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Abstract

Task-oriented programming (TOP) is a new programming paradigm de-
signed for describing multi-user workflows. It is implemented in the iTasks
framework, in the functional programming language Clean. To reason for-
mally about iTasks programs, a formal language called t̂op (TopHat) has
been defined, together with its operational semantics. For proving proper-
ties about task-oriented programs, it is desirable to have a definition for
the semantic equivalence of two t̂op-programs. This thesis aims to answer
this question. We show that a task can be in either one of five states after
normalisation, and for every two tasks in the same state, we define what
it means for them to be semantically equivalent. Using this definition, we
define a number of properties we believe hold for t̂op-programs. Amongst
those, we show that the Task operation on types in t̂op cannot be a monad.
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Chapter 1

Introduction

Task-oriented programming (TOP) is a new programming paradigm de-
signed for developing distributed interactive multi-user systems. In this pro-
gramming paradigm, the concept of a “task” plays a central role. A task is
a unit of work assigned to some user, and consists of two parts: a descrip-
tion of the work that should be done, and a typed interface that defines the
type of the task value that it returns. Tasks are described in an abstract,
declarative manner, and from this abstract description, TOP automatically
generates a GUI. It also takes care of the client-server communication that
is needed for users to work together on tasks. TOP allows programmers to
define workflows which describe what tasks should be executed by its users,
without having to worry about how this is achieved.

User collaboration is a central concept in TOP. The different ways in
which users can collaborate are captured by task combinators. By using these
combinators, TOP-programmers can construct larger tasks from smaller
ones in several ways. There is sequential composition, which allows tasks
to be executed one after the other. And there is parallel composition, which
allows tasks to be executed in parallel at the same time. For parallel compo-
sition, it is possible to either combine the results, or to conditionally continue
with either one of two tasks.

In order to collaborate, users also need to be able to communicate with
each other, and with the system. Using task combinators, it is already possi-
ble to pass along data from one task onto the next. For communication with
the outside world, there are editors. Editors provide interaction with the en-
vironment via input events. They are typed containers which remember the
last value that has been sent to them, and users can communicate with the
system through these editors. Furthermore, they allow users to view and
edit shared data sources, which are mutable references whose changes are
immediately visible to all other tasks watching them.

Another important component of tasks is that they are typed. This type
is important to determine the type of the task values that are communicated
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1.0. ITASKS CHAPTER 1. INTRODUCTION

to the environment. Not all tasks have a value, and a task does not produce
just one value when it is complete. Instead, a task’s value is continually
updated while the work takes place, and can be observed at any point during
execution. Moreover, it may be possible that a task never completes, and
that its value never reaches a stable state. A task’s value reflects a task’s
current progress. They can be inspected by other tasks to base decisions on,
which in turn can impact the things users can see or do.

Finally, the TOP language is modular: tasks are composed of smaller
tasks, and can be arguments or results of functions. This allows programmers
to re-use tasks, and to model their own collaboration patterns [1, 6].

1.1 iTasks
TOP describes in an abstract way what work should be done by the sys-
tem and its users. It does not describe how this should be done, this ques-
tion should be answered by the TOP language implementation. The iTasks
framework is an implementation of TOP, written in the pure and lazy func-
tional programming language Clean. It is implemented as a shallowly em-
bedded domain-specific language, which means that it inherits features from
its host language Clean. Amongst these features is a strong typing system,
and because Clean is a functional language, it allows task combinators to be
expressed as functions. From the high level description of the tasks, iTasks
generates a web application that is able to execute the described tasks. It
takes care of generating a GUI, and of coordinating the tasks in a distributed
manner by using a client-server architecture. The server side of an iTasks
application runs a web service to which users on a wide range of different
devices can connect, and the client side realises the front-end components.
This way, programmers of iTasks-programs need not be concerned by lower-
level implementation details. iTasks has shown itself effective in the past for
the implementation of interactive, distributed, workflow applications [1].

1.2 Research question
Because iTasks has been designed for developing real-world applications, rea-
soning formally about iTasks programs is hard. The paper TopHat: A formal
foundation for task-oriented programming introduces t̂op (TopHat), a for-
mal language plus operational semantics for reasoning about task-oriented
programs. A follow up paper, TopHat Next: even more stylish task-oriented
programming, is currently being written [7]. This thesis uses these two papers
as starting point. Our research question is the following:

When are two programs in t̂op semantically equivalent?
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Furthermore, if we can define such a notion of semantic equivalence for
task-oriented programs, what interesting properties can we prove (or dis-
prove)? An example of an interesting property is whether the monad laws
hold for the step combinator. Showing that certain equalities hold for task-
oriented programs could prove useful for the iTasks system in the future.
If we know that one task-oriented program is semantically equivalent to
another, then we know that we can substitute one for the other, without
changing the meaning of the program. Which in turn could be useful for
doing compiler optimizations.

1.3 Structure of this thesis
Chapter 2 will explain the operational semantics of t̂op. We will mostly fol-
low the semantics presented in TopHat Next [7], but we omit some language
constructs to ease our definition of semantic equivalence in the subsequent
chapter. We do however keep all language features that capture the essence
of TOP. In Chapter 3, we will give a definition for semantic equivalence in
t̂op, along with its motivation. We show that a task can be in either one of
five states after normalisation, and for every two tasks in the same state, we
define what it means for them to be semantically equivalent. Additionally,
we present some properties of t̂op-programs that we claim are true or false
according to our definition. Finally, Chapter 4 will conclude this thesis.
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Chapter 2

TopHat

t̂op (TopHat) is a formal language for reasoning about task-oriented pro-
grams. It is described by a layered operational semantics, consisting of mul-
tiple big-step semantic functions for reducing expressions, and two labelled
transition systems for handling user inputs. Its main layers are evaluation,
normalisation, and interaction. To make clear which features come from
TOP and which features come from functional programming, t̂op is sep-
arated into a task language and an underlying host language [6, 7]. The
host language will be described in Section 2.1. We will give its syntax, typ-
ing rules, and evaluation semantics. The task language, which is embedded
into the host language, will be presented in Section 2.2. We will explain
the task constructs, give their typing rules, and give the normalisation and
interaction semantics. Finally, Section 2.3 will discuss some larger examples.

2.1 The host language

2.1.1 Syntax

The host language of t̂op is a simply typed λ-calculus, extended with some
basic types. The grammar given in Figure 2.1 defines the syntax of t̂op.
Expressions e can be lambda expressions, variables, locations, branching,
unit values, tuples, and constants for booleans, integers and strings. Booleans
can be either True or False, integers use their decimal notation, and strings
are enclosed by double quotation marks. There are a number of operations
possible on expressions. There are equational operators (<, ≤, ≡, ., ≥, >),
logical operators for boolean expressions (¬, ∧, ∨), and numerical operations
for integers (+, −, ×, /). Locations l are used for references and shared
editors, which will be defined later in Section 2.2.11. They are not meant
to be used by the programmer directly. Additionally, expressions can be
pretasks. Pretasks define the constructs of the task language, which we will
explain in Section 2.2. For now however, we will only focus on the host
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language, and postpone everything related to the task language until the
next section.

Expressions e ::= λx : τ . e | e1 e2 – abstraction, application
| x | l | c – variable, location, constant
| u e1 | e1 o e2 – operations: unary, binary
| if e1 then e2 else e3 | ⟨⟩ – conditional, unit
| ⟨e1, e2⟩ | fst e | snd e – pair, projections
| p – pretask

Constants c ::= B | I | S – boolean, integer, string

Unary operations u ::= ¬ | − – not, negate

Binary operations o ::= ∧ | ∨ – logical
| < | ≤ | ≡ | . | ≥ | > – equational
| + | − | × | / – numerical

Figure 2.1: Language grammar

Besides the expressions defined in the grammar, we will use the notation
e1; e2 as an abbreviation for (λx : Unit. e2) e1, where x is a fresh variable, and
we will use the notation letx : τ = e1 in e2 as an abbreviation for (λx : τ . e2) e1.
This is allowed because our evaluation semantics, which we will present in
Section 2.1.3, is strict.

2.1.2 Typing

Besides function types, the simply typed λ-calculus of the host language is
extended with pairs, unit types, references, task types, and primitive types
for booleans, integers, and strings. Additionally, there are basic types β ,
which contain only a subset of all types τ . Figure 2.2 shows the type grammar
of t̂op. Reference types are used for locations. We say that a location l is of
type Ref β if it points to an expression of basic type β . To prevent recursive
reference types, and to keep the language total, locations can only point
to expressions of basic type. Task types Task τ are used for tasks. We will
postpone the typing rules for tasks until Section 2.2.2.

Typing rules in t̂op are of the form Γ, Σ ⊢ e : τ , which should be read
as “in environment Γ and store typing Σ, the expression e has type τ”. The
environment Γ is a mapping from variables to types, and is used in the rule
T-Var to check the type of a variable, and updated in the rule T-Abs when
using abstraction. The store typing Σ is a mapping from locations to types,
and is used in the rule T-Loc to check the type of the expression that a
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2.1. THE HOST LANGUAGE CHAPTER 2. TOPHAT

Types τ ::= τ1 → τ2 | τ1 × τ2 | π – function, product, primitive
| Unit | Ref β | Task τ – unit, reference, task

Basic types β ::= Unit | β1 × β2 | π – unit, product, primitive

Primitive types π ::= Bool | Int | String – boolean, integer, string

Figure 2.2: Type grammar

location refers to. Figure 2.3 shows the typing rules for expressions in the
host language. To say that an expression e is of type τ , we will often omit
the environment Γ and store typing Σ, and simply write e : τ .

Γ, Σ ⊢ e : τ
T-Bool

c ∈ B

Γ, Σ ⊢ c : Bool

T-Int
c ∈ I

Γ, Σ ⊢ c : Int

T-String
c ∈ S

Γ, Σ ⊢ c : String

T-Unit

Γ, Σ ⊢ ⟨⟩ : Unit
T-Var
x : τ ∈ Γ

Γ, Σ ⊢ x : τ

T-Abs
Γ · x : τ1, Σ ⊢ e : τ2

Γ, Σ ⊢ λx : τ1.e : τ1 → τ2

T-App
Γ, Σ ⊢ e1 : τ1 → τ2 Γ, Σ ⊢ e2 : τ1

Γ, Σ ⊢ e1 e2 : τ2
T-Loc

Σ(l) = β

Γ, Σ ⊢ l : Ref β

T-If
Γ, Σ ⊢ e1 : Bool Γ, Σ ⊢ e2 : τ Γ, Σ ⊢ e3 : τ

Γ, Σ ⊢ if e1 then e2 else e3 : τ
T-Tuple
Γ, Σ ⊢ e1 : τ1 Γ, Σ ⊢ e2 : τ2

Γ, Σ ⊢ ⟨e1, e2⟩ : τ1 × τ2

T-First
Γ, Σ ⊢ e : τ1 × τ2
Γ, Σ ⊢ fst e : τ1

T-Second
Γ, Σ ⊢ e : τ1 × τ2
Γ, Σ ⊢ snd e : τ2

Figure 2.3: Typing rules for expressions in the host language

2.1.3 Semantics

Evaluating terms in the host language to values is handled by the evaluation
semantics, where a value is an expression in the host language that cannot
be reduced further. Values v can be lambda functions, pairs of values, unit,
constants, locations, or tasks. Basic values b are a subset of values v that
are of basic type β . The grammar for values is given in Figure 2.4.

The host language evaluates expressions using a big-step semantics. We
denote the evaluation of expression e to the value v by e ↓ v. Figure 2.5 gives
the evaluation rules for expressions in the host language. The evaluation
rules for the unary and binary operators are trivial, and so we omit them.
We will postpone the evaluation of pretasks to tasks until Section 2.2.3.
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2.2. THE TASK LANGUAGE CHAPTER 2. TOPHAT

Values v ::= λx : τ . e | ⟨v1,v2⟩ | ⟨⟩ – abstraction, pair, unit
| c | l | t – constant, location, task

Basic values b ::= ⟨⟩ | ⟨b1,b2⟩ | c – unit, pair, constant

Figure 2.4: Value grammar for the host language

e ↓ v

E-Value

v ↓ v

E-App
e1 ↓ λx : τ .e ′1 e2 ↓ v2 [x 7→ v2]e ′1 ↓ v1

e1e2 ↓ v1

E-IfTrue
e1 ↓ True e2 ↓ v2

if e1 then e2 else e3 ↓ v2

E-IfFalse
e1 ↓ False e3 ↓ v3
if e1 then e2 else e3 ↓ v3

E-Tuple
e1 ↓ v1 e2 ↓ v2
⟨e1, e2⟩ ↓ ⟨v1,v2⟩

E-First
e ↓ ⟨v1,v2⟩
fst e ↓ v1

E-Second
e ↓ ⟨v1,v2⟩
snd e ↓ v2

Figure 2.5: Evaluation rules for expressions in the host language

2.2 The task language

2.2.1 Syntax

The task language of t̂op is embedded into the host language described in
the previous section. As Figure 2.1 shows, expressions in t̂op can also be
pretasks. A pretask p is a task that contains unevaluated sub-expressions.
Pretasks can either be atomic tasks, or task combinators that compose larger
pretasks from smaller ones. Figure 2.6 shows the grammar of pretasks.

Pretasks p ::= νn.d | νn. e | d – label allocation, editors
| e1 ▶◀ e2 | e1 ♦ e2 – pairing, choosing
|  | ■ e – fail, internal value
| e1 ▲ e2 | e1 ▶ e2 – transform, step
| ref e | e1 := e2 – new shared value, assignment

Editors d ::= ⊠nβ | □ne | ⊞ne – editors: unvalued, valued, shared

Figure 2.6: Pretasks grammar

Atomic tasks are atomic units of work that do not contain subtasks.
These include internal values, failing, editors, reference creation and assign-
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2.2. THE TASK LANGUAGE CHAPTER 2. TOPHAT

ment. Internal values (■ e) simply return the expression e as result. A failing
task ( ) stands for an impossible task. We describe internal value and fail-
ing in Section 2.2.7. Editors (⊠nβ , □ne, ⊞ne) provide communication with
the environment. They are labeled by a label n, and require their input to
be tagged by the same label. To allocate a label n within an expression e,
we write νn.e. For label allocation, the programmer is only allowed to write
νn.d. The pretasks νn.e and d are not meant to be used by the programmer
directly. We explain editors in Section 2.2.4, and label allocation in Section
2.2.5. Finally, reference creation (ref e) and assignment (e1 := e2) enable the
creation and modification of shared data. We describe references in Section
2.2.11.

Task combinators describe ways in which users can collaborate. They
provide a means to combine smaller tasks into larger ones. There are several
ways to do this. There is sequential composition, where the result of one task
can be used in the next. This is captured by the step combinator (▶), which
we will explain in Section 2.2.8. And there is parallel composition, which
comes in two flavors. There is pairing (▶◀), or and-parallel, which combines
the result of two tasks into one task. And there is choosing (♦), or or-
parallel, which chooses the result of the leftmost task that has a value. The
pair and choice combinators are described in Section 2.2.10. Finally, there
is the transform combinator (▲), which applies a function to the result of
a task, resulting in a new task. We describe the transform combinator in
Section 2.2.9.

2.2.2 Typing

The typing rules for pretasks are presented in Figure 2.7. A task t is of type
Task τ if it should produce a result of type τ . Label allocation can be of
any Task-type (T-Label). Editors are typed containers of type Task β for
some basic type β , and only accept inputs of the same type β (T-Enter,
T-Update, T-Change). By only allowing editors to edit basic values, this
prevents higher-order tasks like νn. ⊠n (Int → Int), νn. ⊠n (νn. ⊠n Int), or
νn.□n(λx : τ .x) from being defined, which have no meaning in t̂op. Failing
tasks can be of any Task-type (T-Fail). Pairing combines the result of the
two tasks into a tuple (T-Pair), and choosing requires that both operands
are of the same Task -type (T-Choose). Step requires that the continuation
e2 on right-hand side is a function that takes the result from the task on
the left-hand side and produces a new task (T-Step). Similarly, transform
requires that the function e1 on the left-hand side takes the result from the
task on the right-hand side (T-Trans). Reference creation produces a task
of type Task (Ref β) that contains the newly created location l of type Ref β
(T-Share). Lastly, reference assignment returns a task containing the unit
value as result, and thus is of type Task Unit (T-Assign).
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2.2. THE TASK LANGUAGE CHAPTER 2. TOPHAT

Γ, Σ ⊢ e : τ

T-Label
Γ, Σ ⊢ e : Task τ

Γ, Σ ⊢ νn.e : Task τ

T-Enter

Γ, Σ ⊢ ⊠nβ : Task β

T-Update
Γ, Σ ⊢ e : β

Γ, Σ ⊢ □ne : Task β

T-Change
Γ, Σ ⊢ e : Ref β

Γ, Σ ⊢ ⊞ne : Task β

T-Done
Γ, Σ ⊢ e : τ

Γ, Σ ⊢ ■ e : Task τ

T-Fail

Γ, Σ ⊢  : Task τ

T-Pair
Γ, Σ ⊢ e1 : Task τ1 Γ, Σ ⊢ e2 : Task τ2

Γ, Σ ⊢ e1 ▶◀ e2 : Task (τ1 × τ2)

T-Choose
Γ, Σ ⊢ e1 : Task τ Γ, Σ ⊢ e2 : Task τ

Γ, Σ ⊢ e1 ♦ e2 : Task τ

T-Trans
Γ, Σ ⊢ e1 : τ1 → τ2 Γ, Σ ⊢ e2 : Task τ1

Γ, Σ ⊢ e1 ▲ e2 : Task τ2

T-Step
Γ, Σ ⊢ e1 : Task τ1 Γ, Σ ⊢ e2 : τ1 → Task τ2

Γ, Σ ⊢ e1 ▶ e2 : Task τ2

T-Share
Γ, Σ ⊢ e : β

Γ, Σ ⊢ ref e : Task (Ref β)

T-Assign
Γ, Σ ⊢ e1 : Ref β Γ, Σ ⊢ e2 : β
Γ, Σ ⊢ e1 := e2 : Task Unit

Figure 2.7: Typing rules for tasks

2.2.3 Semantics

t̂op uses a layered semantics to separate the semantics of the host language
from the task language. So far, we have only seen the bottom layer of this
semantics, namely evaluation ( ↓ ). Evaluation is responsible for evaluating
expressions in the host language to values. Before we explain the layers
on top of evaluation, we still need to describe how to evaluate pretasks,
which are also expressions in the host language. Pretasks evaluate to task
values t . Figure 2.8 shows the task grammar. Whereas pretasks can have
unevaluated sub-expressions, tasks can only contain subtasks. Exceptions
to this are transform (▲) and step (▶), where evaluation of the left-hand
side respectively the right-hand side is delayed. Evaluation of pretasks to
tasks is defined in Figure 2.9. Most task constructs simply evaluate their
operands to values.

Figure 2.10 shows a graphical representation of the semantic layers and
their relation. After evaluation is done, a task is ready to be normalised.
Normalisation is a big-step semantics that is responsible for reducing tasks
until they are ready to accept input. We write t,σ ⇓ t ′,σ ′, δ ′ to denote
the normalisation of task t in state σ to task t ′ in state σ ′. The state σ is a
mapping from locations to basic values. It keeps track of all references creates
so far, and what value they currently hold. We will give the normalisation
rules for each task construct in their respective subsections.
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2.2. THE TASK LANGUAGE CHAPTER 2. TOPHAT

Tasks t ::= νn.t | ⊠nβ | □nb | ⊞nl – label allocation, editors
| t1 ▶◀ t2 | t1 ♦ t2 – pairing, choosing
|  | ■v – fail, internal value
| e1 ▲ t2 | t1 ▶ e2 – transform, step
| ref b | l := b – new shared value, assignment

Figure 2.8: Task grammar

e ↓ v

E-Label
e ↓ t

νn.e ↓ νn.t

E-Enter

⊠nβ ↓ ⊠nβ

E-Update
e ↓ b

□ne ↓ □nb

E-Change
e ↓ l

⊞ne ↓ ⊞nl
E-Done
e ↓ v

■ e ↓ ■v

E-Pair
e1 ↓ t1 e2 ↓ t2
e1 ▶◀ e2 ↓ t1 ▶◀ t2

E-Choose
e1 ↓ t1 e2 ↓ t2
e1 ♦ e2 ↓ t1 ♦ t2

E-Fail

 ↓  
E-Trans

e2 ↓ t2
e1 ▲ e2 ↓ e1 ▲ t2

E-Step
e1 ↓ t1

e1 ▶ e2 ↓ t1 ▶ e2
E-Share

e ↓ b

ref e ↓ refb

E-Assign
e1 ↓ l e2 ↓ b

e1 := e2 ↓ l := b

Figure 2.9: Evaluation rules for pretasks

Normalisation also returns a set δ ′, which contains all locations whose
value have been changed while normalisation took place. It will be used
in the fixing semantics, which is defined on top of normalisation. Due to
mutable references, the fixing semantics is required to make sure a task is
fully normalised before any user interaction is allowed. We write t,σ , δ

�⇒

t ′,σ ′ to denote the fixing of task t in state σ given the set δ , resulting in
task t ′ and state σ ′. The fixing semantics will be explained in Section 2.2.11
on references.

For user interaction there are the handling and interaction semantics.
Both semantics are small-step semantics that take an input event i for each
step. For the handling semantics, we write t,σ

i−→ t ′,σ ′, δ ′ to denote that
handling the input i in task t and state σ results in the task t ′ and state σ ′.
Similar to the normalisation semantics, the handling semantics also returns
a set δ ′, which contains all locations whose value have been changed while
handling input. For the interaction semantics, we write t,σ

i
=⇒ t ′,σ ′ to

denote that task t in state σ transitions to task t ′ in state σ ′ after the user
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interaction i. The interaction semantics makes use of both the fixing and
handling semantics to make sure that, after user interaction, a task is fully
reduced and ready to accept the next input. The handling and interaction
semantics will be discussed in Section 2.2.6 on input handling.

Evaluate (↓)

Normalize (⇓)

Fix (

�⇒

)

Interact (=⇒)

Handle (−→)

uses

uses

uses uses

Figure 2.10: Semantic functions and their relation

2.2.4 Editors

Editors allow end users to interact with the system by entering and changing
information. When a user sends an input event to an editor, the editor
will update its current value to reflect the change. There are no output
events. Instead, the current value of an editor can be observed and used in
subsequent tasks. There are three types of editors in t̂op:

un-
valued valued shared

Enter

Update Change

Figure 2.11: Possible editor states and their transitions.

• Empty editors (⊠nβ) or unvalued editors are editors that currently hold
no value. They can be seen as an input prompt to the user to enter
data. Empty editors are annotated with a basic type β , which means
that only basic values of type β are accepted by the editor. Once an
empty editors receives a valid input event, it becomes a filled editor
containing the new data.

• Filled editors (□nb) or valued editors are editors that currently hold
the basic value b. Filled editors can be seen as either outputting a
value, or as an input prompt that comes with a default value. They
can never be cleared, only updated with new values of the same type.

13
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• Shared editors (⊞nl) watch references. They allow the user to view and
change shared values. Whenever a shared editor is updated, all shared
editors watching the same reference will be updated as well.

The relation between the different editors is illustrated in the state dia-
gram in Figure 2.11. Since editors are already fully reduced, no normalisation
needs to be done. Figure 2.12 gives the normalisation rules for editors.

t,σ ⇓ t ′,σ ′, δ ′

N-Enter

⊠nβ,σ ⇓ ⊠nβ,σ ,�

N-Update

□nb,σ ⇓ □nb,σ ,�

N-Change

⊞nl,σ ⇓ ⊞nl,σ ,�

Figure 2.12: Normalisation rules for editors

2.2.5 Label allocation

Editors are labeled, and require their input to be tagged by the same label.
Label allocation (νn.e) ensures that the label n is bound within the expres-
sion e. Hence, it may be renamed within e, so long as there are no name
conflicts. This is useful for introducing new labels within a task-program,
without having to pre-assign all labels beforehand. This idea of label allo-
cation closely follows the idea of channel allocation in π -calculus [2]. For
normalisation, ν -expressions simply normalise their body. See the normali-
sation rule in Figure 2.13.

t,σ ⇓ t ′,σ ′, δ ′

N-Label
t,σ ⇓ t ′,σ ′, δ ′

νn.t,σ ⇓ νn.t ′,σ ′, δ ′

Figure 2.13: Normalisation rule for label allocation

Before sending input to a task-program, it should be in ν -standard form,
which is defined as follows:

Definition 2.1 (ν-standard form). A task t is in ν-standard form iff t
is of the form νn1...νnm .t

′, where t ′ does not contain any free ν -expressions.
We will say a ν -expression is free iff it does not occur within a λ-expression.
In this case, we call t ′ the body of t .

14
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We will also define the task observation N : Tasks → Booleans which,
given a task t , returns true iff t is in ν -standard form. To bring a task-
program in ν-standard form, we introduce ν -congruence. Two expressions e1
and e2 are said to be ν-congruent (denoted by e1 ≡ e2) if they are identical
up to label names and the scope of ν -expressions. The rules by which to
induce that two expressions are ν -congruent are given in Figure 2.14.

e ≡ e ′

C-Alpha
e =α e ′

e ≡ e ′

C-Reorder

νn.νm.e ≡ νm.νn.e

C-Deallocate

νn.e ≡ e
n < e

C-PairLeft

(νn.e1) ▶◀ e2 ≡ νn.e1 ▶◀ e2
n < e2

C-PairRight

e1 ▶◀(νn.e2) ≡ νn.e1 ▶◀ e2
n < e1

C-ChooseLeft

(νn.e1) ♦ e2 ≡ νn.e1 ♦ e2
n < e2

C-ChooseRight

e1 ♦(νn.e2) ≡ νn.e1 ♦ e2
n < e1

C-Step

(νn.e1) ▶ e2 ≡ νn.e1 ▶ e2
n < e2

C-Trans

e1 ▲(νn.e2) ≡ νn.e1 ▲ e2

Figure 2.14: Congruence rules

The rule C-Alpha introduces α-conversion for ν -expressions. Similar to
α-conversion in λ-calculus, this means that bound labels within e may be
renamed, so long as there are no name conflicts. The rule C-Reorder says
that the order of ν -expressions does not matter, and the rule C-Deallocate
says that labels may be de-allocated once they are no longer in use. All other
rules are scope extrusion rules, which extend the scope of a label n. This is
allowed so long as n does not occur in the rest of the expression that is now
included within the scope. We write n < e to say that the expression e does
not contain the label n. Because νn.e must be of type Task, we only apply
scope extrusion to expressions whose sub-expressions can also be of type
Task. This means that any ν ’s occurring within the right-hand side of step,
or within a lambda function, are not extruded until after the step is taken,
or after the function is evaluated. This is fine, because such editors are not
yet reachable by the user, and cannot receive input yet.

In addition to the congruence rules defined in Figure 2.14, we also need
a set of rules that say that congruence can be applied recursively to sub-
expressions. For example, for label allocation we need a rule that says that
if e ≡ e ′, then νn.e ≡ νn.e ′; and for pairing we need a rule that says that if
e1 ≡ e ′1, and e2 ≡ e ′2, then e1 ▶◀ e2 ≡ e ′1 ▶◀ e

′
2. These rules can easily be derived

15



2.2. THE TASK LANGUAGE CHAPTER 2. TOPHAT

from the grammar, and so we will not give them here. We will simply say
that, because ≡ is a congruence relation, it can be applied structurally to
sub-expressions.

2.2.6 Input handling

Once a program is in ν-standard form, it is possible to send input to it.
The input event Enb indicates that the input b should be entered into the
editor with label n. To do this, it is useful to know what inputs a given task
accepts. The observation function I returns the set of input events that are
currently possible for a given task. Its definition is given in Figure 2.15. For
the three editors, I returns all input events Enb where b is of the correct
type. For label allocation and the task combinators, I is defined recursively.
For all other tasks, I returns the empty set. We consider an input event i a
valid input event for the task t iff i ∈ I(t).

I : Tasks → P(Inputs)
I(νn.t) = I(t)

I(⊠nβ) = {Enb ′ | b ′ : β}
I(□nb) = {Enb ′ | b ′ : β} where □nb : Task β

I(⊞nl) = {Enb ′ | b ′ : β} where ⊞nl : Task β

I(e1 ▲ t2) = I(t2)
I(t1 ▶ e2) = I(t1)
I(t1 ▶◀ t2) = I(t1) ∪ I(t2)
I(t1 ♦ t2) = I(t1) ∪ I(t2)

I( ) = �
Figure 2.15: Inputs observation on tasks

Finally, we are able to define how input events should be handled by
tasks. This is done by the handling semantics ( i−→ ), whose rules are given in
Figure 2.16. Most handling rules simply pass along the input events to their
subtasks. The only interesting rules are the handling rules for editors. A
valid input event to an empty editor results in a filled editor containing the
new data (H-Enter), a valid input event to a filled editor updates its value
(H-Update), and a valid input event to a shared editor updates the state σ
such that the reference l now contains the new value (H-Change). It also
returns δ = {l}, which will later be used in the fixing semantics described in
Section 2.2.11.

The interaction semantics uses the handling semantics to first handle the
input i, after which it uses the fixing rules to make the task ready to accept
the next input. The interaction semantics are given in Figure 2.17.
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t,σ
i−→ t ′,σ ′, δ ′

H-Label
t,σ

i−→ t ′,σ ′, δ ′

νn.t,σ
i−→ νn.t ′,σ ′, δ ′

H-Enter

⊠nβ,σ
Enb′−−−−→ □nb ′,σ ,�

b ′ : β

H-Update

□nb,σ
Enb′−−−−→ □nb ′,σ ,�

b,b ′ : β
H-Change

⊞nl,σ
Enb′−−−−→ ⊞nl,σ [l 7→ b ′], {l}

σ (l),b ′ : β

H-Step
t1,σ

i−→ t ′1,σ
′, δ ′

t1 ▶ e2,σ
i−→ t ′1 ▶ e2,σ

′, δ ′

H-Trans
t2,σ

i−→ t ′2,σ
′, δ ′

e1 ▲ t2,σ
i−→ e1 ▲ t ′2,σ

′, δ ′

H-PairFirst
t1,σ

i−→ t ′1,σ
′, δ ′

t1 ▶◀ t2,σ
i−→ t ′1 ▶◀ t2,σ

′, δ ′

H-PairSecond
t2,σ

i−→ t ′2,σ
′, δ ′

t1 ▶◀ t2,σ
i−→ t1 ▶◀ t ′2,σ

′, δ ′

H-ChooseFirst
t1,σ

i−→ t ′1,σ
′, δ ′

t1 ♦ t2,σ
i−→ t ′1 ♦ t2,σ

′, δ ′

H-ChooseSecond
t2,σ

i−→ t ′2,σ
′, δ ′

t1 ♦ t2,σ
i−→ t1 ♦ t ′2,σ

′, δ ′

Figure 2.16: Handling rules

t,σ
i
=⇒ t ′,σ ′

I-Handle
t,σ

i−→ t ′,σ ′, δ ′ t ′,σ ′, δ ′ �⇒ t ′′,σ ′′

t,σ
i
=⇒ t ′′,σ ′′

Figure 2.17: Interaction rules

2.2.7 Failing and internal value

A failing task ( ) stands for an impossible task. A task that is failing never
has a value and never accepts input. Not just  can fail, tasks with failing
subtasks can also fail. For example, the pairing ( ▶◀  ) is also a failing task,
and is equivalent to  . To capture what tasks are failing we introduce the

17



2.2. THE TASK LANGUAGE CHAPTER 2. TOPHAT

failing observation F , which is defined in Figure 2.18. Failing is especially
useful when used in combination with the step combinator, which will be
explained in the next section.

F : Tasks → Booleans

F (νn.t) = F (t)

F (t1 ▶◀ t2) = F (t1) ∧ F (t2)
F (t1 ♦ t2) = F (t1) ∧ F (t2)
F ( ) = True

F (e1 ▲ t2) = F (t2)
F (t1 ▶ e2) = F (t1)

F ( ) = False

Figure 2.18: Failing observation on tasks

Internal value (■v) can be used to output the value v as result. Unlike
editors, it accepts no input, and thus the value of ■v will always remain the
same. Figure 2.19 gives the normalisation rules for fail and internal value.

t,σ ⇓ t ′,σ ′, δ ′

N-Fail

 ,σ ⇓  ,σ ,�
N-Done

■v,σ ⇓ ■v,σ ,�

Figure 2.19: Normalisation rules for fail and internal value

2.2.8 Step

The step combinator (▶) allows the result from one task to determine the
next task. We call this sequential composition. The step combinator expects
a task t of type Task τ1 on the left hand side, and a continuation e on the
right hand side, which is a function from from τ1 to a successor task of type
Task τ2. Before we can define the normalisation rules of step, we need to
have a way to determine the value of a task. For this, we introduce the task
observation V. Given a task t : Task τ and its current state σ , this function
returns the task’s value v of type τ . It is also possible that a task’s value is
undefined, in which case we write V(t,σ ) = ⊥. The definition of V is given
in Figure 2.20.

Steps are guarded. A step can only be taken if two conditions are met:
(1) the task on the left-hand side has a value, and (2) the evaluation of the
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V : Tasks × States⇀ Values

V(νn.t,σ ) = V(t,σ )

V(⊠nβ,σ ) = ⊥
V(□nb,σ ) = b

V(⊞nl,σ ) = σ (l)

V(■v,σ ) = v

V(t1 ▶◀ t2,σ ) =
{
⟨v1,v2⟩ when V(t1,σ ) = v1 ∧V(t2,σ ) = v2
⊥ otherwise

V(t1 ♦ t2,σ ) =


v1 when V(t1,σ ) = v1
v2 when V(t1,σ ) = ⊥ ∧V(t2,σ ) = v2
⊥ otherwise

V( ,σ ) = ⊥

V(e1 ▲ t2,σ ) = v ′
2 whenV(t2,σ ) = v2 ∧ e1 v2 ↓ v ′

2

V(t1 ▶ e2,σ ) = ⊥
Figure 2.20: Value observation on tasks

continuation on the right-hand side with this value does not fail. The normal-
isation rules for step are given in Figure 2.21. There are three cases: either
the first condition fails, and the step remains guarded (N-StepNone); or
the first condition is met, but the second condition fails, and the step re-
mains guarded (N-StepFail); or both conditions are met, and the step can
proceed (N-StepCont). Note that the last two rules use evaluation in the
host language to compute the successor task. The result of this evaluation
is only used when the step can be taken successfully (N-StepCont), and
discarded otherwise (N-StepFail).

Example 2.2 (Coffee machine). Consider the following task-program:

let coffeeMachine : Task Drink = νn.⊠nInt ▶ λx.
if x ≡ 1 then ■Coffee else if x ≡ 2 then ■Tea else  

This program describes a coffee machine that can either serve coffee or tea.
Coffee is served when one coin is inserted, and tea is served when two coins
are inserted. For any other number of coins, the step remains guarded, which
means that the coffee machine returns nothing and waits until a correct
number of coins is inserted.
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t,σ ⇓ t ′,σ ′, δ ′

N-StepNone
t1,σ ⇓ t ′1,σ

′, δ ′

t1 ▶ e2,σ ⇓ t ′1 ▶ e2,σ
′, δ ′ V(t ′1,σ ′) = ⊥

N-StepFail
t1,σ ⇓ t ′1,σ

′, δ ′ e2 v1 ↓ t2

t1 ▶ e2,σ ⇓ t ′1 ▶ e2,σ
′, δ ′ V(t ′1,σ ′) = v1 ∧ F (t2)

N-StepCont
t1,σ ⇓ t ′1,σ

′, δ ′ e2 v1 ↓ t2 t2,σ
′ ⇓ t ′2,σ

′′, δ ′′

t1 ▶ e2,σ ⇓ t ′2,σ
′′, δ ′ ∪ δ ′′ V(t ′1,σ ′) = v1 ∧ ¬F (t2)

Figure 2.21: Normalisation rules for step

2.2.9 Transform

The transform combinator (▲) maps a function over a task. It takes a func-
tion of type τ1 → τ2 on the left-hand side, and a task of type Task τ1 on
the right-hand side, resulting in a task of type Task τ2. The normalisation
rule of the transform combinator, given in Figure 2.22, does not actually do
anything. If we want to apply the function and use the result, we would need
to use the transform combinator in combination with the step combinator.
This would allow us to extract the value of the transform task by using the
task observation V, which in case of the transform combinator, is defined as
V(e ▲ t) = v ′ when V(t,σ ) = v and ev ↓ v ′. So, if the task on the right-hand
side has a value v, and applying the function e to v results in the value v ′,
then the transform combinator has the value v ′.

t,σ ⇓ t ′,σ ′, δ ′

N-Trans
t2,σ ⇓ t ′2,σ

′, δ ′

e1 ▲ t2,σ ⇓ e1 ▲ t ′2,σ
′, δ ′

Figure 2.22: Normalisation rule for transform

Example 2.3 (Traffic light). Let us consider a simple example:

let trafficLight : Task Light =
((λx. if x then Green else Red) ▲ νn.⊠nBool) ▶ λy. ■y

This program describes a traffic light whose light is initially turned off, but
given the right input, it can either become red or green. So long as no input
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is given, the transform task on the left-hand side of the step combinator has
no value, and the step remains guarded. Once an input is entered, transform
returns the value Green if True was entered, and Red if False was entered,
upon which the step proceeds and displays the result.

2.2.10 Parallel

Pairing (▶◀) combines the result of two tasks, but only if both branches have
a value. If the left task is of type τ1, and the right task is of type τ2, then
their pairing is of type τ1 × τ2. However, if one or both branches have no
value, then the resulting task also has no value.

Choosing (♦) chooses one of two branches. This combinator is left-biased:
it returns the leftmost task that has a value. If neither task has a value, then
the resulting task also has no value. The normalisation rules for pairing and
choice are given in Figure 2.23. See also Figure 2.20 for the definition of V
for pairing and choice.

t,σ ⇓ t ′,σ ′, δ ′

N-ChooseLeft
t1,σ ⇓ t ′1,σ

′, δ ′

t1 ♦ t2,σ ⇓ t ′1,σ
′, δ ′ V(t ′1,σ ′) = v1

N-ChooseRight
t1,σ ⇓ t ′1,σ

′, δ ′ t2,σ
′ ⇓ t ′2,σ

′′, δ ′′

t1 ♦ t2,σ ⇓ t ′2,σ
′′, δ ′ ∪ δ ′′ V(t ′1,σ ′) = ⊥ ∧V(t ′2,σ ′′) = v2

N-ChooseNone
t1,σ ⇓ t ′1,σ

′, δ ′ t2,σ
′ ⇓ t ′2,σ

′′, δ ′′

t1 ♦ t2,σ ⇓ t ′1 ♦ t
′
2,σ

′′, δ ′ ∪ δ ′′ V(t ′1,σ ′) = ⊥ ∧V(t ′2,σ ′′) = ⊥

N-Pair
t1,σ ⇓ t ′1,σ

′, δ ′ t2,σ
′ ⇓ t ′2,σ

′′, δ ′′

t1 ▶◀ t2,σ ⇓ t1 ▶◀ t ′2,σ
′′, δ ′ ∪ δ ′′

Figure 2.23: Normalisation rules for pairing and choice

These combinators allow user to work on two tasks in parallel, but unlike
the name suggests, parallel does not mean that there is non-determinism.
The order of execution is determined by the order of user inputs send. In-
stead, parallel here means that the order in which we execute the tasks, and
their subtasks, does not matter.

Example 2.4 (Breakfast). Let us consider the following task-program, which
makes use of both parallel combinators:
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let make : τ → Task τ = λx. νn.⊠nUnit ▶ λy. ■x in
let makeBreakfast : Task (Drink × Food) =

((make Tea ♦ make Coffee) ▶◀ make Egg) ▶ eatBreakfast

This program describes a simple workflow for making breakfast. Breakfast
consists of something to drink (tea or coffee), and something to eat (eggs).
The drink and the food are prepared in parallel (▶◀), which means that the
order in which they are made does not matter. For the drink, users have a
choice (♦) whether they want tea or coffee with their breakfast. For the food,
users will always make an egg. We will use the function make to simulate
that the user must first perform an action (i.e. send user input) before an
item is prepared and the task has a value. Only when both the drink and
food are ready, can the step be taken and can we enjoy our breakfast.

2.2.11 References

References model shared data sources in t̂op. They provide a way for tasks
to share information across control flow, and allow multiple users to simul-
taneously view or edit the same data. We have already seen shared editors,
which allow users to modify a shared value, upon which the result imme-
diately becomes visible to all other tasks interested in them. To create a
reference to an expression e, we write ref e. Reference creation is a task,
which upon normalisation, adds the reference to the state and results in a
task whose value is the newly created location l pointing to the value b.

Reference assignment (e1 := e2) allows the system to assign a new value
to a reference. It expects a location l of type Ref β on the left-hand side,
and an expression of type β on the right-hand side. Upon normalisation,
reference assignment saves the location’s new value in the state and returns
the unit value. Because the l ’s value has been changed, it also returns the
set δ = {l}. See Figure 2.24 for the normalisation rules of reference creation
and assignment. This approach to references follows the one presented by
Pierce [3], except that in our case, reference are lifted into the task domain.

t,σ ⇓ t ′,σ ′, δ ′

N-Share
l < dom(σ )

refb,σ ⇓ ■ l, [l 7→ b]σ ,�

N-Assign

l := b,σ ⇓ ■⟨⟩, [l 7→ b]σ , {l}

Figure 2.24: Normalisation rules for references

There is still one problem that needs to be solved when using references.
Consider the following example:
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ref False ▶ λl : Ref Bool.
(νn.⊞n l ▶ λx : Bool.if x then e else  ) ▶◀ (l := True)

This program reduces to the following task after normalisation:

(νn.⊞n l ▶ λx : Bool.if x then e else  ) ▶◀ ■⟨⟩
where σ = {l 7→ True}. However, this task is not fully normalised. This hap-
pens because the normalisation rule N-Pair for pairing (t1 ▶◀ t2) normalises
its operands from left to right. Therefore, when the left task is normalised,
the reference l is still set to False, and thus the step remains guarded. Only
after normalisation of the left task is done, is the right task normalised, which
sets the reference l to True. We would need to normalise the task-program
a second time to fix this. To prevent this problem, we keep track of the set
of references whose value has been changed while normalising or while han-
dling input. This is the set δ that is returned after normalisation and input
handling. There are two instances where this happens. Either the reference
is updated by the system through reference assignment (N-Assign), or the
reference is updated by the user through a shared editor (H-Change).

This motivates the fixing semantics presented in Figure 2.26. This se-
mantics makes use of another task-observation function W, which returns
all references that are currently being watched by a shared editor inside a
task. Its definition is given in Figure 2.25.

W : Tasks → P(Locations)
W(⊞nl) = {l}

W(νn.t) = W(t)
W(t1 ▶◀ t2) = W(t1) ∪W(t2)
W(t1 ♦ t2) = W(t1) ∪W(t2)
W(e1 ▲ t2) = W(t2)
W(t1 ▶ e2) = W(t1)

W( ) = �
Figure 2.25: Watching observation on tasks

Fixing rules are of the form t,σ , δ

�⇒

t ′,σ ′. They make sure that nor-
malisation is applied until the task is truly reduced. When given a task, the
current state, and the set δ , the fixing semantics will first apply normalisa-
tion on the given task and state. If it turns out that after normalisation, the
resulting task watches a reference that has been changed meanwhile (either
by the normalisation or by the initial set δ), then normalisation must be ap-
plied again. This is captured by the rule F-Loop. This process is repeated
until the task is truly normalised, as determined by the rule F-Done. This
rule also ensures that the resulting task t ′′ is in ν -standard form, which is
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required before handling user input. Recall that the interaction semantics
makes use of the fixing semantics. This way, the semantics of t̂op ensures
that interaction with the environment can only take place after all updates
to shared data sources are fully processed.

t,σ , δ

�⇒

t ′,σ ′

F-Done
t,σ ⇓ t ′,σ ′, δ ′ t ′ ≡ t ′′

t,σ , δ

�⇒

t ′′,σ ′ (δ ∪ δ ′) ∩W(t ′) = � ∧N(t ′′)

F-Loop
t,σ ⇓ t ′,σ ′, δ ′ t ′,σ ′, δ ′ �⇒ t ′′,σ ′′

t,σ , δ

�⇒

t ′′,σ ′′ (δ ∪ δ ′) ∩W(t ′) , �

Figure 2.26: Fixing rules

2.3 Examples
This section will present two larger example-programs in t̂op. Example 2.5
models a stopwatch, which shows how shared editors can be used to create
timed tasks. It also shows an example of a higher-order task, and it demon-
strates the use of the transform, step and choice combinators. Example 2.6
models a simple multi-user flight booking system, which shows how multiple
users can work in parallel on the same shared data source. It demonstrates
reference creation, assignment, and the step and parallel combinators.

Example 2.5 (Stopwatch). Shared editors can also be used to represent sen-
sors or clocks. For example, we can represent the current time as a shared
editor νn.⊞ntime. While sensors and clocks are not explicitly modelled in
t̂op, we can assume that they exists as external users which periodically
send update events to the system. By using shared editors as clocks, we
could write a task-program that reacts to a timeout:

1 let wait : Int → Task τ → Task τ = λm. λt.
2 νn.⊞ntime ▶ λstart : Int.
3 νn.⊞ntime ▶ λnow : Int.
4 if now ≥ start + m then t else  in
5 let stopwatch : Task String = ((λs. 1000 × s) ▲ νn.⊠nInt) ▶ λm.
6 (νn.⊠n Unit ▶ λx.■ ”Stopped”) ♦ wait m (■ ”Done”)

The wait function (lines 1-4) is an example of a higher order task. It takes
an integer m and a task t as arguments. The first step is immediately taken,
so that the variable start holds the initial time (line 2). The next step will
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remain guarded until m milliseconds have passed, after which the task t is
returned (line 3-4).

We use this function to define a stopwatch in t̂op. Suppose that the user
should enter the number of seconds s for which the stopwatch should run.
Because we defined wait on milliseconds, we use transform (▲) to convert
seconds to milliseconds (line 5). After the user enters a value, the step is
taken, which starts the task wait m (■”Done”) (line 6). This task displays
”Done” on the screen after m milliseconds, but so long as this task is still
running, it has no value. We give the user a choice (♦) to interrupt the
stopwatch by sending an input event to the task on the left-hand side of
the choice combinator (line 6). If done so before m milliseconds have passed,
the left-hand side of the choice combinator will have a value before the
right-hand side, and it displays ”Stopped” on the screen.

Example 2.6 (Flight booking). We model a simple multi-user system where
users can book a flight:

1 ref 42 ▶ λfreeSeats.
2 let validPassenger = λp. not (fst p ≡ ””) ∧ snd p ≥ 18 in
3 let chooseSeats = λp. (νn.⊠n Int ▶◀ νn.⊞nfreeSeats) ▶ λ⟨s, f s⟩.
4 if fs ≥ s then freeSeats := fs − s; ■⟨p, s⟩ else  in
5 let bookFlight = νn.⊠n(String × Int) ▶ λp.
6 if validPassenger p then chooseSeats p else  in
7 bookFlight ▶◀ bookFlight ▶◀ bookFlight

When booking a flight, passengers should first enter their name and age into
the system (line 5). Only when they enter a valid name and are at least 18
years old (line 2), are they allowed to proceed. Next, they have to choose
how many tickets they want to buy. We create a shared reference freeSeats
to keep track of how many seats are still available, and set its initial value
to 42 (line 1). A user is only allowed to buy a certain amount of tickets if
it does not exceed the number of tickets available. We can get the current
value of freeSeats by using a shared editor. Because we want to get this value
at the same moment as the user enters the amount of tickets he wants to
buy, we set these two editors in parallel (line 3). If all went well, the system
updates the value of freeSeats, and displays the passenger and the amount
of tickets bought (line 4).

The parallel combinator (▶◀) allows multiple bookFlight instances to run
in parallel (line 7). This way, multiple users can book tickets at the same
time. Their input events can interleave, and the order of execution is deter-
mined by the order of input events.
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Chapter 3

Semantic equivalence in
TopHat

In this chapter, we will examine when two t̂op-programs are semantically
equivalent. Let us first consider what it means in general for two programs
to be semantically equivalent. According to Sewell, a “good” definition of
semantic equivalence should satisfy the following properties [5]:

(i) Programs that result in observably-different values must not be equiv-
alent.

(ii) Programs that terminate should not be equivalent to programs that
do not terminate.

(iii) The relation � should be an equivalence relation: it is reflexive, sym-
metric and transitive.

(iv) The relation � should be a congruence, that is if e1 � e2, then for all
contexts C[−] : C[e1] � C[e2].

(v) � should relate as many programs as possible subject to the above
properties.

It should be obvious that the first three properties are desirable. The
fourth property about congruence states that if two programs e1 and e2
are semantically equivalent, then we should be able to use e1 and e2 inter-
changeably within any program without changing its meaning. Finally, the
last property ensures that � is not just the empty relation.

We will keep these properties in mind when giving our definition of se-
mantic equivalence. In Section 3.1, we will give a definition for the semantic
equivalence of two expressions in the host language. The next section, Sec-
tion 3.2, will look at the semantic equivalence of two tasks. Finally, Section
3.3 will present a set of properties that we believe hold true for t̂op-programs
with our definition. We will use the symbol ≃ for the semantic equivalence
of two expressions in the host language, and the symbol � for the semantic
equivalence of two tasks.
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3.1 Expression equivalence
Before we will consider semantic equivalence of tasks, we will first look at
semantic equivalence of expressions in the host language. We will start with
an example. Consider the following two expressions:

e1 := λx : Int. ifx < 0 then−x elsex
e2 := λy : Int. ify ≥ 0 theny else−y

It should be obvious that these two functions are equivalent: they both re-
turn the absolute value of their argument. Therefore, we should be able to
use them interchangeably within any t̂op-program without changing its be-
havior. So even though the functions e1 and e2 are different, we will never
detect a difference between them when they are being used within a t̂op-
program, because for all possible arguments, e1 and e2 evaluate to the same
result. So, when deciding if two expressions in the host language are equiva-
lent, it is not enough to just look at the resulting value after evaluation. We
need to consider all contexts that an expression can be used in. This leads to
the definition of contextual equivalence. Pitts defines contextual equivalence
informally as follows [4]:

Two phrases of a programming language are contextually equiva-
lent if any occurrences of the first phrase in a complete program can
be replaced by the second phrase without affecting the observable
results of executing the program.

This kind of equivalence is also called operational, or observational equiv-
alence. To formally define such a notion of contextual equivalence for a given
programming language, we must answer two questions: “What is a com-
plete program?”, and: “What are the observable results?”. Depending on
the answers to these two questions, this can result in different definitions of
semantic equivalence for the same programming language [4].

For expressions in t̂op, we answer these two questions as follows: we will
consider an expression in the host-language a complete program if it does
not contain any free variables, and the only observation we are interested
in is the resulting value after evaluation. We also need a way to substitute
an expression in a program by another. For this, we use the notion of a
program context. A context C[−] is a complete program that can contain
“holes”, denoted by the symbol ‘−’, which can be filled. We write C[e] for
the expression that results from replacing all occurrences of − in C by e.
Figure 3.1 gives the context grammar for expressions. For the definition of
expression equivalence, we will only quantify over all contexts of basic type
β , because we can only observe the equivalence of two basic values. If we
would allow all types, then we would have the same problem as introduced
at the beginning of this section. Because then the context C can also be a
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Contexts C ::= − | λx : τ . e | C1 C2 – hole, abstraction, application
| x | l | c – variable, location, constant
| u C1 | C1 o C2 – operations: unary, binary
| ifC1 thenC2 elseC3 | ⟨⟩ – conditional, unit
| ⟨C1,C2⟩ | fstC | sndC – pair, projections
| P – pretask

Pretasks P ::= νn.C | ⊠nβ | □nC | ⊞nC – label allocation, editors
| C1 ▶◀C2 | C1 ♦C2 – pairing, choosing
|  | ■C – fail, internal value
| C1 ▲C2 | C1 ▶C2 – transform, step
| refC | C1 := C2 – new shared value, assignment

Figure 3.1: Context grammar

lambda function, and we can only determine that two lambda functions are
equivalent by considering all contexts that they can be used in. This leads
to the following definition of expression equivalence:

Definition 3.1 (Expression equivalence). Given two expressions e1, e2 :
τ (where τ , Task τ ′ for some τ ′), we say that e1 and e2 are semantically
equivalent (e1 ≃ e2) if for all contexts C[−] : β , and for all values b : β :

C[e1] ↓ b ⇔ C[e2] ↓ b

Actually proving that two expressions are contextually equivalent is hard,
as we would need to quantify over all contexts. That is, we would need
to consider all possible ways that a program can use an expression. How-
ever, showing that two expressions e1 and e2 are contextually inequivalent
is straightforward. All we have to do is find one context C[−] : β such that
C[e1] ↓ b1 and C[e2] ↓ b2 with b1 , b2.

Example 3.2 (Expression inequivalence). The expressions

e1 := λx : Int. if x < 0 then 2 else 3

e2 := λx : Int. if x > 0 then 3 else 2

are not contextually equivalent.
Proof : Take the context C[−] : Int with C[e] = e 0, then:

C[e1] = (λx : Int. if x < 0 then 2 else 3) 0 ↓ 3

C[e2] = (λx : Int. if x > 0 then 3 else 2) 0 ↓ 2
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3.2 Task equivalence
For expression equivalence, we needed contexts to determine the equivalence
of two lambda functions, whose results can only be observed after evalua-
tion. For tasks however, we do not need contexts to view their results. A
task’s value can be determined at any point during execution, whereupon it
either has a value, or it is undefined. On the other hand, tasks do allow user
interaction, and depending on what inputs are send, the resulting task may
be different. So while a lambda function can produce a different result de-
pending on its arguments, so can a task produce different results depending
on what inputs are send to it. So in a sense, for tasks, the “contexts” are
user input.

The first property at the beginning of this chapter states that programs
that result in observably different values must not be equivalent. Before we
look at observations however, we should first fully normalise the tasks whose
equivalence we want to determine. Normalisation keeps track of a state σ .
For semantic equivalence, we do not want that normalisation results in two
different states. So, given two tasks t1, t2 : Task τ , we want that for all states
σ , normalisation of t1 and t2 end in the same state σ ′:

t1,σ ,�

�⇒

t ′1,σ
′ ⇔ t2,σ ,�

�⇒

t ′2,σ
′

We use the fixing semantics (

�⇒

) to ensure that the tasks are fully nor-
malised. After normalisation, we need to decide what observations t ′1 and
t ′2 must have in common for them to be considered equivalent. So let us
recall what observations can be made on tasks. There is the value function
V which returns the value v of a task, or ⊥ if it is undefined; there is the
failing function F which returns whether a task is failing; and there is the
inputs function I which returns the set of all possible input events that a
task accepts. The value and failing functions are used in the normalisation
rules of t̂op, and different observations for these functions can result in
different derivation rules being triggered. Therefore, we can say that tasks
for which the value or failing function return a different result must not be
semantically equivalent.

Similarly, tasks whose inputs function I return a different set of input
events can also not be semantically equivalent, because that would mean
that the types of interaction that can be done with the tasks are different.
Recall that by the fixing rules, presented in Figure 2.26, t ′1 and t ′2 should be
in ν -standard form. Recall also that input events should be labeled by the
same label as the editor it is meant for. So if we require that I(t ′1) = I(t ′2),
then this also implies that t ′1 and t ′2 must have the same label names for
all extruded ν -expressions and their editors. If this is not possible by the
congruence rules, then we can never have that I(t ′1) = I(t ′2), and the tasks
cannot be semantically equivalent.
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Given these observations, we say that at least the following property
must hold:

t � t ′ ⇒ F(t) = F (t ′) ∧ V(t,σ ) = V(t ′,σ ) ∧ I(t) = I(t ′)

For any of these task observations, we can distinguish two cases: either
a task fails or does not fail, it either has a value or its value is undefined,
and it either accepts input or it accepts no more input. Based on these case
distinctions, we will say that a task is in either one of five states after nor-
malisation. These task states, and some examples, are shown in Figure 3.2.
The next subsections will describe each task state into more detail.

F V I Task state Examples
✓ − − Failing  ,  ▶◀  ,  ♦ , λx .x ▲  ,  ▶ λx .■x
− ✓ − Finished (stable) ■ 2, ■ 2 ▶◀ ■ 3, ■⟨2, 3⟩, λx .x + 1 ▲ ■ 2
− ✓ ✓ Finished (unstable) νn.□n2, νn.□n2 ▶◀ νn.□n3, νn.□n ⟨2, 3⟩
− − − Stuck ■ 2 ▶ λx .  , ■ 2 ▶◀  ,  ▶◀ ■ 2
− − ✓ Running (looping) νn. ⊠n Int ▶◀  , νn.□n2 ▶ λx .  
− − ✓ Running (branching) νn. ⊠n Int ▶ λx . ifx ≤ 2 then■x else 

Figure 3.2: Different states a task can be in after normalisation.
Checkmarks (✓) for F , V and I for a task t and a state σ indicate
that F (t), V(t,σ ) = v for v , ⊥, and I(t) , � respectively.

3.2.1 Failing tasks

A failing task t is a task for which the failing function F (t) yields true. In
the original t̂op paper, theorem 6.5 states that a task fails if and only if it
accepts no more user input [6]. However, with the introduction of internal
value in TopHat Next [7], this is no longer the case, because ■ e does not
fail, and neither does it accept user input. What we can still say however is
that if a task is failing, then we know that it has no value and accepts no
more user input (Conjecture 3.4).
Definition 3.3 (Failing task). We call a task t : Task τ failing iff F (t).
Conjecture 3.4. For all failing tasks t and states σ , we have that V(t,σ ) =
⊥ and I(t) = �.

Once a task fails, it will always remain failing, because by Conjecture 3.4,
no more user interaction is possible, and by assumption, the task is already
fully normalised. Failing can thus be regarded as one type of termination,
and we will consider all tasks that fail to be equivalent. Hence, we will say
that the tasks  ,  ▶◀  ,  ♦ , λx .x ▲  ,  ▶ λx .■x , and all other failing
tasks, are semantically equivalent to each other.
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3.2.2 Finished tasks

A finished task t is a task which yields a value V(t,σ ) = v for v , ⊥. This
value can either be stable when no more user input is possible, or unstable
when the task still accepts user input. An example of a finished task with a
stable value is the task ■ 42. Because this task accepts no more user input,
its value will always remain equal to 42. An example of a finished task with
an unstable value is the task νn.□n42. This task still accepts user input, and
thus its value can keep on changing. Even though both tasks yield the same
value, they should not be equivalent, since one’s value can be changed and
the other one’s value cannot.

Definition 3.5 (Finished task). We call a task t : Task τ in state σ finished
iff V(t,σ ) = v, for v , ⊥. Furthermore, we call a finished task stable iff
I(t) = �, and unstable iff I(t) , �.

A stable task can thus never be semantically equivalent to an unstable
task, even if their values are (initially) the same. But just looking at the
resulting values, and whether the resulting value is stable or not, is not
enough to determine semantic equivalence of finished tasks. Consider for
example the following tasks:

t1 := ■⟨2, 3⟩ t3 := νn.□n ⟨2, 3⟩
t2 := ■ 2 ▶◀ ■ 3 t4 := νn.□n2 ▶◀ νn.□n3

These are all finished tasks with value ⟨2, 3⟩. Tasks t1 and t2 are both stable,
and thus t1 � t2. We have already concluded that stable tasks cannot be
equivalent to unstable tasks, so t1 � t3, t1 � t4, t2 � t3, and t2 � t4. But we
will also say that t3 � t4, because we have that t4 ≡ νn. νm.□n2 ▶◀ □m3 by
ν -congruence, so:

I(t3) = {Enb | b : Int × Int}
I(t4) = {Enb | b : Int} ∪ {Emb | b : Int}

Meaning that the types of interaction that can be done with t3 differ from
the types of interaction that can be done with t4. In the case of t3, the user
can only alter the pair in one go, whereas for t4, the user can partially update
it. So for finished tasks, we also need to require that I(t) = I(t ′) if we want
to conclude that t � t ′.

And yet this is still not enough. Consider the following two tasks:

t5 := (λx . ifx < 0 then−x elsex) ▲ νn.□n42
t6 := νn.□n42

Both tasks have the value 42 and accept the same input. However for neg-
ative values, the resulting values diverge, because the transform function in
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task t5 ensures that its output is always positive. So if a task still accepts
user input, not only do we need to look at a task’s current value, but we also
need to consider all values that a task can have after user interaction. We
claim that a finished task will always remain finished with the same input
space, only its value may change (Conjecture 3.6).

Conjecture 3.6. If t is a finished task, then for all inputs i ∈ I(t): if
t,σ

i
=⇒ t ′,σ ′, then t ′ is again a finished task. Moreover, if we do not allow

α-conversion for ν -expressions, then we also have that I(t ′) = I(t).

3.2.3 Stuck tasks

A stuck task t is a task which does not fail, does not have a value, and does
not accept user input. Such tasks are essentially “broken”. Examples of stuck
tasks are ■ 2 ▶ λx .  , ■ 2 ▶◀  , and  ▶◀ ■ 2. The first example is stuck because
the right-hand side always fails, and thus the step can never be taken. For
pairing, we have that both sides must fail before ▶◀ fails, and both sides
must have a value before ▶◀ has a value. So, if one side fails and the other
side has no value, then neither observation is true, and the task is stuck.

Definition 3.7 (Stuck task). We call a task t : Task τ in state σ stuck iff
¬F (T ), V(t,σ ) = ⊥, and I(t) = �.

A stuck task will always remain stuck, because no more user interaction
is possible, and by assumption it is already fully normalised. Similar to
failing, we will consider stuck tasks as another type of termination, and we
will say that all stuck tasks are semantically equivalent to each other.

3.2.4 Running tasks

A running task t is a task which does not fail, does not have a value, but still
accepts user input. Because there is still user interaction possible, it may be
the case that with the right input, it transitions to one of the previously
described task states. The simplest example of a running task is the empty
editor νn. ⊠n β , which becomes a finished (unstable) task once it receives
a valid input event. There also exist running tasks that only transition to
a another task state for some inputs, or for no inputs at all. For example,
the tasks νn. ⊠n Int ▶ λx .  , νn. ⊠n ▶◀  , and  ▶◀ νn.□n2 are all running
tasks which will forever remain running; and the task νn. ⊠n Int ▶ λx . ifx ≤
2 then■x else will only transition to another task state for some inputs,
but not for others.

Definition 3.8 (Running task). We call a task t : Task τ in state σ run-
ning iff ¬F (T ), V(t,σ ) = ⊥, and I(t) , �.
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To determine the equivalence of two running tasks, we therefore need
to look at all possible user interactions, and check that they affect the two
tasks in the same way. To do this, we need to have a way to talk about
sequences of input events, instead of just single input events. We give the
following definition for this:

Definition 3.9 (Input sequences). An input sequence I = i0, ..., in is a
finite sequence of input events. Given a task t0 : Task τ and a state σ0, we
say that I is a valid input sequence for t0,σ0 iff:

t0,σ0
i0
=⇒ t1,σ1

i1
=⇒ ...

in
=⇒ tn+1,σn+1

with ij ∈ I(tj ), for all j ∈ {0, ...,n}. We will use the shorthand notation
t0,σ0

I
=⇒ ∗ tn+1,σn+1 to denote the above derivation. We also consider the

empty input sequence, denoted by Λ, to be a valid input sequence, and for
all tasks t and states σ we have that: t,σ

Λ
=⇒∗ t,σ .

We will make a distinction between running tasks that forever remain
running, no matter what inputs you send to it; and running tasks for which
there exists at least one input sequence which “escapes”, i.e. which transi-
tions to another task state. We will call the former class looping tasks, and
the latter class branching tasks, formally:

Definition 3.10 (Looping and branching). We call a running task t :

Task τ in state σ looping iff for all valid input sequences I : t,σ
I
=⇒∗ t ′,σ ′ and

t ′ is again a running task. If there exists at least one valid input sequence
for which t ′ is not a running task, then we call t branching.

For branching tasks, it is possible to transition to either a finished or
a stuck task state. Take for example the task νn. ⊠n Int ▶ λx .t , which is a
running task that transitions to t after a valid input event. So long as t is
not failing, the step can be taken, and so t can be any non-failing task. It is
also possible that for some input events, it transitions to one task state, and
for others, that it transitions to a different task state. For example the task
νn. ⊠n Int ▶ λx . ifx ≤ 2 then t else t ′ transitions to t for some inputs, and to
t ′ for other inputs. We will claim that a running task can never transition
to a failing task (Conjecture 3.11).

Conjecture 3.11. If t : Task τ is a running task, then for all states σ and
for all valid input sequences I , if t,σ

I
=⇒∗ t ′,σ ′, then ¬F (t ′).

We say that two running tasks t1 and t2 in state σ are semantically
equivalent if for all valid input sequences I : t1,σ

I
=⇒∗ t ′1,σ

′ ⇔ t2,σ
I
=⇒∗ t ′2,σ

′,
with V(t ′1,σ ′) = V(t ′2,σ ′), and I(t ′1) = I(t ′2). That is, for all possible user
interactions, t1 and t2 are not observably different. Because of Conjecture
3.11, we do not need to check whether the tasks fail or not.
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3.2.5 Task equivalence

Figure 3.3 shows all possible task states and their transitions. In this dia-
gram, a looping task is a task which never leaves the running state, i.e. which
always takes the transition back to the running state, no matter what input
is given. A branching task is a running task for which there exists at least
one input sequence which will transition to either stuck, finished (stable), or
finished (unstable). We claim that this state diagram is correct (Conjecture
3.12).

Failing

Running

Stuck

Finished
(stable)

Finished
(unstable)

Figure 3.3: Possible task states and their transitions, where a tran-
sition indicates user interaction(

i
=⇒ ) for some input i.

Conjecture 3.12. The state diagram in Figure 3.3 is correct. That is, for
any two task states S and S ′, there is a transition from S to S ′ iff there exist
two tasks t ∈ S and t ′ ∈ S ′ such that t,σ

i
=⇒ t ′,σ ′ for some input i ∈ I(t)

and states σ and σ ′.

In Section 3.2.1 on failing tasks, we noted that with the addition of
internal value (■) in TopHat Next [7], that it is no longer the case that a
task t is failing iff it accepts no more user input, as is shown by theorem 6.5
in the original t̂op paper [6]. Were this theorem still true, then we could
not have the stuck and finished (stable) states, because they contain tasks
that do not fail and do not accept user input. We will therefore claim if we
remove ■ from the t̂op language as presented here, then we no longer have
the stuck and finished (stable) states (Conjecture 3.13).

Conjecture 3.13. If we remove internal value (■) from t̂op then we are
left with only three possible task states after normalisation: failing, running
and finished (unstable).

Based on the five task states, we give the following definition for the
semantic equivalence of two tasks:
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Definition 3.14 (Task equivalence). Given two tasks t1, t2 : Task τ , we
say that t1 and t2 are semantically equivalent (t1 � t2) if for all states σ :

t1,σ ,�

�⇒

t ′1,σ
′ ⇔ t2,σ ,�

�⇒

t ′2,σ
′

and for t ′1 and t ′2 one of the following holds:

(1) both tasks are failing;
(2) both tasks are finished with V(t ′1,σ ′) = V(t ′2,σ ′), and this value is

stable.
(3) both tasks are finished with V(t ′1,σ ′) = V(t ′2,σ ′), and this value is

unstable. Furthermore, for all valid input sequences I :

t ′1,σ
′ I
=⇒∗ t ′′1 ,σ

′′ ⇔ t ′2,σ
′ I
=⇒∗ t ′′2 ,σ

′′

with V(t ′′1 ,σ ′′) = V(t ′′2 ,σ ′′);
(4) both tasks are stuck;
(5) both tasks are running, and for all valid input sequences I :

t ′1,σ
′ I
=⇒∗ t ′′1 ,σ

′′ ⇔ t ′2,σ
′ I
=⇒∗ t ′′2 ,σ

′′

with V(t ′′1 ,σ ′′) = V(t ′′2 ,σ ′′) ∧ I(t ′′1 ) = I(t ′′2 ).

To determine a task’s state, we use the task observation functions F ,
V, and I. For some task states, we also need to take the interactive setting
of t̂op into account. Namely, if the set of inputs given by I is not empty,
as is the case for the finished (unstable) and running task states, then we
also need to check the task observations after every possible input sequence.
Because we also allow input sequences to be empty, we believe that we can
generalize the above definition as follows:

Definition 3.15 (Task equivalence). Given two tasks t1, t2 : Task τ , we
say that t1 and t2 are semantically equivalent (t1 � t2) if for all states σ :

t1,σ ,�

�⇒

t ′1,σ
′ ⇔ t2,σ ,�

�⇒

t ′2,σ
′

and for all valid input sequences I :

t ′1,σ
′ I
=⇒∗ t ′′1 ,σ

′′ ⇔ t ′2,σ
′ I
=⇒∗ t ′′2 ,σ

′′

with F (t ′′1 ) = F (t ′′2 ) ∧ V(t ′′1 ,σ ′′) = V(t ′′2 ,σ ′′) ∧ I(t ′′1 ) = I(t ′′2 ).

Conjecture 3.16. Definition 3.15 is equivalent to Definition 3.14. That is,
they describe the same relation:

t1 � t2 by Definition 3.14 ⇔ t1 � t2 by Definition 3.15
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3.3 Properties
Now that we have a definition of semantic equivalence for t̂op-programs,
we can look at some interesting properties. We will not give formal proofs in
this section. At most, we will give some informal argumentation of why we
think a certain equality holds, or we will provide a counterexample to show
the inequality of two expressions.

3.3.1 Transforming (functor)

A functor in category theory and functional programming is an object that
can be mapped over. In t̂op, we can map a function over a task by using the
transform (▲) combinator. For an object F to be qualified as a functor, it
needs to satisfy two laws: (1) the identity law, which says that if we map the
identity function over F , then the result is again F ; and (2) the composition
law, which says that mapping the composition of two functions over F is the
same as mapping the two functions over F in a row. In t̂op, we can express
these laws as follows:

id ▲ t � t (identity)
(e1 ◦ e2) ▲ t � e1 ▲ (e2 ▲ t) (composition)

We think that these laws hold with our definition of semantic equivalence.
We argue informally that this is true for the identity law. Given any task t
and state σ , we have that F (id ▲ t) = F (t) by definition (see Figure 2.18);
I(id ▲ t) = I(t) by definition (see Figure 2.15); and V(id ▲ t,σ ) = V(t,σ ),
because if t has no value, then neither does id ▲ t, and if V(t,σ ) = v for
v , ⊥, then V(id ▲ t,σ ) = idv ↓ v. A similar argumentation can be made
for the composition law. We therefore believe that the Task type former in
t̂op is a functor.

3.3.2 Pairing (applicative/monoidal functor)

An applicative functor is a construct in functional programming, which is
always also a functor. Traditionally, it needs an apply function which, given
the functors F (a → b) and F a, returns F b. This function can also be
expressed differently if we have a mapping and pairing function over F . In
t̂op, these are transform (▲) and pairing (▶◀). The laws that an applicative
functor must satisfy can be written in t̂op as follows:

■⟨⟩ ▶◀ t � t (left identity)
t ▶◀ ■⟨⟩ � t (right identity)

assoc ▲(t1 ▶◀ (t2 ▶◀ t3)) � (t1 ▶◀ t2) ▶◀ t3 (associativity)
(λ⟨x1, x2⟩.⟨e1 x1, e2 x2⟩) ▲ (t1 ▶◀ t2) � (e1 ▲ t1) ▶◀ (e2 ▲ t2) (naturality)
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However, if we take t =  for the left and right identity laws, then in
both cases we have that the right-hand side is a failing task, but the left-
hand side is not, because pairing requires that both sides fail before it fails
itself. Therefore, we will say that the Task operation on types is not an
applicative functor. We do however believe that the other two laws hold.
For associativity, we need the function assoc := λ⟨a, ⟨b, c⟩⟩.⟨⟨a,b⟩, c⟩ to make
sure that both sides have the same type. Lastly, the naturality law states
that first pairing two tasks and then mapping two functions is the same as
first mapping the functions separately and then pairing them.

3.3.3 Choosing

For choosing (♦) we define the following properties:

t1 ♦ (t2 ♦ t3) � (t1 ♦ t2) ♦ t3 (associativity)
■ e ♦ t � ■ e (left catch)
t ♦■ e � ■ e (right catch)

e ▲ (t1 ♦ t2) � (e ▲ t1) ♦ (e ▲ t2) (distributivity)

t0 ▶◀ (t1 ♦ t2) � (t0 ♦ t1) ▶◀ (t0 ♦ t2) (left pair distributivity)
(t1 ♦ t2) ▶◀ t0 � (t1 ♦ t0) ▶◀ (t2 ♦ t0) (right pair distributivity)

t0 ▶ λx .(t1 ♦ t2) � (t0 ▶ λx .t1) ♦ (t0 ▶ λx .t2) (left step distributivity)
(t1 ♦ t2) ▶ e � (t1 ▶ e) ♦ (t2 ▶ e) (right step distributivity)

So we have associativity, a number of distributivity laws, and left and
right catch. Catch only holds for the left side, because the choice combinator
is left-biased. The first distributivity law shows that mapping a function over
choice should be equivalent to mapping it separately over its component
subtasks. The last two distributivity laws for step (▶) show that stepping
to or from a choice is equivalent to choosing between steps.

We believe left and right distributivity for pairing (▶◀) do not hold.
Suppose V(t0,σ ) = ⊥, V(t1,σ ) = v1 and V(t2,σ ) = v2 for v1 , ⊥ and v2 , ⊥.
Then in both cases, we have that the left-hand side of the inequality has no
value, because pairing requires that both sides have a value before it has a
value itself. However, the right-hand side does have a value in both cases,
namely ⟨v1,v2⟩, because the choice combinator normalises t0 away, and we
are left with t1 ▶◀ t2 in both cases.
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3.3.4 Failing

When considering the failing task ( ), we can write down the following
(in)equalities:

 ♦ t � t (left identity)
t ♦ � t (right identity)

e ▲  �  (annihilation)

 ▶◀ t �  (left pair annihilation)
t ▶◀  �  (right pair annihilation)

 ▶ e �  (left step annihilation)
t ▶ λx .  �  (right step annihilation)

We define the left and right identity for the choice combinator (♦), which
say that  can be cancelled out from the left- and right-hand side. For
pairing, we will say that left and right pair annihilation do not hold, because
F (t1 ▶◀ t2) = F (t1) ∧ F (t2). Pairing therefore requires that both the left-hand
and right-hand side fail before their pairing fails, and thus if only one side
fails, it cannot be equivalent to the failing task  .

We defined all failing tasks to be semantically equivalent, thus anni-
hilation for ▲, and left step annihilation for ▶ trivially hold. Right step
annihilation does not however. Suppose that t is not a failing task, then
we also have that t ▶ λx .  is not a failing task, because F (t ▶ λx .  ) = F (t)
by definition (see Figure 2.18). Neither can we normalise t ▶ λx .  , because
the right-hand side fails (N-StepFail). So if t does not fail, then neither
does t ▶ λx .  , and we cannot conclude that a non-failing is semantically
equivalent to the failing task  .

3.3.5 Stepping (monad)

A monad is a construct in category theory and functional programming. It
consists of a type constructor M; a return function that wraps any value a
into the monadic value M a; and a bind function that extracts the value a
from the monad M a, and uses it to produce a new monad M b. Furthermore,
for M to be considered a monad, it must satisfy three laws: (1) return is a
left identity for bind, (2) return is a right identity for bind, and (3) bind is
associative.

Steps (▶) in t̂op have a monadic flavor to them, and we can wonder
whether the step combinator is a bind operation. So, if we consider Task to

38



3.3. PROPERTIES CHAPTER 3. SEMANTIC EQUIVALENCE

be the monadic constructor, ■ the return function, and ▶ the bind function,
then we can express the three monadic laws in t̂op as follows:

■x ▶д � д x (left identity)
t ▶ (λy.■y) � t (right identity)
(t ▶д) ▶h � t ▶ (λy.д y ▶h) (associativity)

Unfortunately, with our definition of program equivalence, we can show
that neither the left nor the right identity laws hold. For the left identity,
take for example д = λx .  , then we have that д x is a failing task, because
д x = (λx .  ) x ↓  . However, the left-hand side ■x ▶д = ■x ▶ λx .  is a
stuck task, because it does not fail, and the step can never be taken.

For the right identity law we can take for example t = νn. ⊠n Int. If we
send, for example, the input event En42 to both sides, then the left-hand
side normalises to ■ 42, while the right-hand side becomes νn.□n42. As we
have already seen, these two tasks are not semantically equivalent, because
the value of ■ 42 is stable and cannot be changed anymore, while the value
of νn.□n42 is unstable and can be updated through user input.

We argue informally that the associativity law holds. Given any task t
and state σ , for F and I we have that:

F ((t ▶д) ▶h) = F (t ▶д) = F (t) = F (t ▶(λy.д y ▶h))
I((t ▶д) ▶h) = I(t ▶д) = I(t) = I(t ▶(λy.д y ▶h))

by definition (see Figure 2.18 and Figure 2.15). Furthermore, supposing that
V(t,σ ) = v for v , ⊥, and д v ↓ t ′ with ¬F (t ′), then both sides normalise
to t ′ ▶h,σ ′. On the other hand, if either V(t,σ ) = ⊥ or F (t ′), then the step
cannot be taken, and we have that V((t ▶д) ▶h) = V(t ▶(λy.д y ▶h)) = ⊥.
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Chapter 4

Conclusion

In this thesis, we looked at the formal language t̂op, which defines an oper-
ational semantics for reasoning about task-oriented programs. In Chapter 3,
we gave a definition for the semantic equivalence of two t̂op-programs. We
split this definition into two classes: expression equivalence, and task equiv-
alence. For task equivalence, we showed that a task can be in either one of
five states after normalisation, and for every two tasks in the same state,
we defined what it means for them to be semantically equivalent. We also
noted that for task states that still accept user input, it is important to take
the interactive setting of t̂op into account, and compare how both tasks
react to user input. Finally, in Section 3.3, we presented a set of properties
that we believe hold true for t̂op-programs. We showed that the Task type
former in t̂op is neither a monad nor an applicative functor, and although
we did not prove it formally, we speculated that it is a functor.

4.1 Future work
We presented a number of conjectures whose proofs were out of scope for this
thesis. To get more confidence in our results, it would be nice to prove these
conjectures formally. It would also be nice to prove formally that Definition
3.14 satisfies the five desired properties of semantic equivalence presented
at the beginning of Chapter 3. Likewise, the properties in Section 3.3 are
missing formal proofs.

For our analysis of t̂op, we left out some task constructs from the t̂op-
language as presented in TopHat Next [7]. We also noted in Section 3.2.1
that the addition of internal value (■) in TopHat Next changed some prop-
erties of t̂op as it was originally presented. Furthermore, we speculated in
Conjecture 3.13 that without ■, we are left with only three task states after
normalisation. It might therefore also be interesting to research what effects
adding or removing certain task constructs has on our definition of semantic
equivalence, and the properties presented in Section 3.3.
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