
Bachelor thesis
Computing Science

Radboud University

Connecting Mixed-Integer Linear
Programming and Finite-memory

POMDP Strategies

Author:
Tom Smitjes
s4599829

Supervisor/assessor:
dr. N.H. (Nils) Jansen
N.Jansen@cs.ru.nl

Second assessor:
dr. P.M. (Peter) Achten

P.Achten@cs.ru.nl

August 21, 2020

Abstract

We often make choices based on little information. An investment, quick-
est route home, one choice always turned out to be the best one. However,
we want to know what the best choice is when we need to make it. Is there
a way to predict which choice that will be?

In this thesis we will try to better understand strategies for dealing with
a choices based on little and changing information. Based on the works of
Strengthening Deterministic Policies for POMDPs ([17]), the objective of
this thesis is to (a) understand the relation between Partially Observable
Markov Decision Process (POMDPs) and Mixed-Integer Linear Program-
ming (MILPs) and (b) attempt to create an MILP encoding which allows
for POMDP strategies to automatically be generated.

Contents

1 Introduction 3
1.1 A Robot’s Journey . 3

1.1.1 Finding The Shortest Path (example) 3
1.1.2 Finding The Best Strategy (example) 4

1.2 Finding A Strategy . 6
1.2.1 Research Question . 6

1.3 Motivation . 7
1.3.1 Own Examples . 7
1.3.2 Related Work . 8
1.3.3 Our Solution . 8

1.4 Overview . 8

2 Preliminaries 9
2.1 Distributions . 9
2.2 Definition POMDP . 10

2.2.1 MDPs . 10
2.2.2 POMDPs . 11

2.3 Definition Path . 12
2.3.1 Observation Path . 12

2.4 Definition Strategy . 13
2.4.1 Finite-memory Strategy 14

2.5 Definition MILP . 14

3 Research 15
3.1 Research Approach . 15

3.1.1 Optimal Strategy . 15
3.2 Creating An Algorithm . 16

3.2.1 Computable . 16
3.2.2 (Non-)Deterministic Strategies 16

3.3 Strategy Algorithm (Success States) 17
3.3.1 Success And Failure States 17
3.3.2 The ps Function . 17
3.3.3 MILP Encoding . 20

1

3.4 Strategy Algorithm (Reward) 21
3.4.1 Reward . 21
3.4.2 MILP Encoding . 22

3.5 Improvements . 23
3.5.1 Non-deterministic Strategy 23
3.5.2 Finite Paths . 23

3.6 Implementation . 24
3.6.1 Modeling A POMDP 25
3.6.2 Success States Implementation 31
3.6.3 Reward Implementation 33
3.6.4 Practical Use . 34

4 Related Work 35
4.1 Underlying Theory . 35
4.2 Other Implementations . 36

5 Conclusions 37
5.1 Conclusion . 37
5.2 Further Research . 37
5.3 Acknowledgement . 37

A Appendix 40
A.1 MDP Coin-toss Example . 40
A.2 POMDP Coin-toss Example 41

2

Chapter 1

Introduction

1.1 A Robot’s Journey

In order to get familiar with this topic, we will first take a look at a simple
example. This will help us understand the research better.

1.1.1 Finding The Shortest Path (example)

Imagine: You and your robot have
just landed on the planet Examplar-
ium. After a day of exploring the robot
needs to head back to the shuttle.
It has to find its way back based on
the map it has seen (seen in figure 1.1).

What is the minimum amount of ac-
tions the robot must make to go back to
the shuttle? Figure 1.1: A map of

Examplairum

As is visible from the map (1.1) the robot is currently on the bottom-left
section of the planet. It needs to go to the top-right section of the planet to
rejoin the shuttle. Every turn the robot can take an action to move to any
adjacent section1 or stay where it is.

Right now the robot has many different ways of getting home. It can

move 3 times up followed by 3 times right (start
up−→ up−→ up−→ right−−−→ right−−−→ right−−−→

finish) or any other combination of going 3 times up and right. Going left
or down would only mean that the robot would have to go right or up again
and so that would be inefficient. Similarly, staying in the same section will
only cause delay. Therefore the quickest route would need 6 actions.

1adjacent = up, down, left, right

3

1.1.2 Finding The Best Strategy (example)

But then: The robot receives an
alarming signal from the shuttle. A
dangerous storm has come up! It needs
to head back as soon as possible!

The robot is send the current location
of the storm and knows the prob-
abilities of the storm’s movement.
However, it can only see the sections
adjacent to it, and so can’t be sure of
the storms location after it has moved.

The robot has to go back to the shut-
tle as soon as possible while also avoid-
ing the moving storm. What is the best
strategy?

Figure 1.2: A storm has
come in Examplairum

As we can see from the map (1.3) the robot and the shuttle are positioned
like before, but there is now also a randomly moving storm. The shuttle has
been made storm proof, but should the storm and the robot end up in the
same tile then the robot will immediately be destroyed.

The storms position is only given at the beginning. After each turn the
storm can move to an adjacent section2 or stay. Each of its moves has an
equal probability (20% up, 20% down, 20% left, 20% right, 20% stay). If
the storm were to move off the map it will stay in its current position.

The storm moves first, followed by the action of robot, then the storm
again, etc.. How can we find the best actions for the robot to go back as
quickly as possible while also avoiding the storm as best as possible?

Understanding This Problem

To be able to visualize what’s going on we will use different versions of the
map, each with their own probability. After the storm moved, when it can be
in one of five places, we will create a total of five different map-states. Each
of these states represents a different storm-location, with each map-state
having their own probability of the storm being there3.

2adjacent = up, down, left, right
3In the beginning that means five map-states, one for each of the five storm movements,

with 20% chance associated to each of these map-states

4

Whenever the robot takes an ac-
tion, we will make it take that action
on every map-state. If on any one
of these map-states the robot were to
collide with the storm, we will stop
using that state and add that states
probability to an overall chance that
the robot won’t make it.

After each of the robots actions,
for each of all the currently used map-
states, we will create new map-states
based on all possible moves the storm
could take from that state. We will
then add all of these to the new set
of map-states to be used for the next
robot action.

Figure 1.3: Map-states of the sce-
nario after one turn of the storm

Luckily the robot is not powerless: It can see an oncoming storm if it is
in any of its adjacent tiles. Once we have seen the storm we know where the
storm is with a 100% certainty, and so we can discard all other map-states.

Solving This Problem

When the robot sees the storm we can right then change its path accordingly.
For example, we can instruct that the robot must take the actions as before
as much as it can, but must try to dodge the storm if it sees it, whenever
this will be. This set of instructions which allow us to spontaneously change
our path we will call a strategy.

Simple strategy

Try to move like we did (start
up−→ up−→ up−→ right−−−→ right−−−→ right−−−→ finish) but if we

see the storm blocking the route, we will try to move backwards (down or
left). If not, continue.

Because we can change our path according to what we see, instead of
one optimal path we are looking for one optimal strategy. A strategy which
is able to offer new paths with new information4. To understand more about
the effectiveness of different strategies we will first need to understand this
problem better from a theoretical viewpoint5.

4In this case, seeing the storm alters the path
5More about this example and possible strategies in the appendix

5

1.2 Finding A Strategy

With our robot we wanted to go back to the shuttle while also avoiding the
storm. For this we needed to find the optimal strategy for that problem. To
be able to understand such problems better, we will use Partially Observ-
able Markov Decision Processes (POMDPs). We will then try to relate our
problem to algorithms using Mixed Integer Linear Programming (MILP).

POMPDs6. A POMDP[12] is a framework where in we can
explain problems like our example with actions, states, paths
and strategies. Just like how we can solve other problems by
thinking of it mathematically, a POMDP provide a framework
which can help us to find the answer to such problems.

MILPs7. To be able to find an optimal POMDP strategy, we
will use MILPs[17]. A MILP is a program structured in a very
specific way, using only a goal, constraints and variables. We
want to use MILPs because they are solved, meaning that we
can automatically (via a program) find the answer to any math-
ematical problem as long as we can structure it as a MILP.

1.2.1 Research Question

To solve such problems better, the research question of this thesis is:

How does Mixed-Integer Linear Programming relate to the
computation of finite-memory strategies for a POMDP?

We want to find the optimal POMDP strategy automatically. Because
we know that MILPs are solved, should we be able to find such a mathe-
matical relationship between any POMDP and a matching MILP, we will
be able to create optimal POMDP strategies automatically. This is why
finding this relationship is so important.

6More on the definition of a POMDP in the preliminaries.
7More on the definition of a MILP in the preliminaries.

6

1.3 Motivation

Apart from our example in the introduction (1.1.2) understanding POMDPs
and learning how to work with them has been a much covered area of re-
search. Similarly, the need for a better way to work with POMDPs has
been growing with the growth of the popularity of POMDPs in practical
environments.

1.3.1 Own Examples

We can see the potential use of POMDPs everywhere. Whether we are esti-
mating a shortest route, guessing intentions of another person or otherwise
making decisions when we don’t know the full picture. Applying the right
POMDP strategy can help solve a lot of potential issues.

Real Option Valuation

One of the more lucrative areas where we could see such use is in Real
option valuation. This is a process by which an investor estimates whether
an investment is worthwhile or whether it is better to abandon it.

Other Examples

Other areas where we may see POMDPs include games (where we do not
know what the roll of the die will bring), advertisement (where we do not
know how many people will watch our adds) or strategical decisions (where
we do not know of the enemies intentions). All these scenarios are scenarios
where we need to make choices based on estimates, and it are these estimates
which we can learn to understand using a POMDP.

7

1.3.2 Related Work

POMDPs are not a new area of research. As
shown by papers such as those who cover mul-
tiple POMDP related issues [9] it has been
wildly covered, and this is not without a rea-
son. Because of the way POMDPs are build,
they cover a potentially endless amounts of
scenarios, ranging from speech recognition [8],
dealing with demenatia [7], keeping track of
near extinct species [6] and even keeping track
of inmates [15].

However, actually solving a POMDP
problem once it has been described as such
still seems to be a challenge. In the words of
Matthijs T.J. Spaan, “As solving POMDPs
optimally is very hard, we will have to con-
sider approximate algorithms.” ([15], page
51). Though useful as thinking of problems
as a POMDP may appear, it helps nothing if
there are no algorithms which can find solu-
tions easily.

Figure 1.4: Map of the
6th floor of ISR, Lisbon,
Portugal[15]. Even for
prison cells can POMDPs
be useful

1.3.3 Our Solution

Should we be able to relate any POMDP to a MILP and so find proper
algorithms that we can use to find the solution to any POMDP problem, we
will have, by extension, provided a solution to many different problems at
the same time.

1.4 Overview

We will first cover the basic definitions needed to understand this paper
in the preliminaries. We will then, in research chapter, go over two inter-
pretations of what an optimal strategy could be, and we will try to create
two MILP algorithms which find matching optimal strategies. We will then
conclude with a working implementation in python code. We will then go
over this code and discuss what further research can still be done.

8

Chapter 2

Preliminaries

To understand the research we will need to understand the topics and def-
initions. In this thesis we will mostly be using the definitions as defined
in Permissive Finite State Controller Of POMDPs [12] and Strengthening
Deterministic Policies for POMDPs [17].

2.1 Distributions

In this thesis we will use distributions. With distributions, instead of re-
turning just one element from a set, we can talk about possible outcomes
from a set, each with their own probability.

Definition 1 (Distribution). For a set X with elements e1, e2, ... , en, a
distribution of that set is defined as:

(p1 : e1, p2 : e2, , pn : en) ∈ Distr(X)

with every pi the probability of element ei, with 0 ≤ pi ≤ 1, and with the
sum of the probabilities in a distribution being one (

∑
ei∈X pi = 1).

For example we can create the distribution of a fair die, with each side
of the die having a one in six probability of being rolled, as:

(
1

6
: one,

1

6
: two,

1

6
: three,

1

6
: four,

1

6
: five,

1

6
: six)

If the probability of an element is zero, we won’t write them down. For
example, an unfair die that always rolls a six can be written as (1 : six).

As A Function

We can use a distribution distr ∈ Distr(X) as a function, which for any
element e ∈ X will return the probability p of that element in distr. This
would look like distr(e) = p.

9

2.2 Definition POMDP

Partially Observable Markov Decision Processes (POMDPs) are derived
from Markov Decision Processes (MDPs)[12]. To understand POMDPs we
will first need to understand MDPs.

2.2.1 MDPs

In the introduction (1.1.1) we came across an example where after perform-
ing a certain action from a certain state, we end up in a random new state.
We could never choose in which state we would end up, only our actions.

A Markov Decision Process (MDP) is a mathematical framework which
can be used to describe a scenario like our example. It consists of a set of
all states (S), a state from which we begin (si), a set of all actions (Act),
and a probabilistic function (P) which, after performing an action from a
certain state, will give us a distribution of where we will end up.

Definition 2 (Markov Decision Process (MDP)).
A MDP is defined as a tuple M = (S, si,Act,P), where:

• S - A finite set of all possible states.

• si - The initial state.

• Act - A finite set of all possible actions.

• P - The probabilistic function P : S ×Acts → Distr(S). This gives a
distribution of all states that you might end up in after performing a
certain action from a certain state.

Acts ⊆ Act is the set of all actions which are possible from a state
s, because it is not always is every action possible1. We will also define
succ(s, a) ∈ S as the set of states reachable from state s using action a.

MDP Example

In the example (A.1)2 we describe a coin-toss using a MDP. We use the P
function to describe that we can end up on any of the two sides after a toss.
The MDP looks as follows:

Mc = (Sc, si c, Actc, Pc)

with Sc = {heads, tails}, si c = heads, Actc = {toss} and
Pc(heads, toss) = Pc(tails, toss) = (0.5 : heads, 0.5 : tails)

1In the introduction we could not move further down once we were at the bottom.
2See the appendix for a more in-depth explanation

10

2.2.2 POMDPs

In the second robot example (1.1.2) we often did not know in which map-
state the robot was. Instead, we could only guess the current state based on
limited knowledge (like where the storm started, the amount of turns, etc.).
We will call all current knowledge of our state our observation.

To show this uncertainty we will add observations. We will extend MDPs
to Partially Observable Markov Decision Processes (POMDPs) with the ad-
dition of two parameters, a set of observations (Z) and a mapping function
(O) which matches every state to its observation.

Definition 3 (Partially Observable Markov Decision Processes (POMDP)).
A POMDP is defined as a tuple P = (M,Z,O), where:

• M - A MDP.

• Z - A finite set of observations.

• O - The observation function O : S → Z. This function maps a state
to the corresponding observation.

We will also define zi = O(si) as our initial observation and states(z) =
{s | O(s) = z} as the set of possible states given an observation z.

POMDP Belief

In a POMDP, for an observation z, all states in states(z) need to have the
exact same actions (Actz). However, the outcomes of these actions can vary.
To estimate in which state we are we can use belief.

Definition 4 (Belief). For z the current observation, the belief b ∈ Distr(states(z))
is the distribution of possible current states.

For example, when we perform an action from the state si, we could end
up in a number of states based on the P function. If we then eliminate all
the states that do not match our current observation, we get our belief3.

POMDP Example

In the appendix (A.2)4 we extend our MDP to a POMDP, as follows:

Pc = (Mc, Zc, Oc)

with Mc = Mc, Zc = {mystery-side} and
Oc(heads) = Oc(tails) = mystery-side

3Similarly we can do the same thing with every following action, only then we do it for
each of the possible states and then add the probabilities appropriately.

4See the appendix for a more in-depth explanation.

11

2.3 Definition Path

In the first part of introduction we were mov-
ing the robot. These moves that the robot
made is our path .

Definition 5 (POMDP paths). A path π ∈
Paths in a POMDP P is defined as the se-
quence of states and actions:

π = si
a1−→ s2

a2−→ ...
an−1−−−→ sn

Here each sx ∈ S is a state with si the initial
state, and each ax ∈ Actsx is the action taken
after that observation.

Figure 2.1: Examplairum
with the path colored

We can think of a path as a series of actions and states we would end
up. For example, in the first part of the introduction we continuously made
the action of moving upwards or right. We described our path as:

start
up−→ up−→ up−→ right−−−→ right−−−→ right−−−→ finish

For a POMDP path we also remember the state after each action. Every
time the robot moved the map changed to show the robots movement. This
new map is our new state. With this our POMDP path would look like:

πexample = si
up−→ s2

up−→ s3
up−→ s4

right−−−→ s5
right−−−→ s6

right−−−→ s7

All paths begin with si and end with a state we call last(π) (In our
example, last(πexample) = s7). From that last state we can usually perform
a new action and end up with a new observation. To remember this action
and observation we simply add them to the end of the previous path:

For a previous path πλprev = ... sn, after performing action an resulting in

state sn+1, the next path is: πnext = πprev
an−→ sn+1 = ... sn

an−→ sn+1

With this we can use paths to “walk” through a POMDP, with the path
showing us the history of our states and actions. Walking through a POMDP
step-by-step is what we will use for our strategies.

2.3.1 Observation Path

In a POMDP we only know of our observations. Because of this we will
define θ = O(π) ∈ Paths to describe a path π for which all states are
replaced with their matching observations by the O function.

12

2.4 Definition Strategy

In the second part of the introduction we saw
a randomly moving storm. It was clear that
trying the same path could result in our robot
being destroyed, and so we needed a strategy.

Definition 6 (POMDP strategy). A strategy
for a POMDP P is defined as the function:

σ : Paths′ → Distr(ActZ)

This function takes our current path θ ∈
Paths′ and returns a distribution of actions
from Actlast(θ) that we should take.

Figure 2.2: Examplairum
with the path and storm

This strategy function can be set and changed. We can freely choose
what actions σ(θ) returns. What we choose will tell a user of our strategy
what actions we think they should take. To demonstrate this, we can try to
rewrite our simple strategy from the introduction:

Simple strategy

Try to move like we did (start
up−→ up−→ up−→ right−−−→ right−−−→ right−−−→ finish) but if we

see the storm blocking the route, we will try to move backwards (down or
left). If not, continue.

With a little help from the coloring from figure 2.2 we can set our σ
function such that its results are the same as our simple strategy5:

Simple strategy - POMDP version

For any path θ ∈ Paths′:
If the storm is not blocking the path:

If last(θ) is in the green or blue area: σ(θ) = (1 : up)
Else if last(θ) is in the purple or red area: σ(θ) = (1 : right)

Else if the storm is blocking the path:
If last(θ) is in the blue or purple area: σ(θ) = (1 : down)
Else if last(θ) is in the red area: σ(θ) = (1 : left)
Else if last(θ) is in the green area: σ(θ) = (1 : stay)

As we can see in the POMDP version of our strategy, for any path,
depended on whether there is a storm blocking the path and where it is
now, we get an action that we must take6, similar to our simple strategy.

5A few simplifications have been made to make the algorithm more understandable.
6In this example the strategy only recommend one action each time with a 100%

certainty. This is called a deterministic strategy.

13

2.4.1 Finite-memory Strategy

Paths can be infinitely long, and for each of these paths our strategy can
recommended something unique. However we are trying to automatically
generate a strategy, and no computer can store an infinite memory.

We need to limit ourselves to a finite-memory strategy, one that remem-
bers only so much of our current path. Because of this we will define the
function lastm, which strips any path to its last m states and in-between-
actions. For example:

last3(s4
a4−→ s5

a5−→ s6
a6−→ s7

a7−→ s8) = s6
a6−→ s7

a7−→ s8

We will also define Pathsm as the set of all possible paths (not necessarily
starting at si) of at most length m. We will use both Pathsm and lastm to
create the definition of finite-memory strategies.

Definition 7 (Finite-memory POMDP Strategy). A finite-memory strategy
for a POMDP P is a strategy for a finite path θ ∈ Paths′m:

σ : Paths′m → Distr(ActZ)

with for every path θ ∈ Paths′ the strategy is equal to σ(lastm(θ)).

Using this kind of strategy we only need an output for a finite amount
of inputs. This we are able to model in a computer.

2.5 Definition MILP

To be able to automatically create a strategy for any POMDP, we will
be using Mixed Integer Linear Programming (MILP). This mathematical
optimization program allows us to optimize a number of variables according
to a goal and its constraints. MILPs are solved, meaning that we are able
to optimize any MILP with the help of a computer.

Definition 8 (Mixed Integer Linear Program (MILP)). A MILP is an op-
timization program with three parts:

• Goal - An expression that needs to be maximized or minimized

• Constraints - A set of linear equations that must be true

• Variables - The variables that need to be optimized

For example, we can create a MILP with variables x and y, goal “maximize x”,
and with the constraints x < y and y < 3. The optimal solution of that
MILP would be y = 3 and x = 3.

14

Chapter 3

Research

3.1 Research Approach

The research question of this thesis is:

How does Mixed-Integer Linear Programming relate to the
computation of finite-memory strategies for a POMDP?

To answer this question we will try to automatically create POMDP
strategies with MILP algorithms using Strengthening Deterministic Policies
for POMDPs [17]. If we were to successfully do this, we will have shown
that there exists integrate relation between the two.

3.1.1 Optimal Strategy

The definition of an “optimal” strategy is not well defined, and multiple
scenarios may have multiple perspectives. Because of this we will create two
different algorithms, each with their own perspective:

• Success States. We will design an algorithm based on success and
failure states, which will have states which need to be reached (result-
ing in a ”success”), and states which need to be avoided (resulting in
a ”failure”). This could be useful for calculating a shortest route.

• Reward. We will alter our algorithm based on rewards. This is a
number which we will aim to increase as much as possible throughout
the algorithm. This is may be useful for financial decisions.

Using these two different perspectives we will try to still cover all of what
an “optimal” strategy could be.

15

3.2 Creating An Algorithm

Before we can implement any algorithm, we first need to make sure that we
will be able to create such an algorithm in the first place.

3.2.1 Computable

To make sure that we are able to model the POMDP in a computer, it is
important that all our data is finite1. This means that the set of states S,
actions Act and observations Z are finite2.

Modeling The Strategy

Our strategy also needs to be a finite-memory strategy. Such a strategy can
be defined as a function which, from a path θ, returns a distribution of ac-
tions. Alternatively, we can define our strategy by each of these probabilities
individually for each action, as σ(θ)(a), with ∀θ :

∑
a∈Actlast(θ) σ(θ)(a) = 1.

Using this definition we can better model our strategy.

3.2.2 (Non-)Deterministic Strategies

For the algorithm we will use deterministic strategies. These strategies
only recommend one action from any path, with all other actions discarded.
Deterministic strategies are easier to model in an algorithm.

Definition 9 (Deterministic strategy). A strategy σ is deterministic if, for
all paths θ and possible actions a: σ(θ)(a) = 0 or σ(θ)(a) = 1.

Non-deterministic strategies can recommend more than one action, each
with a probability between zero and one3. This allows for recommending
multiple actions with limited certainty.

Definition 10 (Non-deterministic Strategy). A strategy σ is non-deterministic
if, for all paths θ and possible actions a: 0 ≤ σ(θ)(a) ≤ 1

Ultimately, non-deterministic strategies cover a wider range of possibil-
ities than deterministic strategies. This is why we will later try to convert
our algorithms so that they also work for non-deterministic strategies.

1Finite does not mean small! Finitely big numbers include 101010
10

, a google, etc.
2|Z| ≤ |S| unless there are unreachable observations, which doesn’t make sense.
3The sum of all the probabilities for a given path must still be 1.

16

3.3 Strategy Algorithm (Success States)

The first approach to creating an algorithm will use success and failure
states. Using this method for our algorithm, we are able to solve problems
involving states that we want to reach versus states that we want to avoid4.

3.3.1 Success And Failure States

This algorithm will try to optimize a strategy based on a non-empty set
of success states (SS) in S. We want to end up with these states, and so
getting there as quickly as possible is one of the goals of the algorithm.

Definition 11 (Success States). A non-empty set of observations SS ⊂ S
which result in an immediate success.

However, we will also define the set of failure states (SF) in S. This
set can be empty and has no overlap with SS . As soon as we are in one
of the failure observations we will fail, even if more actions after that were
possible. Minimizing the probability of ending up in one of these states is
the other goal of our algorithm.

Definition 12 (Failure States). A set of observations SF ⊂ S which result
in an immediate failure. SF ∩ SS = ∅

For example, in the introduction we wanted our robot to be back to the
shuttle as quick as possible, so any states where the robot was at the shuttle
was a success states. However, we also wanted to avoid the destructive storm
as best as we could, and so any states where the robot and the storm would
be in the same section was a failure states.

3.3.2 The ps Function

To calculate the best strategy in a POMDP, we will make clever use of
several “smaller than”-functions and one value which we need to maximize.
This way the strategy will naturally favor the best actions. It will do so
using the ps function.

Definition 13 (ps function). For a deterministic strategy, ps is defined as
the probability (between 0 and 1) of reaching a state in SS from a state s
according to our current strategy σ. ps is defined using three equations56:

• ∀s ∈ SS : ps = 1 (1) • ∀s ∈ SF : ps = 0 (2)

• ∀s ∈ S∗, a ∈ Acts : ps ≤ (1 − σ(θ)(a)) +
∑

s′∈succ(s,a) P (s, a)(s′) ∗ ps′
(3)

4For example this can be used for winning a game, finding a moving target, etc.
5succ(s, a) returns the next possible states after performing a from s.
6S∗ = S \ SS ∪ SF

17

Example ps Function

To demonstrate how this ps function works, we look at an example:

Say we have a POMDP with states {si, s1, s2},
actions {to s1, to s2} and P such that P (si, to s1) = (1 : s1)
and P (si, to s2) = (1 : s2).

Say SS = {s1} and SF = {s2}. With other words, we want to
take action to s1 from si as much as possible.

It follows from (1) and (2) that ps1 = 1 and ps2 = 0

Using (3), with Actsi = {to s1, to s2}, succ(si, to s1) = {s1}
and succ(si, to s2) = {s2}, we get the following equations:

psi ≤ (1− σ(zi)(to s1)) + ps1 = (1− σ(zi)(to s1)) + 1

psi ≤ (1− σ(zi)(to s2)) + ps2 = (1− σ(zi)(to s2))

The goal of the algorithm will be to maximize psi as much as
possible. For this, either σ(zi)(to s1) = 1 and σ(zi)(to s2) = 0,
or the other way around.

- If σ(zi)(to s1) = 1 then psi ≤ 1 and psi ≤ 1 =⇒ max psi = 1
- If σ(zi)(to s2) = 1 then psi ≤ 2 and psi ≤ 0 =⇒ max psi = 0

It follows that we get the highest psi with σ(zi)(to s1) = 1. With
other words, the strategy recommends taking action to s1, which
is what we wanted.

18

Getting Stuck

It may happen that our strategy would recommend to take an action that
would lead us directly to a state or group of states where we can’t escape
from. These states would not bring us any closer to our goal, but there are
also no actions possible that could ever return us back on our path. This is
what we will call “stuck”.

Reachability Rank

To ensure that the strategy will not get stuck, we will use a reachability
ranking rs (between 0 and 1) which, using a similar method as the ps func-
tion, will indicate how close we are to reaching our goal. The higher this
value is, the better.

We will also define a variable t(s,s′) which can be either 0 or 1, depending
on whether we will move closer (one) or further away (zero) from our goal.
This will act as a barrier, and will close of paths which will get us stuck.

We will define rs and t(s,s′) using the following three equations:

• ∀s ∈ S∗, if Acts = ∅ : rs = 0 (1)

• ∀s ∈ S∗, s′ ∈ succ(s) : rs < (1− t(s,s′)) + rs′ (2)

• ∀s ∈ S∗, a ∈ Acts : ps ≤ (1− σ(θ)(a)) +
∑

s′∈succ(s,a) t(s,s′) (3)

With these equations, any loop or dead-end will have t(s,s′) = 0 some-
where for two consecutive states7. This will make such paths undesirable
when trying to maximize psi , and so will make sure that actions which leads
to getting stuck such as these will preferably not get chosen.

7This is because rs always needs to be strictly smaller than rs′ . Should they loop, then
there must be a point where t(s,s′) = 0, making actions leading to there less attractive.

19

3.3.3 MILP Encoding

Using the equations and theory as we described earlier, we will be able to
create an algorithm that can optimize a strategy so that we try to reach
certain states (SS), but avoid other states (SF).

Initiation

The algorithm will expect the following input:

• P - The POMDP for which we want to find an ideal strategy

• SS and SF - The success and failure states

Algorithm

Using the above input, we will use the following MILP encoding8:

Algorithm 1: MILP Success Strategy Creator

Data: P, SS , SF

Goal: maximize psi (maximize probability of ending in ZS)

Constraints:
∀a, θ : σ(θ)(a) = 0 or σ(θ)(a) = 1 (deterministic strategy)
∀θ :

∑
a∈Actlast(θ) σ(θ)(a) = 1

∀s ∈ S : 0 ≤ ps ≤ 1
∀s ∈ SS : ps = 1
∀s ∈ SF : ps = 0
∀s ∈ S∗, a ∈ Acts : ps ≤ (1− σ(θ)(a)) +

∑
s∈succ(s,a) P (s, a)(s′) ∗ ps′

∀s ∈ S : 0 ≤ rs ≤ 1
∀s ∈ S, s′ ∈ succ(s) : t(s,s′) = 0 or t(s,s′) = 1
∀s ∈ S∗, if Acts = ∅ : rs = 0
∀s ∈ S∗, s′ ∈ succ(s) : rs < (1− t(s,s′)) + rs′

∀s ∈ S∗, a ∈ Acts : ps ≤ (1− σ(θ)(a)) +
∑

s′∈succ(s,a) t(s,s′)

Variables: σ(θ)(a), ps, rs, t(s,s′)

In the algorithm we use the psi function as described earlier. Using that
function we can get the probability of ending up in a state that matches on
of the success states. We also wont want to take any step towards states
that will lead to dead-ends or lead us to failure states.

8S∗ = S \ SF ∪ SS

20

3.4 Strategy Algorithm (Reward)

With our previous algorithm we tried to create an algorithm based on success
states. Now we will try to create our strategy based on rewards. A reward is
a value which we want to increase as much as possible during the algorithm.

3.4.1 Reward

We will give every state and the action that we took from that state a value.
This value will represent the reward that that interaction will give us. We
will use the function r(s, a)9 for s a state and a an action in As.

Current Reward

Each time we perform a new action from a new state, we add the matching
reward to our current reward (vs). We will keep adding new rewards until
we stop. This way we can better simulate the idea of finding profitable
routes which will increase our reward.

Reward Decay

It may happen that the algorithm discovers a loop where we will gain more
reward with every cycle. Would that be the case we could go around end-
lessly, ever increasing our reward till infinity. Such a loophole is of course
not desirable or realistic.

To make sure that such loops wont interfere, we will alter how we add
rewards. We will make recent rewards less useful with reward decay (β), a
number between 0 and 1 (but not equal to 0 or 1). The more actions it took
to get to that reward, the more we will multiply that reward by β before we
add it, making sure that the current reward converges.

Formula

To describe the current reward using a reward decay, for s our current state
and a an action in Acts, we will use the following function:

vs ≤ v∗max ∗ (1− σ(θ)(a)) + r(s, a) + β ∗
∑

s′∈succ(s,a)

P (s, a)(s′) ∗ vs′

v∗max is a number larger then the highest difference between two rewards
from the same state. This makes sure that, to optimize vs, the strategy will
prefer higher yielding actions.

9Can have as codomain any totally ordered set for the ”≤” operation where addition
is defined. Like the rational numbers, natural numbers, etc.

21

3.4.2 MILP Encoding

With the reward function we can create an algorithm which creates an op-
timal strategy based on a reward value which we want to increase as much
as possible.

Initiation

The algorithm will expect the following input:

• P - The POMDP for which we want to find an ideal strategy

• r - The reward function

• β - The reward decay, with 0 < β < 1

Algorithm

Using the input defined as above, we will use the following encoding:

Algorithm 2: MILP Reward Strategy Creator

Data: P, r

Goal: maximize vsi (maximize reward)

Constraints:
∀a, θ : σ(θ)(a) = 0 or σ(θ)(a) = 1 (deterministic strategy)
∀θ :

∑
a∈Act σ(θ)(a) = 1

∀s ∈ S, a ∈ Acts :
vs ≤ v∗max ∗ (1−σ(θ)(a)) + r(s, a) +β ∗

∑
s′∈succ(s,a) P (s, a)(s′) ∗ vs′

Variables: σ(θ)(a), vs

We only need the one additional constraint and variable to make sure
that this algorithm is as optimized as possible. Because we are only focused
with getting as much reward as possible, we do not need to optimize a
probability of arriving somewhere or worry about getting stuck. Being stuck
in a rewarding loop is not so bad.

22

3.5 Improvements

We have now found two algorithms that are able to generate optimal strate-
gies based on two different perspectives. Though they are correct, they do
not cover all the possible scenarios10. Because of this, we can modify our
input so that we will still be able to cover such scenarios with our algorithms.

3.5.1 Non-deterministic Strategy

Our algorithms currently only creates deterministic strategies. To make sure
that our algorithm is also capable of creating non-deterministic strategies11

we will alter the available actions before we start with the algorithm.

For the set of actions Act, we create a new set of actions Act∗

with for every a1, a2, ...an ∈ Acts for some state s there is a
k1 ∗ a1 + k2 ∗ a2 + ...+ kn ∗ an = a∗ ∈ Act∗s, with k1, k2, ..., kn ∈
{a finite subset of [0,1]} and with

∑
ki = 1.

By replacing the set of actions Act in the POMDP with the set of actions
Act∗, we will be able to still create an non-deterministic strategy. We will
use the k values to symbolize the distribution of potential actions.

3.5.2 Finite Paths

Our algorithm currently tries to optimize a strategy based on potentially
infinitely long paths. To create an optimal strategy where only a finite
amount of actions are allowed, we will create a new set of states.

For the set of states S, we create a new set of states Sn with for
every path π ∈ Paths with no more than n actions, there is a
state sπ ∈ Sn so that Actsπ ∼ Actlast(π)12 if π has no more than
n− 1 actions. Otherwise Actsπ is an empty set.

Using the states Sn instead of S, we will be able to go through our
algorithm the same way we did before, but this time we will be forced to
stop once our path is of length n. This also works for when our path begins
to repeat itself13.

With a similar technique we could also limit specific paths. For example,
we may only allow to perform a specific action so many times in a row, or
force to choose an action once we have walked a certain path.

10Such as non-deterministic strategies and finitely many actions.
11Strategies where we can chose between multiple actions.
12With every state last(π) ∈ S replaced with sπ ∈ Sn instead.
13If no such repeats are possible, and so we would always see n distinct states after n

actions, this can be simplified as cutting of all unreachable states in S.

23

3.6 Implementation

With our algorithms in place we can demonstrate how to implement them
using actual code. To do so, we will use python 3.1 and use mip 1.9.0 [1],
which allow us to build a MILP using a similar structure as our algorithms.

Should we be able to find a way to implement our algorithms using
code, we will have successfully translated our abstract POMDP problem
into a problem that a computer can solve, meaning that we can solve any
such problems using computers from here on out.

“Knapsack” Example

To illustrate how to work with mip, they provided a small example. Here
they used the model “knapsack”, a model optimized to calculate the most
valuable items that they can buy for a cost no larger than c:

MILP Knapsack Example

from mip import Model , xsum , maximize , BINARY

p = [1 0 , 13 , 18 , 31 , 7 , 15]
w = [1 1 , 15 , 20 , 35 , 10 , 33]
c , I = 47 , range (len (w))

m = Model (”knapsack”)

x = [m. add var (var type=BINARY) for i in I]

m. o b j e c t i v e = maximize (xsum(p [i] ∗ x [i] for i in I))

m += xsum(w[i] ∗ x [i] for i in I) <= c

m. opt imize ()

s e l e c t e d = [i for i in I i f x [i] . x >= 0 . 9 9]
print (” s e l e c t e d items : {}” . format (s e l e c t e d))

Our Implementation

Using this “knapsack” example and the algorithms described earlier, we are
able to model our algorithms in the same way. We will first need to consider
how we want to model our data before we can look at the specifically worked
out examples.

24

3.6.1 Modeling A POMDP

Before we can begin with the algorithms, we first need to model the POMDP
accordingly. As discussed in the “Creating An Algorithm” chapter, it is
important that all our data is finite or we won’t be able to model it. To
model the POMDP, we will use a very minimalistic approach:

Objects

• S - A range of numbers from 0 to the amount of sites - 1.

• Act - A range of numbers from 0 to the amount of actions - 1.

• Z - A range of numbers from 0 to the amount of observations - 1.

Using just numbers we can represent any state sn as just the number n,
etc.14. This will make the program smoother and ultimately less complex.

Functions

• P - A 3d matrix P with size S × Act × S, with each value equal to
P (s, a)(s′) or −1 if a /∈ Acts.

• O - An arrayO with size S, with each value equal to the corresponding
observation (using numbers).

We will also create the functions Act(s) and succ(s, a) using P . Act(s)
will return all the actions that are possible from a certain state s, while
succ(s, a) will return all states reachable from state s using action a.

Paths

During the algorithm we won’t actually be creating new paths. Yet our
strategy needs to know all possible paths that it can walk. Using finite-
memory strategies15 we luckily only need to know a finite amount of paths.
Before the algorithm starts we will first make these paths:

For a memory size m, starting with si ∈ Pathsm, for each π ∈
Pathsm, for every a ∈ Actlast(π) and for every s′ ∈ succ(last(π), a),

we will add lastm(π
a−→ s′) to Pathsm unless it was already added.

We will build the Paths array using the technique described and with
three for-loops, with each path an object with two arrays, one for each site
and one for each in-between action. After that we will derive Pathsz from
Paths, existing of the observation paths.

14si and zi will both be equal to 0.
15And a finite amount of sites and actions.

25

Finite-memory Strategy

The main goal of both the algorithms is to find the optimal strategy. Because
we are working with deterministic strategies, we can model our strategy as
follows:

• o - A function made using two arrays, o index and o actions, with
both size Paths z. The the first array refers to the recommended
action in the second array (using numbers).

Improvements

If we want to use any of the improvements mentioned earlier, like allowing
for a non-deterministic strategy, or limiting all paths to a certain length,
we will first need to change our set of states or actions appropriately, as
described.

Implementation

Using the techniques described we can model our POMDP, paths and strat-
egy as follows16:

Objects

S = range (. . .) , Act = range (. . .) , Z = range (. . .)

As described, the objects are each a list of numbers ranging from 0 to
the amount of that object minus one. Because of the way ranges work in
python, we don’t need to subtract one from the number to create the proper
range. For example, range(4) = [0, 1, 2, 3].

16“...” is used to signify external input.

26

Functions

P = [[[. . . for s in S] for a in Act] for s in S]
O = [. . . for s in S]

=================== Act (s)

def Act (s) :
Act s = []
for a in Act :

i f P[s , a , 0] != −1 :
Act s . append (a)

return Act s

Act func t i on f o r o b s e r va t i on s
def Act (z) :

Act z = []
for a in Act :

for s in S :
i f O[s] == z and P[s , a , 0] != −1 :

Act s . append (a)
break

return Act s

=================== succ (s , a)

def succ (s , a) :
succ = []
for s in S :

i f P[s , a , s] > 0 :
succ . append (s)

return succ

succ func t i on f o r any ac t i on
def succ (s) :

succ = []
for s in S :

for a in Act :
i f P[s , a , s] > 0 :

succ . append (s)
break

return succ

The matrix and array both need to filled in before the program starts.
The O array needs to be filled with numbers between zero and the amount of
observations minus one (matching the list of observations). The P function
needs to be filled in with probabilities (between 0 and 1) such that for every
state s and action a, the sum of all the values for every site s is one. Unless
a /∈ Acts, in which case all values need to be minus one17.

17This is to make sure that we won’t make impossible actions.

27

Paths part 1

m = . . .

class path :
index = −1
s t a t e s = []
a c t i o n s = []
obser = −1

def l a s t :
return s t a t e s [−1]

s t a r t = path ()
s t a r t . s t a t e s . append (0)
Paths = [s t a r t]

paths = Paths
new paths = []

while len (paths) != 0 :
for pi in paths :

for a in Act (p . l a s t) :
for s in succ (p i . l a s t , a) :

pi new = path ()
pi new . s t a t e s = pi . s t a t e s + s
pi new . a c t i o n s = pi . a c t i o n s + a

pi new . s t a t e s = pi new . s t a t e s [−m:]
pi new . a c t i o n s = pi new . a c t i o n s [−m+1:]

i f pi new not in Paths :
new paths . append (pi new)

Paths . extend (new paths)
paths = new paths
new paths = []

for i in range (len (Paths)) :
Paths [i] . index = i

. . .

28

Paths part 2

. . .

Paths were we only know o f the ob s e r va t i on

Paths z = []

for pi in Paths :
theta = path ()
theta . a c t i o n s = pi . a c t i o n s

for s in pi . s t a t e s :
theta . s t a t e s . append (O[s])

found theta = False
for i in range (len (Paths z)) :

i f Paths z [i] == theta :
p i . obser = i
found theta = True

i f ! f ound theta :
theta . index = len (Paths z)
p i . obser = theta . index
Paths z . append (theta)

Using a predefined m value we can actually make our algorithm walk
every possible path before we start. Every time we add something new to
one of our recently created paths, we will shrink it down to the size of m,
with m states and m− 1 actions. As soon as no new paths follow from the
recently created paths will we stop.

After creating every path in Paths, we can then convert our array of
paths to an array of observation paths, the one our strategy uses. We will
build a connection between any path and an observation path using the
obser variable. For any path pi in Paths, its observation path is equal to
Paths z[pi.obser].

29

Using the Paths z and Act arrays as defined earlier, we can create an
implementation of our strategy:

Strategy

o index = [−1 for theta in Paths z]

def o (the ta index) :
index = o index [the ta index]
i f index == −1 :

return −1
else :

a c t i o n s = Act (Paths [the ta index] . l a s t)
return a c t i o n s [index]

For any possible path in the observation paths, we can define a strategy
or a recommendation for the proper action that we should take. We will use
the o function to give the proper return value, where if there are no actions
possible, o will return a non-existing action (-1).

We use a method where we build o like a small library, whereby the value
of the array oindex refers to the index of the action that we should take.
Though not pretty, this allows us to work with the different possible actions
for each observation18.

Combined Implementation

If we bring these implementations together in one large class or file we will
have successfully modelled our POMDP in code. We could then refer to
these pieces of code using such a class for easier use. For now, to keep the
following algorithms brief, we will simply refer to these implementations by
using comments.

18Alternatively, we could memorize the array of all the possible actions from any path,
so that this process may go quicker.

30

3.6.2 Success States Implementation

Using the input as defined earlier, we can now implement our success states
algorithm. Additionally, because we working with success and failure states,
we will need to implement both SS and SF . We will use arrays for both of
them, each with numbers of their corresponding states, according to S.

MILP Success Strategy Creator part 1

from mip import Model , xsum , maximize , INTEGER,
CONTINUOUS

=================== I n i t i a t i o n

. . . s e t o b j e c t s . . .
. . . s e t f unc t i on s . . .
. . . s e t paths . . .
. . . s e t s t r a t e g y . . .

SS = [. . .] # Set accord ing to our scenar io
SF = [. . .] # Set accord ing to our scenar io

S s t a r = []

for s in S :
i f (s not in SS) and (s not in SF) :

S s t a r . append (s)

=================== Var iab l e s & Goal

z = m. add var (name=’ zCost ’ , var type=INTEGER, lb =−10,
ub=10)

m = Model (” SuccesStrategyCreator ”)

p = [m. add var (var type=CONTINUOUS, lb =0, ub=1) for s
in S]

r = [m. add var (var type=CONTINUOUS, lb =0, ub=1) for s
in S]

t = [[m. add var (var type=INTEGER, lb =0, ub=1) for s in
S] for s in S]

for theta in Paths z :
p o s s i b l e a c t i o n s = len (Act (theta . l a s t))
i f p o s s i b l e a c t i o n s > 0 :

o index [theta . index] = m. add var (var type=
INTEGER, lb =0, ub=p o s s i b l e a c t i o n s −1)

m. o b j e c t i v e = maximize (p [0]) # Goal

. . .

31

MILP Success Strategy Creator part 2

. . .

================== Cons t ra in t s

p [s] c on s t r a i n t s
for s in SS : m += p [s] == 1
for s in SF : m += p [s] == 0
for pi in Paths :

i f pi . l a s t in S s t a r :
s = pi . l a s t
for a in Act (s) :

m += p [s] <= (1 − (o (p i . obser)==a)) +
sumx(P[s , a , s] ∗ p [s] for s in succ (s , a))

r [s] c on s t r a i n t s
for s in S s t a r :

i f len (Act (s)) == 0 :
m += r [s] == 0

for s in S s t a r :
for s in succ (s) :

m += r [s] < (1 − t [s , s]) + r [s]
for pi in Paths :

i f pi . l a s t in S s t a r :
s = pi . l a s t
for a in Act (s) :

m += p [s] <= (1 − (o (p i . obser)==a)) +
sumx(t [s , s] for s in succ (s , a))

===================

m. opt imize ()

As can be seen straight away, the structure of the implementation largely
follows that of the previous algorithms. Instead of “∀x ∈ X” we use
“for x in X :” here19. Similarly, any otherwise normal assumption needs
to be written out in full if it needs to work on a computer.

Using The mip Model

To work with the mip library we need to add all the customizable variables
to the model using the add var function. Similarly we need to add all the
constraints to the model by using + =. Once we have all our variables and
constraints set we can use m.optimize() to find the optimal solution.

19Additionally, in the program we make handy use of the fact that in python True is
equal to 1 and False is equal to 0. Because of this, we can simply use “o[theta] == a” to
get the values zero or one that we need.

32

3.6.3 Reward Implementation

In the same way as before we can now implement our algorithm using the
input as defined earlier, only now we want to maximize our reward instead.

MILP Reward Strategy Creator

from mip import Model , xsum , maximize , INTEGER,
CONTINUOUS

=================== I n i t i a t i o n

. . . s e t o b j e c t s . . .
. . . s e t f unc t i on s . . .
. . . s e t paths . . .
. . . s e t s t r a t e g y . . .

B = . . . # Set B accord ing to our scenar io
r = [[. . . for a in Act (s)] for s in S] # Set r

accord ing to our scenar io
v max = . . . # Set v max accord ing to the expec ted max

=================== Var iab l e s & Goal

m = Model (” RewardStrategyCreator ”)

v = [m. add var (var type=CONTINUOUS, lb =0, ub=1) for s
in S]

for theta in Paths z :
p o s s i b l e a c t i o n s = len (Act (theta . l a s t))
i f p o s s i b l e a c t i o n s > 0 :

o index [theta . index] = m. add var (var type=
INTEGER, lb =0, ub=p o s s i b l e a c t i o n s −1)

m. o b j e c t i v e = maximize (v [0]) // Goal

================== Cons t ra in t s

for pi in Paths :
i f pi . l a s t in S s t a r :

s = pi . l a s t
for a in Act (s) :

m += v [s] <= v max∗(1 − (o (p i . obser)==a)) +
r [s , a] + B ∗ sumx(P[s , a , s] ∗ v [s]

for s in succ (s , a))

===================

m. opt imize ()

33

Similar to our previous implementation, we start with our initial input,
then set all our variables and constraints using the methods defined by the
mip library, and then calculate the optimal solution accordingly. Because
this implementation only uses one constraint, the code is a lot smaller than
the previous one.

3.6.4 Practical Use

Now that we got both of our algorithms implemented using python and the
mip library [1], we can start to usw these algorithms to calculate various
optimal solutions to many different POMDP problems, as discussed in the
introduction.

This practical example of how we can find a solution to any POMDP
problem using a now actually working MILP implementation demonstrates
how well these two concepts are connected, and how problems involving
POMDPs are easily reducible to such a mathematical way of programming
we well understand.

Visual Implementation

To make this all really work nicely, we have implemented a program which
will help visualize the algorithm. We will be able to manually set the vari-
ables accordingly and so create a program which can easily be used. This
allows for an even greater conformation that any POMDP problem can be
solved by anyone.

34

Chapter 4

Related Work

In this thesis we largely rely on just a few papers. Since this is mostly
theoretical research which can be done using just the definitions, we did not
need many sources. However, this paper is does largely draw inspiration
from other similar efforts to find optimal solutions to POMDP problems.

4.1 Underlying Theory

For the underlying theory used in this thesis we rely on just a few papers.
These papers provide the basic definitions that we were using.

Strengthening Deterministic Policies for POMDPs

This thesis was not possible if not for the large scale support from the paper
Strengthening Deterministic Policies for POMDPs [17]. From this paper
a large amount of the definitions are derived, and even the algorithms are
largely based on that paper.

Permissive Finite-state Controllers of POMDPs via Parameter
Synthesis

Permissive Finite-state Controllers of POMDPs via Parameter Synthesis
[12] shows numerous definitions that we also use here, among them the term
strategy and the definition for a path. The theory behind distributions is
largely based on that paper, though slightly simplified.

Human In The Loop Synthesis For Partially Observable Markov
Decision Processes

The paper Human In The Loop Synthesis For Partially Observable Markov
Decision Processes [5] is probably the most explanatory paper on this topic.

35

4.2 Other Implementations

Apart from our own implementation, there are also a number of other meth-
ods to try to automatically find a solution to any POMDP problem.

Using MILPs

In the paper Mixed Integer Linear Programming For Exact Finite-Horizon
Planning In Decentralized Pomdps [2] they provide an alternative method
to try and relate a specific kind of POMDP to MILPs. They then are able
to formulate a MILP algorithm capable of solving such POMDP problems.
However, their underlying theory is quite different than that of ours, which
means that their algorithms may not be useful for us, and visa versa.

Using (Recurrent) Neural Networks

Various papers such as Counterexample-Guided Strategy Improvement for
POMDPs Using Recurrent Neural Networks [4] and Verifiable RNN-Based
Policies for POMDPs Under Temporal Logic Constraints [3] suggest the use
of a neural network to train a program to find the optimal strategy. This
method would then highly rely on the same techniques used in AI today.

Using Deep Learning

Slightly different from using neural networks, papers such as Deep Vari-
ational Reinforcement Learning for POMDPs [10] and QMDP-Net: Deep
Learning for Planning under Partial Observability [13] suggest using deep
learning instead.

Other Code Implementations

Other then our own implementation, there have been other efforts to try to
create actual programs which allow for POMDP problems to be automati-
cally solved. Among them is the Package ‘pomdp’ [14]. This implementa-
tion (available on GitHub) provides an alternative to our method by using
a completely different method.

Similar papers

Other implementations include Parameter Synthesis for Markov Models [11],
which mostly deals with just MDPs, Strategy Synthesis in POMDPs via
Game-Based Abstractions [16], which solves the problem by looking at it
using a game perspective, and finally Value-Function Approximations for
Partially Observable Markov Decision Processes [9], which mostly examines
the efficiency of various algorithms.

36

Chapter 5

Conclusions

5.1 Conclusion

In our research we saw that there is a definitive connection between the
calculation of optimal strategies and the computation of MILPs. We were
able to link the two together using MILP algorithms, and were then, as
proof of concept, able to show that these algorithms can be implemented in
the form of actual working code using python and the mip library [1].

Though our research has only covered a small section of the many pos-
sibilities of POMDP scenarios, we can be confident that this encoding can
serve as a step towards solving any possible POMDP scenario in a very ef-
ficient manner. Should we reach that point, we will be able to solve any
problem automatically as long as it can be described as a POMDP.

5.2 Further Research

Many more areas or research are still not fully researched, Among them for
example the possibility of prioritizing speed over success rate, or desiring a
higher reward per action on average instead of a high reward in total.

5.3 Acknowledgement

This paper was not possible if it wasn’t for the incredible support from Nils
Jansen to keep on going. Though this has been an enormous project, it has
definitely been guided to finally a good result thanks to the spirit of not
yielding till it is done.

37

Bibliography

[1] Python-MIP tool. http://python-mip.com/.

[2] Raghav Aras, Alain Dutech, and François Charpillet. Mixed Integer
Linear Programming For Exact Finite-Horizon Planning In Decentral-
ized Pomdps. 2007. https://arxiv.org/abs/0707.2506.

[3] Steven Carr, Nils Jansen, and Ufuk Topcu. Verifiable RNN-Based Poli-
cies for POMDPs Under Temporal Logic Constraints. 2020. https:

//arxiv.org/abs/2002.05615.

[4] Steven Carr, Nils Jansen, Ralf Wimmer, Alexandru C. Serban, Bernd
Becker, and Ufuk Topcu. Counterexample-Guided Strategy Improve-
ment for POMDPs Using Recurrent Neural Networks. 2019. https:

//arxiv.org/abs/1903.08428.

[5] Steven Carr, Nils Jansen, Ralf Wimmer, Jie Fu, and Ufuk Topcu. Hu-
man In The Loop Synthesis For Partially Observable Markov Decision
Processes. 2018. https://arxiv.org/abs/1802.09810.

[6] Iadine Chadès, Eve McDonald-Madden, Michael A. McCarthy, Bren-
dan Wintle, Matthew Linkie, and Hugh P. Possingham. When to
stop managing or surveying crypticthreatened species. 2008. https:

//www.pnas.org/content/105/37/13936.

[7] Marek Grzes, Jesse Hoey, Shehroz S. Khan, Alex Mihailidis, Stephen
Czarnuch, Dan Jackson, and Andrew Monk. Relational approach to
knowledge engineering for POMDP-based assistance systems as a trans-
lation of a psychological model. 2020. https://www.sciencedirect.

com/science/article/pii/S0888613X13000662.

[8] Trung H. Bui, Mannes Poel, Anton Nijholt, and Job Zwiers. A
POMDP approach to Affective Dialogue Modeling. https://wwwhome.
ewi.utwente.nl/~anijholt/artikelen/ios2007-2.pdf.

[9] Milos Hauskrecht. Value-Function Approximations for Partially Ob-
servable Markov Decision Processes. 2000. https://jair.org/index.
php/jair/article/view/10262.

38

[10] Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon
Whiteson. Deep Variational Reinforcement Learning for POMDPs.
2018. https://arxiv.org/abs/1806.02426.

[11] Sebastian Junges, Erika Abraham, Christian Hensel, Nils Jansen, Joost-
Pieter Katoen, Tim Quatmann, and Matthias Volk. Parameter Synthe-
sis for Markov Models. 2019. https://arxiv.org/abs/1903.07993.

[12] Sebastian Junges, Nils Jansen, Ralf Wimmer, Tim Quatmann, Leonore
Winterer, Joost-Pieter Katoen, and Bernd Becker. Permissive Finite-
state Controllers Of POMDPs Via Parameter Synthesis. 2018. https:
//arxiv.org/abs/1710.10294.

[13] Peter Karkus, David Hsu, and Wee Sun Lee. QMDP-Net: Deep
Learning for Planning under Partial Observability. 2017. https:

//arxiv.org/abs/1703.06692.

[14] Package ‘pomdp’ team. Package ‘pomdp’, 2020. https://cran.

r-project.org/web/packages/pomdp/pomdp.pdf.

[15] Matthijs T.J. Spaan. Cooperative Active Perception us-
ing POMDPs. 2008. https://www.semanticscholar.org/

paper/Cooperative-Active-Perception-using-POMDPs-Spaan/

535ca58f58838ce085493f167f81d40ed306b61b.

[16] Leonore Winterer, Sebastian Junges, Ralf Wimmer, Nils Jansen, Ufuk
Topcu, Joost-Pieter Katoen, and Bernd Becker. Strategy Synthesis in
POMDPs via Game-Based Abstractions. 2019. https://arxiv.org/

abs/1708.04236.

[17] Leonore Winterer, Ralf Wimmer, Nils Jansen, and Bernd Becker.
Strengthening Deterministic Policies for POMDPs. 2020. https:

//arxiv.org/abs/2007.08351.

39

Appendix A

Appendix

A.1 MDP Coin-toss Example

We can describe a coin-tossing scenario as an MDP. Our states will be heads
and tails and we will begin with heads. We have only have one action,
“toss”1, and the probabilistic function will say that, no matter in what
state we are, performing the “toss” action will give a 50% chance of ending
up with heads and a 50% chance of ending up with tails.

Figure A.1: MDP Coin Example

Mcoin = (Scoin, si coin, Actcoin, Pcoin)

with:
Scoin = {heads, tails},
si coin = heads,
Actcoin = {toss},
Pcoin is defined such that:
Pcoin(heads, toss) = Pcoin(tails, toss) = (0.5 : heads, 0.5 : tails)

In our MDP Mcoin (A.1) we can see the coin sides heads and tails as our
states (Scoin), heads as the begin state (si coin), the toss action as the only
action (Actcoin) and the probabilistic function which simulates a coin toss
(Pcoin).

Starting from the state heads, we can perform the action toss to ran-
domly end up in a new state, either heads or tails, each with a 50% prob-
ability. From that state we could again do the toss action to end up in
yet a new state. Note that it is possible to end up in the same state after
performing the toss action.

1A MDP with only one action can also be described as a Markov Chain

40

A.2 POMDP Coin-toss Example

As an example of a POMDP we could extend our coin-tossing scenario with
the condition that we can not look at the coin after we threw it2. We can use
our MDP like before3, with the addition of the observation “mystery-side”,
and a function mapping both heads and tails to this hidden “mystery-side”.

Figure A.2: POMDP Coin Example

Pcoin = (Mcoin, Zcoin, Ocoin)

with:
Mcoin = Mcoin

Zcoin = {mystery-side},
Ocoin is defined such that:
Ocoin(heads) = Ocoin(tails) = mystery-side

With this POMDP Pcoin (A.2) we can see our previous MDP with every-
thing that we got from there (Mcoin), the single observation “mystery-side”
(Zcoin) and the function which maps both heads and tails to this “mystery-
side” observation (Ocoin).

Similar as before, we can perform actions from our begin observation,
“mystery-side”. From there on, tossing the coin will only give the same
“mystery-side” observation back, while which side of either heads or tails
truly came up we do not know.

2Maybe we are still covering the coin with our hand
3See figure A.1 MDP Coin Example

41

