
Bachelor thesis
Computing Science

Radboud University

Designing and evaluating a
learning activity about debugging

for novice programmers

Author:
Ruben Holubek
s1006591

First supervisor/assessor:
Sjaak Smetsers

S.Smetsers@cs.ru.nl

Second assessor:
Erik Barendsen

Erik.Barendsen@ru.nl

June 25, 2020



Abstract

Debugging is a very important skill for a programmer and therefore, it is
useful if this skill is explicitly taught. However, debugging is often an un-
derrepresented topic in education and is overshadowed by other subjects.
The main reason for this is that teachers do not have the time and teach-
ing material to explicitly teach debugging to their students. To tackle this
problem, we designed an effective learning activity about debugging.

In our designed learning activity, we taught the systematic debugging
procedure designed by Michaeli and Romeike (2019) and several debugging
strategies which were useful and practical for the students, namely using
JavaDoc, systematically evaluating a run time error and using the debug-
ger. Knowing and applying these debugging procedure and strategies where
the learning goals of this lecture. The principles of direct instruction were
also integrated into this lecture, which were achieved by having several de-
mos, small exercises between different subjects and a debugging exercise to
practice with afterwards. This lead to a highly interactive lecture.

After the lecture, we interviewed several students twice to evaluate the
learning activity. In these interviews, students solved a debugging exercise
and were asked some questions. From these evaluations and the pre-test
became clear that all the learning goals were achieved and therefore, that
the learning activity was effective.



Contents

1 Introduction 4
1.1 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The problems regarding debugging in education . . . . . . . . 5

1.2.1 Students’ unfamiliarity regarding debugging . . . . . . 5
1.2.2 Problems with teaching debugging . . . . . . . . . . . 5

1.3 Current knowledge . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Overview of this research project . . . . . . . . . . . . . . . . 6
1.5 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8
2.1 Different types of errors . . . . . . . . . . . . . . . . . . . . . 8
2.2 Encountered problems regarding debugging . . . . . . . . . . 9
2.3 Teaching a systematic debugging procedure . . . . . . . . . . 10

2.3.1 Michaeli and Romeike’s approach: a demo . . . . . . . 10
2.3.2 Allwood and Björhag’s approach: a document . . . . . 10
2.3.3 Other approaches . . . . . . . . . . . . . . . . . . . . . 11

2.4 Effectively teaching new material: direct instruction . . . . . 11
2.4.1 Applying direct instruction . . . . . . . . . . . . . . . 12
2.4.2 Benefits of direct instruction . . . . . . . . . . . . . . 13

2.5 Measuring the effect of an educational intervention . . . . . . 13

3 Goal 15

4 Methodology: Design 16

5 Results: Design 19

6 Methodology: Evaluation 23
6.1 Pre-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1.1 Data collection . . . . . . . . . . . . . . . . . . . . . . 24
6.1.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 First interviews . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . 24
6.2.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . 28

1



6.3 Second interviews . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.3.1 Data collection . . . . . . . . . . . . . . . . . . . . . . 30
6.3.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . 31

6.4 Combining the results . . . . . . . . . . . . . . . . . . . . . . 31

7 Results: Evaluation 32
7.1 Pre-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 First interviews . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2.1 Achievement of the learning goals . . . . . . . . . . . 33
7.2.2 Pros and improvements . . . . . . . . . . . . . . . . . 33
7.2.3 Another interesting observation . . . . . . . . . . . . . 35

7.3 Second interviews . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4 Combining the results . . . . . . . . . . . . . . . . . . . . . . 37

8 Conclusions 38
8.1 Research subquestions . . . . . . . . . . . . . . . . . . . . . . 38
8.2 Research question . . . . . . . . . . . . . . . . . . . . . . . . . 39

9 Discussion 41
9.1 Reflection on findings . . . . . . . . . . . . . . . . . . . . . . 41
9.2 Reflection on methods . . . . . . . . . . . . . . . . . . . . . . 42
9.3 Implications for practice . . . . . . . . . . . . . . . . . . . . . 43
9.4 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . 44

References 45

A Figures 47

B Code Fragments 51
B.1 Debugging exercise after presentation: Calculate average price

of a list of fruits . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.2 Debugging exercise of the interview: Calculate median of a

list of integers . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.3 JavaDoc demo used in the presentation . . . . . . . . . . . . 55
B.4 Run Time error demo used in the presentation . . . . . . . . 56
B.5 The first debugger demo used in the presentation . . . . . . . 56
B.6 The second debugger demo used in the presentation . . . . . 57

C Documents 58
C.1 Pdf answer debugging exercise after presentation . . . . . . . 59
C.2 Pdf answer debugging exercise used in the interview . . . . . 60
C.3 Schema used for the interviews . . . . . . . . . . . . . . . . . 61
C.4 Socrative Quiz used in the presentation . . . . . . . . . . . . 62
C.5 Filled in interview schemes . . . . . . . . . . . . . . . . . . . 64
C.6 Results of the second interviews . . . . . . . . . . . . . . . . . 74

2



C.7 Used slides in the presentation . . . . . . . . . . . . . . . . . 75

3



Chapter 1

Introduction

1.1 Debugging

Programmers often make mistakes when writing a program, which can be
caused by a simple typo, a forgotten edge case or a logical fault. These
bugs result in the program behaving differently than expected and so, these
bugs should be found and fixed and this process is called debugging. Thus,
debugging is the process of identifying and removing errors in programs.

Debugging is actually an often overlooked, but rather important skill
of a programmer, because programmers spend a lot of time debugging
their programs instead of expanding them; senior developers spend around
30% of their time debugging programs (Perscheid, Siegmund, Taeumel, &
Hirschfeld, 2017). Therefore, being able to effectively debug your program
is a valuable asset for every programmer, because that could shorten the du-
ration of the development of a program. To make the debugging process as
fast and easy as possible, this process is often supported by different systems
that are available in the IDE or other programs. The most known example
is the debugger, but available documentation and error highlighting in IDE’s
are also very helpful. But these systems and debugging strategies are not
that useful if they are not correctly used at the right moments, e.g. compile
time errors are not the bugs that are found with the debugger. Therefore,
it is important to use an effective debugging procedure which is supported
by the different strategies and systems provided in the IDE. It is especially
really useful to know a systematic debugging process to systematically fix
the bug in the program to find the bugs as quickly as possible and to shorten
the time spend on debugging.

This is even more relevant to programming novices. They are learning
to program and they often make more errors when writing their programs,
because they do not have necessary experience yet. If programming novices
learn to effectively debug their programs early on, they will be able to save
a lot of time solving their bugs; not only in class, but also later when they

4



might be a senior developer. Therefore, the process of learning to program
could be facilitated by an effective debugging process and other debugging
strategies (Michaeli & Romeike, 2019).

1.2 The problems regarding debugging in educa-
tion

1.2.1 Students’ unfamiliarity regarding debugging

Contradictory, many students are not familiar with such a debugging process
or debugging strategies in general. They are unfamiliar with the debugger
and do not know the strategies used to debug a program efficiently and
as a result, they apply a trial-and-error technique. This technique consists
of placing print statements between the different lines of code to see the
flow of the different variables. This method is not very effective to debug a
program and mostly relies on luck, because most print statements are not
placed in an effective, but rather unstructured manner. Moreover, in many
debugging cases, several variables are relevant to the problem. To keep an
eye out to these variables, even more print statements are needed to inspect
the flow of the program. Not only does this disturb the readability of the
code, but when the bug is fixed, all the print statements should be removed,
which takes some time and if several statements are forgotten, the code is
still scattered with unnecessary statements. This strategy takes a lot of
unnecessary time and as a result, students feel helpless and frustrated when
they cannot find the bug in their program (Michaeli & Romeike, 2019).

1.2.2 Problems with teaching debugging

Teaching students an effective, systematic debugging process and other de-
bugging strategies when they are learning to program would solve this prob-
lem. So, why are students not learning debugging strategies to effectively
debug their programs and to improve their programming skills as well? This
problem lies in the fact that debugging is an underrepresented topic in class,
because teachers often spend their time on other important programming
concepts, even though debugging is also an important topic. A reason for
this underrepresentation is that debugging is not an explicit content of the
curriculum. As a result, it if often overshadowed by other concepts which
are actually mentioned in the curriculum (Michaeli & Romeike, 2019). An-
other reason, and the main reason as indicated by teachers, is the lack of
time to teach students the needed debugging skills, but not only in lessons.
They often do not have the time to prepare such a lesson, because they lack
teaching material. This material includes the suitable concepts, debugging
exercises and slides for example (Michaeli & Romeike, 2019). These are
the main reasons that debugging is often not included in the programming

5



courses and as a consequence, the students are not familiar enough with
debugging concepts and strategies, which could potentially improve their
debugging skills.

1.3 Current knowledge

Several researchers already investigated issues related to this problem. Some
papers looked into the most frequently occurring problems students en-
counter when they are programming or when they are debugging. Others
inspected the effects of explicitly teaching students a systematic debugging
procedure and debugging strategies. Most of these researches indicated sev-
eral benefits and therefore showed that actually teaching students debugging
strategies is useful and really necessary. Papers related to this are inspected
in the next chapter.

However, no researchers actually created concrete teaching material that
teachers could use in their course program and tested if it was effective and
how it could potentially be improved. If such material actually provides the
students the benefits of debugging and helps them with the most frequently
occurring problems, it would at least tackle the aforementioned problems or
maybe even solve them, because other teachers could use this material or
improve it.

1.4 Overview of this research project

We will design a learning activity to provide some teaching material about
debugging. We will also evaluate this learning activity to see how it affects
the debugging skills of the students and, based on these and other findings,
recommend improvements. Students of the Bachelor’s program Computing
Science at the Radboud University have several programming courses early
on, but none of these courses teach an efficient debugging strategy. There-
fore, this is a perfect environment to design and evaluate such a learning
activity about debugging. Next to a presentation on relevant debugging
concepts, a debugging exercise is provided such that the students can im-
mediately practice with the taught principles.

Students will be interviewed afterwards to see the effects of the learning
activity. These interviews consist among other things of a debugging exercise
and questions to see how the students tackle these problems immediately
after the learning activity in a debugging exercise, but also later in practice.
Moreover, we asked them what the good points of the lecture were and
potential improvements. Combined with a pre-test, we could research what
they learned from the designed lecture. With these results, the created
material will be evaluated and can be improved on our recommendations.
This should provide the fundamentals of teaching material and a learning

6



activity that other universities and schools can use as well to ultimately
solve the aforementioned problems.

1.5 Structure of this thesis

This thesis is structured as follows: in chapter 2, several studies are dis-
cussed to get a better insight in the current problems regarding debugging
in education, the approaches of similar researches, methods for effectively
teaching new material and other relevant topics. In chapter 3, the answered
research questions and subquestions are presented. Afterwards, our thesis
is split into 2 parts; a design and an evaluation part. In chapter 4, the steps
for structurally designing the learning activity are presented and elaborated.
In chapter 5, the results of the performed steps are presented and thus the
concrete learning activity is shown and explained. In chapter 6, the methods
for evaluating the designed learning activity are presented and elaborated.
In chapter 7, the results of these evaluations are discussed and analysed. In
chapter 8, the answers to the research (sub)questions are given and conclu-
sions are drawn. In chapter 9, several influencing factors and ideas for future
research are presented in the discussion. At the end will be several appen-
dices, which will include among other things the used debugging exercises
and the presentation used in the learning activity.

7



Chapter 2

Background

2.1 Different types of errors

Debugging is all about solving errors and so it is useful to have a clear
terminology for the different types of errors. These terms are used in many
papers and will be used in this research as well.

There are 2 different distinctions of errors which both cover all the dif-
ferent types of errors:

• Compile time, run time and logic errors

– Compile time errors occur when the written program cannot be
compiled. These are already often indicated by the used IDE, but
when an error message is given, the line with the bug is indicated.

– Run time errors occur when the program is syntactically correct,
but something goes wrong when the program is executing, e.g. a
division by 0. These error messages also give an indication of the
line where the error occurred.

– Logic errors occur when the execution of the program gives no
errors, but the program does something different than the pro-
grammer actually meant. No error message is provided for these
errors and therefore, logic errors are the most difficult to actually
debug.

• Syntax, type, semantic and logical errors

– Syntax errors occur when the written code is not grammatically
correct, e.g. a missing bracket.

– Type errors occur when the indicated types are not correct, e.g.
putting the integer 4 in a boolean variable. Not all languages
check on types, so these errors don’t occur in all programming
languages.

8



– Semantic errors is a bit ambiguous and many programmers use
a different definition. The definition used in this paper will be
the definition given by Allwood and Björhag (1991): Semantic
errors are syntactically correct expressions which are impossible
in the context they occur in. This could be using a variable or
function that is not earlier defined; this is syntactically correct,
but cannot be executed in the program.

– Logical errors are errors where the code is syntactically correct
but does something different than is stated in the problem in-
struction (Allwood & Björhag, 1991).

One interesting point is that logic errors are not the same as logical errors; a
division by 0 will be a logical error, but won’t be a logic error, but a run time
error instead. Roughly said, syntax, type and semantic errors are covered
by compile time errors and logical errors are covered by run time and logic
errors, but this also depends on the language used.

2.2 Encountered problems regarding debugging

Debugging is an essential skill for every programmer, but it is still under-
represented in the classroom. A reason for this underrepresentation is that
debugging is not an explicit content of the curriculum and is often overshad-
owed by other concepts which are actually mentioned in the curriculum as
a result(Michaeli & Romeike, 2019). Another reason for this is that there
does not exist enough learning material for explicitly teaching debugging
and teachers are too busy with explaining other concepts which are seen as
more important than debugging (Michaeli & Romeike, 2019). As a result,
students are not familiar with an effective systematic debugging method
and will use a lot of print statements instead to debug their program. This
technique relies on luck and will clutter their code which leads to a long and
frustrating debugging process (Michaeli & Romeike, 2019). Students know
that the debugger exists, but using it is seen as difficult and complex and
that is the reason why they won’t use it (Böttcher, Thurner, Schlierkamp,
& Zehetmeier, 2016). The biggest struggle encountered by students while
debugging is locating the lines where the mistake is made; once the location
is found, students are able to fix the bug rather quickly (Katz & Anderson,
1989). This can be explained by the fact that the students are not using a
systematic debugging process and no debugger.

A study of Katz and Anderson (1989) researched the most frequently
made errors in Java by students and concluded that the most frequent er-
rors are syntax errors. However, these errors are also solved easily and are
therefore not so interesting; more interesting are the logical errors and the
type errors. These errors occur the most after the syntax errors and should
be focused on when providing debugging tips.

9



2.3 Teaching a systematic debugging procedure

Several studies tried to tackle this problem and most of them performed
an educational intervention that taught the students a systematic debug-
ging procedure. The main conclusions of these studies were that teaching
such a method had several positive impacts on the students and solved the
aforementioned problems.

2.3.1 Michaeli and Romeike’s approach: a demo

In April 2019, Michaeli and Romeike analysed 12 German high-school teach-
ers’ interviews to investigate, among other things, which debugging skills are
conveyed in class and why certain debugging skills are taught or not taught.
The main outcomes were that teachers do not explicitly teach debugging,
because teachers lack a systematic approach for debugging and there is not
enough teaching material. As a result, debugging is an underrepresented
topic in class and students use an ineffective trial-and-error which leads to
frustration.

To tackle these stated problems, Michaeli and Romeike developed an
intervention in October where they taught a systematic debugging process
and examined the effects afterwards (Michaeli & Romeike, 2019). They de-
signed a systematic debugging procedure which was based on the ”scientific
method”: based on the observed behaviour of the program, repeated hy-
potheses are formulated, verified in experiments and, if necessary, refined
until the cause is found (Zeller, 2009). The procedure is schematically rep-
resented in figure A.1. The process distinguishes between different phases
which correspond with the different error types (Compile, Run and Com-
pare), because the debugging method depends on the actual error type.
Therefore the cycle per error is different, but they share the same steps
in general: read and understand the error message (if applicable), identify
the cause and modify/make an assumption, determine the error and find
the relevant line(s) of code and finally, adjust the program. The undoing
of changes is also explicitly mentioned to prevent that students add more
errors instead of solving errors.

The main conclusions were that this intervention and the provided de-
bugging had a positive impact on debugging self-efficacy and lead to a better
performance on the debugging exercises. However, Michaeli and Romeike
suggest that the cycles in their method should be extended with concrete
tips and strategies, because these loops are currently relatively abstract.

2.3.2 Allwood and Björhag’s approach: a document

Allwood and Björhag (1991) created a document that included several in-
structions which can be seen as a a systematic debugging method and a few

10



examples of common errors with tips on how to handle them. The instruc-
tions that were given can be found in figure A.2, but they come down to
interpreting the error message and locating the bug with the given informa-
tion. If it is a syntax error, it should be fixed relatively easily, but if it is a
different error, the flow of information in the program should be carefully in-
spected. Students were asked to think-aloud while inspecting this flow, but
it was unclear if this actually had a positive impact on the debugging pro-
cess. Finally, after correcting a bug, students were asked to explicitly think
about the consequences of the change, so that there would not be unintended
consequences. After reading this document, several practice exercises were
provided to the students.

The most important conclusions of this study were that teaching a sys-
tematic debugging method had beneficial effects and the students that read
the document were able to correct a significantly larger proportion of the
bugs.

2.3.3 Other approaches

Several other studies tried to solve these issues with similar approaches.
Böttcher et al. (2016) taught debugging skills to students by using a text
and a demo which involved an explanation of the debugger and a debugging
method that used the Wolf Fence algorithm (Gauss, 1982). This is a simple
algorithm that finds the bug by using a binary search; put a breakpoint
in the middle section of your code and see in which part the bug occurs.
Repeat this process recursively in the part where it goes wrong until the
bug is found and fixed.

2.4 Effectively teaching new material: direct in-
struction

The aforementioned studies taught the debugging teaching material through
an presentation or demo (Michaeli & Romeike, 2019), a written document
(Allwood & Björhag, 1991) or a combination of these (Böttcher et al., 2016).
All of these had a positive impact on the students, but other studies focused
on how to effectively teach study material in general, which are interesting
to mention as well.

One particular principle that is seen as effective and educationally en-
hancing is direct instruction. Direct instruction is a highly interactive ap-
proach to teaching as opposed to most modern approaches. The lessons are
structured in such a way that the teacher is able to see whether students
understand the explained concepts directly after the explanation. If this is
not the case, the teacher is able to guide the students to a better comprehen-
sion immediately. As a result, the students are actively involved with the

11



lesson and they will understand the material better and quicker (Gersten &
Keating, 1987).

2.4.1 Applying direct instruction

To accomplish the characteristics of direct instruction, the following steps
should be integrated into the educational occurrence (Renard, 2019):

1. Introduction/review
This is the opening of the lesson and is intended to engage the students.
This could be done by referring to the previous lesson or providing
some lesson objectives.

2. Present the new material
To effectively present the new material, the teacher should use clear
and guided instructions and the lessons should be carefully organised
step-by-step. The presentation could be done through a lecture or a
demonstration.

3. Guided practice
In this phase, the teacher and students practice the material together,
to guide initial practice, reteach if necessary and correct common mis-
takes.

4. Feedback and correctives
The teacher gives feedback which depends on the previous phase, e.g. if
a questions were correctly answered, quickly move on to keep the pace
of the lesson, but if the questions were incorrectly answered, provide
some hints.

5. Independent practice
In this phase, students apply the new learning material on their own.
This practice provides the repetition necessary to understand the sub-
ject and also helps the students to become automatic in the use of
these new skills.

6. Evaluation/review
In the last phase, an evaluation method is used to check whether the
students actually understand the newly acquired knowledge and can
apply it correctly. If this is the case, students learned the new material
and the teacher can move on to the next subject.

Beside these steps, several other features also enhances direct instruction
(Binder & Watkins, 1990):

• Use small groups
The ideal group size is around 5 to 10 students, because this size
provides the best one-to-one instruction and feedback.

12



• Unison responding
To generate response from all the students, it is useful to use a tool
such that all the students are able to respond at the same time. This
provides the students with the greatest amount of practice and the
teacher has the most information about each individual student.

• Keep the pace high
Rapid pacing is very useful, because it allows the teacher to present
more material and spent more time time on the practice sessions. In
addition, a rapid pace helps the students to keep their attention to the
current task, which improves the learning process.

2.4.2 Benefits of direct instruction

There are a lot of positive effects associated with the application of direct
instruction. In a study where they compared all the different teaching pro-
grams, direct instruction was the most effective on basic skills achievement,
self-concept and cognitive skills (Watkins, 1988). Another study concluded
that using direct instruction in class lead to better achievements and a lower
drop-out rate across four different communities (Gersten & Keating, 1987).
Moreover, other positive effects of direct instruction were significantly higher
scores from students than students that did not got taught with this prin-
ciple (Binder & Watkins, 1990).

In sum, direct instruction is a great principle with many benefits and
should therefore be used in an educational intervention if possible.

2.5 Measuring the effect of an educational inter-
vention

Different methods are used to test the effects of the educational intervention
about debugging, but exercises, observations and interviews/questionnaires
are the most used among these studies (or a combination of these). The
exercises consist of debugging exercises; programs which contains a number
of different errors and the students are asked to find and fix these errors.
The answers of the students can be used directly for an analysis, e.g. com-
paring the errors which were of weren’t solved of the test and control group
(Allwood & Björhag, 1991; Michaeli & Romeike, 2019). Moreover, Böttcher
et al. (2016) asked the students to explicitly write down their process and
provide screenshots of their used breakpoints, which could be used for a
more extensive analysis.

Katz and Anderson (1989) observed their subjects when they were mak-
ing the debugging exercises and were focusing on the most occurring prob-
lems and how the students solved these.

13



Michaeli and Romeike (2019) used debugging exercises to test the im-
pact of the intervention on the performance of the students, but they used
questionnaires to get a better insight in the debugging self-efficacy of the
subjects. In their previous study, Michaeli and Romeike interviewed several
teachers to identify the underlying problems regarding debugging in the class
room.

14



Chapter 3

Goal

Research Question

The main reason that debugging is underrepresented in education is that
the teachers don’t have the time and lack the teaching material to explicitly
teach debugging. To tackle this problem, we identified how to effectively
teach debugging within a programming course. Teachers can integrate these
elements into their lecture, to make the lecture effective and efficient. This
lead to the following research question:
How can we effectively teach debugging within a programming course?

Research Subquestions

This project has the outline of a design research (van den Akker, McKenney,
Nieveen, & Gravemeijer, 2006), in which we design a a learning activity
and performed it in a lecture of a programming course at the Radboud
University in Nijmegen. Afterwards, we evaluate the learning activity and
with these things combined, this research results in design principles for the
education about debugging and knowledge about how the students learn.
The corresponding research subquestions are:

1. What are elements of an effective learning activity about debugging in
a programming course?

2. How can the students’ resulting debugging skills be characterised?

15



Chapter 4

Methodology: Design

We designed an online learning activity to teach a systematic debugging
procedure and useful supporting strategies for debugging to students. These
strategies were taught in a lecture that was based on the principles of direct
instruction, a teaching strategy which is proven as very effective.

The following steps were taken to design our learning activity and to
achieve the aforementioned goals. Some criteria is given to see if the design
actually meets our given requirements.

1. Setting up the learning goals
We taught the students a systematic debugging procedure, such that
the students are able to debug their programs in a systematic manner.
Additionally, several debugging strategies were presented in this lec-
ture that support this debugging procedure. To see which strategies
were the most useful for the students, we looked at the papers writ-
ten by Altadmri and Brown (2015) and Böttcher et al. (2016). These
authors looked at the most frequently encountered programming prob-
lems by students and we chose the debugging strategies that solve the
most occurring problems.

2. Designing a lecture based on these learning goals
The debugging procedure and the supporting strategies were taught
in an online lecture with presented slides. As decided, this lecture was
built around the principle of direct instruction and to achieve this, the
mentioned steps (section 2.4) should be integrated in the lecture and
several exercises and programs had to be designed to achieve this. The
presentation started with an introduction which gave an overview of
the presented material and enthused the students for the lecture. The
taught material was tested after the explanation to see if the students
understood the material and the students were able to ask questions if
necessary. To achieve this, we gave a demo after the explanation and
after most strategies, the students had to make a small exercise to see if

16



they understood the material. At the end, there was an opportunity for
independent practice. Therefore, we designed an debugging exercise
with which the students could practice.

With these concepts, direct instruction was integrated into our presen-
tation and so, the material was taught effectively to the students and
the other benefits of direct instruction applied to the designed lecture.

3. Designing demos for the strategies
The designed demos were programs that contained a bug that was rel-
evant to the explained concept. Therefore, the presented strategy was
applied in practice in a program inside the IDE, which was a familiar
environment for the students. These demos served as an example and
worked better than code snippets presented on slides.

4. Designing intermediate exercises for immediate practice
The small exercises after the demos consisted of a multiple choice ques-
tion with a picture which was related to the corresponding strategy.
The students had to answer this question to quickly practice with the
material.

5. Designing an exercise for independent practice
We provided a debugging exercise which involved different types of
bugs with which the students could practice after the lecture. The bugs
in this exercise should involve all the presented debugging strategies,
such that the students could practice with all the learning goals.

6. Determining which tools to use for the learning activity
We needed an online environment in which the presentation could be
given and it was important that the designed slides could be seen by
the students. It was also convenient of the lecture could be recorded,
such that the students could see the recording afterwards.

The questions used for the intermediate exercises, were given through
an online quiz environment, for which we had a few requirements. It
was important that all the students answered individually and all at
the same time, which is also referred to as Unison responding (chapter
2.4). Moreover, it was also important that the teachers saw the results
of the students in real time, to give some more explanation if necessary.
Lastly, it was also convenient that we had the option to export the
results to an excel file afterwards, to analyse the results more easily.

After following these steps, we created a learning activity that covers
a systematic debugging procedure and covers the most relevant supporting
debugging strategies. These taught concepts were given in an online pre-
sentation which was based on direct instruction that included demos and
intermediate questions through an online quiz environment. Next to this

17



presentation, a debugging exercise was available to the students to practice
with the presented concepts.

18



Chapter 5

Results: Design

The lecture was designed by following the steps described in chapter 4:

1. Setting up the learning goals
The debugging procedure described by Michaeli and Romeike (2019)
was used in the presentation as the systematic debugging procedure
covered in the lecture, because it is relatively simple and very effective.
The concrete supporting debugging strategies presented in the lecture
were based on the most frequently occurring problems for students,
which are the following:

(a) Identifying correct types for arguments or return objects (Altadmri
& Brown, 2015)

(b) Evaluating a run time error (Böttcher et al., 2016)

(c) Finding the relevant lines of code that cause the bug (Altadmri
& Brown, 2015), (Böttcher et al., 2016)

The following debugging strategies were chosen to be presented:

• JavaDoc

• Systematically evaluating a run time error

• The debugger (basic functionality and the different commands)

These debugging strategies were chosen, because these tackle the most
frequently occurring problems. The documentation in JavaDoc will
solve the first problem, because this provides the necessary informa-
tion to determine the needed types. JavaDoc also provides more in-
formation about functions in general, which can be used to solve other
bugs as well. A systematic evaluation of a run time error will solve
the second problem. This evaluation consists of fixing the bug by de-
termining the relevant lines and type of error by inspecting the given
error. The debugger could support the students with the latter 2 prob-
lems, but is a useful tool in general. Students are often afraid to use

19



the debugger, but we give a simple explanation which should solve
this.

After deciding which strategies were taught, the learning goals of the
lecture could be specified as these:

• Students apply the systematic debugging procedure of Michaeli
and Romeike when debugging

• Students know about the JavaDoc inside NetBeans

• Students systematically evaluate a run time error to determine
the relevant lines in the code and solve the bug

• Students understand the basic functionality of the debugger

2. Designing a lecture based on these learning goals
The different phases of direct instruction were integrated into the lec-
ture:

• The introduction consisted of an overview of the content and an
online quiz to enthuse the students and let them be familiar with
the online quiz environment.

• All the material was presented with the designed slides and stu-
dents could ask questions if necessary.

• For all the taught strategies, a demo was made to see a concrete
example in the programming environment. This was a combina-
tion of presenting the new material and guided practice, because
it was interactive. The demos are discussed in more detail in the
next step.

• For most strategies, there was a question for the students to test
if they understood the material. This question served as more
guided practice for the students and based on the results, we could
give feedback and apply correctives if necessary. The questions
are discussed in more detail in step 4.

• At the end of the session, the students could practice with a
debugging exercise such that there was an opportunity for inde-
pendent practice afterwards. The debugging exercise is discussed
in more detail in step 5.

The last step, evaluation/review, which should happen after indepen-
dent practice, was not integrated into the lecture, because it was not
possible to speak to all the students after the independent practice.
The used slides in the presentation can be found in appendix C.7.

A recording of the presentation was made available for the students as
well as the used slides, such that the students could refer back to the
presented material if necessary.

20



3. Designing demos for the strategies
The program used for the demo about JavaDoc can be found in ap-
pendix B.3. It consisted of a bug which could be fixed by looking at
the JavaDoc of the function trim().

The program used for the demo about evaluating a run time error can
be found in appendix B.4. It consisted of a run time error caused
by a null pointer exception, which could by fixed by systematically
evaluating the given error.

There were 2 demos for the explanation about the debugger. The
first demo can be found in appendix B.5. There was a simple bug in
this program, but the main purpose was to make the students familiar
with the basic functionality of the debugger and how convenient it was
to see all the variables. The second demo can be found in appendix
B.6. There was no bug in this program, but the different lines were
structured in such a way that the difference and purpose of the different
commands became clear for the students.

4. Designing intermediate exercises for immediate practice
Question 6 in the quiz (handout can be found in appendix C.4, the
used picture can be found in figure A.3) served as the small exercise
for JavaDoc. The JavaDoc of a user defined function was shown that
caused a bug and students had to indicate how to probably solve this
bug. This tested if students could use the provided JavaDoc to solve
the bugs.

Question 7 in the quiz (the used picture can be found in figure A.4)
served as the small exercise for evaluating a run time error. A run
time error was shown and students had to indicate what was probably
the error and on which line the bug was probably located. This tested
if the students could identify the run time error type and the location
with only the provided error.

No question was made for the debugger, because it was inconvenient
and the independent practice served as a really good exercise for the
debugger.

5. Designing an exercise for independent practice
The debugging exercise can be found in appendix B.1 and the cor-
responding answers can be found in appendix C.1. It consisted of 4
compile time errors, 2 run time errors and 4 logic errors, so all the dif-
ferent types of errors were present in the exercise to practice with the
presented debugging process. The different bugs could be solved with
the presented debugging strategies, so the students could also practice
with those and therefore, all the learning goals were addressed in this
exercise.

21



6. Determining which tools to use for the learning activity
The used online environment was Zoom. The slides could be presented
in Zoom, such that these were clear for the students and the presen-
tation could be automatically recorded, which was really convenient.

The online quiz environment Socrative was used for the quiz. All the
students could easily join and could answer the questions individually
and at the same time. The teacher could also see the results in real
time to apply correctives if necessary and the teacher was also able
to export the results to an excel file. Therefore, Socrative served as
a great platform to use and the handout of the quiz can be found in
appendix C.4

The complete lecture is represented in table 5.1, including the corre-
sponding direct instruction phases, demos and questions.

Table 5.1: The designed lecture

Activity Phase Used programs/tools

1.1 Overview of the content Introduction -

1.2 Quiz Introduction Socrative, questions 1-5

2 Debugging procedure Present the new material -

3.1 JavaDoc: Explanation Present the new material -

3.2 JavaDoc: Demo Present the new material/Guided practice JavaDocDemo

3.3 JavaDoc: Quiz Guided practice/Feedback and correctives Socrative, question 6

4.1 Tips evaluating run time error: Explanation Present the new material -

4.2 Tips evaluating run time error: Demo Present the new material/Guided practice RunTimeDemo

4.3 Tips evaluating run time error: Quiz Guided practice/Feedback and correctives Socrative, question 7

5.1 Debugger: Explanation basics Present the new material -

5.2 Debugger: Demo Present the new material/Guided practice DebuggerDemo1

5.3 Debugger: Explanation different commands Present the new material -

5.4 Debugger: Demo Present the new material/Guided practice DebuggerDemo2

6 Overview of the content (repetition) Feedback and correctives -

7 Debugging exercise Independent practice DebuggingExercise1

22



Chapter 6

Methodology: Evaluation

After designing the learning activity, we evaluated the effects of it to see if
it was effective. This evaluation consisted of 2 parts: evaluating whether
the learning goals were achieved and evaluating what were the pros and the
potential improvements for the designed lecture. Therefore, the design of
these evaluations were based on the aforementioned learning goals, which
were the following:

• Students apply the systematic debugging procedure of Michaeli and
Romeike when debugging

• Students know about the JavaDoc inside NetBeans

• Students systematically evaluate a run time error to determine the
relevant lines in the code and solve the bug

• Students understand the basic functionality of the debugger

We had three moments where we collected response from the students: a
pre-test at the presentation, several interviews a week after the presentation
and second interviews 3 weeks after the presentation. The pre-test was in-
tegrated into the introduction of the presentation and so, we collected data
from all the watching students. We interviewed 5 students in the first inter-
view to see if they applied the learning goals in a debugging exercise and they
were asked about the pros and improvements for the lecture. These students
were all currently following the course Object Oriented Programming. How-
ever, for several learning goals it was sufficient if the students knew about
the strategy (JavaDoc and the debugger), but the first interview only ob-
serves whether the students applied the taught debugging strategies, which
is not the corresponding learning goal. Therefore, these 5 students were also
contacted for the second interview to see if they applied several learning
goals in practice with the programming exercises and if they know how to
apply them, to evaluate the learning goals regarding JavaDoc and the de-
bugger in more detail. The result of these evaluations were combined and

23



analysed afterwards to investigate the pros of this presentation, the effect of
the intervention and how this presentation could be improved.

6.1 Pre-test

6.1.1 Data collection

At the start of the educational intervention, a small quiz was held in Socra-
tive to give an indication of the current debugging skills of the students. A
printout of this quiz can be found in appendix C.4. Several strategies were
presented and the participants had to indicate whether they used these
strategies when they are debugging with the options ”yes”, ”no”, and ”no
opinion”. These strategies corresponded to the explained concepts in the
educational intervention. The usage of the following strategies were asked
in the quiz:

• Searching on Stack Overflow

• Looking at documentation online

• Looking at documentation inside the IDE (NetBeans)

• Print statements to see the values of the variables

• The debugger

6.1.2 Data analysis

Afterwards, the answers of all the students to this quiz could be exported
to an excel file which was analysed. We removed the students that did not
answer all the questions, such that all the students that were left partici-
pated in all the questions. We counted the answers the students gave to a
specific question to see whether the majority of the students already used
that debugging strategy. This gave an indication which strategies the stu-
dents already used and which strategies they were not using. If a debugging
strategy is used by only a minority of the students, but several students did
use that debugging strategy in one of the interviews, it is safe to say that
the students learned that debugging strategy in the lecture, which helps to
identify how the lecture affected the debugging skills of the students.

6.2 First interviews

6.2.1 Data collection

These online semi-structured interviews were held on a platform chosen by
the students (Skype, Zoom, Discord etc.). These interviews mostly consisted

24



of students solving a debugging exercise and answering a few questions while
they were observed through a screen share. In particular, we observed the
strategies that the participants applied to fix the individual bug, the order
in which the bugs were fixed and the overarching debugging procedure. Af-
terwards, we looked how the applied strategies corresponded to the learning
goals to see the effects the learning activity had on the students.

The debugging exercise was shared at the start of the interview with the
interviewees through a zip folder. The interviewees could import the project
to NetBeans and were asked to fix all the bugs on their computer and there-
fore, the students had access to all the tools they normally used in practice
for debugging and they were comfortable with the used environment.

The structure of the interview was as follows:

1. Question: what were the pros of the presentation?

2. Question: how could the presentation be improved?

3. A debugging exercise with 5 bugs

Pros and improvements

The purpose of the first 2 questions was to see what the participants thought
about the designed lecture. These answers gave us an insight in what the
students thought about the lecture and thus, which elements of the presen-
tation could be used in other lectures and which aspects could be improved.
These questions also served as a warming-up and an ice-breaker.

Achievement of the learning goals

Afterwards, the students had to solve a debugging exercise. The students
were observed to see which strategies and tips they applied from the learning
activity to evaluate whether the learning goals were achieved. The specific
debugging exercise used in this interview can be found in appendix B.2 and
the corresponding solutions in appendix C.2.

The program took an array of integers and calculated the median of it.
This was done by a function calcMedian, that took the middle elements of
a sorted list, the function sortNumbers that sorted a list of numbers using
selection sort supported by the last function, findIndexWithSmallestNum-
ber, which returns the index with the smallest number. We also provided
4 test cases which the interviewees could use to see if they correctly fixed a
bug the program. There were 5 bugs in the program, which were all quite
unique and all the different type of bugs occurred (1 compile time error, 1
run time error and 3 logic errors). We observed the order the bugs were
fixed, what the overarching debugging procedure was that the participant
applied, the fixes for the individual bugs and other interesting, maybe un-
foreseen observations. Every different type of bug had a different purpose

25



regarding the learning goals, so these will be discussed in more detail in the
next paragraphs, but first is discussed why the order in which the bugs were
solved and the overarching debugging procedure were observed as well.
Order in which the bugs were solved & overarching debugging
procedure - The presented systematic debugging procedure
With these 2 observations, we could determine whether the learning goal
regarding the debugging procedure of Michaeli and Romeike (figure A.1)
was achieved. This 2 characteristics of this procedure are the order of the 3
different phases (first Compile, Run afterwards and Logic at last) and the
cycles within these phases (roughly speaking, executing the program, deter-
mining what went wrong, finding the relevant lines of code, fixing it and
executing the program again and repeat if necessary). With the order in
which the bugs were solved, we could determine whether the students firstly
solved the compile time error, the run time error afterwards and the logic
errors at last.

Within the overarching debugging procedure, we noted when a partici-
pant executed a program and which test cases failed, what their next actions
were and which functions they inspected. We determined from these actions
whether the participant applied the described cycles in the debugging pro-
cedure by observing if the participants executed the test cases, determining
what went wrong and finding the relevant lines of code, fixing the bug after-
wards and repeating this cycle until all the bugs were fixed. The cycles for
the different phases are slightly different, but the cycles could roughly de-
scribed as this. So, with these 2 mentioned observations we could determine
if the participant applied the systematic debugging procedure presented to
test the first learning goal.
Compile time error - JavaDoc
The first bug was compile time error bug that consisted of an incorrect type
that was located in calcMedian in line 29. The called function sortNum-
bers returns an array and is stored in the variable sortedNumbers, which
has the type ArrayList<Integer>. These types cannot be automatically cast
and therefore, the following error message is provided by the IDE and shown
when the program is executed: incompatible types: int[] cannot be converted
to ArrayList<Integer>. The most practical solution would be changing the
type of sortedNumbers to int[] and could be found by inspecting the types
of the functions, for which JavaDoc is the perfect tool. Therefore, this bug
served as a good indication whether the students were familiar with JavaDoc
to test the second learning goal.
Run time error - Systematically evaluating a run time error
The second bug was a run time error that was caused by a loop in sort-
Numbers in line 44. This loop iterated over the array named list to sort
the array, but started on index 0 and stopped when the index was greater
than list.length. However, list.length is an invalid index and so, the run time
error is thrown with the corresponding line and an indexOutOfBoundsEx-

26



ception when the program executed. This most practical fix for this bug
would be to change the <= to a < such that the index list.length is not
inspected anymore. We observed how the student evaluated the run time
error by looking at their actions (determining the relevant lines of code and
determining what the probable cause is) and compared this to the presented
systematic evaluation to see whether the third learning goal was achieved.
Logic errors - The debugger
The last 3 bugs were logic errors; the third bug was caused by a mistake in
the if condition in line 30 in the function calcMedian, where is determined
whether the list has an even or odd length to see if 1 or 2 elements should
be returned. This is done by checking if the length mod 2 is 1 or 0, but the
case is exactly switched around, such that an even length returns 1 element
instead of 2. This bug could be solved by changing the 1 to a 0 or switching
the code blocks within the if and the else.

The fourth bug was caused by an off-by-one error in the function calcMe-
dian in line 30, in the previously mentioned if case where 2 middle elements
are returned of an array with an even length. Currently, the elements at
the indices (numbers.length/2+1) and (numbers.length/2) are returned, but
these are the incorrect indices (e.g. a length of 6 returns in this case elements
at indices 4 and 3, but should return elements at indices 2 and 3). This bug is
solved by changing these indices to the correct indices: (numbers.length/2-1)
and (numbers.length/2).

The last bug was caused in the function findIndexWithSmallestNumber
in line 63. In this function, the program iterates over the given array and
stores and returns the index with the smallest element by comparing the
inspected number with the currently smallest number. However, in the if
condition where this comparison is made, the current result is replaced with
the inspected number if the inspected number is bigger than the result, which
means that not the index with the smallest number is returned, but the index
with the biggest number. As a consequence, the function sortNumbers sorts
the array descending instead of ascending. This has no consequence on the
median of arrays with an odd length, but the elements of the median of an
array with an even length are switched around, which results in incorrect
test cases. This most practical fix for this bug is to change the > to a < or
a <=.

Some of these bugs became pretty clear from the different test cases, e.g.
bug 3, but other bugs were more difficult to find in the code, e.g. bug 5.
So, these 3 logic errors served as a perfect opportunity for the participants
to apply the debugger, because they could easily inspect the sorted list and
check whether the functions functioned correctly by walking through the
function step-by-step. Therefore, we could test the fourth learning goal by
observing whether they used the debugger at these bugs and so, all the
learning goals were evaluated in the debugging exercise.

27



Structurally collecting data

To structurally collect data from these interviews, a schema was used to
note all the aforementioned observations, namely how all the individual bugs
were solved in the debugging exercise and which strategies were applied by
the participants, the order in which the bugs were solved, the overarching
debugging procedure, the answers to the 2 questions and other interesting
notes. The schema used for this can be found in figure C.3.

As a result, the interviews resulted in 5 filled in schemes of the intervie-
wees that represented how they tackled a debugging exercise and what they
thought about the given lecture. These observations gave us insight if we
achieved the learning goals, what the pros were of the lecture and how the
students thought it could be improved. This collected data could directly
be used for the analysis in Atlas.

6.2.2 Data analysis

To analyse the collected data, we used the tool Atlas to create codes which we
can use to label different observations. To determine the different codes, we
used a combination of a bottom-up and top-down approach. We already had
an idea about observations that would probably occur, namely the learning
goals (e.g. using the debugger, using the systematic evaluation of a run
time error), but we could also identify other characteristics which we did not
foresee or expect, which would result in other codes. With these codes, we
could reason more easily about the observations. A more detailed description
of our analysis is described in the following paragraphs.

Pros and improvements

We coded all the mentioned pros of the students to see the frequently men-
tioned pros. We already had some idea of codes that could occur as we
thought that they would probably occur, because they were quite unique
for this lecture (e.g. demo was useful, interaction was useful), but other
codes had to be derived of the answers.

The mentioned improvements could be coded, but these are probably
too specific to be grouped together. Therefore, we thought it was better
to inspect every individual improvement and see if this could be integrated
into a possible improved iteration of the lecture. However, if it was possible
to code the improvements, the codes would be determined in a bottom-up
approach, because we had no idea which improvements the students would
be mentioning.

Afterwards, the result of this analysis would be several pros that were
frequently mentioned by participants and all the improvements that were
indicated by the students.

28



Achievement of the learning goals

Order in which the bugs were solved & overarching debugging
procedure - The presented systematic debugging procedure
The order in which the bugs were solved did we code as the order of the
presented debugging procedure if the order was 1-2-(3-4-5), where 3, 4 and
5 could be in any order. In this order, the Compile phase is applied firstly,
the Run phase afterwards and the Logic phase at last, which is indeed the
presented order. If the participant did not have this order, the order was
classified as not the order of the presented debugging procedure.

Within the overarching debugging procedure, we marked the different
debugging phases if we recognised the corresponding cycles in the debugging
procedure. For example, if the participant executed the program, evaluated
the test cases and tried to fix the bug and executed it again until all the
logic errors were fixed, this phase is marked as the Logic phase. The same
was done for the Compile and Run phase.

If a participant applied the correct order and applied all the different
debugging phases from the lecture, we could state that that participant ap-
plied the presented debugging procedure. If a majority of the participants
(4 out of 5) applied the presented debugging procedure, we could state that
the corresponding learning goal was achieved.
Compile time error - JavaDoc
We coded the debugging strategies that the participants used to fix the
compile time error (bug 1). Some codes that would probably occur were
”Using JavaDoc” and ”Fixed compile time error by hand”, but other codes
could also be identified, which we hadn’t expected. If at least 4 out of 5
participants used JavaDoc as a debugging strategy to solve this bug, we
could state that most of the participants applied JavaDoc while debugging.
However, the learning goal is not about applying JavaDoc, but knowing how
to use it, because it is not always necessary to use JavaDoc. If indeed the
majority of the participants used JavaDoc, the corresponding learning goal
is also achieved, but if this is not the case, it doesn’t necessary mean that
the corresponding learning goal is not achieved. Therefore, the achievement
of this learning goal will be evaluated in more detail in the second interview,
where we specifically ask if participants know how to use JavaDoc.
Run time error - Systematically evaluating a run time error
The presented systematic evaluation of a run time error consists roughly
speaking of 3 steps: Determining the relevant lines from the message, deter-
mining what is probably the cause from the given exception and fixing the
bugs with this information. These steps can be recognised in the debugging
strategy applied by the participants to solve the run time error (bug 2). If
the participant used the run time error to identify the location, than that
is coded as ”Found incorrect line by inspecting run time error”. If the par-
ticipant determined the type of exception and went to the relevant line, it

29



should be able to identify the bug rather quickly and solve it immediately,
because it is a relatively common bug. If this was observed, this is coded as
”Immediately saw the fix for the bug”. If both of these codes applied to a
participant, that participant applied the systematic evaluation of a run time
error and if at least 4 out of 5 students applied this evaluation, the learning
goal regarding the evaluation of a run time error was achieved.
Logic errors - The debugger
The logic errors (bugs 3, 4 and 5) were grouped to evaluate whether the
students apply the debugger when debugging. It really depends on the par-
ticipant when it needs the debugger to solve a bug or if the bug is easy
enough to solve without the debugger. That was the reason why there are 3
different logic errors in the exercise, such that it is probable that there is at
least one bug for which the participant would need the debugger. Similar as
before, we coded all the different strategies used by the participants, which
were codes we already expected (e.g. using the debugger, go through the
code line-by-line in your head, immediately fixing the error), but other codes
could also be created, which we didn’t expect beforehand.

If a participant used the debugger to solve at least 1 bug, we stated that
that participant applied the debugger in this debugging exercise, because
of the previously mentioned variety regarding the debugging skills of the
participants. If at least 4 out of 5 participants applied the debugger in this
debugging exercise, the corresponding learning goal was achieved. However,
similar to JavaDoc, the learning goal is that students know how to use the
debugger and not applying it, because it depends on the student if it is
actually necessary to apply the debugger. So, even if only the minority of
the students use the debugger, it does not mean that the learning goal isn’t
achieved, but this learning goal will therefore be evaluated in more detail in
the second interview, where the students are explicitly asked if they know
how to use the debugger.

6.3 Second interviews

6.3.1 Data collection

To see whether several explained principles were also used in practice by the
participants, we contacted the same participants that were interviewed a few
weeks later to ask which concepts they applied in practice. The following
questions were asked:

• Did you use JavaDoc within the exercises last weeks?

• If no, would you know how to use JavaDoc?

• Did you use the debugger within the exercises last weeks?

• If no, would you know how to use the debugger?

30



We did not ask about the systematic debugging procedure and the system-
atic run time error evaluation, because it was pretty clear from the results of
the previous interviews that these learning goals were already achieved. The
answers to these questions were mostly yes or no with a bit of elaboration
and therefore, it was possible to create a table with the participants, the
questions and their yes or no answer, which could be analysed. We assumed
that whenever a participant used a strategy, it also knew how to use it, even
though this was not explicitly mentioned by the participant.

6.3.2 Data analysis

From this table and, if necessary, the several elaborations, we could evaluate
the learning goals related to JavaDoc and the debugger in more detail. The
number of participants that used JavaDoc gave an indication whether stu-
dents used JavaDoc in practice, but the number of participants that would
know how to use JavaDoc is more important to the learning goal. If at least
4 out of 5 participants would know how to use JavaDoc, we achieved the
learning goal regarding JavaDoc, even though the minority of the partici-
pants actually used JavaDoc in the first interview. The similar holds for
the debugger; the number of participants that used the debugger indicated
whether students used the debugger in practice. If at least 4 out of 5 partic-
ipants would know how to use the debugger, we achieved the fourth learning
goal about the debugger.

6.4 Combining the results

The results of the different evaluations were combined to answer the research
(sub)questions. The pros mentioned by the students in the first interviews
were used to determine how the students thought of the particular elements
of the designed learning activity for the first research subquestion. The
pre-test, the observations regarding the debugging exercise from the first
interview and the results of the second interview were combined to answer
the second research subquestion. The pre-test gave an indication which
debugger strategies the students already used before the lecture, the first
interviews indicated which debugging strategies the students used after the
lecture and the second interviews indicated which strategies the students
used in practice and if they know how to use it. With these results it was
possible to evaluate all the learning goals and see how the lecture affected
the debugging skills of the students. The improvements mentioned by the
students in the first interviews were used in the discussion to give some
possible improvements for a next iteration of the design.

31



Chapter 7

Results: Evaluation

7.1 Pre-test

58 participants participated in the pre-test at the start of the lecture and
the result can be found in table 7.1.

Table 7.1: The result of the pre-test

Do you use the following strategy when debugging? Yes No No opinion

Searching on Stack Overflow 52 5 1

Looking at documentation online 52 5 1

Looking at documentation inside the IDE (NetBeans) 15 38 5

Print statements to see the values of the variables 53 4 1

The debugger 15 40 3

As can be seen, the majority of the participants use Stack Overflow and
read documentation online, but most of them do not use the documentation
provided in NetBeans, which is JavaDoc. Furthermore, most participants
use print statements to find bugs, but a majority of them does not use
the debugger. So, if we notice that the debugger and JavaDoc are used at
the interviews and the interviewees actually used these strategies after the
presentation in practice, the lecture had its desired effect, namely that the
students applied the taught strategies.

7.2 First interviews

The results of the interviews were analysed and the learning goals and other
interesting observations are discussed in this section. The filled in interview
schemes can be found in appendix C.5.

32



7.2.1 Achievement of the learning goals

7.2.2 Pros and improvements

Several pros about the lecture were mentioned by the participants, but one
was particularly common in the interviews: the interaction within the lec-
ture. Not only kept the interaction the participants engaged with the pre-
sentation (mentioned by participant 4), but most participants also said that
the interaction was really useful. This interaction was achieved by inte-
grating direct instruction into the lecture, especially the questions within
the quiz and the demos, which were both indicated as very useful by most
interviewees. Participants 1,3 and 5 also mentioned that the explanations
were clear, which was probably the result of this integration. In short, the
participants were very positive about the elements of direct instruction and
therefore, we advice teachers to integrate direct instruction into their lec-
tures if possible by having small exercises between different material for
example. Moreover, programming teachers could have more demos within
their lectures, because students appreciate these more than code snippets in
slides.

Next to these positive points, students only had a few minor improve-
ments for the lecture. Participant 1 indicated that some pictures were rather
small in the slides. Participant 3 mentioned that it would be appreciated if
there would be more options within the quiz (in particular the first 5 ques-
tions, a ”sometimes” options would have been nice) and participant 2 said
that it would be useful if the students could see the intermediate results of
the quiz questions. This was actually possible in the quiz environment, but
we simply forgot to show it, but we keep this in mind for the next time. In
sum, interviewees were really positive about the presentation and had a few
minor improvements.

The presented systematic debugging procedure

To evaluate if this the learning goal ”Students apply the systematic debugging
procedure of Michaeli and Romeike when debugging” was achieved, we looked
at the order in which the bugs were fixed and if the students used the
presented cycles within these phases. The order in which the all participants
solved the bugs had a clear pattern; the compile time errors firstly, the
run time errors afterwards and the logic errors at last. This was also the
recommended order of Michaeli and Romeike, so the interviewees applied
the presented order of debugging phases.

Moreover, it was also clear from the overall debugging procedure of the
participants that they applied the presented debugging cycles. As can be
seen in the schemes, the Compile, Run and Logic cycle were applied, but the
latter cycle is the most interesting to be discussed in more detail. After all
the compile and run time errors were solved, all the participants executed

33



the program and compared the results to the desired results. They said
what was probably wrong and started to investigate the relevant lines of
code or look for them with the aid of the debugger for example. After they
fixed (or tried to fix) the bug, they executed the program again to see if the
bug was solved or not and repeated the cycle until all the bugs were fixed,
which is exactly the presented logic cycle. Therefore, all the participants
applied the presented debugging procedure and thus, the first learning goal
was achieved.

JavaDoc

To evaluate if the learning goal ”Students know about the JavaDoc inside
NetBeans” was achieved, we looked at the strategies used by the partic-
ipants to solve the first bug; the compile time error. Only participant 2
used JavaDoc to get more information about the function causing this bug
and afterwards solved it by applying the provided quick fix by the IDE.
Participant 1 immediately solved the bug by using the provided quick fix
and the other 3 participants said it was an incorrect type from the provided
error message and fixed it by hand. From this can be included that the
second learning goals is not completely achieved, because only 1 participant
applied this debugging strategy and therefore indicated that he knew about
JavaDoc. However, the clear error messages and quick fixes provided by
the IDE were probably the reason that many participants did not use the
JavaDoc within the debugging exercise, because using JavaDoc was a bit
redundant. So, from this first interview it is not completely clear whether
this learning goal was achieved, but the second interview gave more insight
into this.

Systematically evaluating a run time error

To evaluate if the learning goal ”Students systematically evaluate a run time
error to determine the relevant lines in the code and solve the bug” was
achieved, we looked at the strategies used by the participants to solve the
second bug; the run time error. After solving the compile time error, all the
participants executed the program and got the run time error. They read
it out loud and determined the corresponding line which was provided by
the run time error. They also mentioned that it probably had to do with
indices, because of the provided indexOutOfBoundsException. Afterwards,
all the participants immediately fixed the bug, because it was a common mis-
take made by programmers, as several interviewees indicated as well. These
observations indicate that all the participants applied the presented evalu-
ation of a run time error and thus, the third learning goal what achieved.
Moreover, participant 5 mentioned in particular that the provided list with
the different types of run time errors and the corresponding fixes was really

34



useful, so this information was also appreciated.

The debugger

To evaluate if the learning goal ”Students understand the basic functionality
of the debugger” was achieved, we inspected how the different participants
approached the remaining 3 bugs; the logic errors.

After solving the run time error and stating that the test cases were
incorrect, participant 1 immediately used the debugger to inspect the whole
program step-by-step and corrected the program in a bottom-up manner by
firstly solving the independent function and the afterwards the functions that
depend on the now correct function and so on. With the assumption that
the called functions are correct, the interviewee could fix all the functions
one by one until all the functions were correct and as a result, all the bugs
were fixed as well. Participant 1 therefore used the debugger to solve all the
logic errors and thus knows how to use the debugger.

Participant 4 was the only participant that didn’t use the debugger for
these bugs, but one print statement to see whether the sorting function
was correct. This participant also mentioned that (s)he was more familiar
with print statement and already used the debugger when necessary, even
before the lecture. Additionally, this participant mentioned that (s)he was a
relatively good programmer and solved all logic errors in the exercise almost
immediately after determining what was probably wrong and so, it is safe to
say that (s)he didn’t use the debugger, because the exercise was relatively
easy for this participant. However, this participant did mention that s(he)
understood the basic functionality of the debugger.

The other 3 participants solved at least one bug of these bugs with
the aid of the debugger and therefore understood the basic functionality
of the debugger. The other bugs were either immediately solved, because
the participants mentioned that it was an obvious or common bug, or the
participant mentioned that they went step-by-step through the code in their
heads and solved them by noticing the incorrect logic. Therefore, these
participants understood the workings of the debugger, but only used them
when necessary.

Moreover, almost all the interviewees (except for participant 4) indicated
that they never used the debugger before and will probably use them when
debugging in the future after the explanation in the designed lecture.

So, it is safe to say that the debugger was the most useful subject of the
lecture for students and that the fourth learning goal was achieved as well.

7.2.3 Another interesting observation

Next to the learning goals, pros and improvements, there was one other
interesting observation, namely how the students used the different test

35



cases to determine the bugs. Participant 1 solved the test cases one-by-one
by inspecting the whole program with the debugger, as mentioned before.
However, the other 4 participants partly determined the location of the bug
by inspecting the incorrect test cases and comparing them to identify the
underlying problem. After they had no clue anymore, they started inspect-
ing the functions and determined which were not correctly functioning, thus
applying the similar strategy as participant 1.

The interesting observation are the different approaches used by the par-
ticipants to determine the bug given the failed and succeeded test cases. The
designed lecture mostly focuses on finding or fixing bugs, but interestingly,
the lecture could also be expanded with some tips about using the actual
test cases to find the locations of bugs. Moreover, the lecture could be even
more extended by teaching the students how to write effective and efficient
test cases, which as a result can be used to find some bugs even faster. As a
result, this will result in a lecture where debugging and testing are covered,
which are two very important assets for a programmer, but could be given
more attention in education.

7.3 Second interviews

The questions asked in the second interview were answered by the partic-
ipants over chat and their responds can be found in appendix C.6. The
mentioned participants correspond with the same participants from the first
interview. These results are presented in table 7.3.

Table 7.2: The result of the second interview

P1 P2 P3 P4 P5

Q1: Did you use JavaDoc within the exercises last weeks? No No Yes Yes Yes

Q2: If no, would you know how to use JavaDoc? Yes Yes Yes Yes Yes

Q3: Did you use the debugger within the exercises last weeks? Yes Yes No No No

Q4: If no ,would you know how to use the debugger? Yes Yes Yes Yes Yes

3 of the 5 participants did use JavaDoc within the exercises, so a small
majority of the participants. However, all the participants mentioned that
they knew how to use JavaDoc and several participants explicitly mentioned
a the second question that they want to use it in the future (participants 1
and 2) and want to learn more about it for larger projects (participant 2).
Therefore, even though JavaDoc was not used that much in the interview,
all participants know how to use it and will probably use it in the future
and so, the second learning goal is also achieved.

Only participants 1 and 2 used the debugger in the exercises. How-
ever, participant 3 mentioned that s(he) could not get the debugger working

36



anymore after the interview (the necessary windows for debugging did not
appear as usual). Participant 4 did not use the debugger personally, but the
participants programming partner did, so they actually did use the debugger
in the exercise. Participant 5 did not need to use the debugger, because the
exercise was not so difficult for that participant. Nonetheless, all the partic-
ipants mentioned that they knew how to use the debugger and participant
3 mentioned that s(he) will actually use the debugger if possible. Therefore,
we already expected from the first interview that the learning goal related
to the debugger was achieved, but these results confirm it as well.

Another observation is that the participants that used JavaDoc in the
exercises did not use the debugger, but the participants that used the de-
bugger, did not use JavaDoc. We have no explanation for this, so we think
this is simply a coincidence.

7.4 Combining the results

The pros could directly be used to answer the first research subquestion
and the mentioned and found improvements could be mentioned in the dis-
cussion. From the first interview was already clear that the learning goals
regarding the systematic debugging procedure and the systematic evaluation
of the run time error were achieved.

From the pre-test became clear that most participants did not use JavaDoc
inside the IDE. The first interviews indicated that most participants did
not use JavaDoc, but from the second interviews became clear that sev-
eral participants used it in practice and all participants knew how to use it.
Therefore, the learning goal regarding JavaDoc was also achieved, because
participants did not use it before the presentation, but did use it and knew
how to use it after the lecture.

From the pre-test became also clear that most participants did not use
the debugger while debugging. However, not only did a majority of the
participants use the debugger in the first interview, but several participants
used it in practice as well and all participants knew how to use it, as indicated
by the second interviews. So, the learning goal related to the debugger was
achieved as well, because similar to JavaDoc, most participants did not use
the debugger before the lecture, but used it after the lecture.

To conclude, all the set learning goals were achieved of the designed
lecture and thus, the lecture had its desired and intended effect on the
students.

37



Chapter 8

Conclusions

8.1 Research subquestions

What are elements of an effective learning activity about debugging in a pro-
gramming course?

In our lecture, we taught the systematic debugging procedure made by
Michaeli and Romeike and several debugging strategies that support this
debugging procedure, namely using JavaDoc, systematically evaluating a
run time error and debugging with the debugger. The learning goals were
related to these:

• Students apply the systematic debugging procedure of Michaeli and
Romeike when debugging

• Students know about the JavaDoc inside NetBeans

• Students systematically evaluate a run time error to determine the
relevant lines in the code and solve the bug

• Students understand the basic functionality of the debugger

These debugging strategies were specifically chosen, because these would
solve the most frequently occurring problems for students. As a result, the
taught debugging strategies were useful and applicable for the students. In
the interviews, some students mentioned that these debugging strategies
were very useful and they also applied them in practice, which was the
aforementioned aim. Therefore, teaching useful and practical debugging
procedures and strategies is an element of an effective learning activity.

Moreover, the integration of direct instruction was also an important
element of an effective learning activity. In our lecture, this was primarily
done by following the steps of direct instruction and these were supported
by a quiz with short exercises, several demos and a debugging exercise at

38



the end. This lead to a very interactive presentation, which should lead to
a better understanding of the subjects for the students and other beneficial
outcomes for the education. Students specifically mentioned these aspects in
the interviews as well; especially the short exercises between the explanations
and the interaction provided with the online quiz were mentioned a few
times. Moreover, the demos were also appreciated by the students and,
according to them, had more impact than several code snippets presented
on slides. Therefore, the students were enthusiastic and positive about the
integration of direct instruction and the corresponding elements, such as the
quiz and the demos.

The lecture took around 45 minutes and as a result, this learning activity
could easily be combined with a small tutorial of the course Object Oriented
Programming.

How can the students’ resulting debugging skills be characterised?

After the learning activity, the students used the presented debugging
procedure and the systematic evaluation of a run time error while solving
the debugging exercise in the first interview. Moreover, not only did the
students understand the basics of the debugger, but they actually applied
the debugger in practice. The students know about JavaDoc and know how
to use it, even though they did not use it a lot yet, but they plan on using it
in the future when working on larger and more complex projects. The pre-
test indicates that students did not use these debugging strategies before the
lecture, so, these observations are dedicated to the learning activity. There-
fore, the characteristics of the students’ debugging skills after the learning
activity were not only the specified learning goals of the lecture, but several
students also used JavaDoc and the debugger after the lecture.

8.2 Research question

How can we effectively teach debugging within a programming course?

Our designed learning activity was effective, as all the learning goals
were achieved afterwards. Therefore, this learning activity could be used as
teaching material or could be used by other teachers as a stepping stone for
their own lecture. It is also convenient that the learning activity takes only
45 minutes, because teachers have limited time left and it could be easily
combined with another smaller lecture.

However, it is also possible that teachers want to design their own mate-
rial from scratch and in that case, it is very useful to integrate the following
elements, because these increase the effectiveness of the lecture. One im-
portant element of an effective learning activity about debugging is that the

39



taught debugging strategies and procedures are useful and practical for the
students. The taught debugging strategies and procedures in our designed
lecture were chosen based on this condition and this was also specifically
mentioned by the students; they indicated that they really appreciated that
these debugging strategies were useful and very applicable in practice.

Another important element is the integration of direct instruction, es-
pecially if it should be taught in one lecture or less. This consists of a few
steps, but the most important and appreciated aspects were short exercises
in an online quiz between the different subjects, the demos inside a familiar
IDE and a debugging exercise to practice with afterwards. This lead to a
very interactive learning activity which was helpful and appreciated as indi-
cated by students. Therefore, we advice that these elements are applied in
any (programming) course, because it results in beneficial outcomes for the
education.

40



Chapter 9

Discussion

In the discussion, we will firstly reflect on our findings and our used methods.
Afterwards, we discuss how our findings could be used in practice and lastly,
we discuss ideas for future research.

9.1 Reflection on findings

The findings we got from the interviews were expected, because integrating
direct instruction was regarded as a very effective teaching method and thus,
the effects of the lecture could be predicted. We followed the necessary steps
for the integration of direct instruction into the lecture and therefore, we got
the related benefits of it and so, it was very likely that the learning goals
were actually met. Moreover, the debugging strategies that were taught
in the lecture were probably useful and practical for the students, because
these solved the most frequently occurring bugs encountered by students.
Therefore, it was expected that the students were interested in them, because
these strategies really helped them, and that the students actually used, or
planned to use them, in practice, which was indicated by the interviews. In
sum, the students were so positive about this lecture and learned several
useful concepts for it, that it would be an idea to give this lecture within
this course every year from now on.

A lot of our assumptions in this research were based on other findings
of other literature mentioned in the background. For example, the pre-
sented debugging procedure was designed and already tested by Michaeli
and Romeike and the selection of the presented debugging strategies was
based on the most frequently occurring problems described by Altadmri
and Brown (2015) and Böttcher et al. (2016). Moreover, the steps of di-
rect instruction and its benefits described in different papers were the main
starting points for designing the lecture. So, we used these assumptions
to design our learning activity and we proved these assumptions as well,
because the findings described in these papers were also recognised in the

41



findings of the interviews. However, the debugging procedure of Michaeli
and Romeike was taught and tested in a K12 classroom environment, while
we taught it to first year students of a university, so the environment was
quite different. Nonetheless, the debugging procedure was effective as well
in this environment and therefore, we tested it in a different environment
and that was also effective.

9.2 Reflection on methods

Many researchers described in the background, used a debugging exercise to
evaluate their learning activity, because it turned out to be a good method
to see how the debugging skills of the participants were affected and that
became also clear in our research. However, we also did another interview
to see if the participants used the presented debugging strategies in prac-
tice, which was not used in the other researches. We think that such an
interview is really useful, and maybe even necessary, to see the real effect of
the learning activity on the students by evaluating how they applied it in
practice. It was also an opportunity to evaluate the learning goals in more
detail if that was not completely clear after the first interview. Therefore,
we advice future researches to have such an evaluation instead of only a
debugging exercise.

Even though this research indicates that our designed teaching material
about debugging was successful, helpful and appreciated by students, the
circumstances of the research were not ideal and could have influenced the
outcome of this research a bit in a positive or negative way. Several of these
factors are mentioned below:

Number of interviewees
We interviewed 5 students for the analysis of the lecture and this number
could be relatively low. The circumstances at that time ensured that it was
relatively difficult to find participants for the interviews and we had sev-
eral time constraints such that we did not had the time to interview more
students. In a future research, however, it would be useful to have more
students that participate, because that gives a better picture of the effects
of the lecture.

Biased group of participants in the pre-test
The pre-test was taken at the designed lecture. The students that were
present at that lecture were probably the students that have more difficulty
with programming, because the better programmers would not participate
in that lecture. These better programmers would probably use the debug-
ger more often than the present programmers. So, the debugger could be
used more often by students before the lecture than the pre-test actually

42



indicates, because the participants in the pre-test could have been biased.

Biased results of the first interviews
In the first interviews, the students were asked to solve a debugging exer-
cise. These interviews were held after the lecture and all the students that
participated had seen that lecture as well. This could result in biased re-
sults, because students could think that it would be ”correct” to apply the
presented strategies and therefore, use it in this interview while they did not
use it normally which would results in observations that don’t reflect the re-
ality. However, this has been partially resolved by also asking the students
if they applied the strategies in practice in a second interview, because these
results would not be biased as easily as with the interviews.

Following programming exercises
The second interviews investigated whether the students applied the taught
debugging strategies in practice within the programming exercises of the
course associated with the given lecture. These results could have been bi-
ased, because the programming exercises of these weeks where about concur-
rency in programs. The bugs that usually occur with concurrency problems
are often not solved with the debugger and other debugging strategies that
were presented, because the occurring errors are quite different. Therefore,
it was possible that the students did not use particular debugging strategies,
because they did not had the opportunity to do so. However, we partially
resolved this by also asking the students if they knew how to use or planned
to use a particular strategy when they did not apply it in the programming
exercises.

9.3 Implications for practice

As mentioned in the introduction, the problem on which this research is
based is the underrepresentation of teaching debugging in education. One
reason for this problem was that teachers indicated that there was not
enough teaching material to teach debugging to their students. In this re-
search, we created such material and also tested it to verify that is was
helpful and successful for the students. Therefore, we solved a really small
portion of a relatively big problem, namely for the students of the year 2019-
2020 of the course Object Oriented Programming at the Radboud University.
The created material can be used in the coming years at this course or could
be directly used by other universities and schools.

The designed teaching material could be the stepping stone for other
researchers to tackle this huge problem to eventually solve this worldwide
underrepresentation of debugging in education. Several ideas are given in
the next section.

43



9.4 Future research

One obvious example of future research would be the next iteration of this
research, which consists of processing the potential improvements into the
lecture: all the learning goals were achieved, but if one explanation of a
debugging strategy could be improved, than it should be JavaDoc. The
reason for this is that JavaDoc is the only learning goal of which is was
not completely clear after the first interview that it was achieved. Another
interesting expansion of the lecture could be an explanation about the usage
of the tests and tips on writing effective and efficient tests. That combined
with the tips for debugging will probably result in a really useful lecture for
the students. Another minor improvement would be to take a closer look at
the questions inside quizzes to make sure that it is clear for everyone what
to answer and that the answers are not ambiguous. Also make sure that the
students can see the intermediate results and answers of the quiz. These
improvements could be integrated into the lecture and the aforementioned
factors could be solved and afterwards, the effect of the lecture could be
tested again to see if the effect after the changes. Additionally, it is possible
to have another iteration to eventually have a ”perfect” lecture about de-
bugging, which would be a huge step against the problem about debugging
in education.

Another idea for future research would be to teach the designed lecture
at another school or university and test if the same results are found there.
It is also possible to test the effect of the lecture more thoroughly. This could
be done by replacing the current pre-test, which was a small questionnaire,
by a debugging exercise as well and comparing the strategies applied by
students before and after the lecture. It could also be possible to have a
control group as well by observing students that did follow the lecture and
did not follow the lecture to see the difference.

Moreover, it is also possible to make a more ”personalised” lecture for
the students. The choice of the presented debugging strategies used in this
presentation were based on articles written by other researchers. The prob-
lems that they identified as most frequently occurring are not necessarily
the most frequently occurring problems everywhere. The problems that
students could be facing at a university could be unique to that university.
To help those students the most, it could be possible to firstly investigate
with which problems those students are actually struggling with and base
the presented debugging strategies on these results to have the most helpful
lecture possible.

44



References

Allwood, C. M., & Björhag, C.-G. (1991). Training of pascal novices’
error handling ability. Acta Psychologica, 78 (1), 137 - 150.
Retrieved from http://www.sciencedirect.com/science/article/

pii/000169189190008N doi: https://doi.org/10.1016/0001-6918(91)
90008-N

Altadmri, A., & Brown, N. C. (2015). 37 million compilations: Investi-
gating novice programming mistakes in large-scale student data. In
Proceedings of the 46th acm technical symposium on computer sci-
ence education (p. 522–527). New York, NY, USA: Association for
Computing Machinery. Retrieved from https://doi.org/10.1145/

2676723.2677258 doi: 10.1145/2676723.2677258
Binder, C., & Watkins, C. L. (1990). Precision teaching and

direct instruction: Measurably superior instructional technology
in schools. Performance Improvement Quarterly , 3 (4), 74-
96. Retrieved from https://onlinelibrary.wiley.com/doi/abs/

10.1111/j.1937-8327.1990.tb00478.x doi: 10.1111/j.1937-8327
.1990.tb00478.x

Böttcher, A., Thurner, V., Schlierkamp, K., & Zehetmeier, D. (2016, Oct).
Debugging students’ debugging process. In 2016 ieee frontiers in edu-
cation conference (fie) (p. 1-7). doi: 10.1109/FIE.2016.7757447

Gauss, E. J. (1982, November). The “wolf fence” algorithm for debugging.
Commun. ACM , 25 (11), 780. Retrieved from https://doi.org/10

.1145/358690.358695 doi: 10.1145/358690.358695
Gersten, R., & Keating, T. (1987, 01). Long-term benefits from direct

instruction. Educational Leadership.
Katz, I., & Anderson, J. (1989, 01). Debugging: An analysis of bug-location

strategies. Human-Computer Interaction, 3 , 351-399. doi: 10.1207/
s15327051hci0304 2

Michaeli, T., & Romeike, R. (2019, April). Current status and perspectives
of debugging in the k12 classroom: A qualitative study. In 2019 ieee
global engineering education conference (educon) (p. 1030-1038). doi:
10.1109/EDUCON.2019.8725282

Michaeli, T., & Romeike, R. (2019, October). Improving debugging skills
in the classroom: The effects of teaching a systematic debugging pro-

45



cess. In Proceedings of the 14th workshop in primary and secondary
computing education (pp. 15:1–15:7). New York, NY, USA: ACM. Re-
trieved from http://doi.acm.org/10.1145/3361721.3361724 doi:
10.1145/3361721.3361724

Perscheid, M., Siegmund, B., Taeumel, M., & Hirschfeld, R. (2017, March).
Studying the advancement in debugging practice of professional soft-
ware developers. Software Quality Journal , 25 (1), 83–110. Re-
trieved from https://doi.org/10.1007/s11219-015-9294-2 doi:
10.1007/s11219-015-9294-2

Renard, L. (2019). Direct instruction - a practical guide to effec-
tive teaching. Retrieved 2020-03-02, from http://https://

www.bookwidgets.com/blog/2019/03/direct-instruction-a

-practical-guide-to-effective-teaching

van den Akker, J., McKenney, S., Nieveen, N., & Gravemeijer, K. (2006). In-
troducing educational design research. In J. van den Akker, K. Grave-
meijer, S. McKenney, & N. Nieveen (Eds.), Educational design research
(pp. 3–7). United Kingdom: Routledge.

Watkins, C. L. (1988). Project follow through: A story of the identification
and neglect of effective instruction. Youth Policy , 10 (1).

Zeller, A. (2009). Why programs fail : a guide to systematic debugging. San
Francisco, Calif. Oxford: Morgan Kaufmann Elsevier Science distrib-
utor.

46



Appendix A

Figures

47



Figure A.1: The schematic representation of the debugging process created
by Michaeli and Romeike (2019)

48



Figure A.2: The instructions presented in the document of Allwood and
Björhag (1991)

Figure A.3: The picture used in question 6 of the Socrative Quiz

49



Figure A.4: The picture used in question 7 of the Socrative Quiz

50



Appendix B

Code Fragments

51



B.1 Debugging exercise after presentation: Cal-
culate average price of a list of fruits

1 package debuggingexercise1;

2

3 public class DebuggingExercise1 {

4

5 public static void main(String [] args) {

6 Fruit[] list1 = {new Apple(), new Banana ()};

7 Fruit[] list2 = {new Apple(), new Banana (), new Pear(),

new Orange (), new Orange (), new Pear()};

8 Fruit[] list3 = {};

9 Fruit[] list4 = {new Apple(), new Orange ()};

10 int resList1 = calcAveragePriceOfFruit(list1);

11 int resList2 = calcAveragePriceOfFruit(list2);

12 int resList3 = calcAveragePriceOfFruit(list3);

13 int resList4 = calcAveragePriceOfFruit(list4);

14 System.out.println("The average of list 1 should be

5.0, current value = " + resList1);

15 System.out.println("The average of list 2 should be

7.0, current value = " + resList2);

16 System.out.println("The average of list 3 should be

0.0, current value = " + resList3); //This is debatable ,

but in this exercise , we assume that an average of 0

elements is 0

17 System.out.println("The average of list 4 should be

6.5, current value = " + resList4);

18

19 }

20

21 public static double calcAveragePriceOfFruit(Fruit [] fruits

){

22 int sum = 0;

23 for(int i = 1; i <= fruits.length; i++){

24 sum += fruits[i]. getPrice ();

25 }

26 double result = sum/fruits.length;

27 return result;

28 }

29 }

Listing B.1: The main class (DebuggingExercise1.java)

1 package debuggingexercise1;

2

3 public interface Fruit {

4 abstract public int getPrice ();

5 abstract public int getWeight ();

6 }

Listing B.2: Fruit.java

1 package debuggingexercise1;

52



2

3 public class Apple implements Fruit {

4 int price = 6;

5 int weight = 3;

6

7 @Override

8 public int getWeight (){

9 return price;

10 }

11

12 @Override

13 public int getPrice (){

14 return weight;

15 }

16 }

Listing B.3: Apple.java

1 package debuggingexercise1;

2

3 public class Banana implements Fruit {

4 int price = 4;

5 int weight = 4;

6

7 @Override

8 public int getWeight (){

9 return weight;

10 }

11

12 @Override

13 public int getPrice (){

14 return price

15 }

16 }

Listing B.4: Banana.java

1 package debuggingexercise1;

2

3 public class Orange implements Fruit {

4 int price = 7;

5 int weight == 3;

6

7 @Override

8 public int getWeight []{

9 return weight;

10 }

11

12 @Override

13 public int getPrice (){

14 return price;

15 }

16 }

Listing B.5: Orange.java

53



1 package debuggingexercise1;

2

3 public class Pear implements Fruit {

4 int price = 9;

5 int weight = 4;

6

7 @Override

8 public int getWeight (){

9 return weight;

10 }

11

12 @Override

13 public int getPrice (){

14 return -price;

15 }

16 }

Listing B.6: Pear.java

B.2 Debugging exercise of the interview: Calcu-
late median of a list of integers

1 package debuggingexercise3;

2

3 import java.util.ArrayList;

4 import java.util.Arrays;

5

6 public class DebuggingExercise3 {

7

8 public static void main(String [] args) {

9 int[] list1 = {1,2,3};

10 int[] list2 = {3,2,5,3,2,5};

11 int[] list3 = {1 ,8 ,4 ,8 ,45 ,8 ,4 ,976 ,234 ,867800 ,34 ,9};

12 int[] list4 = {5,7,3,5,8,9,3,4,7,4,8};

13 int[] resultList1 = calcMedian(list1);

14 int[] resultList2 = calcMedian(list2);

15 int[] resultList3 = calcMedian(list3);

16 int[] resultList4 = calcMedian(list4);

17 System.out.println("Result of list1 should be [2],

current value is " + Arrays.toString(resultList1));

18 System.out.println("Result of list2 should be [3,3],

current value is " + Arrays.toString(resultList2));

19 System.out.println("Result of list3 should be [8,9],

current value is " + Arrays.toString(resultList3));

20 System.out.println("Result of list4 should be [5],

current value is " + Arrays.toString(resultList4));

21 }

22

23 /**

24 * Calculates the median of the given array

25 * @param numbers The numbers of which the median should be

found

26 * @return An array with one or both medians

54



27 */

28 public static int[] calcMedian(int[] numbers){

29 ArrayList <Integer > sortedNumbers = sortNumbers(numbers)

;

30 if(numbers.length % 2 == 1){

31 int[] result = {sortedNumbers[numbers.length /2+1],

sortedNumbers[numbers.length /2]};

32 return result;

33 }

34 int[] result = {sortedNumbers[numbers.length /2]};

35 return result;

36 }

37

38 /**

39 * Sorts a given array through selection sort

40 * @param list The array to be sorted

41 * @return A sorted array

42 */

43 public static int[] sortNumbers(int[] list){

44 for(int i = 0; i <= list.length; i++){

45 int index = findIndexWithSmallestNumber(list , i,

list.length);

46 // Switch the found index with i, such that 0 till

i is already sorted

47 int x = list[index];

48 list[index] = list[i];

49 list[i] = x;

50 }

51 return list;

52 }

53 /**

54 * Finds the index of the smallest number within the given

bounds in an array

55 * @param list The given array

56 * @param l The left bound (inclusive)

57 * @param r The right bound (exclusive)

58 * @return The index with the smallest number

59 */

60 public static int findIndexWithSmallestNumber(int[] list ,

int l, int r){

61 int result = l;

62 for(int i = l + 1; i < r; i++){

63 if(list[i] > list[result ]){

64 result = i;

65 }

66 }

67 return result;

68 }

69 }

Listing B.7: The main class (DebuggingExercise3.java)

B.3 JavaDoc demo used in the presentation

55



1 package javadocdemo;

2

3 public class JavaDocDemo {

4

5 public static void main(String [] args) {

6 printTrimmedString(" Hello , world! ");

7 }

8

9 public static void printTrimmedString(String text){

10 text.trim();

11 System.out.println("(" + text + ")");

12 }

13

14 }

Listing B.8: The main class (JavaDocDemo.java)

B.4 Run Time error demo used in the presenta-
tion

1 package runtimedemo;

2

3 import java.util.ArrayList;

4

5 public class RunTimeDemo {

6

7 public static void main(String [] args) {

8 ArrayList <Integer > x = new ArrayList ();

9 for(int i = 0; i < 10; i++){

10 x.add(null);

11 }

12 for(int i = 1; i < x.size(); i++){

13 x.set(i, i);

14 }

15 for(int number : x){

16 number ++;

17 }

18 System.out.println(x);

19 }

20

21 }

Listing B.9: The main class (RunTimeDemo.java)

B.5 The first debugger demo used in the presen-
tation

1 package debuggerdemo1;

2

3 public class DebuggerDemo1 {

4

5 public static void main(String [] args) {

56



6 int[] input = {1,2,3};

7 double avg = findAverage(input);

8 System.out.println("The average is " + avg);

9 }

10

11 private static double findAverage(int[] input) {

12 double result = 0;

13 for (int s : input) {

14 result += s;

15 }

16 return result;

17 }

18

19 }

Listing B.10: The main class (DebuggerDemo1.java)

B.6 The second debugger demo used in the pre-
sentation

1 package debuggerdemo2;

2

3 public class DebuggerDemo2 {

4

5 public static void main(String [] args) {

6 int x = 2;

7 int y = 3;

8 int z = 4;

9

10 String s1 = "Hello , ";

11 String s2 = "world!";

12 s1 = s1.toLowerCase ().concat(s2);

13

14 f(s1);

15 f(s1);

16

17 s1 = "Hello , ";

18 s2 = "world!";

19 s1 = s1.concat(s2);

20 }

21

22 public static void f(String s){

23 s = s.toLowerCase ();

24 s = s.toUpperCase ();

25 boolean b = s.contains("H");

26 s = s.toLowerCase ();

27 s = s.toUpperCase ();

28 }

29

30 }

Listing B.11: The main class (DebuggerDemo2.java)

57



Appendix C

Documents

58



Answers Debugging exercise 1

Ruben Holubek s1006591

March 2020

• Compile time errors

1. In Banana.java, in line 14:
Missing semicolon.

2. In Orange.java, in line 5:
== should be a single =. Now a comparison is made instead of a declaration.

3. In Orange.java, in line 8:
Wrong brackets, should be () instead of [].

4. In DebuggingExercise1.java, in lines 10-13:
The types should be double and not int.

• Run time errors

1. In DebuggingExercise1.java, in line 23:
The ≤ in the loop should be a <. Now an indexOutOfBounds Error occurs.

2. In DebuggingExercise1.java, in line 26:
The case where the list is empty should be handled separately, because otherwise a
division by 0 occurs. This could be done by a separate if statement to catch this case.

• Logic errors

1. In Apple.java, in line 9 and 14:
The price and weight are switched in the getWeight() and getPrice() methods.

2. In Pear.java, in line 14:
The minus sign should be removed.

3. In DebuggingExercise1.java, in line 23:
The for loop should start at 0 and not 1. Now the first element is always skipped.

4. In DebuggingExercsie1.java, in line 26:
The division should be converted to a double by typing (double) before it. Currently,
2 integers are divided and the result will be an integer as well, which is then converted
to a double. But by converting the type before the assignment, the double is correctly
stored.

1

C.1 Pdf answer debugging exercise after presen-
tation

59



Answers Debugging exercise 3

Ruben Holubek s1006591

March 2020

• Compile time errors

1. In line 29:
ArrayList<Integer> should be an int[].

• Run time errors

1. In line 44:
The ≤ should be a < in the loop. Otherwise an indexOutOfBoundsException occurs.

• Logic errors

1. In line 30:
The 1 should be replaced with a 0. Otherwise the wrong case is caught.

2. In line 31:
The numbers.length/2+1 should be a numbers.length/2-1. Otherwise the wrong indices
are returned.

3. In line 62:
The > should be a < or ≤. Otherwise the index with the largest number is returned
and so, the list will be sorted the other way around.

1

C.2 Pdf answer debugging exercise used in the in-
terview

60



Interview person x 

 

1. In line 29 (Compile): 

ArrayList<Integer> should be an int[]. 

How fixed: 

 

2. In line 44 (Run): 

The <= should be a < in the loop.  

How fixed: 

 

3. In line 30 (Logic): 

The 1 should be replaced with a 0. 

How fixed: 

 

4. In line 31 (Logic): 

The numbers.length/2+1 should be a numbers.lengt/2-1 

How fixed: 

 

5. In line 62 (Logic):: 

The > should be a < or <=. 

How fixed: 

 

Order in which the bugs were fixed:  

 

Overall strategy: 

 

Good points: 

 

Improvements: 

 

Other notes: 

 

C.3 Schema used for the interviews

61



Name  

Date  

Debugging Teaching
Intervention

Score  

1. Do you use the following strategy when debugging? Searching on Stack Overflow

2. Do you use the following strategy when debugging? Looking at documentation online

3. Do you use the following strategy when debugging? Looking at documentation inside the IDE
�NetBeans)

4. Do you use the following strategy when debugging? Print statements to see the values of the
variables

5. Do you use the following strategy when debugging? The debugger

A Yes

B No

C No opinion

A Yes

B No

C No opinion

A Yes

B No

C No opinion

A Yes

B No

C No opinion

A Yes

B No

C No opinion

C.4 Socrative Quiz used in the presentation

62



6.

SecondLine should be "Line2", but it prints "Line1". How should this bug probably be solved?

7.

Given this Run Time error, what is probably wrong?

A Edit the function getLineByNumber()

B Edit the given argument

C Edit the print System.out.println() statement

A A null object at line 18

B A null object at line 27

C A bug that has something to do with indices and arrays/lists at line 18

D A bug that has something to do with indices and arrays/lists at line 27

E A bug in a mathematical statement at line 18

F A bug in a mathematical statement at line 27

63



Interview person 1 

 

1. In line 29 (Compile): 

ArrayList<Integer> should be an int[]. 

How fixed: 

Looked at the line number given by the compiler. 

Determined it was a wrong type. 

Used the quick solution provided by the IDE. 

 

2. In line 44 (Run): 

The <= should be a < in the loop.  

How fixed: 

After the run time error, looked at the provided line and immediately saw that it should be a 

smaller than, because the interviewee made that mistakes often in practice. 

 

3. In line 30 (Logic): 

The 1 should be replaced with a 0. 

How fixed: 

Used the debugger to see how the variables changed step-by-step. The interviewee saw that 

the wrong case was executed and switched them to fix the bug, after explaining the function 

to herself. 

 

4. In line 31 (Logic): 

The numbers.length/2+1 should be a numbers.lengt/2-1 

How fixed: 

Used the debugger to see how the variables changed step-by-step. The interviewee saw that 

the +1 was incorrect and removed it. After using the debugger once more, she saw that it still 

was incorrect and added -1 to fix the bug. 

 

5. In line 62 (Logic):: 

The > should be a < or <=. 

How fixed: 

Used the debugger in the corresponding function to see how the variables changed step-by-

step. Determined that the function did not work correctly and explained the function to 

herself and saw that the sign was wrong. 

 

Order in which the bugs were fixed:  

1-2-5-3-4 

 

Overall strategy: 

1. Ran program -> Compile time error 

2. Fixed bug 1 

3. Ran program -> Run time error 

4. Fixed bug 2 

5. Ran program -> Test case 1 was incorrect  

6. Inspected findIndexWithSmallestNumber with test case 1 with debugger -> incorrect result 

7. Fixed bug 5 

8. Ran program -> Test case 1 was incorrect 

C.5 Filled in interview schemes

64



9. Inspected findIndexWithSmallestNumber with test case 1 with debugger -> correct result 

10. Inspected sortNumbers with test case 1 with debugger-> correct result 

11. Inspected calcMedian with test case 1 with debugger -> incorrect result 

12. Incorrectly fixed bug 3, but test case 1 was correct 

13. Ran program -> Test case 1 was correct 

14. Ran program -> Test case 2 was incorrect 

15. Inspected sortNumbers with test case 2 with debugger-> correct result 

16. Inspected calcMedian with test case 2 with debugger-> incorrect result 

17. Fixed bug 3 

18. Ran program -> Test case 2 was correct 

19. Ran program -> Test case 3 was incorrect 

20. Inspected sortNumbers with test case 2 with debugger-> incorrect result 

21. Fixed bug 4 

22. Ran program -> Test case 3 was correct 

23. Ran program -> Test case 4 was correct 

24. Ran program -> All test cases were correct 

 

Good points: 

Demo’s were really useful, helped to see how it works in practice instead on slides. 

The explanations were clear. 

 

Improvements: 

The full picture of the debugging strategy was rather small. 

 

Other notes: 

Was thinking out loud 

Never used debugger, actually did after the intervention and was really useful 

65



Interview person 2 

 

1. In line 29 (Compile): 

ArrayList<Integer> should be an int[]. 

How fixed: 

Saw error in the IDE, checked the import and used the shortcut for more information. 

Afterwards used the quick fix given by the IDE. 

 

2. In line 44 (Run): 

The <= should be a < in the loop.  

How fixed: 

Saw the run time error and inspected the provided line and immediately fixed it by looking at 

it. 

 

3. In line 30 (Logic): 

The 1 should be replaced with a 0. 

How fixed: 

Looked at all the test cases and saw that the number of the returned integers was incorrect 

and therefore thought that it had to do with the if statement. Used the debugger to see the 

execution step-by-step and fixed the error. 

 

4. In line 31 (Logic): 

The numbers.length/2+1 should be a numbers.lengt/2-1 

How fixed: 

With the debugger, the interviewee knew that it had to do with calcMedian and with the 

help with the debugger and test case 2, after a while the interviewee saw that the incorrect 

indices were used and fixed the bug. 

 

5. In line 62 (Logic): 

The > should be a < or <=. 

How fixed: 

Inspected the findIndexWithSmallestNumber() with the debugger and saw that the result 

was incorrect of case 2 and fixed the bug after inspecting it step-by-step. 

 

Order in which the bugs were fixed: 1-2-3-5-4 

 

Overall strategy: 

1. Looked at the compile time error provided by the IDE 

2. Fixed bug 1 

3. Ran program -> Run time error 

4. Fixed bug 2 

5. Ran program -> All test cases incorrect, but in particular the length of the results were 

incorrect 

6. Inspected calcMedian with test case 1 with debugger -> incorrect result 

7. Fixed bug 3 

8. Ran program -> Test cases 2 & 3 incorrect 

9. Inspected sortNumbers with test case 1 with debugger -> incorrect result 

10. Inspected findIndexWithSmallestNumber with test case 1 with debugger-> incorrect result 
66



11. Fixed bug 5 

12. Ran program -> Test cases 2 & 3 incorrect 

13. Inspected findIndexWithSmallestNumber with test case 2 with debugger-> correct result 

14. Inspected sortNumbers with test case 2 with debugger -> correct result 

15. Inspected calcMedian with test case 2 with debugger -> incorrect result 

16. Fixed bug 4 

17. Ran program -> All test cases were correct 

 

Good points: 

Demo’s were really useful, helped to see how it works in practice instead on slides. 

The interaction with the students was really useful. 

The increasing steps were very helpful (first print statements, than the debugger) 

 

Improvements: 

Show the end score of the quiz. 

 

Other notes: 

Was thinking out loud 

Never used debugger, actually did after the intervention and immediately solved several bugs 

 

67



Interview person 3 

 

1. In line 29 (Compile): 

ArrayList<Integer> should be an int[]. 

How fixed: 

Looked at the error given by the IDE. Saw that the types were incorrect and changed the 

types by hand. 

 

2. In line 44 (Run): 

The <= should be a < in the loop.  

How fixed: 

Evaluated the run time error, went to the correct line and immediately changed it. 

 

3. In line 30 (Logic): 

The 1 should be replaced with a 0. 

How fixed: 

Saw that there was a bug associated with the length of the returned object. Therefore, 

inspected the if statement and saw that the wrong case was applied and fixed it. 

 

4. In line 31 (Logic): 

The numbers.length/2+1 should be a numbers.lengt/2-1 

How fixed: 

Knew that the bug was in calcMedian and just followed the code step by step in her head. 

She saw that the incorrect index was returned after using an example and firstly removed the 

+1, went through hit again, and changed it to a -1. 

 

5. In line 62 (Logic): 

The > should be a < or <=. 

How fixed: 

The interviewee inspected the findIndexWithSmallestNumber with the debugger and saw 

that the result was incorrect. The interviewee saw the bug relatively quickly and fixed it. 

 

Order in which the bugs were fixed: 1-2-3-5-4 

 

Overall strategy: 

1. Looked at the compile time error provided by the IDE 

2. Fixed bug 1 

3. Ran program -> Run time error 

4. Fixed bug 2 

5. Ran program -> All test cases incorrect, but in particular the length of the results were 

incorrect 

6. Looked at calcMedian 

7. Fixed bug 3 

8. Ran program -> Test cases 2 & 3 incorrect 

9. Inspected sortNumbers with test case 2 with debugger -> incorrect result 

10. Inspected findIndexWithSmallestNumber with test case 2 with debugger-> incorrect result 

11. Fixed bug 5 

12. Ran program -> Test cases 2 & 3 incorrect 
68



13. Inspected findIndexWithSmallestNumber with test case 2 with debugger-> correct result 

14. Inspected sortNumbers with test case 2 with debugger -> correct result 

15. Inspected calcMedian with test case 2 with debugger -> incorrect result 

16. Fixed bug 4 

17. Ran program -> All test cases were correct 

 

Good points: 

Clear explanation. 

The images were clear (in particular the commands) 

The interaction/feedback and the demos were really nice to see if the students understood the 

material. 

 

Improvements: 

An “in between” option in the quiz (e.g. sometimes instead of only yes and no) 

 

Other notes: 

Was thinking out loud 

Never used debugger, actually did after the intervention  

 

 

69



Interview person 4 

 

1. In line 29 (Compile): 

ArrayList<Integer> should be an int[]. 

How fixed: 

Looked at error provided by IDE, type was incorrect and fixed it by hand. 

 

2. In line 44 (Run): 

The <= should be a < in the loop.  

How fixed: 

Run time error occurred, looked at the stack trace and the lines and immediately fixed it. 

 

3. In line 30 (Logic): 

The 1 should be replaced with a 0. 

How fixed: 

Saw that the length was incorrect and immediately knew that it had to do with the if 

statement and fixed it. 

 

4. In line 31 (Logic): 

The numbers.length/2+1 should be a numbers.lengt/2-1 

How fixed: 

Saw that the output was incorrect and knew it had to be in calcMedian and immediately 

solved it there. 

 

5. In line 62 (Logic): 

The > should be a < or <=. 

How fixed: 

Looked at the function after determining that it had to be in this function and immediately 

fixed it. 

 

Order in which the bugs were fixed:  

1-2-3-5-4 

 

Overall strategy: 

1. Looked at the compile time error provided by the IDE 

2. Fixed bug 1 

3. Ran program -> Run time error 

4. Fixed bug 2 

5. Ran program -> All test cases incorrect, but in particular the length of the results were 

incorrect 

6. Looked at calcMedian 

7. Fixed bug 3 

8. Ran program -> Test cases 2 & 3 incorrect 

9. Used print statement to see the outcome of sortNumbers -> Numbers were sorted in the 

wrong way around 

10. Looked at findIndexWithSmallestNumber 

11. Fixed bug 5 

12. Ran program -> Test cases 2 & 3 incorrect 
70



13. Knew the numbers were correctly sorted -> had to be in calcMedian 

14. Fixed bug 4 

15. Ran program -> All test cases were correct 

 

Good points: 

The interaction was nice, especially the demos and the quiz. 

That kept the students engaged. 

 

Improvements: 

- 

 

Other notes: 

Prefers print statements if the interviewee only wants to see a specific value , otherwise uses the 

debugger. 

Was relatively a good programmer and thought this exercise was rather easy and included frequently 

occurring bugs. 

Was thinking out loud 

 

71



Interview person 5 

 

1. In line 29 (Compile): 

ArrayList<Integer> should be an int[]. 

How fixed: 

Looked at error provided by IDE, type was incorrect and fixed it by hand. 

 

2. In line 44 (Run): 

The <= should be a < in the loop.  

How fixed: 

Run time error occurred, looked at the relevant lines and immediately fixed it. 

 

3. In line 30 (Logic): 

The 1 should be replaced with a 0. 

How fixed: 

Saw that the length was incorrect and knew that it had to be in calcMedian. Used the 

debugger step-by-step to see what went wrong and fixed it. 

 

4. In line 31 (Logic): 

The numbers.length/2+1 should be a numbers.lengt/2-1 

How fixed: 

Saw that the output was incorrect and knew it had to be in calcMedian with the returned 

positions. Used an example and saw that the indices were indeed incorrect and corrected 

them. 

 

5. In line 62 (Logic): 

The > should be a < or <=. 

How fixed: 

Saw that the sortNumbers sorted the other way around and inspected 

findIndexWithSmallestNumber with the debugger step-by-step and fixed it. 

 

Order in which the bugs were fixed:  

1-2-3-4-5 

 

Overall strategy: 

1. Looked at the compile time error provided by the IDE 

2. Fixed bug 1 

3. Ran program -> Run time error 

4. Fixed bug 2 

5. Ran program -> All test cases incorrect, but in particular the length of the results were 

incorrect 

6. Looked at calcMedian 

7. Fixed bug 3 

8. Ran program -> Test cases 2 & 3 incorrect, but in particular the returned positions were 

incorrect 

9. Inspected calcMedian with the debugger 

10. Fixed bug 4 

72



11. Ran program -> Test case 3 incorrect, in particular the sorting algorithm was probably 

incorrect 

12. Inspected sortNumbers with the debugger -> sorted the other way around 

13. Looked at findIndexWithSmallestNumber with the debugger 

14. Fixed bug 5 

15. Ran program -> All test cases were correct 

 

Good points: 

The explanations were really helpful and clear. 

Especially the run time error explanations were useful 

 

Improvements: 

- 

 

Other notes: 

Never used the debugger before, but did after the learning activity 

Was thinking out loud 

 

73



Participant 1: 
Did not use JavaDoc the last weeks since it wasn't necessary for that interviewee, but the interviewee 
knows how to use it and definitely will use in the future. The interviewee did use the debugger (a lot) 
and found it a very useful addition to the course. 
 
Participant 2: 
Did not used Javadoc that much but understands the basics and would like to learn more about it 
when working on bigger projects. The participant did use the debugger a lot and it helped a lot with 
the exercises. 
 
Participant 3: 
Did use JavaDoc in the exercises, but did not use the debugger, because it did not work anymore in 
the participants Netbeans IDE after the interview. However, the participant knows how to use the 
debugger now and will use it in the future. 
 
Participant 4: 
Used JavaDoc extensively, whenever not sure how a certain Object in Java works or when looking for 
a specific function that's where the participant starts to look it up. The participant did not use the 
debugger personally, but its programming partner did when they encountered one very elusive bug. 
Nevertheless, the participant would roughly know how to use the debugger if needed. 
 
Participant 5: 
Did only one java exercise since the first interview, but used Javadoc in that exercise. However, the 
exercise was not that difficult and so, the participant did not need the debugger, but the participant 
would know how to use it. 

C.6 Results of the second interviews

74



C.7 Used slides in the presentation

75



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

H
ow

to
de

bu
g

S
tr

at
eg

ie
s

an
d

ti
p

s
to

effi
ci

en
tl

y
d

eb
u

g
yo

u
r

pr
og

ra
m

s

R
u

b
en

H
ol

u
b

ek

R
a
d
b
o
u
d
U
n
iv
er
si
ty

N
ij
m
eg

en

M
ay

18
,

20
20

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

1
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
ab

le
of

co
nt

en
ts

In
tr

o
d

u
ct

io
n

A
sy

st
em

at
ic

d
eb

u
gg

in
g

pr
o

ce
d

u
re

Ja
va

D
o

c

E
va

lu
at

in
g

a
ru

n
ti

m
e

er
ro

r

T
h

e
d

eb
u

gg
er

W
ra

p
p

in
g

it
u

p

T
im

e
to

pr
ac

ti
ce

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

2
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
ab

le
of

co
nt

en
ts

In
tr

o
d

u
ct

io
n

A
sy

st
em

at
ic

d
eb

u
gg

in
g

pr
o

ce
d

u
re

Ja
va

D
o

c

E
va

lu
at

in
g

a
ru

n
ti

m
e

er
ro

r

T
h

e
d

eb
u

gg
er

W
ra

p
p

in
g

it
u

p

T
im

e
to

pr
ac

ti
ce

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

3
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

A
b

ou
t

m
e

•
R

u
b

en
H

ol
u

b
ek

•
3r

d
ye

ar
b

ac
h

el
or

st
u

d
en

t

•
B

ac
h

el
or

th
es

is

•
T

ea
ch

st
u

d
en

ts
h

ow
to

d
eb

u
g

an
d

te
st

th
e

eff
ec

ts

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

4
/
4
5



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

O
ve

rv
ie

w

E
xp

la
in

ed
to

ol
s/

co
n

ce
p

ts
:

•
Ja

va
D

o
c

(C
om

p
ile

,
R

u
n

an
d

C
om

p
ar

e)

•
E

va
lu

at
in

g
a

ru
n

ti
m

e
er

ro
r

(R
u

n
)

•
T

h
e

d
eb

u
gg

er
(R

u
n

an
d

C
om

p
ar

e)

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

5
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

B
ut

fi
rs

t,
a

sh
or

t
qu

iz
..

.

1
G

o
to

so
cr

at
iv

e.
co

m

2
P

re
ss

on
lo

gi
n

3
L

og
in

as
st

u
d

en
t

4
R

o
om

n
am

e
is

H
O

L
U

B
E

K
60

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

6
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
ab

le
of

co
nt

en
ts

In
tr

o
d

u
ct

io
n

A
sy

st
em

at
ic

d
eb

u
gg

in
g

pr
o

ce
d

u
re

Ja
va

D
o

c

E
va

lu
at

in
g

a
ru

n
ti

m
e

er
ro

r

T
h

e
d

eb
u

gg
er

W
ra

p
p

in
g

it
u

p

T
im

e
to

pr
ac

ti
ce

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

7
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

A
sy

st
em

at
ic

de
bu

gg
in

g
pr

o
ce

du
re •

3
d

iff
er

en
t

d
eb

u
gg

in
g

p
h

as
es

•
C

om
p

ile
•

R
u

n
•

C
om

p
ar

e

•
U

se
d

in
p

ap
er

fr
om

M
ic

h
ae

li
an

d
R

om
ei

ke

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

8
/
4
5



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

C
om

pi
le

1
Is

th
e

pr
og

ra
m

co
m

p
ili

n
g

su
cc

es
sf

u
lly

?

2
If

n
ec

es
sa

ry
,

re
ve

rt
ch

an
ge

s

3
R

ea
d

an
d

u
n

d
er

st
an

d
th

e
er

ro
r

m
es

sa
ge

4
A

d
ju

st
yo

u
r

pr
og

ra
m

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

9
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

R
un

1
D

o
es

th
e

pr
og

ra
m

ru
n

w
it

h
ou

t
er

ro
rs

?

2
If

n
ec

es
sa

ry
,

re
ve

rt
ch

an
ge

s

3
R

ea
d

an
d

u
n

d
er

st
an

d
th

e
fi

rs
t

er
ro

r
m

es
sa

ge

4
”W

h
at

’s
th

e
ca

u
se

?”
M

o
d

if
y

yo
u

r
as

su
m

p
ti

on
or

m
ak

e
a

n
ew

on
e

5
D

et
er

m
in

e
th

e
er

ro
r

an
d

fi
n

d
th

e
re

le
va

n
t

lin
es

of
co

d
e

6
A

d
ju

st
yo

u
r

pr
og

ra
m

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

1
0
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

C
om

pa
re

1
D

o
ex

p
ec

te
d

an
d

ac
tu

al
b

eh
av

io
r

m
at

ch
?

2
If

n
ec

es
sa

ry
,

re
ve

rt
ch

an
ge

s

3
”W

h
y

is
th

is
th

e
ca

se
?”

M
o

d
if

y
yo

u
r

as
su

m
p

ti
on

or
m

ak
e

a
n

ew
on

e

4
D

et
er

m
in

e
th

e
er

ro
r

an
d

fi
n

d
th

e
re

le
va

n
t

lin
es

of
co

d
e

5
A

d
ju

st
yo

u
r

pr
og

ra
m

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

1
1
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

A
sy

st
em

at
ic

de
bu

gg
in

g
pr

o
ce

du
re •

3
d

iff
er

en
t

d
eb

u
gg

in
g

p
h

as
es

•
C

om
p

ile
•

R
u

n
•

C
om

p
ar

e

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

1
2
/
4
5



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
ab

le
of

co
nt

en
ts

In
tr

o
d

u
ct

io
n

A
sy

st
em

at
ic

d
eb

u
gg

in
g

pr
o

ce
d

u
re

Ja
va

D
o

c

E
va

lu
at

in
g

a
ru

n
ti

m
e

er
ro

r

T
h

e
d

eb
u

gg
er

W
ra

p
p

in
g

it
u

p

T
im

e
to

pr
ac

ti
ce

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

1
3
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

Ja
va

D
o

c

•
D

o
cu

m
en

ta
ti

on
of

co
d

e

•
C

tr
l

+
S

h
if

t
+

S
p

ac
e

to
se

e
Ja

va
D

o
c

in
si

d
e

N
et

b
ea

n
s!

•
S

h
ow

s
in

fo
rm

at
io

n
ab

ou
t

th
e

ar
gu

m
en

ts
,

re
tu

rn
ob

je
ct

,
th

e
fu

n
ct

io
n

al
it

y
an

d
m

or
e

•
W

or
ks

al
so

fo
r

se
lf

-w
ri

tt
en

d
o

cu
m

en
ta

ti
on

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

1
4
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

E
xa

m
pl

e

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

1
5
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

O
ur

do
cu

m
en

ta
ti

on
..

.

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

1
6
/
4
5



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

..
.

al
so

se
en

in
Ja

va
D

o
c

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

1
7
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

D
em

o
an

d
ex

er
ci

se

•
D

em
o

ab
ou

t
u

si
n

g
Ja

va
D

o
c

•
A

q
u

es
ti

on
at

S
o

cr
at

iv
e

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

1
8
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
ab

le
of

co
nt

en
ts

In
tr

o
d

u
ct

io
n

A
sy

st
em

at
ic

d
eb

u
gg

in
g

pr
o

ce
d

u
re

Ja
va

D
o

c

E
va

lu
at

in
g

a
ru

n
ti

m
e

er
ro

r

T
h

e
d

eb
u

gg
er

W
ra

p
p

in
g

it
u

p

T
im

e
to

pr
ac

ti
ce

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

1
9
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

F
ir

st
an

ex
am

pl
e

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

2
0
/
4
5



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

P
ar

si
ng

th
e

er
ro

r

•
ja

va
.l

a
n

g
.A

rr
ay

In
d

ex
O

u
tO

fB
o

u
n

d
sE

xc
ep

ti
o

n
:

4

•
T

h
is

is
th

e
er

ro
r

th
at

o
cc

u
rr

ed
w

it
h

ad
d

it
io

n
al

in
fo

rm
at

io
n

.

•
T

h
is

ex
am

p
le

in
d

ic
at

es
th

at
an

el
em

en
t

in
an

ar
ra

y
w

as
ac

ce
ss

ed
w

h
ic

h
d

o
es

n
’t

ex
is

ts
,

in
p

ar
ti

cu
la

r
on

in
d

ex
4.

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

2
1
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

P
ar

si
ng

th
e

er
ro

r

•
a

t
R

u
n

T
im

eS
lid

es
.c

a
lc

S
u

m
(R

u
n

T
im

eS
lid

es
.j

a
va

:2
2

)
a

t
R

u
n

T
im

eS
lid

es
.m

a
in

(R
u

n
T

im
eS

lid
es

.j
a

va
:1

5
)

•
T

h
is

is
th

e
st

ac
k

tr
ac

e,
w

h
ic

h
sh

ow
s

th
e

ex
ec

u
ti

n
g

m
et

h
o

d
s

w
h

en
th

e
er

ro
r

o
cc

u
rr

ed
.

•
T

h
is

ex
am

p
le

te
lls

u
s

th
at

th
e

er
ro

r
o

cc
u

rr
ed

in
ca

lc
S

u
m

()
on

lin
e

22
,

w
h

ic
h

w
as

ca
lle

d
fr

om
th

e
m

ai
n

m
et

h
o

d
on

lin
e

15
.

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

2
2
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

P
ar

si
ng

th
e

er
ro

r

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

2
3
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

C
om

m
on

er
ro

rs
an

d
so

lu
ti

on
s

I

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

2
4
/
4
5



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

C
om

m
on

er
ro

rs
an

d
so

lu
ti

on
s

II

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

2
5
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

D
em

o
an

d
ex

er
ci

se

•
D

em
o

ab
ou

t
p

ar
si

n
g

a
R

u
n

T
im

e
er

ro
r

•
A

q
u

es
ti

on
at

S
o

cr
at

iv
e

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

2
6
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
ab

le
of

co
nt

en
ts

In
tr

o
d

u
ct

io
n

A
sy

st
em

at
ic

d
eb

u
gg

in
g

pr
o

ce
d

u
re

Ja
va

D
o

c

E
va

lu
at

in
g

a
ru

n
ti

m
e

er
ro

r

T
h

e
d

eb
u

gg
er

W
ra

p
p

in
g

it
u

p

T
im

e
to

pr
ac

ti
ce

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

2
7
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
he

de
bu

gg
er

•
A

to
ol

to
se

e
th

e
cu

rr
en

t
st

at
e

of
th

e
pr

og
ra

m

•
V

er
y

eff
ec

ti
ve

an
d

effi
ci

en
t

fo
r

fi
n

d
in

g
b

u
gs

•
A

pr
in

t
st

at
em

en
t

on
st

er
oi

d
s

•
A

va
ila

b
le

in
m

os
t

ID
E

’s

•
S

o
ve

ry
u

se
fu

l
to

le
ar

n
h

ow
to

u
se

it
!

•
T

o
st

ar
t

th
e

d
eb

u
gg

er
:

D
eb

u
g
→

d
eb

u
g

pr
oj

ec
t

(o
r

C
tr

l
+

F
5)

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

2
8
/
4
5



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

E
xa

m
pl

e
I

•
P

ro
gr

am
b

ef
or

e
st

ar
ti

n
g

d
eb

u
gg

er

•
B

re
ak

p
oi

n
ts

on
lin

es
19

an
d

21

•
B

re
ak

p
oi

n
ts

ca
n

b
e

se
t

by
cl

ic
ki

n
g

on
th

e
lin

e
n

u
m

b
er

s

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

2
9
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

E
xa

m
pl

e
II

•
D

eb
u

gg
er

cu
rr

en
tl

y
on

br
ea

kp
oi

n
t

on
lin

e
19

(N
ot

ex
ec

u
te

d
ye

t!
)

•
P

ro
gr

am
is

cu
rr

en
tl

y
p

au
se

d
•

V
ar

ia
b

le
s

ca
n

b
e

in
sp

ec
te

d
•

x
h

as
va

lu
e

2,
y

an
d

re
su

lt
d

o
n

ot
ex

is
t

ye
t

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

3
0
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

E
xa

m
pl

e
II

I

•
D

eb
u

gg
er

cu
rr

en
tl

y
on

br
ea

kp
oi

n
t

on
lin

e
21

•
V

al
u

es
of

x,
y

an
d

re
su

lt
ca

n
b

e
in

sp
ec

te
d

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

3
1
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

D
em

o

D
em

o
ab

ou
t

th
e

b
as

ic
s

of
th

e
d

eb
u

gg
er

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

3
2
/
4
5



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

W
he

re
to

pl
ac

e
br

ea
kp

oi
nt

s

•
B

ef
or

e
th

e
re

le
va

n
t

lin
es

of
th

e
b

u
g

•
N

ea
rb

y
th

e
su

sp
ic

io
u

s
lin

es
of

co
d

e

•
W

h
er

e
yo

u
w

ou
ld

pr
in

t
th

e
va

ri
ab

le
s

w
h

en
n

ot
u

si
n

g
th

e
d

eb
u

gg
er

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

3
3
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
he

di
ff

er
en

t
co

m
m

an
ds

I

1
F

in
is

h
D

eb
u

gg
er

S
es

si
on

(S
h

if
t

+
F

5)

2
P

au
se

3
C

on
ti

n
u

e
(F

5)
:

C
on

ti
n

u
e

th
e

pr
og

ra
m

u
n

ti
l

th
e

n
ex

t
br

ea
kp

oi
n

t.

4
S

te
p

O
ve

r
(F

8)
:

E
xe

cu
te

th
e

cu
rr

en
t

lin
e

an
d

br
ea

k
af

te
rw

ar
d

s.

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

3
4
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
he

di
ff

er
en

t
co

m
m

an
ds

II

5
S

te
p

O
ve

r
E

xp
re

ss
io

n
(S

h
if

t
+

F
8)

:
If

th
e

cu
rr

en
t

lin
e

co
n

ta
in

s
m

or
e

fu
n

ct
io

n
s,

ex
ec

u
te

th
e

cu
rr

en
t

fu
n

ct
io

n
an

d
br

ea
k

b
ef

or
e

th
e

n
ex

t
fu

n
ct

io
n

in
th

e
ex

pr
es

si
on

.

6
S

te
p

In
to

(F
7)

:
If

th
e

cu
rr

en
t

lin
e

co
n

ta
in

s
a

fu
n

ct
io

n
,

br
ea

k
th

e
d

eb
u

gg
er

at
th

e
b

eg
in

n
in

g
in

si
d

e
th

is
fu

n
ct

io
n

.

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

3
5
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
he

di
ff

er
en

t
co

m
m

an
ds

II
I

7
S

te
p

O
u

t
(C

tr
l

+
F

7)
:

F
in

is
h

th
e

cu
rr

en
t

fu
n

ct
io

n
an

d
br

ea
k

w
h

er
e

th
is

fu
n

ct
io

n
w

as
ca

lle
d

.

8
R

u
n

to
C

u
rs

or
(F

4)
:

S
am

e
as

C
on

ti
n

u
e,

u
n

le
ss

th
e

cu
rs

or
is

b
ef

or
e

th
e

fi
rs

t
br

ea
kp

oi
n

t.
In

th
at

ca
se

,
it

w
ill

br
ea

k
at

th
e

lin
e

of
th

e
cu

rs
or

.

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

3
6
/
4
5



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

D
em

o

A
d

em
o

ab
ou

t
th

e
d

iff
er

en
t

co
m

m
an

d
s

an
d

w
h

en
to

ap
p

ly
th

em

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

3
7
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

W
e

on
ly

sc
ra

tc
he

d
th

e
su

rf
ac

e.
..

M
an

y
ot

h
er

fe
at

u
re

s
to

m
ak

e
d

eb
u

gg
in

g
ea

si
er

:

•
C

on
d

it
io

n
al

br
ea

kp
oi

n
ts

•
E

xc
ep

ti
on

br
ea

kp
oi

n
ts

•
W

at
ch

p
oi

n
ts

•
M

o
d

if
yi

n
g

va
ri

ab
le

s
w

h
ile

ru
n

n
in

g
th

e
d

eb
u

gg
er

•
A

n
d

m
an

y
m

or
e.

..

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

3
8
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
ab

le
of

co
nt

en
ts

In
tr

o
d

u
ct

io
n

A
sy

st
em

at
ic

d
eb

u
gg

in
g

pr
o

ce
d

u
re

Ja
va

D
o

c

E
va

lu
at

in
g

a
ru

n
ti

m
e

er
ro

r

T
h

e
d

eb
u

gg
er

W
ra

p
p

in
g

it
u

p

T
im

e
to

pr
ac

ti
ce

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

3
9
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

O
ve

rv
ie

w

E
xp

la
in

ed
to

ol
s/

co
n

ce
p

ts
:

•
Ja

va
D

o
c

(C
om

p
ile

,
R

u
n

an
d

C
om

p
ar

e)

•
E

va
lu

at
in

g
a

ru
n

ti
m

e
er

ro
r

(R
u

n
)

•
T

h
e

d
eb

u
gg

er
(R

u
n

an
d

C
om

p
ar

e)

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

4
0
/
4
5



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
ab

le
of

co
nt

en
ts

In
tr

o
d

u
ct

io
n

A
sy

st
em

at
ic

d
eb

u
gg

in
g

pr
o

ce
d

u
re

Ja
va

D
o

c

E
va

lu
at

in
g

a
ru

n
ti

m
e

er
ro

r

T
h

e
d

eb
u

gg
er

W
ra

p
p

in
g

it
u

p

T
im

e
to

pr
ac

ti
ce

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

4
1
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
im

e
to

pr
ac

ti
ce

•
A

co
m

p
le

te
d

eb
u

gg
in

g
ex

er
ci

se
ca

n
b

e
fo

u
n

d
on

B
ri

gh
ts

p
ac

e

•
A

ll
th

e
co

n
ce

p
ts

o
cc

u
r

•
S

lid
es

ar
e

av
ai

la
b

le
on

B
ri

gh
ts

p
ac

e

•
A

n
y

q
u

es
ti

on
s?

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

4
2
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

T
ha

nk
yo

u
fo

r
lis

te
ni

ng
!

T
h

an
k

yo
u

fo
r

lis
te

n
in

g
an

d
I

h
op

e
th

is
w

as
u

se
fu

l
fo

r
yo

u
al

l!

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

4
3
/
4
5

In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

R
ef

er
en

ce
s

M
ic

h
ae

li,
T

.,
&

R
om

ei
ke

,
R

.
(2

01
9,

O
ct

ob
er

).
Im

pr
ov

in
g

d
eb

u
gg

in
g

sk
ill

s
in

th
e

cl
as

sr
o

om
:

T
h

e
eff

ec
ts

of
te

ac
h

in
g

a
sy

st
em

at
ic

d
eb

u
gg

in
g

pr
o

ce
ss

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

4
4
/
4
5



In
tr
o
d
u
ct
io
n

A
sy
st
em

a
ti
c
d
eb

u
g
g
in
g
p
ro
ce
d
u
re

Ja
va
D
o
c

E
va
lu
a
ti
n
g
a
ru
n
ti
m
e
er
ro
r

T
h
e
d
eb

u
g
g
er

W
ra
p
p
in
g
it
u
p

T
im

e
to

p
ra
ct
ic
e

R
a

d
b

o
u

d
U

n
iv

er
si

ty
N

ij
m

eg
en

U
es

fu
l

L
in

ks

•
h
t
t
p
s
:
/
/
n
e
t
b
e
a
n
s
.
o
r
g
/
k
b
/
7
3
/
j
a
v
a
/

e
d
i
t
o
r
-
c
o
d
e
r
e
f
e
r
e
n
c
e
.
h
t
m
l

•
h
t
t
p
s
:
/
/
w
w
w
.
u
n
o
m
a
h
a
.
e
d
u
/

c
o
l
l
e
g
e
-
o
f
-
i
n
f
o
r
m
a
t
i
o
n
-
s
c
i
e
n
c
e
-
a
n
d
-
t
e
c
h
n
o
l
o
g
y
/

c
o
m
p
u
t
e
r
-
s
c
i
e
n
c
e
-
l
e
a
r
n
i
n
g
-
c
e
n
t
e
r
/
_
f
i
l
e
s
/

r
e
s
o
u
r
c
e
s
/

C
S
L
C
-
H
e
l
p
d
o
c
s
-
H
a
n
d
l
i
n
g
J
a
v
a
R
u
n
t
i
m
e
E
r
r
o
r
s
.
p
d
f

•
h
t
t
p
s
:
/
/
w
w
w
.
j
e
t
b
r
a
i
n
s
.
c
o
m
/
h
e
l
p
/
i
d
e
a
/

d
e
b
u
g
g
i
n
g
-
y
o
u
r
-
f
i
r
s
t
-
j
a
v
a
-
a
p
p
l
i
c
a
t
i
o
n
.
h
t
m
l

•
h
t
t
p
s
:
/
/
w
w
w
.
f
o
u
r
k
i
t
c
h
e
n
s
.
c
o
m
/
b
l
o
g
/
a
r
t
i
c
l
e
/

s
t
e
p
-
s
t
e
p
-
t
h
r
o
u
g
h
-
d
e
b
u
g
g
i
n
g
/

R
u
b
en

H
o
lu
b
ek

M
ay

1
8
,
2
0
2
0

H
ow

to
d
eb

u
g

4
5
/
4
5


