30 }
31 }
32
33 pub l i c D i r e c t i on rotateRight () {
34 switch (t h i s) {
35 case UP: re turn RIGHT;
36 case RIGHT: return DOWN;
37 case DOWN: return LEFT;
38 d e f au l t : r e turn UP;
39 }
40 }
41 }

70

Appendix F

Snake Example Solution

snake–solution/Main.java

1 package snake ;
2
3 import j ava fx . app l i c a t i o n . App l i ca t ion ;
4 import j ava fx . geometry . I n s e t s ;
5 import j ava fx . scene . Scene ;
6 import j ava fx . scene . layout . BorderPane ;
7 import j ava fx . scene . layout . Pane ;
8 import j ava fx . s tage . Stage ;
9

10 pub l i c c l a s s Main extends Appl i ca t ion {
11
12 @Override
13 pub l i c void s t a r t (Stage primaryStage) {
14 World world = new World (25) ;
15
16 BorderPane root = new BorderPane () ;
17 SnakeGame game = new SnakeGame(world) ;
18 Pane u i = SnakeGame . c r e a t eU s e r I n t e r f a c e (world) ;
19
20 game . s e t S t y l e (”−fx−background−c o l o r : #30B080 ; ”) ;
21 u i . setPadding (new In s e t s (10)) ;
22
23 root . s e tL e f t (game) ;
24 root . s e tRight (u i) ;
25
26 Scene scene = new Scene (root) ;
27
28 InputHandler inputHandler = new InputHandler (world) ;
29
30 scene . setOnKeyPressed (inputHandler . getKeyHandler ()) ;
31 scene . setOnMouseClicked (inputHandler . getMouseHandler ()) ;
32
33 primaryStage . s e tT i t l e (”Snake”) ;
34 primaryStage . s e tScene (scene) ;
35 primaryStage . show () ;
36 }

71

37
38 pub l i c s t a t i c void main (S t r ing [] a rgs) {
39 launch (args) ;
40 }
41 }

snake–solution/InputHandler.java

1 package snake ;
2
3 import j ava fx . event . EventHandler ;
4 import j ava fx . scene . input . KeyEvent ;
5 import j ava fx . scene . input . MouseEvent ;
6
7 /∗∗
8 ∗ Handles c on t r o l s o f a snake game , where the ’ a ’ and ’d ’ keys

can be used to move and ’ s ’ (un) pauses the game
9 ∗/

10 pub l i c c l a s s InputHandler {
11
12 p r i va t e f i n a l EventHandler<KeyEvent> keyHandler ;
13 p r i va t e f i n a l EventHandler<MouseEvent> mouseHandler ;
14
15 pub l i c InputHandler (World world) {
16 Snake snake = world . getSnake () ;
17
18 keyHandler = keyEvent −> {
19 switch (keyEvent . getCode ()) {
20 case A:
21 snake . s e tD i r e c t i o n (snake . g e tD i r e c t i on () .

r o t a t eL e f t ()) ;
22 break ;
23 case D:
24 snake . s e tD i r e c t i o n (snake . g e tD i r e c t i on () .

ro tateRight ()) ;
25 break ;
26 case S :
27 world . setRunning (! world . isRunning ()) ;
28 break ;
29 }
30 keyEvent . consume () ;
31 } ;
32
33 mouseHandler = mouseEvent −> {
34 i n t x = (i n t) (mouseEvent . getX () / SnakeGame .SCALE) ;
35 i n t y = (i n t) (mouseEvent . getY () / SnakeGame .SCALE) ;
36
37 i f (x >= 0 && y >= 0 && x < world . g e tS i z e () && y <

world . g e tS i z e ()) {
38 world . getFood () .moveTo(x , y) ;
39 }
40
41 mouseEvent . consume () ;
42 } ;

72

43 }
44
45 pub l i c EventHandler<KeyEvent> getKeyHandler () {
46 return keyHandler ;
47 }
48
49 pub l i c EventHandler<MouseEvent> getMouseHandler () {
50 return mouseHandler ;
51 }
52 }

snake–solution/SnakeGame.java

1 package snake ;
2
3 import j ava fx . geometry . I n s e t s ;
4 import j ava fx . scene . c on t r o l . Label ;
5 import j ava fx . scene . layout . Pane ;
6 import j ava fx . scene . layout .VBox ;
7 import j ava fx . scene . pa int . Color ;
8 import j ava fx . scene . shape . C i r c l e ;
9 import j ava fx . scene . shape . Rectangle ;

10
11 /∗∗
12 ∗ A JavaFX Pane that d i s p l a y s the snake game repre s ented by the

g iven world
13 ∗/
14 pub l i c c l a s s SnakeGame extends Pane {
15
16 pub l i c s t a t i c f i n a l i n t SCALE = 16 ;
17
18 pub l i c SnakeGame(World world) {
19 s e tP r e f S i z e (world . g e tS i z e () ∗ SCALE, world . g e tS i z e () ∗

SCALE) ;
20
21 // Snake
22
23 Snake snake = world . getSnake () ;
24
25 Rectangle head = new Rectangle (SCALE, SCALE, Color .RED) ;
26
27 head . t rans lateXProperty () . bind (snake . getXProperty () .

mul t ip ly (SCALE)) ;
28 head . t rans lateYProperty () . bind (snake . getYProperty () .

mul t ip ly (SCALE)) ;
29
30 getChi ldren () . add (head) ;
31
32 snake . addLis tener (segment −> {
33 Rectangle body = new Rectangle (SCALE, SCALE, Color .

GREEN) ;
34
35 body . t rans lateXProperty () . bind (segment . getXProperty

() . mul t ip ly (SCALE)) ;

73

36 body . t rans lateYProperty () . bind (segment . getYProperty
() . mul t ip ly (SCALE)) ;

37
38 getChi ldren () . add (body) ;
39 }) ;
40
41 // Food
42
43 Food food = world . getFood () ;
44
45 C i r c l e c i r c l e = new C i r c l e (SCALE / 2F, Color .BLUE) ;
46
47 c i r c l e . t rans lateXProperty () . bind (food . getXProperty () .

mul t ip ly (SCALE) . add (SCALE / 2F)) ;
48 c i r c l e . t rans lateYProperty () . bind (food . getYProperty () .

mul t ip ly (SCALE) . add (SCALE / 2F)) ;
49
50 getChi ldren () . add (c i r c l e) ;
51 }
52
53 pub l i c s t a t i c Pane c r e a t eU s e r I n t e r f a c e (World world) {
54 VBox ui = new VBox() ;
55
56 Label scoreText = new Label () ;
57 Label runningText = new Label (”Press ’ s ’ to s t a r t ”) ;
58
59 scoreText . textProperty () . bind (world . getScoreProperty () .

a sS t r i ng (”%d po in t s ”)) ;
60 world . getRunningProperty () . addLis tener ((observableValue ,

aBoolean , t1) −> {
61 i f (t1) {
62 runningText . textProperty () . s e t (””) ;
63 } e l s e {
64 runningText . textProperty () . s e t (”Paused”) ;
65 }
66 }) ;
67
68 u i . ge tChi ldren () . addAll (scoreText , runningText) ;
69
70 return u i ;
71 }
72 }

snake–solution/World.java

1 package snake ;
2
3 import j ava fx . animation . Animation ;
4 import j ava fx . animation . KeyFrame ;
5 import j ava fx . animation . Timel ine ;
6 import j ava fx . beans . property . BooleanProperty ;
7 import j ava fx . beans . property . Intege rProper ty ;
8 import j ava fx . beans . property . SimpleBooleanProperty ;
9 import j ava fx . beans . property . S imple IntegerProperty ;

74

10 import j ava fx . u t i l . Duration ;
11
12 import java . u t i l .Random ;
13
14 /∗∗
15 ∗ World keeps t rack o f the s t a t e o f a snake game
16 ∗/
17 pub l i c c l a s s World {
18
19 pub l i c f i n a l s t a t i c i n t DELAY = 200 ;
20
21 p r i va t e f i n a l i n t s i z e ;
22
23 p r i va t e f i n a l Snake snake ;
24 p r i va t e f i n a l Food food ;
25
26 p r i va t e f i n a l Random random = new Random() ;
27
28 p r i va t e f i n a l BooleanProperty running = new

SimpleBooleanProperty (f a l s e) ;
29
30 p r i va t e f i n a l Intege rProper ty s co r e = new

Simple IntegerProperty (0) ;
31
32 pub l i c World (i n t s i z e) {
33 t h i s . s i z e = s i z e ;
34
35 snake = new Snake (s i z e / 2 , s i z e / 2 , t h i s) ;
36 food = new Food () ;
37
38 Timel ine t ime l i n e = new Timel ine (new KeyFrame(Duration .

m i l l i s (DELAY) , e −> snake .move ())) ;
39
40 running . addLis tener ((observableValue , aBoolean , t1) −> {
41 i f (t1) {
42 t ime l i n e . play () ;
43 } e l s e {
44 t ime l i n e . pause () ;
45 }
46 }) ;
47
48 t ime l i n e . setCycleCount (Animation . INDEFINITE) ;
49
50 moveFoodRandomly () ;
51 }
52
53 pub l i c void moveFoodRandomly () {
54 do {
55 food .moveTo(random . next Int (s i z e) , random . next Int (

s i z e)) ;
56 } whi le (snake . i sAt (food . getX () , food . getY ())) ;
57 }
58
59 pub l i c void endGame () {

75

60 running . s e t (f a l s e) ;
61 }
62
63 pub l i c void setRunning (boolean running) {
64 t h i s . running . s e t (running) ;
65 }
66
67 pub l i c void s e tSco r e (i n t s co r e) {
68 t h i s . s c o r e . s e t (s c o r e) ;
69 }
70
71 pub l i c boolean isRunning () {
72 return running . get () ;
73 }
74
75 pub l i c i n t g e tS i z e () {
76 return s i z e ;
77 }
78
79 pub l i c i n t getScore () {
80 return s co r e . get () ;
81 }
82
83 pub l i c Snake getSnake () {
84 return snake ;
85 }
86
87 pub l i c Food getFood () {
88 return food ;
89 }
90
91 pub l i c BooleanProperty getRunningProperty () {
92 return running ;
93 }
94
95 pub l i c IntegerProper ty getScoreProperty () {
96 return s co r e ;
97 }
98 }

snake–solution/Segment.java

1 package snake ;
2
3 import j ava fx . beans . property . Intege rProper ty ;
4 import j ava fx . beans . property . S imple IntegerProperty ;
5
6 /∗∗
7 ∗ Represents one body part o f a snake
8 ∗/
9 pub l i c c l a s s Segment {

10
11 p r i va t e f i n a l Intege rProper ty x , y ;
12

76

13 pub l i c Segment (i n t x , i n t y) {
14 t h i s . x = new Simple IntegerProperty (x) ;
15 t h i s . y = new Simple IntegerProperty (y) ;
16 }
17
18 pub l i c void s e tPo s i t i o n (i n t x , i n t y) {
19 t h i s . x . setValue (x) ;
20 t h i s . y . setValue (y) ;
21 }
22
23 pub l i c i n t getX () {
24 return x . get () ;
25 }
26
27 pub l i c i n t getY () {
28 return y . get () ;
29 }
30
31 pub l i c IntegerProper ty getXProperty () {
32 return x ;
33 }
34
35 pub l i c IntegerProper ty getYProperty () {
36 return y ;
37 }
38 }

snake–solution/Snake.java

1 package snake ;
2
3 import java . u t i l . L inkedLis t ;
4 import java . u t i l . L i s t ;
5
6 /∗∗
7 ∗ Snake c o n s i s t s o f segments , where t h i s head segment keeps

t rack o f the other body segments
8 ∗/
9 pub l i c c l a s s Snake extends Segment {

10
11 pub l i c i n t e r f a c e SnakeSegmentListener {
12 pub l i c void onNewSegment (Segment segment) ;
13 }
14
15 p r i va t e D i r e c t i on d i r e c t i o n = Di r e c t i on .RIGHT;
16
17 p r i va t e f i n a l World world ;
18
19 p r i va t e f i n a l L i s t<Segment> body = new LinkedList<>() ;
20
21 p r i va t e f i n a l L i s t<SnakeSegmentListener> l i s t e n e r s = new

LinkedList<>() ;
22
23 pub l i c Snake (i n t x , i n t y , World world) {

77

24 super (x , y) ;
25 t h i s . world = world ;
26 }
27
28 pub l i c void move () {
29 i n t newX = getX () + d i r e c t i o n . getDX () ;
30 i n t newY = getY () + d i r e c t i o n . getDY () ;
31
32 i f (i sAt (newX, newY) | | newX < 0 | | newY < 0 | | newX >=

world . g e tS i z e () | | newY >= world . g e tS i z e ()) {
33 // Bitten i t s e l f or the border , game over
34 world . endGame () ;
35 } e l s e {
36 Food food = world . getFood () ;
37
38 i f (food . getX () == newX && food . getY () == newY) {
39 // Eating f r u i t , increment s co r e and add new

segment be f o r e the head
40 world . s e tSco r e (world . ge tScore () + 1) ;
41 world . moveFoodRandomly () ;
42
43 Segment segment = new Segment (getX () , getY ()) ;
44
45 f o r (SnakeSegmentListener l i s t e n e r : l i s t e n e r s)

{
46 l i s t e n e r . onNewSegment (segment) ;
47 }
48
49 body . add (segment) ;
50 } e l s e {
51 // Moving normally , r e c y c l e t a i l and move i t

be f o r e head
52 i f (! body . isEmpty ()) {
53 Segment t a i l = body . remove (0) ;
54 body . add (t a i l) ;
55
56 t a i l . s e tPo s i t i o n (getX () , getY ()) ;
57 }
58 }
59
60 // Move head to new l o c a t i o n
61 s e tPo s i t i o n (newX, newY) ;
62 }
63 }
64
65 pub l i c void addLis tener (SnakeSegmentListener l i s t e n e r) {
66 l i s t e n e r s . add (l i s t e n e r) ;
67 }
68
69 pub l i c void s e tD i r e c t i o n (D i r e c t i on newDirect ion) {
70 d i r e c t i o n = newDirect ion ;
71 }
72
73 pub l i c boolean isAt (i n t x , i n t y) {

78

74 f o r (Segment segment : body) {
75 i f (segment . getX () == x && segment . getY () == y) {
76 return true ;
77 }
78 }
79
80 return f a l s e ;
81 }
82
83 pub l i c D i r e c t i on ge tD i r e c t i on () {
84 return d i r e c t i o n ;
85 }
86 }

snake–solution/Food.java

1 package snake ;
2
3 import j ava fx . beans . property . Intege rProper ty ;
4 import j ava fx . beans . property . S imple IntegerProperty ;
5
6 pub l i c c l a s s Food {
7
8 p r i va t e f i n a l Intege rProper ty x = new Simple IntegerProperty

() , y = new Simple IntegerProperty () ;
9

10 pub l i c void moveTo(i n t x , i n t y) {
11 t h i s . x . s e t (x) ;
12 t h i s . y . s e t (y) ;
13 }
14
15 pub l i c i n t getX () {
16 return x . get () ;
17 }
18
19 pub l i c i n t getY () {
20 return y . get () ;
21 }
22
23 pub l i c IntegerProper ty getXProperty () {
24 return x ;
25 }
26
27 pub l i c IntegerProper ty getYProperty () {
28 return y ;
29 }
30 }

snake–solution/Direction.java

1 package snake ;
2
3 pub l i c enum Di r e c t i on {
4 UP(0 , −1) ,

79

5 RIGHT(1 , 0) ,
6 DOWN(0 , 1) ,
7 LEFT(−1 , 0) ;
8
9 p r i va t e f i n a l i n t dX, dY;

10
11 p r i va t e D i r e c t i on (i n t dX, i n t dY) {
12 t h i s .dX = dX;
13 t h i s .dY = dY;
14 }
15
16 pub l i c i n t getDX () {
17 return dX;
18 }
19
20 pub l i c i n t getDY () {
21 return dY;
22 }
23
24 pub l i c D i r e c t i on r o t a t eL e f t () {
25 switch (t h i s) {
26 case UP: re turn LEFT;
27 case LEFT: re turn DOWN;
28 case DOWN: return RIGHT;
29 d e f au l t : r e turn UP;
30 }
31 }
32
33 pub l i c D i r e c t i on rotateRight () {
34 switch (t h i s) {
35 case UP: re turn RIGHT;
36 case RIGHT: return DOWN;
37 case DOWN: return LEFT;
38 d e f au l t : r e turn UP;
39 }
40 }
41 }

80

	Introduction
	Problem Description
	Purpose
	Approach
	Overview

	Background
	Code Quality
	Personal Prof
	Background
	Purpose

	Related Work
	Negative Outcome
	Positive Outcome

	Interview
	Analysis

	Goal
	Research Question
	Research Subquestions

	Methodology
	Initialization
	Data Collection
	Choice of Questions
	Choice of Assignments
	Participants
	Interviewing

	Data Analysis
	Interview
	Rubric
	Adaptation Phases

	Combining Results

	Results
	Summary
	Codes
	Grades

	First Iteration
	Quality
	Personal Prof
	Feedback on the course in general
	Rubric Grades
	Personal Prof Adaptations

	Second Iteration
	Quality
	Personal Prof
	Feedback on the course in general
	Rubric Grades
	Personal Prof Adaptations

	Third Iteration
	Quality
	Personal Prof
	Feedback on the course in general
	Rubric Grades

	Combining Results
	Accuracy
	Usage
	Opinion

	Conclusion
	Research Subquestions
	Research Question

	Discussion
	Reflection on Findings
	Quality Perception
	Meeting Expectations
	Issue Recognition
	Course Feedback

	Reflection on Methods
	Number of Participants
	Participant Bias
	Zero Measurement

	Implications for Practice
	Future Research

	Bibliography
	Interview
	Consent Form
	Rubric
	Snake assignment
	Snake Template
	Snake Example Solution

