
Bachelor thesis
Computing Science

Radboud University

Designing a simple and secure email
delivery protocol: SMTPsec

Author:
Steven Wallis de Vries
S1011387
SWallisDeVries@science.ru.nl

First supervisor/assessor:
prof. dr. J.J.C. Daemen

J.Daemen@cs.ru.nl

Second supervisor:
dr. ir. B.J.M. Mennink
B.Mennink@cs.ru.nl

Second assessor:
dr. B.E. van Gastel

B.vanGastel@cs.ru.nl

June 28, 2020

mailto:SWallisDeVries@science.ru.nl
mailto:J.Daemen@cs.ru.nl
mailto:B.Mennink@cs.ru.nl
mailto:B.vanGastel@cs.ru.nl

Abstract

Email is used all over the world for all sorts of purposes. Sometimes it is used for sensitive
communications, but it is also used for phishing and spam. To protect these sensitive commu-
nications and counter phishing, email should be secure. A user wants to be certain that email
they receive is authentic and that the integrity of the contents is guaranteed. Additionally,
email should remain confidential to attackers. Currently, the state of email security is not
optimal to say the least. It is very complicated and not as robust as one would want it to be.

We present SMTPsec: a new, simpler and more robust email delivery protocol to gradually
replace SMTP. SMTPsec guarantees authenticity and integrity of the email from the email
domain of the author to the email domain of the recipient. It also ensures confidentiality
between email servers. SMTPsec does not provide end-to-end security. Hence, its security
goals are similar to that of the current infrastructure, but it achieves these in a simpler and
more robust fashion. In this document we first study the current email architecture and then
present the specification of SMTPsec and discuss its benefits over the current architecture.

Contents

1 Introduction 5

1.1 Insecurity of email . 5

1.2 Email security protocols . 6

1.3 Current alternatives . 6

1.4 Our solution . 7

1.5 Outline . 7

2 Preliminaries: current state of email 8

2.1 History . 9

2.1.1 Authenticating the sender: preventing spoofing 9

SPF . 9

DKIM . 11

DMARC . 12

Reverse DNS . 12

2.1.2 Authenticating the recipient and providing confidentiality 13

2.2 Problems . 13

2.2.1 SPF . 13

2.2.2 DKIM & DMARC . 13

2.2.3 DNS . 15

2.2.4 TLS . 15

DANE . 16

MTA-STS . 16

Certificate Transparency . 17

1

Mail submission . 17

Require TLS . 18

2.3 PGP & S/MIME . 19

3 Related Work 20

3.1 Before SPF . 20

3.2 After SPF . 21

4 Requirements & goals 23

4.1 Non-functional requirements . 23

4.2 Functional requirements . 24

4.3 Security . 24

4.3.1 Trust model . 24

4.3.2 Attacker model . 25

4.3.3 Security goals . 25

5 Design 26

5.1 Locations of changes . 26

5.2 Identifying & authenticating the recipient’s server 27

5.2.1 Using MX records with DNSSEC . 27

5.2.2 Using TXT records or a new type of record with DNSSEC 27

5.2.3 Using SRV records with DNSSEC or SRVName 27

5.2.4 Authentication using certificate issued to domain of email address . . . 27

5.2.5 Using HTTPS . 28

5.3 Authenticating message origin & verifying message integrity 28

5.3.1 Using TLS client authentication . 28

5.3.2 Using a signature . 29

Authenticating public key using public CAs 29

Authenticating public key using DNS records with DNSSEC 29

Canonicalization . 29

5.4 Providing confidentiality . 30

2

5.5 Certificates . 30

5.6 Transaction syntax . 30

5.7 Interoperability . 31

5.8 Decisions . 32

6 Specification 33

6.1 Server discovery . 33

6.2 Handshake . 33

6.3 Transaction syntax . 33

6.4 Transaction process . 34

6.4.1 Initialization . 34

6.4.2 Email submission . 35

6.4.3 Email receival . 36

6.4.4 Email delivery . 36

6.4.5 Forwarding . 36

6.4.6 Extensions . 37

6.4.7 Errors . 37

6.5 Informing the MUA . 38

6.6 Mail submission . 38

7 Discussion 40

7.1 Evaluation of non-functional requirements . 40

7.2 Evaluation of functional requirements . 41

7.3 Incentives for switching . 41

8 Conclusions 42

8.1 Future work . 42

References 44

Appendices 49

A Adoption of existing protocols . 50

3

A.1 Adoption among 99 email domains . 50

A.2 Adoption among 409 Web domains . 52

B Protocol data structures . 53

4

Chapter 1

Introduction

Email started out in the 1970s as a small concept where security was not an issue [1], but now,
with 290 billion emails being sent worldwide per day [2], security has become very important.
As a sender, you want to authenticate the recipient of the message, and as a recipient, you
want to authenticate the origin of the message. Both may also want to ensure confidentiality
of the contents.

The current email architecture tries to provide security on the level of the email provider, not
on the level of the user. We use the term ‘email provider’ for a company that manages an
email domain, such as gmail.com or ru.nl. This means that the email servers of the email
domains of the author and recipient are authenticated, not the users themselves (this is the
responsibility of their corresponding providers). Confidentiality is provided on each link, so not
from user to user. However, we will see that even these goals are often not achieved.

1.1 Insecurity of email

One attack on email security is called ‘spoofing’. Email spoofing is a process in which an
attacker sends an email which seemingly originates from someone else by forging the sender
address. This can be detected by properly authenticating the origin of the message. More
specifically, the receiving provider has to verify that the message actually originated from the
provider of the author. Often criminals spoof the address so that it appears to be a legitimate
email from, say, a bank. With such an email they try to obtain the victim’s login credentials,
a practice known as phishing. The number of phishing cases does not seem to be decreasing
any time soon [3], and for the third quarter of 2019 Kaspersky Lab reported more than 100
million cases of phishing emails with links to a malicious website [4].

As a user one wants to be sure that whatever email address is displayed as the sender’s address
of the email is actually the sender’s address, but unfortunately spoofing is still an issue. In late
2017 even the Dutch government turned out to not have the appropriate countermeasures in
place to prevent this spoofing of the sender’s address. Because of this, attackers could send
emails seemingly originating from the Dutch parliament (tweedekamer.nl) and even from the
domain of the Dutch secret service, aivd.nl [5]. At the start of this research, also the ru.nl

and student.ru.nl domains did not have any protection against spoofing, but now they have
the same policies as the cs.ru.nl and science.ru.nl domains already had: some checks

5

were put into place but email providers are explicitly instructed to ignore the results.1

Besides the message origin, the recipient should also be authenticated. With the current archi-
tecture, this means verifying that the server claiming to be authoritative over the recipient’s
email domain is actually authoritative over that domain.

Furthermore, legitimate emails can contain sensitive information which the sender wants to
protect from eavesdroppers by guarding the confidentiality. In the current architecture, this
means encrypting the contents on each link. In many countries, secrecy of correspondence is
regarded as a fundamental right, also if the correspondence takes place via the Internet.

However, currently not all of these goals are always accomplished, as we will see in Chapter 2.

1.2 Email security protocols

Since the introduction of email, many concepts have been developed to try to ensure the
security of emails, such as SPF, DKIM, DMARC, TLS, DANE, and MTA-STS. All of these
and more will be explained in Chapter 2, but for now you only have to know that these all
operate between email providers and they each try to achieve some of the security goals we
mentioned before. Multiple studies have been performed measuring how many email providers
implement these protocols [6, 7, 8, 9], and the results are still not good: in 2018 more than
half of the providers tested offer little to no protection against spoofing [10]. In a small test we
conducted ourselves we found that 22 out of 99 email domains offer good protection against
spoofing attacks using their domain name, except that none of these are protected against
a spoofing attacker who can alter network traffic. Furthermore, only 6 of the 99 hosts have
implemented the necessary protocols to enable other domains to properly authenticate their
domain when sending email to it. See Appendix A.

In 2018, Hu et al. found that one of the reasons for the low adoption is the perceived complexity
by system administrators and the fear of emails from their company getting rejected if they
configure strict anti-spoofing policies [11]. With such a large set of protocols, all trying to
patch the holes in the previous protocols, it has become a mess and making mistakes in the
configuration is easy, causing legitimate emails to also be blocked by the recipient. Additionally,
sometimes automatically forwarding emails may cause them to be blocked.

Also, because the usage of all security protocols is optional, it is difficult to decide when to
mark an email as spam: maybe a legitimate email provider just has not implemented some
protocols. Another problem is that many things, such as what domain name should be on the
security certificate of the recipient, are unspecified. Some possible effects of this problem are
that the address shown to the recipient may not have been checked by their email server and
that the validity of the certificate of the recipient for their domain can often not be determined
by the sender, both of which are in accordance with the relevant protocol standards.

1.3 Current alternatives

There already exist solutions that can provide end-to-end security (from user to user), most
notably Pretty Good Privacy (PGP) [12] and Secure/Multipurpose Internet Mail Extensions
(S/MIME) [13]. We will discuss these in more detail in Chapter 2, but the largest problem

1One can verify this on: https://en.internet.nl/test-mail/.

6

https://en.internet.nl/test-mail/

with these is that they require considerable effort from the user and their correspondents to
set up. In contrast, the protocols mentioned before (SPF, DKIM, ...) operate between email
providers so the user does not have to configure anything. For this reason, our research focuses
on security between email providers and not on end-to-end security.

1.4 Our solution

Our research strives to find a solution for the security problems mentioned above. Hence, the
research question is:

How can we develop a robust and backwards-compatible delivery protocol to im-
prove and simplify the security of email?

The protocol is meant to gradually replace SMTP. ‘Backwards-compatible’, in this case, means
that systems should be able to exchange email with older systems that do not support the new
protocol.

In this document we will present the concrete specification of our secure and simple email
delivery protocol SMTPsec and the design process that led to it. We did not have the time
to implement the protocol in the form of a prototype. SMTPsec guarantees authenticity and
integrity of the email from the provider of the author to the provider of the recipient. It also
ensures confidentiality between providers. Like the current architecture, SMTPsec does not
provide end-to-end security. While its security guarantees are similar to those of SMTP with
all security extensions, SMTPsec was designed with security in mind, so it can provide these in
a simpler and more robust way. Unfortunately, interoperability with SMTP does require extra
effort from providers.

First we looked at the current email architecture and its problems so that we knew what
SMTPsec should be compatible with and what it should fix, then we tried to identify common
pitfalls in earlier non-successful attempts to develop new email delivery protocols so that we
could try to avoid these, and with this knowledge we first made an abstract design and then
a concrete specification of SMTPsec.

1.5 Outline

In Chapter 2 we will dive into the current email infrastructure and its problems. In Chapter 3
we will discuss previous efforts to develop a new email delivery protocol. In Chapter 4 we
list the requirements and security goals for the protocol. Then, in Chapter 5 we will present
several ways to tackle the various problems we face designing the protocol, and choose the
combination we deem the most suitable. In Chapter 6 we will give a concrete specification
for the abstract protocol designed in the previous chapter. In Chapter 7 we evaluate to what
extent the protocol meets the requirements set out in Chapter 4 and discuss the benefits but
also the flaws of this solution. In Appendix A we present the results of two small protocol
adoption tests we performed ourselves.

7

Chapter 2

Preliminaries: current state of email

Sending MUA
Thunderbird,
Outlook Desktop

PGP �

S/MIME �

MSA
smtp.gmail.com,
smtp-auth.ru.nl

DKIM �

Outbound MTA
mail-qk1-x734.google.com,
out62-ams.mf.surf.net

DANE !
MTA-STS !

Inbound MTA
gmail-smtp-in.l.google.com,
mx1.surfmailfilter.nl

! SPF
! DKIM*

! DMARC*

MDA

MS
imap.gmail.com,
pop.gmail.com,
mail.ru.nl

Receiving MUA ! PGP
 ! S/MIME

SMTP
port 587/465(/25)

SMTP
port 25

SMTP
port 25

SMTP/...

SMTP/...

IMAP/POP/...
port 143/993/110/995/...

Email domain of sender Email domain of recipient

*: Check could be done later on

Figure 2.1: Overview of the email architecture

A user can compose an email message using their email client, also called Mail User Agent
(MUA), for example Mozilla Thunderbird or Microsoft Outlook Desktop.1 The MUA then
submits the email to a Message Submission Agent (MSA), as shown in Figure 2.1, which is
managed by an email provider like Gmail or a company using a Microsoft Exchange server.
Often the MUA has to provide some form of credentials, such as a username and password.
The Simple Mail Transfer Protocol (SMTP) is the protocol used to send this email. It was first
standardized in 1982 in RFC (Request For Comments) 821 [14] and its newest specification is
from 2008 [15].

The MSA then hands the email off to an outbound Mail Transfer Agent (MTA) of the same
provider who sends it over to an inbound MTA of the recipient’s provider (possibly via more
internal MTAs, as indicated by the dashed arrows). Mail transfers between these MTAs also use
SMTP. The MTA of the recipient’s provider then sends the email to the Mail Delivery Agent

1The Gmail website can also be seen as a MUA, but here all transactions take place via their server.

8

(MDA) (again, possibly via more internal MTAs), which delivers the email to the Message
Store (MS), from which the recipient can access it with their MUA, often using the Internet
Message Access Protocol (IMAP) [16] or Post Office Protocol (POP) [17] to download the
email [18].

In this text, we use the notion of ‘provider’ or ‘email provider’ for a company who manages an
email domain. Many companies outsource the management of their email service. Often the
MTA is managed by an external company such as Microsoft, or SURF for universities. This
has the advantage that this other company can do all security checks and spam filtering. Also
the MSA and MDA may be managed by an other company, but the problem with that is that
this company will then have access to the credentials of the user, although in some cases it
may be possible to use an (OAuth) authentication token instead [19]. It would technically
also be possible to use TLS client authentication with a key pair belonging to the user [20,
appendix A], but this is not feasible for the average user.

The syntax of an email message is described by the Internet Message Format (IMF) [21] and
extended to allow for multiple parts and attachments by Multipurpose Internet Mail Extensions
(MIME) [22]. An email message consists of a body and a number of headers which contain
information about the message. For example, the From header contains the email address(es)
of the author(s)2 and the To header contains the address(es) of the recipient(s). The body
contains the actual message, including any attachments.

The sending agent wraps the email message in an SMTP ‘envelope’ that contains some more
information needed for delivery on top of the headers inside the message itself, see Figure 2.2.
This envelope is actually nothing more than a bunch of SMTP commands, which are interpreted
and then stripped off by the receiving server. The sender starts with a HELO (or EHLO, Extended
HELO) command, which identifies the sending machine by a domain name or IP address.3 Next,
a MAIL FROM command is sent, which contains the address of the originator, also called the
return path. This might be different from the From header when using automatic forwarding,
see Figure 2.3. The same often holds for other mediators like mailing lists [18]. Then, recipients
are listed using the RCPT TO command, also called the forward path [15]. Again, this might
be different from the To header because of automatic forwarding, or the use of CC/BCC.

2.1 History

2.1.1 Authenticating the sender: preventing spoofing

SPF

The problem with plain SMTP is that it does not protect against spoofing. Nothing prevents
an attacker from entering the email address of someone else in the From header or after the
MAIL FROM command. Something had to be done, and so the Sender Policy Framework (SPF)
protocol was born. SPF is used to check the authenticity of an email by verifying the domain
portion (after the ‘@’) of the sender’s email address. It was standardized in 2014 [23], but the
idea had been around for much longer, with RFC 4408 describing the first version in 2006 [24].
Providers that use SPF, publish special DNS records on their domain, which list IP addresses
of MTAs that are allowed to send email from that domain.

2Yes, a message can have multiple authors according to the standard.
3MUAs may use local IP addresses like [IPv6:::ffff:192.168.2.10].

9

https://tools.ietf.org/html/rfc4422#appendix-A

EHLO mail-qk1-x734.google.com

MAIL FROM:<alice@gmail.com>

RCPT TO:<bob@ru.nl>

DATA

.

QUIT

SMTP Envelope

From: <alice@gmail.com>

To: <bob@ru.nl>

...

Headers

Hello, World!Body

IM
F

M
essage

Figure 2.2: A simple SMTP transaction

alice@a.com

bob@b.com

bob@b.online

Outbound MTA a.com

sends

Inbound MTA b.com

Outbound MTA b.com

forwards

Inbound MTA b.online

MAIL FROM:<alice@a.com>

RCPT TO:<bob@b.com>

From: <alice@a.com>

To: <bob@b.com>

MAIL FROM:<bob@b.com>

RCPT TO:<bob@b.online>

From: <alice@a.com>

To: <bob@b.com>

Figure 2.3: SMTP and automatic forwarding

10

For example, the SPF record for ru.nl is as follows:
ru.nl. 3600 IN TXT "v=spf1 redirect=spf-mail.ru.nl"

Which means we have to look at the SPF record of spf-mail.ru.nl, which is:
spf-mail.ru.nl. 86400 IN TXT "v=spf1 ip4:131.174.59.192/28

include:spf-considered-harmful.science.ru.nl include:_spfout.mf.surf.net

include:spf.protection.outlook.com include:a._spf.brightspace.com ~all"

As you can see, it lists a range of IP addresses that are allowed to send email originating from
ru.nl and some domains such as spf-considered-harmful.science.ru.nl which contain
more address ranges to include or exclude. Finally, ~all means ‘softfail’ all other addresses,
or in other words: they are “probably not authorized”.

For received emails, the inbound MTA then checks the SPF DNS record of the domain sent in
the HELO/EHLO and/or MAIL FROM commands of the SMTP envelope to see if the outbound
MTA with that IP address is allowed to send email using this domain. Note that the MDA
and MUA have to trust the inbound MTA to do the verification, because these do not have
access to the IP address of the outbound MTA.

This does not fix the issue, however, because the end user rarely gets to see the MAIL FROM

address. They only get to see the address in the From header, which is still trivially forged
under SPF.

A proposed other protocol is Sender ID, which is currently still experimental and defined in
2006 [25]. Like SPF, Sender ID also does not verify the From header often shown to the user.

DKIM

Later, in 2007, Domain Keys Identified Mail (DKIM) made its entrance [26]. It was designed
to ensure integrity of the message. An MSA can sign parts of a message with a private key
belonging to the provider. The signature is then added as a header to the message and can be
verified by the receiver by using the corresponding public key, which is published via DNS. The
domain name to query for this is also saved in the header. Note that there are no certificate
authorities in the DKIM architecture. An advantage of DKIM over SPF is that the signature
can be verified by anyone, not just by the receiving MTA, because the IP address of the sending
MTA is not required.

A sample DKIM signature header is as follows:
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed; d=student.ru.nl; h=from:to

:subject:date:message-id:content-type:content-transfer-encoding

:mime-version; s=canit; bh=cNqun+DE07C3PmQ62YCxtlmVojk5nhToMY4aV

pXeLDs=; b=Xzt1kzzbrg9X6wjWZBG2nRy21CA4kcix5+38ZSvlZKkV2j5m4+LA2...

Here h= lists the headers to sign, bh= contains the body hash, and b= contains the signature.
The d= tag specifies the signing domain and the s= tag contains the selector, which is a
subdomain of the signing domain.

The corresponding DNS key record is:
canit._domainkey.student.ru.nl. 86400 IN TXT "v=DKIM1; t=y; k=rsa; "

"p=MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAsAiolbF2rMTsh8EvypNq" ...

11

It contains the RSA public key used to generate the signature above. ‘t=y’ specifies that “This
domain is testing DKIM. Verifiers MUST NOT treat messages from Signers in testing mode
differently from unsigned email, even should the signature fail to verify.” [27, p. 28]. Hence, it
might not be the best idea to keep this tag enabled.

DMARC

The domain used for the DKIM signature does not have to equal any other domain in the
message, so like with SPF, the From header can still be forged. Also, the actions to be taken
when the SPF or DKIM checks fail, are not defined. To fix these issues, a new protocol
was devised: Domain-based Message Authentication, Reporting, and Conformance (DMARC),
which was specified in an informational RFC in 2015 [28]. An email provider can publish a
DMARC policy record via DNS to indicate that they use SPF and/or DKIM. This way, an
attacker cannot, for example, just leave out the DKIM header and pretend the provider does
not sign messages. Via DMARC, providers can also specify what should happen if an email
fails the SPF and DKIM checks, such as rejection of the message or classifying it as spam,
with the option to send a failure report to the sending domain. Additionally, the DMARC
check only succeeds if the domains used for the SPF or DKIM checks are in alignment with
the From domain. This means that they are equal to, or a subdomain of, the From domain,
depending on the policy.

This seems to cause a new problem, however. For example, say that alice@a.com sends an
email to bob@b.com, and that Bob has configured his mailbox to automatically forward mail
to bob@b.online. Then this means that b.com sends an email with alice@a.com in the From

header, which will probably not be allowed by the SPF policy record of a.com, so the SPF
check does not pass. See again Figure 2.3. To solve this, DMARC specifies that the check
succeeds if SPF or DKIM succeeds, as DKIM has no problems with automatic forwarding.4
But then why do we still have SPF? This is mostly for systems that do not support DKIM.

A sample DMARC policy record is as follows:
_dmarc.student.ru.nl. 86400 IN TXT "v=DMARC1; p=none;

rua=mailto:dmarc-report@ru.nl; ruf=mailto:dmarc-reports@ru.nl; fo=1;"

This specifies that no action should be taken on failure except for sending a failure report to
dmarc-report(s)@ru.nl.

Reverse DNS

Then there is the odd one out that we list for completeness: the reverse DNS lookup. Some
MTAs perform a reverse DNS (PTR record) lookup for the IP address of the sending MTA [29,
section 3]. This should result in a domain name associated with the IP address. Further action
differs per implementation: some just check if such a domain name exists, some also check if
this domain name again resolves to the IP address we started with. The latter is called Forward-
Confirmed reverse DNS (FCrDNS) or iprev. Some MTAs also check if the domain name found
corresponds to the HELO/EHLO domain name.5 Some resources claim that this domain name

4Email would not be email if there were no exceptions to this: some emails may contain multiple signatures
of which just one matches with the From domain. Some email servers like Microsoft Exchange may actually
strip off the valid signature when automatically forwarding, such that the email gets rejected anyway.

5See for example https://github.com/smtpd/qpsmtpd/blob/master/plugins/helo.

12

https://tools.ietf.org/html/rfc6376#page-28
https://tools.ietf.org/html/rfc8601#section-3
https://github.com/smtpd/qpsmtpd/blob/master/plugins/helo

should also be equal to the domain portion of the From header, but this does not make sense,
because many MTAs serve multiple companies: take out62-ams.mf.surf.net, which not just
serves ru.nl and student.ru.nl, but also domains from many other universities.

The idea behind the reverse DNS check is that attackers, especially with computers in botnets,
cannot easily obtain (valid) PTR records for all these IP addresses. Note that, contrary to
forward DNS, a PTR record has to be created by the Internet Service Provider (ISP). Some
MTAs also check if the obtained domain name does not look like a ‘generic’ domain name
that an ISP would assign to residential IP addresses, such as ip54570101.direct-adsl.nl.
However, the effectiveness of all these checks is questionable. Note that there is no official
standard advising the use of this check and that not all MTAs comply with the conditions.

An example PTR record for 145.0.1.62 is the following:

62.1.0.145.in-addr.arpa. 84231 IN PTR out62-ams.mf.surf.net.

2.1.2 Authenticating the recipient and providing confidentiality

On top of these protocols, we also need Transport Layer Security (TLS, previously SSL) [30] to
encrypt the SMTP connection to keep the content confidential and authenticate the recipient’s
MTA so that an active attacker cannot pretend to be the recipient.

2.2 Problems

We already touched upon some problems with the protocols: SPF and DKIM do not work well
without DMARC and SPF under DMARC does not support automatic forwarding. But as you
might expect, there are more problems with the current architecture.

2.2.1 SPF

To start off, we again consider SPF. We have seen that it checks the IP address of the sender
against a list of allowed MTA IP addresses for the sender domain. The problem with this, is
that it can enable IP spoofing, where an attacker uses the IP address of a legitimate MTA
in the communication with the recipient MTA. The risk of this is limited though, because to
receive the network packets required to set up the connection back from the target MTA, the
attacker would need to be in control of the target network. Still, this is a problem that should
be avoided.

There are two other things that might be considered as disadvantages of SPF. First, with
SPF the inbound MTA has to be trusted to correctly perform the check, as we cannot do this
without the IP address of the sender. Second, companies might find it difficult to compose a
full list of IP addresses to use for the SPF policy record.

2.2.2 DKIM & DMARC

Now we move on to DKIM, using which providers can sign messages. Signing a message may
seem simple, but there are some important problems that arise due to the way that MTAs

13

handle messages. The first problem is that MTAs are allowed to add and reorder some headers
[21, section 3.6]. For example, most mail agents add a Received header to the message,
indicating that the agent received the message from some other agent. The DKIM header
specifies which headers in what order should be signed, so this would not be a problem, were
it not the case that a header with the same name can occur multiple times [27, section 3.7,
8.12]. The second problem is that message contents may be transformed by an MTA into an
equivalent other form. Most notably, messages containing something other than 7-bit ASCII
may be transformed into 7-bit ASCII using Base64 encoding if the receiving MTA does not
support messages using 8 bits per byte. Thus, DKIM advises implementations to only use
7-bit ASCII to try to prevent such transformations [27, section 5.3], which can slow down
transmission of messages containing large binary files. Besides that, there may be changes in
whitespace in the body, or whitespace and case in the headers of the message.

To try to solve part of these problems, DKIM has two canonicalization algorithms. The “simple”
algorithm signs the specified headers and body as-is, while the “relaxed” algorithm allows some
modifications in case and whitespace [27, section 3.4]. However, this does not solve the header
reorder problem mentioned above, and it may not cover all other modifications. Moreover,
with alteration of whitespace allowed by the “relaxed” algorithm, an attacker might change
the conveyed message of the email [27, section 8.1] or may slightly change the content of an
attachment.

Another problem with DKIM, which SPF does not have, is that it enables certain kinds of replay
of signed messages: an attacker can just resend a signed message to the original recipient or
multiple other recipients [31]. This can be partially mitigated by adding an expiration time to
the signature, although the standard tells us that “The [expiration time] tag is not intended
as an anti-replay defense” [27, p. 24]. In most cases, a replayed email will be recognizable by
a user through inspecting the values of the Date and To headers, but this is not a very robust
strategy.

Some also consider it a problem that DKIM (with DMARC) does not support mailing lists
that alter the content of an email but leave the From header intact [32, section 5.2].6 DKIM
attempts to still allow an addition of a footer by a mailing list by enabling signers to only sign
the start of a body upto a certain number of bytes. However, this feature can be badly abused
by attackers using the possibilities of HTML to overwrite the entire displayed message [27,
section 8.2]. Recently, a protocol called Authenticated Received Chain (ARC) was developed
[34]. With this protocol, a party can sign the authentication results (such as SPF, DKIM, and
DMARC validation) of the original message before modification to prevent rejection by the
recipient, but there is no single good way to decide when to trust such a signature.

Something else which could be considered a problem is that there is no single answer to the
question “which headers should I sign?” Ultimately, this is something that the MSA has to
decide, but the receiving MDA may ignore a signature if it does not include certain headers
[27, section 5.4].

Lastly, domains that do not send email also have to implement DMARC to make sure that
attackers cannot send email originating from these domains.

A quick test we performed under 99 email domains tells us that 68 domains have imple-
mented DKIM, also 68 have implemented DMARC, but only 50 have implemented both. See
Appendix A for more information.

6DMARC makes an earlier protocol referenced in this RFC, called DKIM Author Domain Signing Practices
(ADSP) [33], obsolete.

14

https://tools.ietf.org/html/rfc5322#section-3.6
https://tools.ietf.org/html/rfc6376#section-3.7
https://tools.ietf.org/html/rfc6376#section-8.12
https://tools.ietf.org/html/rfc6376#section-5.3
https://tools.ietf.org/html/rfc6376#section-3.4
https://tools.ietf.org/html/rfc6376#section-8.1
https://tools.ietf.org/html/rfc6376#page-24
https://tools.ietf.org/html/rfc6377#section-5.2
https://tools.ietf.org/html/rfc6376#section-8.2
https://tools.ietf.org/html/rfc6376#section-5.4

2.2.3 DNS

Someone who knows a bit about the DNS may already have noticed that it might be unsafe
to rely on the DNS for security-critical protocols such as SPF, DKIM,7 and DMARC. After all,
the DNS is not inherently secure. Hence, to protect against modification of these records by
an active attacker on the wire (a ‘Man In The Middle’, MITM), we also need DNS Security
Extensions (DNSSEC) [35, 36, 37]. With DNSSEC, a domain’s records are signed with its
private key and the corresponding public key is published via a DNS record. The public
key is then signed by the parent domain, which publishes the signature as a record. This
chain continues up to the root domain ‘.’, which is the trust anchor and has a known key
that changes every couple of years. This key is managed by the Internet Assigned Numbers
Authority (IANA).8 DNSSEC also has a way to indicate that certain subdomains are not signed.
Hence, a MITM cannot just strip off the DNSSEC records to make the resolver think that the
domain does not sign their records.

DNSSEC also has some problems, however. First of all, it is perceived to be complex to
implement [38]. Second, there is no specified method for key revocation in case the private
key is compromised. Just uploading a new key has the problem that caching DNS servers will
take a while to detect the change, and, moreover, this is vulnerable to active MITM attacks.
Some solutions have been published [39, 40], but these are not implemented yet. It is also
worth noting that DNS stub resolvers that just query a local recursive caching server cannot
verify the DNSSEC signature chain and hence have to trust the (connection to the) recursive
server, so it is often best to have the software perform the full iterative DNS lookup itself.

2.2.4 TLS

As mentioned before, TLS is used in SMTP for confidentiality and authentication of the
recipient. TLS in SMTP is different from TLS used on the Web in HTTPS for two important
reasons, which are also the two most prominent problems with TLS in SMTP.

First, with HTTPS the URL specifies whether to use TLS or not using the https: prefix. In
SMTP (at least between MTAs, see Section 2.2.4 for the MUA→MSA case) we do not have
such a prefix in the email address; we have opportunistic TLS where the client connects via
an unsecured channel and the server then sends a message to the client indicating support for
TLS. If the client also supports TLS, it initiates the TLS handshake. This does not protect
against an active MITM attacker, because such an attacker could easily strip out the message
from the server indicating support for TLS. This is called a downgrade attack.

Second, with HTTPS the URL specifies the domain name of the server to be contacted, which
is also the name that must be on the certificate presented by the server. With email, however,
using the domain name in the email address is impractical because companies often let other
companies provide their email services, and it is not a good practice to provide an external
company with a certificate with your domain name on it, including a private key for that
certificate. Hence, in email the sender looks at the MX (Mail eXchange) DNS record(s) of this
domain, which contain the domain name(s) for the MTAs of that domain [15, section 5.1].9
For example, one of the MTAs for ru.nl is mx1.surfmailfilter.nl. Classically, there also

7The DKIM standard actually states that “DKIM is only intended as a "sufficient" method of proving authen-
ticity. It is not intended to provide strong cryptographic proof about authorship or contents. Other technologies
such as OpenPGP [RFC4880] and S/MIME [RFC5751] address those requirements” [27, section 8.5].

8The hash of this key can be found at https://www.iana.org/dnssec/files.
9If no MX records exist on the domain, this domain itself is implicitly the domain for the MTA.

15

https://tools.ietf.org/html/rfc5321#section-5.1
https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc5751
https://tools.ietf.org/html/rfc6376#section-8.5
https://www.iana.org/dnssec/files

was a problem with using these domain names for the certificate, because a MITM can just
modify the DNS response with the MX records and insert their own server, so there is only
protection against a passive attacker, who cannot modify traffic. In fact, the standard for the
TLS extension of SMTP has no rules on how to verify the server’s certificate: “The decision
of whether or not to believe the authenticity of the other party in a TLS negotiation is a local
matter” [30]4.1. Hence, an MTA might as well use a certificate with another name or even
a self-signed certificate instead of a certificate signed by a trusted Certificate Authority (CA).
See also Foster et al.’s research on provider-based email security [8]. In 2014, Friedl et al.
composed a draft RFC to define how identity verification between MTAs should take place
[41]. It specifies restrictions for the name on the certificate. However, it was only intended as
a recommendation and it has since expired. There are two standards that are meant to solve
this: DANE and MTA-STS. We discuss these in the next two sections.

DANE

The first solution uses DNS-Based Authentication of Named Entities (DANE) TLSA records
[42], of which the use in SMTP was defined in 2015 [43]. The authors Dukhovni & Hardaker
argue that the use of a list of trusted CAs is not practical, because the list would need to
be exhaustive as to not reject legitimate emails, while simultaneously being short to keep the
attack surface for CA compromises as small as possible. With DANE, a domain owner can
publish TLSA DNS records to impose restrictions for the TLS certificates used by their server
for connections on certain transport ports. Additionally, the presence of these records indicate
that the server supports TLS, thus preventing a downgrade to cleartext. For example, an
email provider could specify that only a certificate with a certain fingerprint can be used for
SMTP (on port 25). Note that for DANE to be effective for email, we need DNSSEC on both
the domain containing the MX records and the domains of the MTAs that these records refer
to, which contain the TLSA records. DANE even makes it possible to securely use self-signed
certificates, because these are still authenticated via DNSSEC.

A quick test we performed found that just 6 out of the 99 email domains we tested have TLSA

records, see Appendix A.

The DANE records of one of ru.nl’s MTAs look like this:
_25._tcp.mx1.surfmailfilter.nl. 600 IN TLSA 3 1 1 A70AC85B96943A6A6...
_25._tcp.mx1.surfmailfilter.nl. 600 IN TLSA 2 1 1 F3AE75C0490C907E5...
_25._tcp.mx1.surfmailfilter.nl. 600 IN TLSA 3 1 1 F27635F7DA5CDC9FA...

Here, ‘1 1’ means that the data following is a SHA-256 hash of the public key of the specified
certificate. ‘3’ means that the certificate for this public key must be the certificate presented
by the MTA, while ‘2’ means that the certificate for this public key must be the trust anchor
of the certificate presented by the MTA. For both of the certificate usage options above, no
validation by a public CA is required. The alternatives to ‘2’ and ‘3’ that also require validation
by a CA are ‘0’ and ‘1’ respectively.

MTA-STS

The second is MTA Strict Transport Security (MTA-STS) (2018) [44]. This mechanism uses
a DNS record to indicate that an MTA-STS policy file can be retrieved via HTTPS. Hence,
contrary to DANE, this protocol does expect MTAs to maintain a list of trusted CAs. For

16

example, the MTA-STS policy for gmail.com can be found at https://mta-sts.gmail.com/
.well-known/mta-sts.txt. This policy file contains the domain names of the MTAs that
support TLS. These MTAs must present a certificate issued to their domain by a trusted CA.
The file also contains a validity period for this policy, just like with HTTP Strict Transport
Security (HSTS), which is used on the Web for HTTPS. MTA-STS, unlike DANE, was designed
to not mandate DNSSEC, but without it, an active MITM attacker could change the response
to the DNS policy record query to signal that MTA-STS is not supported, after which the
sender may fall back to using opportunistic TLS. Note that after the first response, the policy
is cached until it expires, and a client can regularly make secure requests for the policy file
over HTTPS to fetch the new expiration date.

Our quick test found that just 4 out of the 99 email domains we tested have an enforced
MTA-STS policy, see Appendix A.

For example, the MTA-STS record of gmail.com is just:
_mta-sts.gmail.com. 300 IN TXT "v=STSv1; id=20190429T010101;"

Its presence indicates that a policy file is available. This policy file has the following contents:

version: STSv1

mode: enforce

mx: gmail-smtp-in.l.google.com

mx: *.gmail-smtp-in.l.google.com

max_age: 86400

This policy expires after 86400 seconds, or about 24 hours, which will in many cases be too
short to effectively protect against MITM attacks, because the policy will already have expired
the next time an email to this domain is sent, unless the MTA regularly actively fetches the
new expiration date

Certificate Transparency

The Certificate Transparency (CT) protocol (2013) [45], which is not necessarily related to
email, tries to tackle the problem that with such a large list of CAs, there is a very large
attack surface and one compromised CA generally affects the whole infrastructure. We already
discussed DANE, which also has this as one of its goals, but CT is different. CT tries to
prevent misissued certificates, possibly by an attacker who compromised the CA, by providing
a standard for publicly logging issued certificates. A signed proof of addition to a log can
be added to a TLS certificate. This proof can be verified using the public keys of trusted
logs. Hence, the verifier has to maintain a list of logs that it trusts. The Google Chrome
browser already requires all certificates issued since May 2018 to be publicly logged.10 There
are multiple logs, run by companies such as Google and Cloudflare, that can be audited by
anyone.

Mail submission

Mail submission, from MUA to MSA, is different from message routing between other mail
agents in that message submission can use implicit TLS: on the classic message submission

10See https://github.com/chromium/ct-policy/blob/master/ct_policy.md.

17

https://mta-sts.gmail.com/.well-known/mta-sts.txt
https://mta-sts.gmail.com/.well-known/mta-sts.txt
https://github.com/chromium/ct-policy/blob/master/ct_policy.md

port (587) TLS is optional [46], which makes it vulnerable to downgrade attacks, but when a
MUA connects to port 465, a TLS handshake is initiated immediately, which counters these
attacks [47]. However, not all providers support this since this was only specified in 2018,
although a user can often enforce TLS usage even over port 587 by checking a box in the
MUA’s settings.

We have seen that to discover the MTAs of a certain domain, we use its MX DNS records.
There is a similar method for discovering MSAs for mail submission, but it is not implemented
by all email providers and it was specified only in 2011. Namely, we can request the SRV

(service) DNS records of the domain [48, 49]. For example, this is the SRV record for message
submission of gmail.com:
_submission._tcp.gmail.com. 85067 IN SRV 5 0 587 smtp.gmail.com.

The numbers ‘5 0’ indicate the priority of this MSA relative to other MSAs, the MUA should
try to contact the MSAs in the order specified by their priorities (in this case there is just one
MSA), ‘587’ specifies the port, and smtp.gmail.com is the domain name of the MSA.

We also saw that in the case of MX records, using plain DNS we cannot properly verify the
identity of the server using the domain name in the MX record, because a MITM could change
this record. We have the same problem when using the SRV MSA discovery system. However,
for this protocol the domain names that can be on the certificate are clearly defined [50].
Moreover, there is a special SRVName subject name type for TLS certificates of servers that
can be discovered through SRV records [51]. In this way, a certificate can be issued to, for
example, SRVName _submission.gmail.com, so that DNSSEC does not need to be used,
because this domain name can be derived directly from the user’s email address. We checked
multiple domains that have email submission SRV records, but unfortunately none of them
presented a certificate with an SRVName. It should also be noted that some CAs, such as the
free Let’s Encrypt CA, do not support this extension. Still, a MUA can check if the domain
name on the certificate corresponds with the domain name portion of the user’s email address.

Require TLS

TLS is negotiated per link and not end-to-end, which causes another problem: what do we
do if we want to make sure that TLS is used on each link? For this purpose the REQUIRETLS

SMTP extension was developed [52] (November 2019). For example, if an MSA supports this
extension, a MUA can mark an email such that the MSA will only send the email to an MTA
that supports TLS, MTA-STS, and the REQUIRETLS extension, such that this MTA will do the
same, etc. Unfortunately we have yet to come across a server that supports this extension.

The extension also introduces the ‘TLS-Required: No’ message header which does exactly
the opposite. Clients can add it so that servers that support it will ignore all security checks,
such as DANE and MTA-STS. This can be useful to deliver an email to a domain with a
misconfiguration in these protocols, informing them about this misconfiguration.

18

2.3 PGP & S/MIME

We already briefly mentioned PGP and S/MIME in the previous chapter. Both provide end-
to-end security instead of provider-to-provider security, but in slightly different ways. PGP [12]
(first specified in 1991) uses public key cryptography, where a user can sign their emails using
their private key and possibly encrypt them using the recipient’s public key (or more specifically
using a symmetric key attached to the message, encrypted with the recipients public key). A
problem with PGP is that users have to manage the keys of others that they know to be
correct. To ease key management, PGP introduces the concept of the web of trust, where
users can sign keys they trust and publish these signed keys. The software can then look at
the trusted keys and recursively trust the keys that these users trust, etc. In other words: keys
trusted by people you trust are also trusted by you.

S/MIME [13] (first specified in 1998) allows users sign and/or encrypt MIME messages such
as emails. It is based on the Cryptographic Message Syntax (CMS) [53]. It can be used with
certificates issued by public CAs as well as other certificates. S/MIME agents should have
some way to manage trusted certificates and retrieve certificates, but how exactly this should
happen is not specified [54]. For the encryption of a message, a symmetric cipher is used,
similar to PGP, and the symmetric key is encrypted with the public key of each recipient.
The certificate chain of the sender can be attached to the message to help the recipient with
verification.

19

Chapter 3

Related Work

In this chapter we list some previous proposals for new email delivery protocols. We divide
these into protocols before and after the introduction of SPF, because SPF was the first anti-
spoofing protocol and this division provides us with a picture of what the existing architecture
at that time looked like.

3.1 Before SPF

Already before the standardization of the security protocols mentioned in Chapter 2, there had
been a lot of proposals to improve email delivery. Below we give a few examples.

A first example is Bernstein’s Internet Mail 2000 (IM2000) [55], which uses pull-based email
delivery, in contrast to the push-based email-delivery that SMTP uses. With pull-based email
delivery, the sender is responsible for storing the email. Advantages of this type of systems
include the difficulty for ’spammers’ to send many large emails to someone and the reduction of
overall disk space usage when sending a large email to a lot of people. Disadvantages include
possibly reduced privacy due to the sender knowing when you opened an email, the fact that
emails may become unavailable if the sending server is experiencing outage, and lost emails
if the sender’s server were to be permanently shut down. Pull-based email-delivery, together
with its advantages and disadvantages, is also discussed by Chrobok et al., together with an
extension of SMTP providing it [56].

Another attempt at replacing SMTP is made by Mislove et al. in the form of ePOST (2003)
[57], which is a decentralized (peer-to-peer) protocol. On the one hand ePOST may have
more storage overhead than the traditional email system, because emails are replicated over
multiple hosts, but on the other hand it does use a system like IM2000 where references to
emails with attachments are reused and only a notification is sent to the recipient, until they
request the full email. Because of the replication of emails, outage is less of a problem in this
system. Messages are encrypted using their hash as key, which means identical messages yield
identical ciphertexts. However, this is intentional and serves to prevent duplicate messages in
message stores. When a user sends an email, the recipient gets a notification containing the
hash of the encrypted message and the hash of the plaintext, encrypted with their public key
and signed by the sender. The hash of the encrypted message serves as a handle to retrieve
the message from a message store, while the hash of the plaintext can be used to decrypt
the message. The full notification is itself signed by the sender’s private key and encrypted
with a symmetric session key which is sent along, encrypted using the recipients public key.

20

ePOST authenticates the public key of the other party via a Public Key Infrastructure (PKI)
with certificates bound to email addresses signed by a trusted third party. Hence, it offers
end-to-end security. For interoperability with SMTP it uses gateway servers that act to the
outside as SMTP servers but to the local POST network as POST servers. This has the
advantage that it is easy to communicate with SMTP MTAs, but in this case we do not have
the security of POST anymore. However, because it is a peer-to-peer protocol, the paper tells
us that “each participant is required to contribute a portion of her desktop’s local disk”, which
is not something that everyone would want to do.

A different protocol is the Secure Email Transport Protocol (SETP) by LeMay and Tan (2004)
[58]. SETP provides not only confidentiality, integrity, and end-to-end security via a semi-
trusted key server, but also proof of delivery, message lifetime control and shared email ad-
dresses. Note that SETP does not aim to replace SMTP, but rather seeks to amend it, as to
ease its adoption. With message lifetime control the authors mean that an unread message
can be revoked after a certain time or only be made available after some time. This, however,
would also be possible using pull-based email architectures. Email addresses can be shared to
provide message flow confidentiality, where only the sender and recipient know which parties
are really communicating and only the actual recipient can decrypt the message by using their
private key. Furthermore, SETP tries to combat spam using a central server keeping track of
user ratings of emails.

Yet another attempt is Lux et al.’s WSEmail (2005) [59], which is heavily based on Web
technologies such as SOAP and XMLDSIG and is designed as a replacement for SMTP. The
goal of WSEmail is to be flexible while still being secure and performant. WSEmail can also
be extended to allow for a pull-based model for attachments. Due to the use of XML and due
to their extensibility, WSEmail messages are arguably pretty complex, as can be seen on the
(archived) website.1

3.2 After SPF

There are also some more recent proposals, defined after some of the email security protocols
from Chapter 2.

An example is Ghafoor et al.’s CryptoNET (2009) [60]. CryptoNET is more than a secure
protocol to replace SMTP: it also provides secure storage for emails and address books, end-
to-end security, support for robust authentication of users through smart cards, a system for
confirmation of delivery, and an authorization policy system to minimize spam mails. Fur-
thermore, it uses a pull-based model for attachments, which are stored with the sender and
downloaded separately from the rest of the email by the recipient. This, together with the
authorization policy system, minimizes spam emails. As one can see, it provides many new
features, but this also makes it difficult to implement.

Two other, more recent, proposals that provide end-to-end security are the Cipher Mail Trans-
port Protocol (CMTP) (2016) [61] and the Dark Mail Transfer Protocol (DMTP) (2018) [62].
Both try to automate the tedious process of managing keys that users of similar protocols like
PGP have to go through. CMTP does not provide authentication of the public keys of others,
however: a mail server sends its key unprotected to the user, so the infrastructure uses a trust
on first use (TOFU) model where the key is assumed to be correct the first time you make
contact. It uses the same port as SMTP and uses similar commands, such that a server can

1https://web.archive.org/web/0/http://wsemail.ws/messages.html.

21

https://web.archive.org/web/0/http://wsemail.ws/messages.html

run one service that supports both protocols. In DMTP, keys are distributed via key servers
and verified via DNS with DNSSEC or using the key of a trusted CA. DMTP also has the
interesting feature that the outbound MTA cannot see the full address of the recipient and
the inbound MTA cannot see the full address of the author, similar to SETP. It can run either
in single protocol mode, where it uses a different port from SMTP, or in dual protocol mode,
where it uses the same port. Just like CMTP, DMTP’s commands are similar to SMTP’s.

22

Chapter 4

Requirements & goals

In practice, SMTP is still used almost everywhere. We argue that previous endeavors for a
more secure email infrastructure have not been widely adopted mostly due to them being too
complex. For example, the prototype for WSEmail (which seems to not be publicly available),
is constructed from no less than “68 interfaces and 343 classes organized into 30 projects”
[59, section 5.1]. We have to bring back the Simple in SMTP.

But there are more problems that need to be dealt with. In this chapter, we list the requirements
that we think a new email delivery protocol like SMTPsec should satisfy to succeed. These
requirements are partly based on the criteria applied by Moecke et al. [63]. We distinguish
between non-functional and functional requirements. In Section 4.1 we list the non-functional
requirements, which concern the operation of the protocol. In Section 4.2 we list the functional
requirements, which are about the functionality that the protocol should have. We also give
the trust model and security goals of SMTPsec in Section 4.3.

4.1 Non-functional requirements

N.1 It should be secure: emails should remain confidential to eavesdroppers and should be
authentic. However, the protocol will explicitly not provide end-to-end security like PGP
or S/MIME to benefit simplicity and opacity to the user. More on this in Section 4.3.

N.2 It should be simple to implement and deploy. This means that it should not be too
technically complex. Basing the protocol on well-established existing protocols such as
TLS can benefit this requirement.

N.3 It should, however, be extensible, such that if more advanced features are needed, these
can be added in later on.

N.4 It should be low-cost, so not require a significant amount of additional resources com-
pared to the current infrastructure. This includes servers and other things that require
money.

N.5 It should not be noticeably slower than SMTP, such that speed does not impede adoption.

N.6 It should be opaque to the user whenever possible. That is, they should barely notice
the change in protocol and they should not have to change their workflow. In other
words, the actions required to send and read email should remain the same as they were

23

without SMTPsec. In practice, this means that it should work with existing MUAs and
the user should not have to configure anything new.

N.7 It should be interoperable with the existing infrastructure. Hence, users should be able
to exchange email with others who do not use the new protocol yet, but instead just
use SMTP. In practice, this means falling back to SMTP when the recipient does not
support SMTP. This is unfortunate, but without this capability, gradual deployment
becomes impossible, which means everyone would need to start using the new system at
the same time, which is infeasible.

N.8 Users should already receive immediate benefits with low adoption rates. This is another
requirement for gradual deployment. A system will not be implemented if it will only
have benefits if nearly everyone has implemented it.

N.9 Lastly, the protocol description should be concrete, so not just an abstract mathematical
description: it should specify what bytes actually are transmitted over the network, such
that it can be implemented directly.

4.2 Functional requirements

F.1 The opacity requirement implies that the new protocol should have the same functionality
as SMTP. However, we exclude functionality that would degrade security.

F.2 Another important feature is also an exception to the opacity requirement: the recipient
of an email should receive an indication about the security of this certain email. Such
a security indicator could take the form of an icon such as the lock symbol for HTTPS
connections in most Web browsers. If it was sent using the new secure protocol, it should
be clearly indicated that, for example, the message origin was reliably authenticated. This
way, the user can take it into account when judging the authenticity of an email. For
this research, however, only the facilities necessary for such an indicator system will be
implemented.

F.3 Similarly, on the other end the sender should be able to constrain the use of SMTP in
favor of the new protocol, if, for whatever reason, they find SMTP to be not secure
enough.

F.4 A recurring feature present in modern protocols such as DMARC and MTA-STS is
a testing mode including reporting, where the policy is not (fully) in force yet but
reports of failures are sent to a system administrator, as to verify the correctness of the
configuration. We think such a failure reporting system would also benefit deployment
of a new delivery protocol.

4.3 Security

4.3.1 Trust model

SMTPsec focuses on provider-to-provider security, rather than end-to-end security. This means
we have to trust the email provider of the sender and of the recipient (MTAs, MSAs, MDAs,
etc.), similar to what is done in the current mail architecture, if we do not count PGP and
S/MIME. Hence, the providers are trusted to keep their private keys secure and the emails of

24

their users confidential to third parties. Unfortunately, in reality it may be that some providers
disclose emails to intelligence agencies. If one wants to make sure that emails cannot be read
by a provider, one should use a system offering end-to-end security like PGP or S/MIME, with
a key pair that they generated themselves, of which they keep the private key secret, and with
properly authenticated public keys of their correspondents.

Besides the two providers, a list of CAs will be semi-trusted. That is, each certificate that
is issued also has to be publicly logged using the Certificate Transparency (CT) protocol. A
number of logs are also semi-trusted, as anyone can audit them and the certificates still have
to be issued by a trusted CA.

Additionally, the DNSSEC infrastructure will be trusted. More specifically, this means that
parent domains of domains on which we require DNSSEC are trusted to sign only the right
public keys.

4.3.2 Attacker model

We assume an active MITM attacker, so a network attacker than can read and modify any
traffic on any link. The attacker can only break cryptography that is considered to be broken as
of today. As we design our protocol with strong cryptographic primitives, we focus on attacks
on the construction of the protocol.

4.3.3 Security goals

The security goals of SMTPsec are:

• The recipient’s MTA should be able to verify the authenticity of the message origin, or in
other words, that the message was indeed originally sent by an MTA that is authoritative
over the domain in the domain portion of the author’s address. Checking the local-part
portion of the address is the responsibility of the MSA and is out of scope for this
protocol.

• The sender’s MTA should be able to verify the authority of the recipient’s MTA over the
domain in the domain portion of the recipient’s address. Routing the email to the correct
user’s message store based on the local-part portion of the address is the responsibility
of the MDA and is out of scope for this protocol.

• Providing integrity of the message from the sending MTA up to the MTA of the final
recipient, also if the message is automatically forwarded.

• Ensuring confidentiality of the message to attackers, so only the recipient and providers
can read the message.

Ideally we would also want strong replay protection. However, this may be hard to achieve
because we want support for automatic forwarding, but we will investigate this possibility
further.

25

Chapter 5

Design

In this chapter, we present various ways to solve each problem that we face. Then, in Sec-
tion 5.8, we choose the best combination of solutions, taking into account the requirements
from Chapter 4.

5.1 Locations of changes

We have seen in Chapter 2 that SMTP is used on multiple links: MUA→MSA, MSA→MTA,
MTA→MTA, MTA→MDA, and MDA→MS (see Figure 2.1). However, not all these links
benefit equally from a new delivery protocol.

We already discussed message submission (MUA→MSA) in Section 2.2.4, including why the
problems of the MTA→MTA case do not really apply to it. So for this case, a new protocol is
not really necessary. Moreover, we want to avoid the MUA having to support the new protocol
because of the opacity requirement.

For the MSA→MTA, MTA→MDA, and MDA→MS cases there is also no real security benefit,
as an email provider can configure their services to all use TLS (or when email management
is outsourced, instruct the external company to do this).

For the remaining MTA→MTA case, however, our protocol would of course be very useful,
because providers cannot always know if the other party supports TLS, and, as we have seen
in Chapter 2, currently authentication and integrity verification is a mess, which can be solved
by a new delivery protocol designed with security in mind.

We also mentioned that the MSA→MTA and MTA→MDA connections might not be direct,
but rather go via more MTAs. However, these other MTA→MTA cases are thus similar to the
MSA→MTA and MTA→MDA connections. In the design of SMTPsec, we assume that these
connections are direct.

One might also wonder if merging the MSA/MDA/MS with the MTA has any benefits. If
we see this as the other agents being merged into the MTA then a problem with this is that
if management of the MTA is outsourced, then this external company may also have to be
trusted with the user’s credentials, as already discussed at the start of Chapter 2. However, if
we see it as the MTA being merged into the other agents, we could also say that a company
can run the ‘MTA software’ on their server just like the MSA software.

26

5.2 Identifying & authenticating the recipient’s server

With SMTP, MTAs are discovered by using MX records, which, as we discussed in Section 2.2.4,
has various authentication problems. In this section we look at the possible alternatives for
SMTPsec.

5.2.1 Using MX records with DNSSEC

One possibility for our protocol would be to keep using MX records, but enforce the use of
DNSSEC and check that the name on the server’s certificate corresponds to the name from
the MX record. The MTA could then indicate in the reply to the EHLO command that it supports
SMTPsec, after which the sender can signal it wants to switch to SMTPsec. However, not all
domain name registrars provide support for DNSSEC, so this would mean that domain owners
using such a registrar would not be able to use the protocol, but of course we could hope that
an increasing number of registrars will support DNSSEC.

An advantage of this is that if it turns out that a server does not support SMTPsec, we do not
have to make an extra DNS query to find the SMTP MTAs. A disadvantage is that for some
providers maybe only part of the listed MTAs support the new protocol, so always all MTAs
would need to be tried to decide if one supports it. Moreover, an active MITM attacker could
strip support for SMTPsec from the MTA’s reply so that plain SMTP is used.

5.2.2 Using TXT records or a new type of record with DNSSEC

Another possibility is to do the same except use a new type of DNS records, or use plain TXT

records. An advantage of this is that (with DNSSEC) a fallback to SMTP due to a MITM
attacker is prevented. The downside of using a new record type is that it would first need to be
registered and then registrars and DNS clients need to implement support for it, which takes
time and might not happen if the significance of SMTPsec is not recognized. TXT records do
not have these problems but are not really intended to be used this way, plus if many new
protocols start using them, a DNS reply to a query for TXT records might get unnecessarily
large.

5.2.3 Using SRV records with DNSSEC or SRVName

We could also use SRV records to list the MTAs. In this case we can either use DNSSEC to
make sure the listed name is correct, or use a certificate with an SRVName. A disadvantage of
using SRVName is that many CAs, especially free ones, do not support it. Additionally, without
DNSSEC a MITM attacker could remove the SRV records from the reply to make it seem like
no MTA supports SMTPsec, causing a fallback to SMTP.

5.2.4 Authentication using certificate issued to domain of email address

Instead of using DNSSEC or SRVName for authentication of the recipient’s MTA with one of
the methods above, we could also require the name on the certificate to correspond with the
domain portion of the email address of the recipient. However, if we do not use DNSSEC,

27

the protocol is again vulnerable to downgrade attacks to SMTP by a MITM. Additionally,
as we discussed in Section 2.2.4, this makes it insecure to outsource the handling of email
for a company, as this external company would need a certificate that is valid for the email
domain, which it could also use to, for example, set up a website on that domain. Hence,
we would need some sort of domain separation, limiting what the certificate can be used for.
Now this might be accomplished by setting the extended key usage extension in the certificate
to id-kp-emailProtection, but one could argue that network connections are not what this
purpose value was meant for and instead it should be used for signing emails like in S/MIME.
Besides that, not all CAs will issue certificates with this key purpose.

5.2.5 Using HTTPS

Another way to discover MTAs could be by making an HTTPS request to a predetermined
URL on a (sub-domain of) the domain in the domain portion of the email address, much like
MTA-STS. The advantages of this solution are that no special certificates are needed and
neither is DNSSEC. However, if we do not also use some DNS record protected by DNSSEC
to indicate that SMTPsec is supported, a MITM could just block the HTTPS request to make
the sending MTA think the protocol is not supported, causing a downgrade to SMTP. On top
of that, this solution requires extra work for a company to set up, also when outsourcing the
rest. Besides that, it can make the MTA more complicated as it also needs to support HTTPS,
which contradicts the simplicity requirement.

5.3 Authenticating message origin & verifying message integrity

SMTP uses SPF, DKIM, and DMARC to authenticate the message origin and verify the
integrity. For SMTPsec we want to have a simple but secure alternative.

5.3.1 Using TLS client authentication

The first thing that comes to mind is to just use TLS client authentication for the outbound
MTA. This procedure is not too complicated in general, but here we again have the problem
that it is not clear what domain name should be on the certificate. We could solve that in the
same way that we use for discovering the recipient’s MTA.

However, we also have the problem that automatically forwarding email becomes tricky, because
the forwarding domain is not allowed to send mail originating from another domain. It might
be possible to instruct the original outbound MTA to redirect the message to another MTA,
but it might be the case that the connection has already been closed before it is decided
to forward the email. Additionally, it would mean that the original MTA gets to know the
addresses that the email is forwarded to. Note that this also applies to all subscribers of a
mailing list. On top of that, this method may make room for denial of service attacks if the
MTA is instructed to forward the email to a lot of addresses, although a limit could be set on
this number. Of course, it would be possible to drop the support for this kind of automatic
forwarding altogether, but this is not in accordance with the same functionality requirement.

28

5.3.2 Using a signature

An alternative would be to add a signature to the email like with DKIM. This signature could
either be included as a message header like with DKIM, or just in the envelope. The advantage
of including the signature as a message header is that the MUA could also verify the signature,
although currently this is not often done anyway. Furthermore, if we put the signature in the
envelope, we could still add it as a message header before the message is delivered to the
MUA, although it may be tricky to keep a signature of the whole message intact when adding
this header and possibly other trace headers to the message. The advantage of putting the
signature in the envelope is that the size of an email would be less when downloaded by a
MUA. However, a provider must make sure to not discard the signature if it wants to forward
the email.

Note that, like DKIM, this method does not protect against replay attacks. However, the To

and Date headers are signed, so most attacks should be manually recognizable by inspecting
the date and recipient.

When using signatures we also need a way to distribute and authenticate public keys. For
this we could either use public CAs or a DNS record like DKIM does. We investigate the two
possibilities below.

Authenticating public key using public CAs

If we choose to use public CAs, we also need to make sure that the inbound MTA has access to
a certificate chain, so that it can verify the signature. This certificate chain could be attached
to the signature, or could be accessible via DNS. The advantage of the former is that it saves
us an extra DNS query, but if we want the MUA to also be able to verify the signature, then
delivering it via DNS saves a lot of space when downloading emails. Note that we do not need
DNSSEC for this because a certificate chain is inherently signed. For the leaf certificate this
time the id-kp-emailProtection extended key usage would be suitable, but as mentioned
above, not all CAs support this, so if we do not use this then we again have the problem of
domain separation and choosing what domain name should be on the certificate, like we would
have when using TLS client authentication.

Authenticating public key using DNS records with DNSSEC

If we choose to distribute public keys via DNS, then we do need DNSSEC and we would need
to make extra queries, but we do not need to store a large certificate chain. However, we
can actually prevent the extra queries by attaching the DNSSEC chain including key to the
signature, a kind of practice which is often called ‘stapling’. This is very similar to attaching
the certificate chain when using CAs.

Canonicalization

With DKIM over SMTP, we have to apply a canonicalization mechanism to the email before the
signature is computed because mail agents may transform parts of the message into equivalent
other forms or add certain headers. However, this is fragile and can be insecure, as discussed
in Section 2.2.2. It would be much nicer if we could just make sure that the message is not

29

changed at all. However, this may not be feasible if an MDA that does not support SMTPsec
decides to forward an email. If we do choose to enforce that also the MDA supports the new
protocol (or merge the agents) then we can prohibit changes to the message. We could still
keep track of message headers like Received in the envelope for troubleshooting, and we can
re-add these before delivering the message to the MUA, so that a tech-savvy the user could
inspect them if they need to.

5.4 Providing confidentiality

In SMTP we use TLS on a per-link basis to provide confidentiality of the message against
MITM attackers. In keeping our protocol as simple as possible, we think it is reasonable to
use the same method.

5.5 Certificates

There are some additional restrictions that we want to impose on the certificates used with
SMTPsec. If we use public CAs then we can also enforce the use of the Certificate Transparency
protocol as mentioned in Section 2.2.4 to reject misissued certificates. On top of that, we can
also use DANE TLSA records as mentioned in Section 2.2.4 to put additional restrictions on
the certificates used and even allow self-signed certificates because these are authenticated via
DNSSEC. However, fetching TLSA records does require additional queries. Note that there was
a proposal to enable stapling of the DNSSEC chain including TLSA record onto the server’s
reply in the TLS handshake, but this draft has since expired [64].

5.6 Transaction syntax

SMTP uses an interactive text-based method for transactions, where the client can send various
commands and the server replies to each command with a status code and a message. Because
the server replies to each command, SMTP is sometimes described as ‘chatty’. (The Command
Pipelining extension [65] addresses this by allowing multiple commands inside a single network
packet.)

A text-based approach also makes the parser more complicated. For example, messages not
using the Chunking SMTP extension [66] are terminated by a dot (‘.’) on a single line, which
means that for each line in the message, the recipient has to check if it is a single dot and
if so, it knows that the message has ended. This slows down processing of large messages.
Additionally, if the message itself contains an actual dot on a single line, or even a line starting
with a dot, this dot has to be escaped by the sender (by another dot) and the recipient then
has to remove all leading dots [15, section 4.5.2]. Not properly escaping data is a typical
source of error when using many text-based protocols, causing vulnerabilities in the code that
uses them (for example: SQL injections, cross-site scripting attacks, etc.).

For SMTPsec we can choose to use binary messages instead of human-readable text. The
advantage of this is that it is easier to parse, does not require escaping data, and uses less
space, all of which make the protocol faster, which is in accordance with the speed requirement.
To further speed up delivery, we want to use as few roundtrips as possible, by combining

30

https://tools.ietf.org/html/rfc5321#section-4.5.2

information in as few packages as possible. Furthermore, there should be a way to add new
commands while retaining compatibility with agents that do not support these commands,
following the extensibility requirement.

Now for the email message syntax we could either use IMF (and MIME) or something else. If
we do not use this, we might be able to make the message more compact, possibly speeding
up delivery. However, the message would need to be transformed back to IMF before access
by a MUA. We could also still use IMF but transform the message to an equivalent but more
compact variant when possible. For example, we could transform Base64 attachments to a
binary variant and concatenate long lines that were split over multiple lines (and remove any
line length limit).

We also want to provide the recipient with information about the security of the email delivery,
in accordance with the security indication requirement. We could use a message header for
this that indicates that SMTPsec was used, which can just be ignored by MUAs that do not
support it. A company that wants to just pretend to use the new secure protocol, might add
this header while it only supports SMTP, so an agent of the recipient should remove it if the
new protocol was not actually used. This can still fool MUAs connecting to a provider that
does not support the new protocol.

Lastly, according to the constraint requirement, there should be a way for the user to indicate
that only SMTPsec may be used for the delivery of an email. To accomplish this, we could
add a bit to the email command, set by the outbound MTA, indicating that the email may
not be automatically forwarded over SMTP. But we also need a way in which the MUA can
indicate it wants this bit to be set by the MTA. The MUA still uses SMTP, so we also need to
define an SMTP extension for this. Related to this, the REQUIRETLS SMTP extension should
also be integrated with SMTPsec, such that email marked with this flag is not forwarded over
unsecured SMTP.

5.7 Interoperability

We need SMTPsec to be interoperable with SMTP so that emails can still be delivered to
and from users whose providers do not support the new protocol, following the interoperability
requirement. Unfortunately this means that for now protocols like DKIM and MTA-STS also
still have to be implemented.

Often the MSA will sign an email using DKIM, but if the other party supports SMTPsec then
this would not be necessary, so one might want to leave out the signature in this case to
save space. The problem with this is, however, that if an email is automatically forwarded
to a third person, and this person’s provider does not support SMTPsec, then we still need
the DKIM signature, which we now do not have. Hence, it seems like the best we can do is
keep including the DKIM signature until more servers support the new protocol. However, this
might mean that when forwarded to an SMTP server, the signature might be rendered invalid
if a server decides to transform a binary attachment to Base64, for example. This problem has
no clear solution, except maybe more canonicalization, and is an unfortunate example of why
the infrastructure is so difficult to change.

31

5.8 Decisions

We have seen that there are many options for each aspect. Choosing the best alternative for
each aspect was not easy. In this section we will present our decisions for SMTPsec.

We start off with MTA discovery, for which we will use SRV DNS records because they were
made for purposes like this one. These will need to be protected with DNSSEC to prevent
downgrade attacks and forged names. For authentication of the recipient MTA we will use
TLS where the subject name on the certificate must be equal to the name in the SRV record or
an SRVName corresponding to the service. Additionally, the Certificate Transparency protocol
and optionally DANE will be used to keep the effects of a CA compromise to a minimum.

To provide message origin authentication, the sending server will add a signature in the en-
velope. This signature is created using the private key corresponding to a certificate of the
server with the same requirements as for the certificate of the recipient’s server. This means
that the recipient’s server will need to query the sender’s SRV records to verify the domain
name on the certificate, even if an SRVName is used, because we also need the port to check for
DANE TLSA records. Contrary to DKIM, the signature will be calculated over the full email,
so no modifications are tolerated. This also means that, for the signature mechanism to work
reliably, the MSA and outbound MTA, and the MDA and inbound MTA need to be logically
merged. Furthermore, of course no headers can be added, so any added trace headers will be
kept track of in the envelope.

SMTPsec will use binary commands to simplify parsing and prevent escaping of data, thus
increasing the speed. Emails will still be in IMF but the outbound server may compact the
message (before signing) to further speed up the transaction.

For interoperability with SMTP (and hence DKIM), we could unfortunately not think of a
better way then to also include a DKIM signature header.

32

Chapter 6

Specification

In this chapter we give a concrete and detailed specification of SMTPsec.

6.1 Server discovery

Suppose that alice@a.com wants to send a message to bob@b.com. Alice then sends the
email with her MUA using SMTP to the a.com mail server, which may transform the message
to a more compact form (e.g. transforming Base64 attachments to binary). The a.com mail
server shall then make a DNS query for SRV records on _smtpsec._tcp.b.com and verify the
DNSSEC chain. If the zone can be verified to be unsigned or if the zone is signed but no SRV

record exists, it reverts back to SMTP. If any other DNS error or DNSSEC verification error
occurs, the transaction shall be aborted. If one or more signed SRV records exist, then these
are ordered as specified in [48] and we start by contacting the first host on the specified port.
If this host is offline or an error occurs, we try the next one, etc. If no host can deliver the
email, the transaction is aborted.

6.2 Handshake

Let the endpoint from the current SRV record be denoted as B with domain D and port
P. When the connection to B is opened, immediately a TLS handshake is initiated. The
b.com server will present its certificate, which must be valid for either D or for SRVName
_smtpsec.b.com and be signed by one or more trusted Certificate Transparency logs. If
TLSA records are present on domain _P._tcp.D, then the certificate should comply with
the restrictions imposed by these records as outlined in [42]. If the certificate presented by
the server is the same as an end-entity certificate specified by a TLSA record, the Certificate
Transparency check does not apply. If an error occurs then we move over to the next SRV

record.

6.3 Transaction syntax

In this section we describe the transaction syntax using the same C-like syntax as is used in
[67, section 3]. We use this syntax because it provides us with an easy way to define binary

33

https://tools.ietf.org/html/rfc8446#section-3

structures that are transferred over the network. A couple of features stand out. The uintxx
type contains an unsigned integer and consumes xx bits. Variable-length vector fields are
denoted by angled brackets (<...>) after the field name. Written within the angled brackets
are the minimum and maximum size of the vector, counted in object instances. A variable-
length vector implicitly includes a size field, consuming the minimum number of bytes necessary
to hold the maximum size of the vector. The value of an enumeration (enum) field is an integer
consuming the minimum number of bytes to hold its largest value. All data structures defined
below can also be found in Appendix B.

6.4 Transaction process

enum {

error(0),

server_hello(1),

client_hello(2),

email(3),

email_delivered(4)

} MessageType;

struct {

uint64 size;

MessageType type;

Extension extensions<0..2^16-1>;

select (Message.type) {

case error: Error;

case server_hello: ServerHello;

case client_hello: ClientHello;

case email: Email;

case email_delivered: EmailDelivered;

}

} Message;

All commands in SMTPsec are wrapped inside Message objects. The size field of the message
contains the total length of the message in bytes and must be equal to the sum of the size of
the individual parts. Large messages may of course be split over multiple TCP packets, while
on the other hand multiple messages may also be combined into a single TCP packet.

6.4.1 Initialization

struct {

uint8 version = 0;

} ServerHello;

opaque Certificate<0..2^24-1>;

Certificate CertificateChain<0..2^16-1>;

struct {

uint8 version = 0;

CertificateChain certificate_chains<0..2^24-1>;

} ClientHello;

34

After the TLS handshake, b.com sends a ServerHello Message in which it communicates the
maximum protocol version it supports. Currently, the only possible value is 0. a.com replies
with a ClientHello Message with the highest protocol version that both parties support. The
ClientHello also contains a list of certificate chains that are used for signatures on the emails
a.com is about to send, such that these chains may be reused for multiple emails. Either party
may reply with an insufficient_security Error Message if the negotiated protocol version
is too low. Errors are discussed in more detail in Section 6.4.7.

6.4.2 Email submission

opaque Address<0..2^16-1>; /* email address of the form local@domain */

enum {

/* ECDSA with curves as defined in [68] */

ecdsa_secp256r1_sha256(0x0403), /* with SHA-256 hash */

ecdsa_secp384r1_sha384(0x0503), /* with SHA-384 hash */

ecdsa_secp521r1_sha512(0x0603), /* with SHA-512 hash */

/* PureEdDSA with curves as defined in [69] */

ed25519(0x0807),

ed448(0x0808),

(0xFFFF)

} SignatureAlgorithm;

struct {

SignatureAlgorithm algorithm;

opaque parameters<0..2^16-1>;

} SignatureMethod;

struct {

opaque name<0..2^16-1>;

opaque value<0..2^24-1>;

} Header;

struct {

uint24 certificate_chain;

SignatureMethod signature_method;

opaque signature[signature_length];

Header trace_headers<0..2^24-1>;

Address recipients<0..2^24-1>;

opaque message<0..2^64-1>;

} Email;

If the initialization is successful, a.com can send a number of Email Messages. Each Email

contains an IMF message, a list of recipients, a number of trace headers, and a signature. The
trace headers field can contain headers like Received that can be used for troubleshooting
and keeping track of when an email is forwarded, etc. For the signature, there is also a field
with the zero-based index of the certificate chain from the ClientHello that was used and
the signature algorithm. The size of the signature depends on the algorithm. The signature is
computed over the message field. The trace headers field is not signed because it should be

35

editable and should not contain important information. The signature algorithms listed above
are chosen based on [67, section 4.2.3] and have the same identifiers. We chose PureEdDSA
instead of HashEdDSA because it is more resistant to collisions in the hash function used
internally [69, section 4] and an MTA uses a store-and-forward approach (enabling it to verify
the signature before sending it on) so we do not mind that the algorithm requires two passes
over the input. For the currently listed algorithms no additional parameters are required.

6.4.3 Email receival

When receiving an Email Message, b.com verifies the signature with the indicated certificate
chain. To validate the certificate, b.com queries the SRV records of the domain F of the From

header in the message. This check fails if there are multiple addresses listed in this header. It
then checks if there is a DNSSEC-protected SRV record with a port P and a domain name D
to which the certificate is issued and if this certificate complies with any TLSA records present
on domain _P._tcp.D. The certificate may also be issued to SRVName _smtpsec.F , in which
case we might need to check all domains from the SRV records to see if one has no TLSA records
or TLSA records that allow the certificate to be used. In any case, if the certificate presented by
the server is not identical to one specified by a TLSA record, the certificate has to be signed by
a trusted Certificate Transparency log. In both cases, if there is no such SRV record, the check
fails, and b.com replies with an authentication_failed Error Message with a reference
to the email as explained in Section 6.4.7. Authentication also fails if the certificate was not
signed by a trusted Certificate Transparency log, and of course if the signature is incorrect.

6.4.4 Email delivery

struct {

uint24 email;

} EmailDelivered;

If this was successful, b.com tries to deliver the message to the listed recipients over a secure
channel and sends back an EmailDelivered Message on success. If one or more recipi-
ents are not recognized, the email is delivered to the remaining recipients, after which an
unknown_address Error Message is sent, with a list of the unknown recipients and a refer-
ence to the email. In both cases, a.com may continue sending more Email Messages. After
a.com is done sending emails and received replies from b.com, it closes the connection.

6.4.5 Forwarding

If b.com decides to forward the message, the signature and trace headers should be retained.
If the email is forwarded to a server that only supports SMTP, the signature will be stripped.
Furthermore, in this case the headers from the trace_headers field are appended on top of
the existing IMF headers of the message. Providers should enforce a whitelist for allowed trace
headers, which will include headers like Received and nonstandard headers starting with X-.

36

https://tools.ietf.org/html/rfc8446#section-4.2.3
https://tools.ietf.org/html/rfc8032#section-4

6.4.6 Extensions

enum {

require_security(0)

/* more extensions may be defined in the future */

} ExtensionType;

struct {

ExtensionType type;

opaque data<0..2^32-1>;

} Extension;

The extensions field can be used in the future for non-breaking protocol extensions. It
can also be seen as a place for optional fields for messages. Unrecognized extensions must
be ignored by the other party. One extension, require_security, is already defined. Like
the SMTP REQUIRETLS extension, it indicates that an email may only be sent over a secure
channel. The extension can be added to an email message and has one byte of data, which
has a value of either 0 or 1. If present, that email may only be sent via SMTPsec, or, if the
byte is 0, also via SMTP with the REQUIRETLS extension given that the conditions from [52]
are satisfied. These restrictions also hold in particular if the email is automatically forwarded.

6.4.7 Errors

enum {

internal_error(0),

service_unavailable(1),

illegal_message(2),

illegal_parameter(3),

too_large(4),

authentication_failed(5),

insufficient_security(6),

unknown_address(7)

} ErrorCode;

struct {

none(0),

message(1)

} ErrorReference;

struct {

ErrorCode code;

ErrorReference reference;

select (Error.reference) {

case none: struct {};

case message: uint24 messageNumber;

}

select (Error.code) {

case unknown_address: Address<0..2^16-1>;

default: struct {}; /* for other error codes */

};

} Error;

37

We already mentioned some errors that can occur, but we define more possible errors.

• The internal_error error can be sent at any time by either party to indicate that an
internal error occurred, optionally accompanied by a message reference. The connection
will be closed.

• The service_unavailable error can be sent by b.com at any time to indicate that this
server is temporarily not operational. The connection will be closed.

• The illegal_message and illegal_parameter errors can be sent by either party to
indicate that respectively an unexpected message or an invalid field value was received
and includes a reference to that violating message. The offending message is ignored.

• The too_large error can be sent by either party if some message is too large for the
other party to handle and includes a reference to that message. The connection will be
closed if the offending message is not an Email. If it is an Email, the connection may
also be closed if b.com so desires.

• The authentication_failed error can be sent by b.com if the authentication on an
email message failed and includes a reference to that message.

• The insufficient_security error can be sent by any party in response to a hello
message if the protocol version is not deemed to be sufficiently secure, and by b.com if
the email signature algorithm or parameters are not secure enough. In the former case
the connection will be closed.

• The unknown_address error can be sent by b.com if one or more recipients of an Email

do not exist and contains a list of unrecognized addresses in addition to a reference to
the email message.

The error reference message number is a zero-based index of the referenced message, where
only Messages from the other party are counted. This includes non-Email messages.

6.5 Informing the MUA

Before the email is requested by the MUA, the trace_headers are added to the IMF headers
like when forwarding an email as discussed above.

To inform the MUA that SMTPsec was used, we use the SMTPsec-Used header. Before sending
an email via SMTPsec that is received from a MUA, the header will be added, with an empty
value. Upon sending or receiving an email to or from an MTA via SMTP, the header must be
removed.

6.6 Mail submission

Because SMTPsec is not meant for submission by a MUA, this agent cannot directly use the
require_security extension. Hence, we define the ‘Require SMTPsec’ SMTP extension.
If the MSA advertises support for this extension, the MUA may add the REQUIRESMTPSEC

parameter to the MAIL FROM command with no value to indicate that SMTPsec must be used

38

for further transmission and that the require_security extension must be included with a
value of 1.

Additionally, if a MUA sets the REQUIRETLS flag on a message, the MTA must use SMTPsec
to deliver this message with the require_security extension with value 0, or SMTP with
the REQUIRETLS flag set, subject to the requirements set out in [52].

39

Chapter 7

Discussion

In this chapter we discuss the benefits and flaws of SMTPsec, following the requirements from
Chapter 4.

7.1 Evaluation of non-functional requirements

N.1 security: The security is guarded well. The provider of the author is authenticated and
the integrity of the message ensured between the two providers using a signature on the
message. The provider of the recipient is authenticated using TLS. Certificates of both
parties are either signed by trusted public CAs and by a trusted Certificate Transparency
log, or are authenticated using TLSA records specifying end-entity certificates. The CA
can also be restricted by using TLSA records. Confidentiality is ensured on each link. All
of this follows the security goals from Section 4.3. Additionally, there is no downgrade
possible to SMTP by an active MITM attacker, due to the use of DNSSEC. However,
just like with DKIM in SMTP, there is no strong protection against replay attacks.

N.2 simplicity: We tried to keep SMTPsec itself as simple as possible while preserving security,
but unfortunately compatibility with SMTP requires extra effort. This will probably be
an obstacle in the adoption of any new email delivery protocol.

N.3 extensibility: We added an extensions field to protocol messages that can be used for
new features later on without breaking the protocol when communicating with hosts
that do not support these features.

N.4 cost: SMTPsec should require about as much computing power as SMTP with the
security protocols mentioned in Chapter 2, maybe even less because messages can be
more easily parsed because the protocol is not text-based. Additionally, no separate
HTTPS connection is necessary like with MTA-STS.

N.5 speed: A reasonable implementation of SMTPsec is anticipated to be at least as fast
as SMTP with security protocols. This is not only due to the simplified parser, but
also because signatures can be added efficiently to large binary messages without the
need for a conversion to Base64 and because signature verification does not require
canonicalization as the email itself cannot be modified.

N.6 opacity: SMTPsec does not require any extra actions from the user, as the connection
to the MSA will still use SMTP and they do not need to store cryptographic keys or
anything, because the protocol authentication acts only between providers.

40

N.7 interoperability: We specified how the sending host can handle recipients that only sup-
port SMTP, but unfortunately security-wise this costs extra effort, because the existing
security protocols have to be implemented as well.

N.8 immediate benefits: The benefits of SMTPsec over SMTP are listed in Section 7.3.

N.9 concreteness: We gave a concrete description of SMTPsec in the previous chapter, which
should be detailed enough such that it can be implemented.

7.2 Evaluation of functional requirements

F.1 same functionality: SMTPsec still fulfills the main purpose of SMTP, which is sending
emails from person (or company) to person. However, mailing lists that change the
contents of an email cannot resend this email using the original author’s email address,
as this is difficult to arrange without compromising security.

F.2 security indication: A security indicator could be implemented in a MUA by making use
of the SMTPsec-Used header to show if SMTPsec was used.

F.3 constraint: By using the ‘Require SMTPsec’ SMTP extension, the MUA can enforce the
use of SMTPsec.

F.4 reporting: In SMTPsec, the server immediately responds with an error message if au-
thentication failed or the signature is incorrect, so no further reporting system should be
necessary.

7.3 Incentives for switching

To make sure that email providers will switch to SMTPsec, there should be incentives for doing
so. These may include the following:

• First of all, SMTPsec gives an unambiguous result for message origin authentication,
because it is not optional like DKIM/SPF and DMARC in SMTP. Also, integrity checking
is more robust and secure because of the elimination of canonicalization.

• Besides being more secure, the protocol will also be faster because it can transmit binary
files in a signed email, contrary to DKIM. This also makes it less resource intensive for
servers.

• In the end SMTPsec will be much simpler than the current infrastructure, but a disad-
vantage that we will have to deal with when it is first implemented is that SMTP and
DKIM etc. also still have to be supported.

• If providers that implement SMTPsec also add security indicators to emails, then this
might speed up the usage of the protocol, because other companies will want the indicator
to be displayed on their emails as well.

• Another measure that could be taken by providers to incentivize other providers to
implement SMTPsec is prioritizing transactions using the new protocol, allowing larger
emails when using the new protocol, or even artificially slowing down SMTP transactions.

41

Chapter 8

Conclusions

We saw how the current email architecture came to be and that it is a complex clutter of
protocols. With SMTPsec, we succeeded in creating a more secure and simpler email delivery
protocol. The trust model is still the same as with the current architecture: authenticity and
integrity of the email are guaranteed from the author’s email provider to the recipient’s email
provider, and confidentiality is ensured only between email providers.

Unfortunately, we found that, because of the need for interoperability with SMTP, the option
to outsource email services, and the automatic forwarding feature, some issues were harder
to solve in a clean way than initially presumed. One thing we were not able to provide with
SMTPsec is a strong protection against replay attacks, but the current architecture also does
not offer this. A downside to switching to any new email delivery protocol, including SMTPsec,
is that for the time being, providers also still have to support SMTP and its security extension
protocols.

8.1 Future work

Before the protocol can be implemented, it should receive scrutiny from experts on the email
architecture and in the field of protocol design. It would also be a good idea to compose a
concrete list of allowed trace headers as referred to in Section 6.4.5. After this process, it
should be standardized in the form of an RFC document. When we are convinced that the
protocol is ready for implementation, the protocol should be implemented in a cross-platform
manner, such that it is usable everywhere.

When the implementation is complete and thoroughly tested, adoption by email providers
can begin. Optionally, they can implement artificial incentives like mentioned in Section 7.3.
Additionally, MUAs should start implementing a good security indicator system as mentioned
in the security indication requirement. In order to design a good security indicator system,
a survey or interview should be conducted under potential users to evaluate various designs
and pick or combine the most effective design(s), meaning that for a user it is clear what the
indication means.

Note that email servers supporting SMTPsec should have a secure way to keep an up-to-date
list of trusted CAs (a root certificate store) and to handle DNS root key rollover. We think
this is doable, because all modern desktop computers already have such a system in place.
Besides that, its own certificate has to be renewed from time to time before it expires.

42

It might also be worth looking into a protocol extension for stapling DNSSEC chains for SRV
and TLSA records onto signatures, such that no extra requests have to be made. However, this
would be more logical if DNSSEC chains for TLSA records could also be stapled on the server’s
reply in the TLS handshake, but this idea was dropped, as mentioned in Section 5.5.

Lastly, it might be beneficial for the adoption of SMTPsec to also look into a good way to
phase out SMTP (and DKIM etc.). We already discussed some incentives in Section 7.3, but
the problem that during the transition period we need to implement both protocols remains.

43

Peer-reviewed references

[6] Tatsuya Mori et al. “How is E-Mail Sender Authentication Used and Misused?” In:
Proceedings of the 8th Annual Collaboration, Electronic Messaging, Anti-Abuse and
Spam Conference. CEAS 11. Perth, Australia: Association for Computing Machinery,
2011, pp. 31–37. DOI: 10.1145/2030376.2030380. https://doi.org/10.1145/2030376.
2030380.

[7] Zakir Durumeric et al. “Neither Snow Nor Rain Nor MITM...: An Empirical Analysis of
Email Delivery Security.” In: Proceedings of the 2015 Internet Measurement Conference.
IMC 15. Tokyo, Japan: Association for Computing Machinery, 2015, pp. 27–39. DOI:
10.1145/2815675.2815695. https://doi.org/10.1145/2815675.2815695.

[8] Ian D. Foster et al. “Security by Any Other Name: On the Effectiveness of Provider Based
Email Security.” In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. CCS 15. Denver, Colorado, USA: Association for Computing
Machinery, 2015, pp. 450–464. DOI: 10.1145/2810103.2813607. https://doi.org/10.
1145/2810103.2813607.

[11] H. Hu, P. Peng, and G. Wang. “Towards Understanding the Adoption of Anti-Spoofing
Protocols in Email Systems.” In: 2018 IEEE Cybersecurity Development (SecDev). Cam-
bridge, MA, USA: IEEE, Sept. 2018, pp. 94–101. DOI: 10.1109/SecDev.2018.00020.
https://doi.org/10.1109/SecDev.2018.00020.

[39] Eric Osterweil et al. “Zone State Revocation for DNSSEC.” In: Proceedings of the 2007
Workshop on Large Scale Attack Defense. LSAD 07. Kyoto, Japan: Association for
Computing Machinery, 2007, pp. 153–160. DOI: 10.1145/1352664.1352677. https:

//doi.org/10.1145/1352664.1352677.
[40] Gilles Guette. “Key Revocation System for DNSSEC.” In: Journal of Networks 3.6 (2008).

Journal has been discontinued as of 2016. View the archived homepage at https://

web . archive . org / web / 20161010000615 / http : / / www . academypublisher . com / jnw/,
pp. 54–61. DOI: 10.4304/jnw.3.6.54- 61. https://semanticscholar.org/paper/

146c2eadaf72e91d066a8a13bcf8096591b00f66.
[56] Natascha Chrobok, Andrew Trotman, and Richard OKeefe. “Advantages and Vulnerabili-

ties of Pull-Based Email-Delivery.” In: Proceedings of the Eighth Australasian Conference
on Information Security - Volume 105. AISC 10. Brisbane, Australia: Australian Com-
puter Society, Inc., 2010, pp. 22–31. https://dl.acm.org/doi/10.5555/1862266.

1862272.
[57] Alan Mislove et al. “POST: A Secure, Resilient, Cooperative Messaging System.” In:

Proceedings of HotOS’03: 9th Workshop on Hot Topics in Operating Systems. Ed.
by Michael B. Jones. Lihue (Kauai), Hawaii, USA: USENIX, May 2003, pp. 61–66.
https://www.usenix.org/conference/hotos-ix/post-secure-resilient-cooperative-

messaging-system.

44

https://doi.org/10.1145/2030376.2030380
https://doi.org/10.1145/2030376.2030380
https://doi.org/10.1145/2030376.2030380
https://doi.org/10.1145/2815675.2815695
https://doi.org/10.1145/2815675.2815695
https://doi.org/10.1145/2810103.2813607
https://doi.org/10.1145/2810103.2813607
https://doi.org/10.1145/2810103.2813607
https://doi.org/10.1109/SecDev.2018.00020
https://doi.org/10.1109/SecDev.2018.00020
https://doi.org/10.1145/1352664.1352677
https://doi.org/10.1145/1352664.1352677
https://doi.org/10.1145/1352664.1352677
https://web.archive.org/web/20161010000615/http://www.academypublisher.com/jnw/
https://web.archive.org/web/20161010000615/http://www.academypublisher.com/jnw/
https://doi.org/10.4304/jnw.3.6.54-61
https://semanticscholar.org/paper/146c2eadaf72e91d066a8a13bcf8096591b00f66
https://semanticscholar.org/paper/146c2eadaf72e91d066a8a13bcf8096591b00f66
https://dl.acm.org/doi/10.5555/1862266.1862272
https://dl.acm.org/doi/10.5555/1862266.1862272
https://www.usenix.org/conference/hotos-ix/post-secure-resilient-cooperative-messaging-system
https://www.usenix.org/conference/hotos-ix/post-secure-resilient-cooperative-messaging-system

[58] M. D. LeMay and J. S. E. Tan. “Comprehensive message control and assurance with
the secure email transport protocol.” In: 2004 IEEE Electro/Information Technology
Conference. Milwaukee, WI, USA: IEEE, Aug. 2004, pp. 272–280. DOI: 10.1109/EIT.
2004.4569392. https://doi.org/10.1109/EIT.2004.4569392.

[59] K. D. Lux et al. “WSEmail: secure Internet messaging based on Web services.” In: IEEE
International Conference on Web Services (ICWS’05). Orlando, FL, USA: IEEE, July
2005, 75–82 vol.1. DOI: 10.1109/ICWS.2005.138. https://doi.org/10.1109/ICWS.2005.
138.

[60] A. Ghafoor, S. Muftic, and G. Schmölzer. “CryptoNET: Design and implementation of
the Secure Email System.” In: 2009 Proceedings of the 1st International Workshop on
Security and Communication Networks. Trondheim, Norway: IEEE, May 2009, pp. 1–6.
https://ieeexplore.ieee.org/abstract/document/5683054.

[63] Cristian Thiago Moecke and Melanie Volkamer. “Usable secure email communications:
criteria and evaluation of existing approaches.” In: Inf. Manag. Comput. Security 21.1
(May 2013), pp. 41–52. DOI: 10.1108/09685221311314419. https://doi.org/10.1108/
09685221311314419.

Non peer-reviewed references
including standards

[1] Ray Tomlison. The First Email. 2002. http : / / openmap . bbn . com / ~tomlinso / ray /

firstemailframe.html (visited on 03/13/2020).
[2] Email Statistics Report, 2019-2023 - Executive summary. Tech. rep. The Radicati Group,

2019. https://www.radicati.com/?p=15792.
[3] NOS. Phishing weer groeiend probleem, oplichters steeds creatiever. Nov. 2018. https:

//nos.nl/artikel/2260753.
[4] Spam and phishing in Q3 2019. Tech. rep. Kaspersky Lab, Nov. 2019. https : / /

securelist.com/spam-report-q3-2019/.
[5] NOS. Iedereen kan mailen namens de AIVD dankzij ‘spoofing’. Oct. 2017. https://nos.

nl/artikel/2199557.
[9] Eunice Zsu-Chnn Tan. “A Quantitative Study of the Deployment of the Sender Policy

Framework.” MA thesis. Brigham Young University, Oct. 2018. https://hdl.lib.byu.
edu/1877/etd10375.

[10] Ignacio Sanchez and Gerard Draper-Gil. My Email Communications Security Assessment
(MECSA): 2018 Results. Tech. rep. Joint Research Centre (European Commission), Feb.
2019. DOI: 10.2760/166203. https://doi.org/10.2760/166203.

[12] Hal Finney et al. OpenPGP Message Format. RFC 4880. Nov. 2007. DOI: 10.17487/
RFC4880. https://tools.ietf.org/html/rfc4880.

[13] Jim Schaad, Blake C. Ramsdell, and Sean Turner. Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 4.0 - Message Specification. RFC 8551. Apr. 2019. DOI:
10.17487/RFC8551. https://tools.ietf.org/html/rfc8551.

45

https://doi.org/10.1109/EIT.2004.4569392
https://doi.org/10.1109/EIT.2004.4569392
https://doi.org/10.1109/EIT.2004.4569392
https://doi.org/10.1109/ICWS.2005.138
https://doi.org/10.1109/ICWS.2005.138
https://doi.org/10.1109/ICWS.2005.138
https://ieeexplore.ieee.org/abstract/document/5683054
https://doi.org/10.1108/09685221311314419
https://doi.org/10.1108/09685221311314419
https://doi.org/10.1108/09685221311314419
http://openmap.bbn.com/~tomlinso/ray/firstemailframe.html
http://openmap.bbn.com/~tomlinso/ray/firstemailframe.html
https://www.radicati.com/?p=15792
https://nos.nl/artikel/2260753
https://nos.nl/artikel/2260753
https://securelist.com/spam-report-q3-2019/
https://securelist.com/spam-report-q3-2019/
https://nos.nl/artikel/2199557
https://nos.nl/artikel/2199557
https://hdl.lib.byu.edu/1877/etd10375
https://hdl.lib.byu.edu/1877/etd10375
https://doi.org/10.2760/166203
https://doi.org/10.2760/166203
https://doi.org/10.17487/RFC4880
https://doi.org/10.17487/RFC4880
https://tools.ietf.org/html/rfc4880
https://doi.org/10.17487/RFC8551
https://tools.ietf.org/html/rfc8551

[14] Jonathan Bruce Postel. Simple Mail Transfer Protocol. RFC 821. Aug. 1982. DOI: 10.
17487/RFC0821. https://tools.ietf.org/html/rfc821.

[15] Dr. John C. Klensin. Simple Mail Transfer Protocol. RFC 5321. Oct. 2008. DOI: 10.
17487/RFC5321. https://tools.ietf.org/html/rfc5321.

[16] Mark Crispin. Internet Message Access Protocol - Version 4rev1. RFC 3501. Mar. 2003.
DOI: 10.17487/RFC3501. https://tools.ietf.org/html/rfc3501.

[17] Dr. Marshall T. Rose and John G. Myers. Post Office Protocol - Version 3. RFC 1939.
May 1996. DOI: 10.17487/RFC1939. https://tools.ietf.org/html/rfc1939.

[18] Dave Crocker. Internet Mail Architecture. RFC 5598. July 2009. DOI: 10.17487/RFC5598.
https://tools.ietf.org/html/rfc5598.

[19] William Mills, Tim Showalter, and Hannes Tschofenig. A Set of Simple Authentication
and Security Layer (SASL) Mechanisms for OAuth. RFC 7628. Aug. 2015. DOI: 10.

17487/RFC7628. https://tools.ietf.org/html/rfc7628.
[20] Kurt Zeilenga and Alexey Melnikov. Simple Authentication and Security Layer (SASL).

RFC 4422. June 2006. DOI: 10.17487/RFC4422. https://tools.ietf.org/html/rfc4422.
[21] Pete Resnick. Internet Message Format. RFC 5322. Oct. 2008. DOI: 10.17487/RFC5322.

https://tools.ietf.org/html/rfc5322.
[22] Ned Freed and Dr. Nathaniel S. Borenstein. Multipurpose Internet Mail Extensions

(MIME) Part One: Format of Internet Message Bodies. RFC 2045. Nov. 1996. DOI:
10.17487/RFC2045. https://tools.ietf.org/html/rfc2045.

[23] Scott Kitterman. Sender Policy Framework (SPF) for Authorizing Use of Domains in
Email, Version 1. RFC 7208. Apr. 2014. DOI: 10.17487/RFC7208. https://tools.ietf.
org/html/rfc7208.

[24] Wayne Schlitt and Meng Weng Wong. Sender Policy Framework (SPF) for Authorizing
Use of Domains in E-Mail, Version 1. RFC 4408. Apr. 2006. DOI: 10.17487/RFC4408.
https://tools.ietf.org/html/rfc4408.

[25] Meng Weng Wong and Jim Lyon. Sender ID: Authenticating E-Mail. RFC 4406. Apr.
2006. DOI: 10.17487/RFC4406. https://tools.ietf.org/html/rfc4406.

[26] Eric P. Allman et al. DomainKeys Identified Mail (DKIM) Signatures. RFC 4871. May
2007. DOI: 10.17487/RFC4871. https://tools.ietf.org/html/rfc4871.

[27] Murray Kucherawy, Dave Crocker, and Tony Hansen. DomainKeys Identified Mail (DKIM)
Signatures. RFC 6376. Sept. 2011. DOI: 10.17487/RFC6376. https://tools.ietf.org/
html/rfc6376.

[28] Murray Kucherawy and Elizabeth Zwicky. Domain-based Message Authentication, Re-
porting, and Conformance (DMARC). RFC 7489. Mar. 2015. DOI: 10.17487/RFC7489.
https://tools.ietf.org/html/rfc7489.

[29] Murray Kucherawy. Message Header Field for Indicating Message Authentication Status.
RFC 8601. May 2019. DOI: 10.17487/RFC8601. https://tools.ietf.org/html/rfc8601.

[30] Paul E. Hoffman. SMTP Service Extension for Secure SMTP over Transport Layer
Security. RFC 3207. Feb. 2002. DOI: 10.17487/RFC3207. https://tools.ietf.org/html/
rfc3207.

[31] Jim Fenton. Analysis of Threats Motivating DomainKeys Identified Mail (DKIM). RFC
4686. Sept. 2006. DOI: 10.17487/RFC4686. https://tools.ietf.org/html/rfc4686.

[32] Murray Kucherawy. DomainKeys Identified Mail (DKIM) and Mailing Lists. RFC 6377.
Sept. 2011. DOI: 10.17487/RFC6377. https://tools.ietf.org/html/rfc6377.

46

https://doi.org/10.17487/RFC0821
https://doi.org/10.17487/RFC0821
https://tools.ietf.org/html/rfc821
https://doi.org/10.17487/RFC5321
https://doi.org/10.17487/RFC5321
https://tools.ietf.org/html/rfc5321
https://doi.org/10.17487/RFC3501
https://tools.ietf.org/html/rfc3501
https://doi.org/10.17487/RFC1939
https://tools.ietf.org/html/rfc1939
https://doi.org/10.17487/RFC5598
https://tools.ietf.org/html/rfc5598
https://doi.org/10.17487/RFC7628
https://doi.org/10.17487/RFC7628
https://tools.ietf.org/html/rfc7628
https://doi.org/10.17487/RFC4422
https://tools.ietf.org/html/rfc4422
https://doi.org/10.17487/RFC5322
https://tools.ietf.org/html/rfc5322
https://doi.org/10.17487/RFC2045
https://tools.ietf.org/html/rfc2045
https://doi.org/10.17487/RFC7208
https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc7208
https://doi.org/10.17487/RFC4408
https://tools.ietf.org/html/rfc4408
https://doi.org/10.17487/RFC4406
https://tools.ietf.org/html/rfc4406
https://doi.org/10.17487/RFC4871
https://tools.ietf.org/html/rfc4871
https://doi.org/10.17487/RFC6376
https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc6376
https://doi.org/10.17487/RFC7489
https://tools.ietf.org/html/rfc7489
https://doi.org/10.17487/RFC8601
https://tools.ietf.org/html/rfc8601
https://doi.org/10.17487/RFC3207
https://tools.ietf.org/html/rfc3207
https://tools.ietf.org/html/rfc3207
https://doi.org/10.17487/RFC4686
https://tools.ietf.org/html/rfc4686
https://doi.org/10.17487/RFC6377
https://tools.ietf.org/html/rfc6377

[33] John R. Levine et al. DomainKeys Identified Mail (DKIM) Author Domain Signing Prac-
tices (ADSP). RFC 5617. Aug. 2009. DOI: 10.17487/RFC5617. https://tools.ietf.org/
html/rfc5617.

[34] Kurt Andersen et al. The Authenticated Received Chain (ARC) Protocol. RFC 8617.
July 2019. DOI: 10.17487/RFC8617. https://tools.ietf.org/html/rfc8617.

[35] Scott Rose et al. DNS Security Introduction and Requirements. RFC 4033. Mar. 2005.
DOI: 10.17487/RFC4033. https://tools.ietf.org/html/rfc4033.

[36] Scott Rose et al. Resource Records for the DNS Security Extensions. RFC 4034. Mar.
2005. DOI: 10.17487/RFC4034. https://tools.ietf.org/html/rfc4034.

[37] Scott Rose et al. Protocol Modifications for the DNS Security Extensions. RFC 4035.
Mar. 2005. DOI: 10.17487/RFC4035. https://tools.ietf.org/html/rfc4035.

[38] Derek Atkins and Rob Austein. Threat Analysis of the Domain Name System (DNS).
RFC 3833. Aug. 2004. DOI: 10.17487/RFC3833. https://tools.ietf.org/html/rfc3833.

[41] Stephan Friedl, Tom Kaupe, and Sriram Gorti. TLS Certificate Identity Verification
Procedure for SMTP MTA to MTA Connections. Internet-Draft. Expired draft. Mar.
2014. https://tools.ietf.org/html/draft-friedl-uta-smtp-mta-certs-00.

[42] Paul E. Hoffman and Jakob Schlyter. The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA. RFC 6698. Aug. 2012. DOI:
10.17487/RFC6698. https://tools.ietf.org/html/rfc6698.

[43] Viktor Dukhovni and Wes Hardaker. SMTP Security via Opportunistic DNS-Based Au-
thentication of Named Entities (DANE) Transport Layer Security (TLS). RFC 7672.
Oct. 2015. DOI: 10.17487/RFC7672. https://tools.ietf.org/html/rfc7672.

[44] Daniel Margolis et al. SMTP MTA Strict Transport Security (MTA-STS). RFC 8461.
Sept. 2018. DOI: 10.17487/RFC8461. https://tools.ietf.org/html/rfc8461.

[45] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate Transparency. RFC 6962.
June 2013. DOI: 10.17487/RFC6962. https://tools.ietf.org/html/rfc6962.

[46] Dr. John C. Klensin and Randall Gellens. Message Submission for Mail. RFC 6409. Nov.
2011. DOI: 10.17487/RFC6409. https://tools.ietf.org/html/rfc6409.

[47] Keith Moore and Chris Newman. Cleartext Considered Obsolete: Use of Transport Layer
Security (TLS) for Email Submission and Access. RFC 8314. Jan. 2018. DOI: 10.17487/
RFC8314. https://tools.ietf.org/html/rfc8314.

[48] Arnt Gulbrandsen and Dr. Levon Esibov. A DNS RR for specifying the location of services
(DNS SRV). RFC 2782. Feb. 2000. DOI: 10.17487/RFC2782. https://tools.ietf.org/
html/rfc2782.

[49] Cyrus Daboo. Use of SRV Records for Locating Email Submission/Access Services. RFC
6186. Mar. 2011. DOI: 10.17487/RFC6186. https://tools.ietf.org/html/rfc6186.

[50] Alexey Melnikov. Updated Transport Layer Security (TLS) Server Identity Check Pro-
cedure for Email-Related Protocols. RFC 7817. Mar. 2016. DOI: 10.17487/RFC7817.
https://tools.ietf.org/html/rfc7817.

[51] Stefan Santesson. Internet X.509 Public Key Infrastructure Subject Alternative Name
for Expression of Service Name. RFC 4985. Aug. 2007. DOI: 10.17487/RFC4985. https:
//tools.ietf.org/html/rfc4985.

[52] Jim Fenton. SMTP Require TLS Option. RFC 8689. Nov. 2019. DOI: 10.17487/RFC8689.
https://tools.ietf.org/html/rfc8689.

[53] Russ Housley. Cryptographic Message Syntax (CMS). RFC 5652. Sept. 2009. DOI: 10.
17487/RFC5652. https://tools.ietf.org/html/rfc5652.

47

https://doi.org/10.17487/RFC5617
https://tools.ietf.org/html/rfc5617
https://tools.ietf.org/html/rfc5617
https://doi.org/10.17487/RFC8617
https://tools.ietf.org/html/rfc8617
https://doi.org/10.17487/RFC4033
https://tools.ietf.org/html/rfc4033
https://doi.org/10.17487/RFC4034
https://tools.ietf.org/html/rfc4034
https://doi.org/10.17487/RFC4035
https://tools.ietf.org/html/rfc4035
https://doi.org/10.17487/RFC3833
https://tools.ietf.org/html/rfc3833
https://tools.ietf.org/html/draft-friedl-uta-smtp-mta-certs-00
https://doi.org/10.17487/RFC6698
https://tools.ietf.org/html/rfc6698
https://doi.org/10.17487/RFC7672
https://tools.ietf.org/html/rfc7672
https://doi.org/10.17487/RFC8461
https://tools.ietf.org/html/rfc8461
https://doi.org/10.17487/RFC6962
https://tools.ietf.org/html/rfc6962
https://doi.org/10.17487/RFC6409
https://tools.ietf.org/html/rfc6409
https://doi.org/10.17487/RFC8314
https://doi.org/10.17487/RFC8314
https://tools.ietf.org/html/rfc8314
https://doi.org/10.17487/RFC2782
https://tools.ietf.org/html/rfc2782
https://tools.ietf.org/html/rfc2782
https://doi.org/10.17487/RFC6186
https://tools.ietf.org/html/rfc6186
https://doi.org/10.17487/RFC7817
https://tools.ietf.org/html/rfc7817
https://doi.org/10.17487/RFC4985
https://tools.ietf.org/html/rfc4985
https://tools.ietf.org/html/rfc4985
https://doi.org/10.17487/RFC8689
https://tools.ietf.org/html/rfc8689
https://doi.org/10.17487/RFC5652
https://doi.org/10.17487/RFC5652
https://tools.ietf.org/html/rfc5652

[54] Jim Schaad, Blake C. Ramsdell, and Sean Turner. Secure/Multipurpose Internet Mail
Extensions (S/MIME) Version 4.0 - Certificate Handling. RFC 8550. Apr. 2019. DOI:
10.17487/RFC8550. https://tools.ietf.org/html/rfc8550.

[55] Daniel J. Bernstein. Internet Mail 2000. 2000. https://cr.yp.to/im2000.html (visited
on 02/15/2020).

[61] Jonathan Moroney. “The Cipher Mail Transport Protocol (CMTP).” MA thesis. Univer-
sity of Hawaii at Manoa, Aug. 2016. https://hdl.handle.net/10125/51458.

[62] Ladar Levison. Dark Internet Mail Environment. June 2018. https://darkmail.info/

downloads/dark-internet-mail-environment-june-2018.pdf.
[64] Melinda Shore et al. A DANE Record and DNSSEC Authentication Chain Extension for

TLS. Internet-Draft. Expired draft. Mar. 2018. https://tools.ietf.org/html/draft-
ietf-tls-dnssec-chain-extension-07.

[65] Ned Freed. SMTP Service Extension for Command Pipelining. RFC 2920. Sept. 2000.
DOI: 10.17487/RFC2920. https://tools.ietf.org/html/rfc2920.

[66] Gregory Vaudreuil. SMTP Service Extensions for Transmission of Large and Binary MIME
Messages. RFC 3030. Dec. 2000. DOI: 10.17487/RFC3030. https://tools.ietf.org/

html/rfc3030.
[67] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. Aug.

2018. DOI: 10.17487/RFC8446. https://tools.ietf.org/html/rfc8446.
[68] National Institute of Standards and Technology. Digital Signature Standard (DSS). FIPS

186-4. July 2013. DOI: 10.6028/NIST.FIPS.186-4. https://doi.org/10.6028/NIST.

FIPS.186-4.
[69] Simon Josefsson and Ilari Liusvaara. Edwards-Curve Digital Signature Algorithm (Ed-

DSA). RFC 8032. Jan. 2017. DOI: 10.17487/RFC8032. https://tools.ietf.org/html/
rfc8032.

[70] Email-Verify.My-Addr.com. List of most popular email domains. https://email-verify.
my-addr.com/list-of-most-popular-email-domains.php (visited on 06/16/2020).

[71] Moz. The Top 500 Most Popular Websites. https : / / moz . com / top500 (visited on
03/11/2020).

48

https://doi.org/10.17487/RFC8550
https://tools.ietf.org/html/rfc8550
https://cr.yp.to/im2000.html
https://hdl.handle.net/10125/51458
https://darkmail.info/downloads/dark-internet-mail-environment-june-2018.pdf
https://darkmail.info/downloads/dark-internet-mail-environment-june-2018.pdf
https://tools.ietf.org/html/draft-ietf-tls-dnssec-chain-extension-07
https://tools.ietf.org/html/draft-ietf-tls-dnssec-chain-extension-07
https://doi.org/10.17487/RFC2920
https://tools.ietf.org/html/rfc2920
https://doi.org/10.17487/RFC3030
https://tools.ietf.org/html/rfc3030
https://tools.ietf.org/html/rfc3030
https://doi.org/10.17487/RFC8446
https://tools.ietf.org/html/rfc8446
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.17487/RFC8032
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8032
https://email-verify.my-addr.com/list-of-most-popular-email-domains.php
https://email-verify.my-addr.com/list-of-most-popular-email-domains.php
https://moz.com/top500

Appendices

49

Appendix A

Adoption of existing protocols

As mentioned in Chapter 1, there have already been many studies examining the current
adoption of email security protocols [6, 7, 8, 9, 10]. However, none of them test for the
support for MTA-STS or the REQUIRETLS SMTP extension.

A.1 Adoption among 99 email domains

We used a list of the 100 most popular email domains in 2016 by number of emails [70] and
performed various tests. The results are in Table A.1. One of the domains (voila.fr) has no
email-related DNS records at all because its email service has been discontinued. Hence, 99
email domains remain.

First, we tested if SPF and DMARC DNS records were present. For DMARC records we
also looked at the specified policy. DKIM key records are on different subdomains of the
_domainkey subdomain depending on the selector in the DKIM signature header, so we cannot
directly request these without having a selector. Hence, we test if a query for the _domainkey

subdomain itself does not result in an error. However, it might be that some DNS servers
erroneously reply with an error anyway, even though subdomains exist. This is also the method
that is used by internet.nl. For the DANE test, we checked if a TLSA record was present
for port 25 on the domain in the MX record with the highest priority and that this record and
the MX record are protected by DNSSEC.1 Besides that, we tested if an MTA-STS DNS record
was present and a policy file exists. We also checked inside the policy file what maximum
age was used and if the mode was set to ‘enforce’ (and not ‘testing’ or ‘none’). For the
DNSSEC tests, we checked if an RRSIG signature record existed for the record type concerned.
If CNAME aliases were used, we also checked for signatures on these records. We did not verify
the validity of the signatures. For the SMTP extension tests, we connected to the host and
checked if establishing a secure connection was possible and if the server advertised support
for the REQUIRETLS extension. If we could not connect to any of the MTAs listed in the MX

records, for example due to a filter rejecting our generic PTR record (see Section 2.1.1), this is
indicated in the ‘unknown support’ column.

Note that it may be that some of the domains tested share the same MTAs.

For the most part, these results are comparable or sometimes slightly more optimistic than
in the report from 2019 that was mentioned earlier [10]. It is remarkable that none of the

1We found no hosts with a TLSA record but an MX record that was not signed.

50

https://en.internet.nl/test-mail/

checked hosts seems to support the REQUIRETLS extensions, although it is still relative new.
Furthermore, only 2 hosts have their DMARC record signed using DNSSEC.

There is no clear ‘winner’ here. Although comcast.net supports all features tested excluding
REQUIRETLS, and has an MTA-STS maximum age of 30 days, it does not have a quarantine or
reject DMARC policy. Also note that this result does not necessarily mean that Comcast itself
enforces security policies for incoming or outgoing email. For a 2015 study into this question,
see [8].

Feature #domains with support #do-
mains
with
unknown
support

SPF 91 -
DKIM 68 -
DMARC 68 -
DMARC + quarantine policya 12 -
DMARC + reject policy 23 -
DKIM + DMARC 50 -
DKIM + DMARC + quarantine policya 12 -
DKIM + DMARC + reject policy 22 -
DMARC + DNSSEC 2b -
DANE (TLSA) 6 -
MTA-STS 12c -
MTA-STS + enforce mode 4d -
MTA-STS + DNSSEC 4e -
MTA-STS + DNSSEC + enforce mode 1e -
MTA-STS + max age ≥ 1 day 12 -
MTA-STS + max age ≥ 2 days 7 -
MTA-STS + max age ≥ 8 days 1 -
MTA-STS + max age ≥ 1 day + enforce mode 4 -
MTA-STS + max age ≥ 2 days + enforce mode 1 -
STARTTLS 82 9
STARTTLS + TLS 1.2 or higher 80 9
STARTTLS + valid certificate with MX name 77 9
REQUIRETLS 0 9

Table A.1: Adoption of email security protocols among 99 email domains
aWe only include hosts that have the policy set to affect all emails. For one host not included here, DMARC

is configured such that only 50% of its emails are affected, for testing purposes.
bAll of these hosts also support DKIM. None of them have a quarantine or reject policy.
cThis includes 4 domains that also implement DANE.
dThis includes 1 domain that also implements DANE.
eAll of these domains also implement DANE.

51

A.2 Adoption among 409 Web domains

Besides this, we also performed a test using the same method under the 500 top Web domains
in March 2020 [71]. From domains with a www. prefix, we removed this prefix beforehand.
The percentages in Table A.2 only include the 409 domains that have a reachable email server,
to make sure that we do not include non-email domains. (In hindsight it would have given a
better view to also include domains with a non-reachable email server, as long as they have
explicit MX records.) Furthermore, we did not query the top domain for records if none were
found on a subdomain, which might cause some false negatives. Even in this very large data
set, we found no hosts supporting the REQUIRETLS extension.

Feature Domains with support
SPF 93%
DKIM 73%
DMARC 67%
DMARC + quarantine policya 9%
DMARC + reject policya 25%
DKIM + DMARC 52%
DKIM + DMARC + quarantine policya 7%
DKIM + DMARC + reject policya 17%
DMARC + DNSSEC 5%
DKIM + DMARC + DNSSEC + quarantine policya 0
DKIM + DMARC + DNSSEC + reject policya 3% (11 domains)
DANE (TLSA) 1% (5 domains)
MTA-STS 2% (7 domains)b

MTA-STS + enforce mode 1% (4 domains)b

MTA-STS + DNSSEC 0% (1 domain)b

MTA-STS + DNSSEC + enforce mode 0% (1 domain)b

MTA-STS + max age ≥ 1 day 2% (7 domains)
MTA-STS + max age ≥ 2 days 0% (2 domains)
MTA-STS + max age ≥ 8 days 0% (1 domain)
MTA-STS + max age ≥ 1 day + enforce mode 1% (4 domains)
MTA-STS + max age ≥ 2 days + enforce mode 0% (1 domain)
STARTTLS 95%
STARTTLS + TLS 1.2 or higher 95%
STARTTLS + valid certificate with MX name 88%
REQUIRETLS 0

Table A.2: Adoption of email security protocols among 409 top Web domains
aWe only include hosts that have the policy set to affect all emails.
bThis includes 1 domain that also implements DANE.

52

Appendix B

Protocol data structures

enum {

require_security(0)

/* more extensions may be defined in the future */

} ExtensionType;

struct {

ExtensionType type;

opaque data<0..2^32-1>;

} Extension;

struct {

uint8 version = 0;

} ServerHello;

opaque Certificate<0..2^24-1>;

Certificate CertificateChain<0..2^16-1>;

struct {

uint8 version = 0;

CertificateChain certificate_chains<0..2^24-1>;

} ClientHello;

opaque Address<0..2^16-1>; /* email address of the form local@domain */

enum {

/* ECDSA with curves as defined in [68] */

ecdsa_secp256r1_sha256(0x0403), /* with SHA-256 hash */

ecdsa_secp384r1_sha384(0x0503), /* with SHA-384 hash */

ecdsa_secp521r1_sha512(0x0603), /* with SHA-512 hash */

/* PureEdDSA with curves as defined in [69] */

ed25519(0x0807),

ed448(0x0808),

(0xFFFF)

} SignatureAlgorithm;

53

struct {

SignatureAlgorithm algorithm;

opaque parameters<0..2^16-1>;

} SignatureMethod;

struct {

opaque name<0..2^16-1>;

opaque value<0..2^24-1>;

} Header;

struct {

uint24 certificate_chain;

SignatureMethod signature_method;

opaque signature[signature_length];

Header trace_headers<0..2^24-1>;

Address recipients<0..2^24-1>;

opaque message<0..2^64-1>;

} Email;

struct {

uint24 email;

} EmailDelivered;

enum {

internal_error(0),

service_unavailable(1),

illegal_message(2),

illegal_parameter(3),

too_large(4),

authentication_failed(5),

insufficient_security(6),

unknown_address(7)

} ErrorCode;

struct {

none(0),

message(1)

} ErrorReference;

struct {

ErrorCode code;

ErrorReference reference;

select (Error.reference) {

case none: struct {};

case message: uint24 messageNumber;

}

select (Error.code) {

case unknown_address: Address<0..2^16-1>;

default: struct {}; /* for other error codes */

};

} Error;

54

enum {

error(0),

server_hello(1),

client_hello(2),

email(3),

email_delivered(4)

} MessageType;

struct {

uint64 size;

MessageType type;

Extension extensions<0..2^16-1>;

select (Message.type) {

case error: Error;

case server_hello: ServerHello;

case client_hello: ClientHello;

case email: Email;

case email_delivered: EmailDelivered;

}

} Message;

55

	1 Introduction
	1.1 Insecurity of email
	1.2 Email security protocols
	1.3 Current alternatives
	1.4 Our solution
	1.5 Outline

	2 Preliminaries: current state of email
	2.1 History
	2.1.1 Authenticating the sender: preventing spoofing
	SPF
	DKIM
	DMARC
	Reverse DNS

	2.1.2 Authenticating the recipient and providing confidentiality

	2.2 Problems
	2.2.1 SPF
	2.2.2 DKIM & DMARC
	2.2.3 DNS
	2.2.4 TLS
	DANE
	MTA-STS
	Certificate Transparency
	Mail submission
	Require TLS

	2.3 PGP & S/MIME

	3 Related Work
	3.1 Before SPF
	3.2 After SPF

	4 Requirements & goals
	4.1 Non-functional requirements
	4.2 Functional requirements
	4.3 Security
	4.3.1 Trust model
	4.3.2 Attacker model
	4.3.3 Security goals

	5 Design
	5.1 Locations of changes
	5.2 Identifying & authenticating the recipient's server
	5.2.1 Using MX records with DNSSEC
	5.2.2 Using TXT records or a new type of record with DNSSEC
	5.2.3 Using SRV records with DNSSEC or SRVName
	5.2.4 Authentication using certificate issued to domain of email address
	5.2.5 Using HTTPS

	5.3 Authenticating message origin & verifying message integrity
	5.3.1 Using TLS client authentication
	5.3.2 Using a signature
	Authenticating public key using public CAs
	Authenticating public key using DNS records with DNSSEC
	Canonicalization

	5.4 Providing confidentiality
	5.5 Certificates
	5.6 Transaction syntax
	5.7 Interoperability
	5.8 Decisions

	6 Specification
	6.1 Server discovery
	6.2 Handshake
	6.3 Transaction syntax
	6.4 Transaction process
	6.4.1 Initialization
	6.4.2 Email submission
	6.4.3 Email receival
	6.4.4 Email delivery
	6.4.5 Forwarding
	6.4.6 Extensions
	6.4.7 Errors

	6.5 Informing the MUA
	6.6 Mail submission

	7 Discussion
	7.1 Evaluation of non-functional requirements
	7.2 Evaluation of functional requirements
	7.3 Incentives for switching

	8 Conclusions
	8.1 Future work

	References
	Appendices
	A Adoption of existing protocols
	A.1 Adoption among 99 email domains
	A.2 Adoption among 409 Web domains

	B Protocol data structures

