
Bachelor thesis
Computing Science

Radboud University

Extending context-free grammars
with conjunction and negation

Author:
Astrid van der Jagt
a.vanderjagt@student.ru.nl
s4571037

Supervisor:
prof. dr. Herman Geuvers

h.geuvers@cs.ru.nl

Assessor:
dr. Jurriaan Rot
jrot@cs.ru.nl

March 21, 2021

Abstract

Context-free grammars are used to inductively define languages with pro-
duction rules. They are context-free in the sense that the production rules
can be applied without regarding the context in which the application oc-
curs. However, the current way of describing these grammars is limited, since
they only use the operations constant languages, concatenation and disjunc-
tion. We show that conjunctive grammars extend the context-free grammars
with the conjunction operation, while still maintaining the principle behind
context-free grammars. Furthermore, we show that boolean grammars ex-
tend conjunctive grammars with the negation operation. We study which
languages can be defined with these new grammar formalisms, and what it
means exactly that a grammar defines a language.

Contents

1 Introduction 3

Part I Preliminaries 6

2 Order Theory 7

3 Languages 12

4 Context-free grammars 15
4.1 Context-free grammars in terms of Rewriting 16
4.2 Context-free grammars in terms of a Formal Deduction

System . 18
4.3 Context-free grammars in terms of Language Equations . . . 22

Part II Extensions of context-free grammars 25

5 Conjunctive Grammars 26
5.1 Conjunctive grammars in terms of Rewriting 27

5.1.1 Proving that a conjunctive grammar produces a
Language . 30

5.2 Conjunctive grammars in terms of a Formal Deduction
System . 40

5.3 Conjunctive grammars in terms of Language Equations 45

6 Boolean Grammars 49
6.1 Boolean grammars in terms of Rewriting 50
6.2 Boolean grammars in terms of Language Equations 53

6.2.1 Limitations . 57

7 Related Work 59
7.1 Three-valued languages . 59
7.2 The Chomsky hierarchy . 62

1

8 Conclusions 63
8.1 Future work . 64

Bibliography 65

List of Theorems 68

2

Chapter 1

Introduction

Formal grammars are a formalism to describe languages mathematically.
With production rules they define properties of what words or sentences are
"allowed" in a language. Such a production rule is of the form A→ p, where
p is a "pattern" of the words that can be produced by the auxiliary symbol
A. The language defined by a grammar consists of the words that can be
produced by the grammar. [19]

Context-free grammars describe context-free languages. The syntax of lan-
guages is defined inductively: properties of strings are logically determined
by the properties of their substrings. The grammars are used to generate
the strings over the input alphabet, denoted by Σ. The generation process
transforms a string by applying a production rule. Suppose we have a pro-
duction rule A→ a. We can apply this rule to the string uAv, where u is the
precontext and v the postcontext of the symbol A. The application of the
rule, denoted by the derivation sequence uAv ⇒ uav, produces the string
uav.

These grammars are context-free in the sense that properties of substrings
do not depend on the context in which they occur. In other words, a rule
can always be applied, regardless of where the auxiliary symbol occurs. The
context does not limit the applicability of the rule.

However, context-free grammars are limited; they only use the operations
of constant languages, concatenation, and disjunction (represented by the
fact that it is possible to define multiple rules for one auxiliary symbol).
When there are multiple rules for an auxiliary symbol A, only one of the
rules can be applied. There is no way of generating words that are accepted
in a language only if they satisfy multiple properties at the same time.

3

Similarly, context-free grammars also do not provide a way to generate words
that are accepted in a language only if they satisfy a property α1, and ex-
plicitly do not satisfy another property α2.

Scheinberg [16] has shown that the conjunction and negation operations can-
not be represented through disjunction, since the intersection of two context-
free languages or the complement of a context-free language is not necessarily
context-free.

Okhotin [12] has introduced the concept of conjunctive grammars in 2001.
These are essentially context-free grammars extended with the conjunction
operation. He argues that these grammars still preserve the general intention
of context-free grammars: the deduction of the properties of a string does
not depend on the context in which it occurs. The conjunctive grammars
offer the possibility of defining words that need to satisfy multiple properties.

Furthermore, in 2004 Okhotin [10] has defined the concept of boolean gram-
mars, an extension of conjunctive grammars. Boolean grammars include the
negation operation, providing a method to define words that should satisfy
some property, and explicitly not satisfy some other property.

These extensions of context-free grammars allow to define more languages
that, according to the Chomsky hierarchy, are context-sensitive languages
[2]. Context-sensitive grammars have proven to be hard to parse [3], and
are therefore hardly ever used. The membership problem (whether a string
can be generated by a grammar) for context-sensitive grammars is in the
computational complexity class PSPACE [6].

The membership problem for conjunctive and boolean grammars is in the
computational complexity class P [10]. These extensions can be seen as a
grammar type between context-free and context-sensitive grammars, as they
are less hard to parse than context-sensitive grammars, when we assume that
P 6= PSPACE. That is why Okhotin proposes a different hierarchy of formal
grammars, based on their computational complexity classes. This is further
described in Section 7.2.

This thesis explores these two extensions of context-free grammars as defined
by Okhotin. We provide some in-depth examples to illustrate the possibili-
ties and limitations.

In Part I, some mathematical background is given. In Chapter 2 we provide
relevant order theory. In Chapter 3 we discuss formal languages and oper-
ations over those languages. Finally, in Chapter 4 we give three equivalent
definitions of how the meaning of a context-free grammar can be described.

4

In Part II the extensions are discussed. Chapter 5 elaborates on the conjunc-
tive grammars, defined by the same three methods as context-free grammars.
Furthermore, we prove for one conjunctive grammar what language exactly
it produces. Chapter 6 discusses the boolean grammars. We show that con-
structing a sound definition of boolean grammars is far from trivial.

In Chapter 7, related research is evaluated: an alternative method to de-
fine boolean grammars based on three-valued languages by Kountouriotis [7]
and a new proposed hierarchy for formal grammars given by Okhotin [10].

The conclusions of this thesis can be found in Chapter 8.

5

Part I

Preliminaries

2 Order Theory 7

3 Languages 12

4 Context-free grammars 15
4.1 Context-free grammars in terms of Rewriting 16
4.2 Context-free grammars in terms of a Formal Deduction

System . 18
4.3 Context-free grammars in terms of Language Equations . . . 22

6

Chapter 2

Order Theory

Order theory can be used as a mathematical foundation for understanding
the meaning of context-free grammars. Because of the properties of par-
tially ordered sets and complete lattices, we are able to study precisely how
context-free grammars define languages inductively.

Ordering elements of a set occurs frequently. We order the letters of the
alphabet, to help us find a word in the dictionary efficiently. Seat numbers
in a concert hall are ordered, so that attendees of a concert know where there
seats are positioned.

The ordering of a set is based on a relation on the elements of the set.
This relation defines for every pair of elements what their position is with
respect to each other. An elements can precede another element, based on
how the relation is defined.

Definition 2.1 (Partial ordering [15])
A relation R on a set S is called a partial ordering if it is:

• reflexive: R(a, a), for all a ∈ S

• antisymmetric: if R(a, b) ∧R(b, a) then a = b, for all a, b ∈ S

• transitive: if R(a, b) ∧R(b, c) then R(a, c), for all a, b, c ∈ S

Definition 2.2 (Partially ordered set/poset [15])

A partially ordered set or poset is a set (S,R), where S is a set and R
is a partial ordering on that set. Members of S are called elements of
the poset. We write a v b to denote that R(a, b) in an arbitrary poset
(S,R), with R as some ordering v. We say "a is less or equal than b" or
"b is greater or equal than a" if a v b.

7

A commonly used example of a partial ordering is the relation ≤ on the set
of integers (Z). The relation is reflexive: for all integers a ≤ a. The relation
is antisymmetric: when a ≤ b and b ≤ a, we know that a = b. Finally, it is
a transitive relation. If a ≤ b and b ≤ c, then we know that a ≤ c. It follows
that (Z,≤) is a poset.

Definition 2.3 (Upper bound/lower bound [15])

An element u of a poset (S,v) such that a v u for all elements a ∈ A,
where A is a subset of S, is called an upper bound of A. Likewise, an
element l of a poset (S,v) such that l v a for all elements a ∈ A, where
A is a subset of S is called a lower bound of A.

Definition 2.4 (Least upper bound/greatest lower bound [15])
The element x is called the least upper bound of the subset A of S,
denoted by

∨
A, if

• x, is an upper bound of A and

• x v z, for all z, where z is an upper bound of A.

Similarly, the element y is called the greatest lower bound of A, denoted
by
∧
A, if

• y is a lower bound A and

• z v y, for all z, where z is a lower bound of A.

Definition 2.5 (Chain [8])

A subset A of S of a poset (S,v) is called a chain if it is consistent in
the sense that if we take any two elements of a, b ∈ A, we have a v b or
b v a.

Definition 2.6 (Lattice [15])

A partially ordered set (S,v) in which every pair of elements has both a
least upper bound and a greatest lower bound is called a lattice. A lattice
is called complete if all the subsets X of S have both a least upper bound
and a greatest lower bound, denoted by

∨
X and

∧
X.

Definition 2.7 (Bottom [8])

The bottom ⊥ is a least element of a partially ordered set (S,v), such
that ⊥ v a for every element a ∈ S. The bottom element is unique if it
exists. In a Hasse diagram this is the lowest element.

8

Proposition 2.8 (Every complete lattice has a bottom [8])

Every complete lattice (S,v) has a bottom element given by ⊥ =
∨
∅.

We can often represent a poset with a Hasse diagram. This is a directed
graph where the nodes are the element of the set, and the edges represent
the relation on the elements. The reflexive relations and transitive relations
are ommitted from the graph. Finally, the direction of the edges is upward;
for every relation a ≺ b, element a is positioned below element b, and there
is an edge between the two nodes.

Proposition 2.9 (Poset (P(S),⊆) is a complete lattice [15])

The poset (P(S),⊆) is a complete lattice for every set S: the least upper
bound of A ⊆ S and B ⊆ S is A ∪ B, and the greatest lower bound is
A ∩B.

Example 2.10 (Hasse diagram)

We consider the poset (P{a, b, c},⊆). The Hasse diagram of this poset
is:

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

∅

A Hasse diagram can be used to determine the upper and lower bounds of a
set. The upper bounds of the subset {∅, {a}, {c}} in Example 2.10 are {a, c}
and {a, b, c}. We follow the edges upward and only include the edges that
can be reached by every node of the subset. The only lower bound of this
subset is ∅.

In Section 4.3 we define the context-free grammars in terms of language
equations. In order to solve the system of equations we consider a function
that needs to be monotonically increasing and Scott continuous, to find the
least fixed point of that function.

9

Definition 2.11 (Monotonically increasing function [8])

We consider the poset (S,v). A function F : S → S is said to be
monotonically increasing if for all x, y it is the case that x v y implies
F (x) v F (y).

Definition 2.12 (Scott Continuity [17])

We consider the poset (S,v). A function F : S → S is Scott continuous
if it is monotonically increasing and if for every chain x1 v x2 v ... we
have F (

∨
i xi) =

∨
i F (xi).

Definition 2.13 (Fixed point [8])
Let F be a function. A fixed point of F is an element x, for which
F (x) = x. A least fixed point of F is a fixed point x, such that for any
fixed point y of F , it is the case that x v y.

Theorem 2.14 (Kleene’s Fixed Point Theorem)

Let (S,v) be a partially ordered set that is a complete lattice. Let
F : S → S be a Scott continuous function. Then F has a least fixed
point in S: there is a X ∈ S, such that F (X) = X, and such that if
F (Y) = Y , then X v Y .

Proof:
We choose X =

∨
i∈N F i(⊥).

F (X) = F

(∨
i∈N

F i(⊥)

)
by substituting X

=
∨
i∈N

F i+1(⊥) because F is Scott continuous

=
∨
i∈Z+

F i(⊥) since (N \ 0) is Z+

= {⊥} ∪
∨
i∈Z+

F i(⊥) by definition of ⊥

= F 0(⊥) ∪
∨
i∈Z+

F i(⊥) because F 0(⊥) = ⊥

=
∨
i∈N

F i(⊥) since (Z+ ∪ 0) is N

= X

Since it is the case that F (X) = X, we have a fixed point. The question
remains whether it is a least fixed point.

Now suppose we have a different fixed point Y , and thus F (Y) = Y . By

10

induction we can prove that F i(⊥) v Y , for all i ∈ N.

Base case: i = 0.
We get F 0(⊥) =⊥, and ⊥ v Y , so this holds.

Induction step: i = i+ 1.
Suppose that for some i ∈ N it holds that F i(⊥) v Y (Induction hypothesis).

We need to show that F i+1(⊥) v F (Y) = Y .

Since F is monotone, and because the Induction hypothesis states that
F i(⊥) v Y , we can write F (F i(⊥)) v F (Y). Since Y is a fixed point,
we have F i+1(⊥) = F (F i(⊥) v F (Y) = Y .

This concludes the induction step.

Now that we have proven that F i(⊥) v Y , for all i ∈ N, it must be the
case that

∨
i∈N F i(⊥) v Y . This means that X v Y . We can conclude that

X is therefore the least fixed point of F .

This proves Theorem 2.14.

11

Chapter 3

Languages

In this chapter, we define languages mathematically, based on set theory.
We introduce notation that is used throughout this thesis.

Definition 3.1 (Alphabet [19])
The alphabet of a language consists of the symbols that are used by
the language, it is denoted by Σ. A string over an alphabet is a finite
sequence of symbols ∈ Σ.

We use the notation |w| for a string w to denote the length of the string, the
number of symbols in w. We write |w|a to denote the number of a’s used in
word w.

Definition 3.2 (Empty string [19])
The word of length 0 is the empty string. We denote the empty string
with the symbol ε.

Definition 3.3 (Set of strings over Σ [19])
Let Σ be an alphabet. The set Σ∗ is defined recursively:

• Basis: ε ∈ Σ∗.

• Recursive step: if a ∈ Σ and w ∈ Σ∗, then aw ∈ Σ∗.

If Σ has n elements, Σ∗ has n` elements of length `.

Definition 3.4 (Strings of length up to ` [19])

Let Σ be an alphabet. We define Σ≤` as the set of strings over Σ of
length up to and including `.

With these definitions, we are now able to define the concept of languages
in terms of set theory:

12

Definition 3.5 (Language [19])
A language L ⊆ Σ∗ is a set of strings, consisting of symbols from the
alphabet of the language Σ.

We use the set-builder notation to describe languages: {variable | predicate}.
All the variables that hold according to the predicate are members of the set.

There are several operations we can perform over words and languages. Be-
low follow definitions of these operations.

Definition 3.6 (Union of languages [19])
Let X and Y be languages. The union of these two languages X ∪ Y is
the language {w | w ∈ X ∨ w ∈ Y}.

Definition 3.7 (Intersection of languages [19])
Let X and Y be languages. The intersection of these two languages X∪Y
is the language {w | w ∈ X ∧ w ∈ Y}.

Definition 3.8 (Complement of a language [10])

Let L be a language with alphabet Σ. We define L as the complement of
the language: for every word w in Σ∗, w /∈ L implies w ∈ L.

Definition 3.9 (Concatenation of words and languages [19])
Let x, y ∈ Σ∗. The concatenation of x and y is written w = xy. The
resulting word consists of the symbols of x followed by the symbols of y.

Let X and Y be languages. The concatenation of these two languages
XY is the language {w = xy | x ∈ X ∧ y ∈ Y}.

Concatenating X n times with itself is denoted by Xn, and X0 = {ε}.

Note that when Y = ∅, concatenating with another language X will
give XY = ∅, since there is no y ∈ Y such that w = xy.

Definition 3.10 (Kleene’s star [19])
Let X be a set. Then

X∗ =

∞⋃
i=0

Xi where ∗ is Kleene’s star

is the set of all strings that can be built from the elements of X.

13

Definition 3.11 (Reversal of a word [19])

Let w ∈ Σ∗. The reversal of w is written as wR: the symbols of w are
reversed: (w1...wn)R = wn...w1.

In this thesis, we avoid using parentheses when not needed. We use the
following precedence of operations, starting from the highest precedence:

1. Concatenation

2. Negation, denoted by ¬

3. Conjunction, denoted by & or ∧

4. Disjunction, denoted by ∨

This means that the expression ¬XY & ¬X ∨ Y has the same meaning as
((¬(XY)) & (¬X)) ∨Y.

Example 3.12

Let X = {a, b, c} and Y = {a, d, e, f}. Then

X ∪Y = {a, b, c, d, e, f}
X ∩Y = {a}
XY = {aa, ad, ae, af, ba, bd, be, bf, ca, cd, ce, cf}
X0 = {ε}
X1 = {a, b, c}
X2 = {aa, ab, ac, ba, bb, bc, ca, cb, cc}
X≤2 = {a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc}
X∗ = X0 ∪X1 ∪ ... =

{a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, ...}

14

Chapter 4

Context-free grammars

Context-free grammars (CFGs) are used to describe context-free languages.
The syntax of languages is defined inductively, properties of strings are logi-
cally determined by the properties of their substrings [19]. These grammars
are context-free in the sense that properties of substrings do not depend on
the context in which they occur. In other words, a rule can always be ap-
plied, regardless of the situation.

An example of a context-free language is the language that contains all the
palindromes over the input alphabet {a, b}. The words abba and babab are
in the language, while the word aabb is not in the language. The context-
free grammar that produces this language starts with a start symbol S and
generates the words inductively. Symbol S can produce one of the terms
aSa, bSb, a, b or the empty word. The term aSa produces one of the terms
aaSaa, abSba, aaa, aba or aa. All the terms without the symbol S are words
that are in the language generated by the grammar.

We will call this context-free language L1. It is used as an example through-
out this chapter to illustrate three equivalent methods [11] to define what
language a context-free grammar generates. Defining the meaning of a gram-
mar in terms of rewriting with production rules is described in Section 4.1.
The second method, in terms of a formal deduction system with inference
rules can be found in Section 4.2. Finally, Section 4.3 defines the meaning
of a grammar in terms of language equations.

15

4.1 Context-free grammars in terms of Rewriting

The rewriting method originates from Chomsky [2]. A production rule
A→ α states that the nonterminal A can be rewritten to the term α. Start-
ing from the startsymbol, nonterminals can be rewritten according to the
production rules, until the resulting term consists solely of terminal charac-
ters: a word that is generated by the grammar.

Definition 4.1 (Context-free grammars in terms of Rewriting [19])

A context-free grammar is a quadruple G = (Σ, N,R, S), where

• Σ is the alphabet: a finite set of symbols, also called terminal
characters, that are used in the language described by the grammar.
The words in the described language are only allowed to consist of
these symbols.

• N is a finite set of nonterminal symbols, which are used in the
grammar as ‘building stones’ of a word. These symbols do not
occur in accepted words of a language.

• R is a finite set of production rules, each of the form

A → α

where A ∈ N , and α ∈ (Σ ∪N)∗.

• S ∈ N is the startsymbol, a nonterminal that represents the set of
words that are accepted in the defined language.

A language generated by a context-free grammar is called a context-free
language. A word w ∈ Σ∗ is in the language generated by the grammar
when a derivation sequence (Definition 4.2) S ⇒∗ w can be constructed
(where S is the startsymbol of the grammar).

When there are two rules in a grammar over the same nonterminal, e.g.
A → α1 and A → α2, it is denoted as A → α1 | α2. The | symbol denotes
disjunction. In a word uAv, where u is the precontext and v the postcontext,
we can apply only one of the rules. This is regardless of what u and v are,
which is why it is called a context-free grammar.

A production rule of the form A → uAv is called a recursive rule, since
it defines the nonterminal A in terms of itself.

16

Definition 4.2 (Derivation sequence [19])
We define how words are generated by the context-free grammar with
a derivation sequence. We use the notation w ⇒ v for each step, if
w = xAy and v = xαy for some x, y, α ∈ (Σ ∪N)∗, A ∈ N and produc-
tion rule A→ α in R.

We use ⇒n to denote that there are a exactly n steps between the left-
side of the arrow and the right-side of the arrow.

We use ⇒∗ to denote that there are a finite amount of steps between
the left-side of the arrow and the right-side of the arrow.

Example 4.3
The following context-free grammar G1 generates the language
L1 = {w | w = wR ∧ w ∈ {a, b}∗}. This language contains palindromes
with the input alphabet Σ = {a, b}.

S → aSa | bSb | a | b | ε

We can construct the following derivation sequence to show that the word
abba is accepted in the language, according to the grammar:

S⇒ aSa⇒ abSba⇒ abba

17

4.2 Context-free grammars in terms of a Formal
Deduction System

We can describe the meaning of a context-free grammar in terms of a formal
deduction system. Showing how words are generated from the grammar is
done with an inference tree. The tree is built by applying the rules, and it
is finished if all the branches of the tree end in axioms.

Definition 4.4 (Formal deduction system for context-free grammars [18])

For every context-free grammar G = (Σ, N,R, S), a formal deduction
system `G can be defined as follows. Every production rule of the form
A→ α1...αn has a corresponding inference rule:

α1(u1) ... αn(um)
[rulename1]

A(w)

Where w = u1...um is in Σ∗. Note that the different ui don’t over-
lap. The term w is "sliced" and every αj is applied over a part of w.
The statement below the line is the conclusion of the rule, it holds when
all the statements above the line, the premises hold as well. The rule is
provided with a rule name in brackets, to add clarity.

Axioms of the grammar are written for every a ∈ Σ and for rules that
have a ε on the right-hand side of the arrow:

` a(a) [rulename2]

` A(ε) [rulename3]

Since axioms do not depend on other statements in order to be true, we
denote ` to show that the statement holds.

A word w ∈ Σ∗ is in the language generated by the grammar when
an inference tree (Definition 4.5) can be constructed with S(w) as its
conclusion (where S is the startsymbol of the grammar).

Note that the terms above the line in an inference rule are never larger than
the one below the line. So in [rulename1] it must be the case that for every
i, |ui| ≤ |w|.

18

Definition 4.5 (Inference tree [18])
We define how words are generated by the grammar with an inference
tree. The bottom or root of the tree states the conclusion. Inference rules
are applied on statements. You can prove these statements — show that
a word can be produced by a grammar — by constructing an inference
tree, where every statement at the top of the tree is an axiom.

When we read the tree bottom up, we start at the root of the tree and
follow every "branch" of the tree, until it ends in an axiom.

Example 4.6

Recall the context-free language L1 = {w | w = wR ∧ w ∈ {a, b}∗}, that
contains palindromes with the input alphabet Σ = {a, b}. We define
the corresponding formal deduction system `G1 , with the inference rules
given in Table 4.1, where w ∈ Σ∗.

The word abba is accepted in the language, as we show with the fol-
lowing inference tree: (the rule names of the axioms are ommitted)

a(a)

b(b) S(ε) b(b)
[S4]

S(bb) a(a)
[S3]

S(abba)

Rule Rule name

` a(a) [axioma]

` b(b) [axiomb]

` S(ε) [S0]

a(a)

S(a)
[S1]

b(b)

S(b)
[S2]

a(a) S(w) a(a)

S(awa)
[S3]

b(b) S(w) b(b)

S(bwb)
[S4]

Table 4.1: The inference rules for the context-free grammar `G1

An important property of context-free grammars in terms of a deduction
system is that when an inference rule results in multiple branches (when
reading the rule bottom up), the terms do not overlap. For example, rule

19

[S3], when applied over some word awa, the word is sliced into three terms.

The grammar from Example 4.6 is quite simple, because there is no am-
biguity in how words should be sliced, when reading the rules bottom up,
because of the sharp definition. However, there are context-free grammars
for which it is not so clear how to slice the words. Below we illustrate such
an example, in Example 4.7.

Example 4.7
The context-free grammar G2 generates the language
L2 = {xyc | x ∈ {a, b}∗ ∧ y ∈ {a, b, c}∗ ∧ |x| = |y|c + 1∧ |x| ≥ 1∧ |y| ≥ 0}
with the input alphabet Σ = {a, b, c}:

S → aSX | bSX | ac | bc
X → aX | bX | c

Table 4.2 shows the inference rules for the corresponding formal deduc-
tion system `G2 , with w ∈ Σ∗.

Rule Rule name

` a(a) [axioma]

` b(b) [axiomb]

` c(c) [axiomc]

a(a) S(u1) X(u2)

S(aw)
where w = u1u2 [S1]

b(b) S(u1) X(u2)

S(bw)
where w = u1u2 [S2]

a(a) c(c)

S(ac)
[S3]

b(b) c(c)

S(bc)
[S4]

a(a) X(w)

X(aw)
[X1]

b(b) X(w)

X(bw)
[X2]

c(c)

X(c)
[X3]

Table 4.2: The inference rules for the context-free grammar `G2

20

Definition 4.8 (Parsing a word for a CFG)
Parsing a word w ∈ Σ∗ for a context-free grammar is deciding whether
there exists an inference tree with the term S(w) as its conclusion, where
S is the startsymbol of the grammar, and also providing the specific
inference tree.

Suppose we want to construct an inference tree to show that the word
baacacbc ∈ L2. Only the [S2] rule can be applied, because we need to start
with the startsymbol and this is the only S rule that fits. The [S2] rule re-
quires us to slice the word in three parts: the first part is easy, we take the
b.

That leaves us with the remainder of the word: aacacbc. The rule does
not specify where we should split the word. There are eight ways to cut the
word in two slices u1, (that requires an S rule) and u2 (that requires an X
rule):

1. u1 = ε, u2 = aacacbc

2. u1 = a, u2 = acacbc

3. u1 = aa, u2 = cacbc

4. u1 = aac, u2 = acbc

5. u1 = aaca, u2 = cbc

6. u1 = aacac, u2 = bc

7. u1 = aacacb, u2 = c

8. u1 = aacacbc, u2 = ε

Observing that there is no axiom for ε, we can exclude option 1 and option
8. That still leaves us with six ways to parse aacacbc. We can conclude that
parsing context-free grammars can be challenging, due to the fact that it is
not always clear how to slice the words.

21

4.3 Context-free grammars in terms of Language
Equations

The meaning of a context-free grammar can be defined in terms of a system
of equations with languages as unknowns.

Definition 4.9 (Constant languages [19])

Let Σ be an alphabet. We write {α} for each α ∈ Σ and {ε} to denote
the constant languages. These languages are not recursively defined.

Definition 4.10 (Language equations for context-free grammars [1, 4])

For every context-free grammar G = (Σ, N,R, S), a system of equations
with languages as unknowns EG can be defined as follows. We write

A =
⋃

A→ X1...Xl∈R
X1 · ... ·Xl

for all nonterminals A ∈ N as unknown languages, and for all a ∈
Σ ∪ {ε}, a denotes {a}.

Such a system has a least solution, which is the least fixed point of
the function derived from the grammar (see Corollary 4.15). A word
w ∈ Σ∗ is in the language generated by the grammar when it is in the
least solution (of the startsymbol).

Example 4.11

Recall the context-free language L1 = {w | w = wR ∧ w ∈ {a, b}∗}, that
contains palindromes with the input alphabet Σ = {a, b}. We define the
corresponding system of language equations EG1 :

S = {a}S{a} ∪ {b}S{b} ∪ {a} ∪ {b} ∪ {ε}

We consider the function F : P(Σ∗)→ P(Σ∗) for Example 4.11 derived from
the grammar:

F (S) = {a}S{a} ∪ {b}S{b} ∪ {a} ∪ {b} ∪ {ε}

We want to find the least solution of F , a least fixed point. We can do this
by iterating with the empty set as start. We get:

• F 0(∅) = ∅

• F 1(∅) = {a}∅{a} ∪ {b}∅{b} ∪ {a} ∪ {b} ∪ {ε} = {a, b, ε}

• F 2(∅) = F ({a, b, ε}) = {a}{a, b, ε}{a} ∪ {b}{a, b, ε}{b} ∪ {a} ∪ {b} ∪ {ε}
= {a, b, ε, aaa, aba, aa, bab, bbb, bb}

22

• ...

We observe that F i(∅) contains the words that can be generated by applying
the production rules of the grammar at most i times.

Lemma 4.12 (CFG - Monotonically increasing function)

Let F : P(Σ∗)→ P(Σ∗) be the function with F (S) = {a}S{a}∪{b}S{b}∪
{a}∪{b}∪{ε} and Σ = {a, b}. Function F is a monotonically increasing
function.

Proof:
Let w ∈ F (A), and A ⊆ B. There are three cases to be considered:

1. w ∈ {a, b, ε}. Then w ∈ F (B).

2. w is of the form ava, with v ∈ A. We know that v is also in B, because
A ⊆ B. Then ava ∈ F (B).

3. w is of the form bvb, with v ∈ A. We know that v is also in B, because
A ⊆ B. Then bvb ∈ F (B).

This proves Lemma 4.12.

With every iteration it is the case that F i(∅) ⊆ F i+1(∅), because the function
is monotonically increasing with respect to the partial ordering (P(Σ∗),⊆).
In other words, we observe that F 0(∅) ⊆ F 1(∅) ⊆ F 2(∅) ⊆ ...

Example 4.13

Let F : P(Σ∗)→ P(Σ∗) be the function with Σ = {a, b} and
F (S) = {a}S{a} ∪ {b}S{b} ∪ {a} ∪ {b} ∪ {ε}.

Scott continuity will be used for a specific chain, namely F 0(∅) ⊆ F 1(∅) ⊆
F 2(∅) ⊆ ... = ∅ ⊆ {a, b, ε} ⊆ {a, b, ε, aaa, aba, aa, bab, bbb, bb} ⊆ ...
For this particular chain we will verify in detail that F (

⋃
i F

i(∅)) =⋃
i F (F i(∅)).

F (
⋃
i

F i(∅)) = F (∅ ∪ {a, b, ε} ∪ {a, b, ε, aaa, aba, aa, bab, bbb, bb} ∪ ...)
= F ({w | w = wR ∧ w ∈ {a, b}∗})
= {a}{w | w = wR}{a} ∪ {b}{w | w = wR}{b} ∪ {a} ∪ {b} ∪ {ε}
= {w | w = wR}⋃

i

F (F i(∅)) = F (∅) ∪ F ({a, b, ε}) ∪ F ({a, b, ε, aaa, aba, aa, bab, bbb, bb}) ∪ ...
= {a, b, ε} ∪ {a, b, ε, aaa, aba, aa, bab, bbb, bb} ∪ ...
= {w | w = wR}

23

Proposition 4.14 (Scott continuity in operations of CFGs [17])

For a partially ordered set (P(Σ∗),⊆) that is a complete lattice, if
F : P(Σ∗) → P(Σ∗) is a function defined from constant languages, con-
catenation, and disjoint union, then F is a Scott continuous function.

Because of Proposition 4.14 we can apply Kleene’s Fixed Point Theorem to
the system of language equations for context-free grammars, to find the so-
lution of the system.

Corollary 4.15 (CFG - Least solution)

Since (P(Σ∗),⊆) is a partially ordered set and a complete lattice, we
know for every context-free grammar EG that the least solution of the
language equations is

⋃
k≥0 F

k(∅), with the Scott continuous function
F : P(Σ∗)|N | → P(Σ∗)|N | over the nonterminals N of G, derived from
the system of equations EG. The least solution consists of exactly the
languages generated by the nonterminals.

Example 4.16

The solution for the grammar EG1 is
⋃
i≥0 F

i(∅) = {w | w = wR ∧ w ∈
{a, b}∗}:

F ({w | w = wR}) = {a}{w | w = wR}{a} ∪ {b}{w | w = wR}{b}∪
{a} ∪ {b} ∪ {ε}

= {w | w = wR}

because {a}{w | w = wR}{a}∪{b}{w | w = wR}{b} is in {w | w = wR},
and {a}, {b}, {ε} are also in {w | w = wR}.

In conclusion, {w | w = wR} is a fixed point of F and it can be shown
that it is the least fixed point of F , and therefore the least solution.

24

Part II

Extensions of context-free
grammars

5 Conjunctive Grammars 26
5.1 Conjunctive grammars in terms of Rewriting 27

5.1.1 Proving that a conjunctive grammar produces a
Language . 30

5.2 Conjunctive grammars in terms of a Formal Deduction
System . 40

5.3 Conjunctive grammars in terms of Language Equations 45

6 Boolean Grammars 49
6.1 Boolean grammars in terms of Rewriting 50
6.2 Boolean grammars in terms of Language Equations 53

6.2.1 Limitations . 57

25

Chapter 5

Conjunctive Grammars

Conjunctive grammars (CGs) were introduced by Okhotin in 2001 [12]. He
defines conjunctive grammars as context-free grammars extended with the
conjunction operation. This extension provides a method to generate words
that have to satisfy multiple conditions in order to be in the language de-
scribed.

The simplest application of conjunctive grammars is to define a grammar
that generates the intersection of two context-free grammars. For example,
the intersection of the context-free languages
{aibjck | j = k ∧ i, j, k ≥ 0} and {aibjck | i = j ∧ i, j, k ≥ 0} results in
the language {anbncn | n ≥ 0}. This language cannot be generated by a
context-free grammar [20]. However, conjunctive grammars also offer the
possibility to use conjunction more freely, like disjunction is used in context-
free grammars.

Similarly to context-free grammars, we will describe the meaning of con-
junctive grammars using three equivalent definitions. Section 5.1 defines the
meaning of conjunctive grammars in terms of rewriting. This is the most
intuitive definition. We provide a proof to show for one conjunctive gram-
mar what language it produces. In Section 5.2 we discuss the meaning of
conjunctive grammars in terms of a formal deduction system. Finally, Sec-
tion 5.3 describes the most important meaning, it is in terms of language
equations.

All the definitions in this chapter are retrieved from Okhotin’s paper [11].
With examples we will illustrate some of the possibilities that conjunctive
grammars offer.

26

5.1 Conjunctive grammars in terms of Rewriting

The definition is almost the same as the definition of context-free grammars
(Definition 4.1). The big difference is that the conjunction operation is al-
lowed in conjunctive grammars, where it is not in context-free grammars.
This allows to define production rules where multiple conditions have to be
met.

Definition 5.1 (Conjunctive Grammars in terms of Rewriting [11])

A conjunctive grammar is a quadruple G = (Σ, N,R, S) where:

• Σ is the alphabet.

• N is a finite set of nonterminal symbols.

• R is a finite set of production rules of the form

A → α1 & α2 &...& αn

where A ∈ N, n ≥ 1 and αk ∈ (Σ ∪ N)∗, with 1 ≤ k ≤ n. Every
αi is called a conjunct. The & symbol denotes the conjunction
operation.

• S ∈ N is the startsymbol.

A word w ∈ Σ∗ is in the language generated by the grammar when a
derivation sequence, as defined in Definition 5.2: S ⇒∗ w &...& w can
be constructed (where S is the startsymbol of the grammar).

For a rule A→ α1 & α2, when applied in a word uAv, the derivation sequence
is uAv ⇒ uα1v & uα2v. The context is denoted by u and v. The result-
ing word, constructed by the grammar, must be conform both the conjuncts.

Definition 5.2 (Derivation sequence for CG)
We extend the definition of the derivation sequence for context-free gram-
mars (Definition 4.2):

We use the notation w ⇒ v1 &...& vn if w = xAy and for all i with
1 ≤ i ≤ n: vi = xαiy, for some x, y, αi ∈ (Σ ∪ N)∗, A ∈ N , with
production rule A→ α1 &...& αn in R.

Below follow a couple of examples of conjunctive grammars. These are rel-
atively simple examples, because they use the conjunction on the top level.
The examples are provided to show how conjunctive grammars can describe
more languages than context-free grammars, while still being very intuitive
to understand. Later on, we show some more complicated examples.

27

Example 5.3
The following conjunctive grammar G3 generates the language
L3 = {anbncn | n ≥ 0}, with Σ = {a, b, c}:

S → AB & DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

Note that L3 = {aibjck | j = k∧ i, j, k ≥ 0}∩{aibjck | i = j∧ i, j, k ≥ 0},
and it can be shown that AB generates the language
L3.1 = {aibjck | j = k ∧ i, j, k ≥ 0}, and that DC generates the language
L3.2 = {aibjck | i = j ∧ i, j, k ≥ 0}.

Example 5.4
The following conjunctive grammar G4 generates the language
L4 = {anbmcndm | m,n ≥ 0}, with Σ = {a, b, c, d}:

S → aXcD & AbYd | ε
A → aA | ε
B → bB | ε
C → cC | ε
D → dD | ε
X → aXc | bB
Y → bYd | cC

Note that L4 = {anbkcndl | n, k, l ≥ 0} ∩ {akbmcldm | m, k, l ≥ 0}, and it
can be shown that aXcD generates the language
L4.1 = {anbkcndl | n, k, l ≥ 0}, and that AbYd generates the language
L4.2 = {akbmcldm | m, k, l ≥ 0}.

28

Example 5.5
The following conjunctive grammar G5 generates the language
L5 = {w | w ∈ {a, b, c}∗, |w|a = |w|b = |w|c}, with Σ = {a, b, c}.:

S → X & Y | ε
X → aXbC | bXaC | CaXb | CbXa | c
Y → bYcA | cYbA | AbYc | AcYb | a
C → cC | ε
A → aA | ε

Note that
L5 = {w | w ∈ {a, b, c}∗, |w|a = |w|b} ∩ {w | w ∈ {a, b, c}∗, |w|b = |w|c}
and it can be shown that X generates the language
L5.1 = {w | w ∈ {a, b, c}∗, |w|a = |w|b}, and that Y generates the lan-
guage L5.2 = {w | w ∈ {a, b, c}∗, |w|b = |w|c}.

29

5.1.1 Proving that a conjunctive grammar produces a
Language

For the conjunctive grammars that we have shown thus far it is relatively
easy to understand what language they produce, since all these languages
are essentially the intersection of two context-free languages.

Conjunctive grammars also allow to use the conjunction operation more
freely. However, this results in the fact that it is a lot harder to see what lan-
guage is generated by the grammar. An example is the conjunctive grammar
G6, as defined in Theorem 5.6. In this section we will prove that this con-
junctive grammar G6, generates exactly language L6 = {wcw | w ∈ {a, b}∗},
with Σ = {a, b, c}.

To prove that a grammar G produces a language L we need to show two
things. First, we need to prove that all the words that can be generated
by the grammar G, are in the language L. Second, we need to prove that
all the words that are in the language L can be generated by the grammar G.

Theorem 5.6 (CG produces language wcw)
The following conjunctive grammar G6 generates the language
L6 = {wcw | w ∈ {a, b}∗}, with Σ = {a, b, c}:

S → C & D
C → XCX | c
D → aA & aD | bB & bD | cE
A → XAX | cEa
B → XBX | cEb
E → XE | ε
X → a | b

It has been shown that L6 is not context-free [20]. The grammar uses the
c in the word as center marker and orientation point, and therefore this
method cannot be applied to writing a conjunctive grammar for the lan-
guage {ww | w ∈ {a, b}∗}. It remains an open problem whether conjunctive
grammars can generate this latter language [11].

The proof of Theorem 5.6 is split into 4 different parts.

30

Part 1
Lemma 5.7 (CFG produces language xcy)

The following context-free grammar G6.1 generates the language
L6.1 = {xcy | x, y ∈ {a, b}∗, |x| = |y|}, with Σ = {a, b, c} and where C is
the starting symbol:

C → XCX | c
X → a | b

Step 1: Induction on the length of the derivation
We first need to prove that all the words that are generated by grammar
G6.1 are indeed in the language L6.1. We do this by an induction proof on
the length of the derivation sequence.

Let C ⇒ u1 ⇒ ... ⇒ un be a derivation sequence in C, where uk ∈
{C,X, a, b, c}∗, for k = 1, ..., n.

Let A = {X, a, b}∗
Let B = {C, c}

We define an invariant, the property we will use for our proof:
∀(k ∈ N)∃(x, y ∈ A, z ∈ B)(uk = xzy ∧ |x| = |y|),

When un ∈ {a, b, c}∗,
then z = c,
with x, y ∈ {a, b}∗ and |x| = |y|, and therefore un ∈ L6.1.

Base case: length of the derivation is 1
Let w ∈ {a, b, c}∗ and |w| ≥ 1. Suppose C⇒∗ w.

1. The only derivation sequence starting from C of length 1 is C⇒ c.

2. From 1 it follows that c ∈ B.

3. From 1 and 2 it follows that w is of the form xzy, with x, y ∈ A,
|x| = |y| = 0 and z = c.

It follows that the property holds for the base case.

31

Induction step: length of the derivation is i+ 1.
Suppose that ∃(x, y ∈ A, z ∈ B)(ui = xzy ∧ |x| = |y|) for some i (Induction
Hypothesis) and that ui ⇒ ui+1.

To prove: ∃(x, y ∈ A, z ∈ B)(ui+1 = xzy ∧ |x| = |y|).

There are three cases to be considered.

Case 1: ui ⇒ ui+1 is of the form xzy ⇒ x′zy.
Then one of two production rules was used:

1. Suppose the production rule X→ a was used.

(i) Then x′ ∈ A.
(ii) Then |x′|X = |x|X − 1 and |x′|a = |x|a + 1, and thus |x′| = |x|.
(iii) From (ii) it follows that |x′| = |y|.
(iv) From (i), (iii) and the Induction Hypothesis it follows that the

property holds when this production rule was used.

2. Suppose the production rule X→ b was used. This proof is similar to
the one above and is therefore ommitted.

The property holds in this case.

Case 2: ui ⇒ ui+1 is of the form xzy ⇒ xz′y.
Then one of two production rules was used:

1. Suppose the production rule C→ XCX was used.

(i) Then xz′y = xXCXy.

(ii) Then, since |x| = |y|, |xX| = |Xy|.
(iii) Then C ∈ B.
(iv) From (ii), (iii) and the Induction Hypothesis it follows that there

exists x′′ = xX, y′′ = Xy, z′′ = C such that ui+1 is of the form
x′′z′′y′′, where x′′, y′′ ∈ A, and thus the property holds.

2. Suppose the production rule C→ c was used.

(i) Then xz′y = xcy.

(ii) It follows that z′ ∈ B.
(iii) From (i), (ii) and the Induction Hypothesis it follows that the

property holds when this production rule is used.

32

The property holds in this case.

Case 3: ui ⇒ ui+1 is of the form xzy ⇒ xzy′. This case is similar to case 1
and is therefore ommitted.

This concludes step 1 of the proof.

Step 2: Induction on the length of x and y
In this step we want to prove that all the words in language L6.1 can be gen-
erated by grammar G6.1. We prove this by induction on the length of x and y.

To prove:
For all w ∈ {a, b,C}∗, with |w| ≥ 1:
If w is of the form xCy, with x, y ∈ {a, b}∗ and |x| = |y|,
Then C⇒∗ w.

Whenever we show that C ⇒∗ xCy, it implies that C ⇒∗ xcy, because
of the production rule C→ c. This simplifies our proof.

Base case: length of x and y is 0
Let w = xCy, with x, y ∈ {a, b}∗ and |x| = |y| = 0.

1. Then w = C.

2. It is obvious that C⇒∗ C.

3. From 1 and 2 it follows that the property holds.

Induction step: length of x and y is i+ 1.
Suppose that it holds that for all w ∈ {a, b, c,C}∗, with |w| ≥ 1 and w of the
form xCy, with x, y ∈ {a, b}∗ and |x| = |y| = i, we have C⇒∗ w. (Induction
Hypothesis).

We want to prove that when we have w′ ∈ {a, b, c,C}∗, with w′ = x′Cy′,
where x, y ∈ {a, b}∗ |x′| = |y′| = i + 1, we can create a derivation sequence
C⇒∗ x′Cy′.

1. Let x′ = xα1 and y′ = α2y with α1, α2 ∈ {a, b}.

2. We know that the nonterminal X generates either an a or a b.

3. From 1, 2 and the Induction Hypothesis it follows that we can construct
a derivation sequence C ⇒∗ xCy ⇒ xXCXy ⇒∗ xα1Cα2y, which is
x′Cy′.

This concludes the proof of Lemma 5.7.

33

Part 2
Lemma 5.8 (CFG produces language xcvay)

The following context-free grammar G6.2 generates the language
L6.2 = {xcvay | x, v, y ∈ {a, b}∗, |x| = |y|}, with Σ = {a, b, c}, where A is
the starting symbol:

A → XAX | cEa
E → XE | ε
X → a | b

Step 1: Induction on the length of the derivation
We first need to prove that all the words that are generated by grammar
G6.2 are indeed in the language L6.2. We do this by an induction proof on
the length of the derivation sequence.

Let A ⇒ u1 ⇒ ... ⇒ un be a derivation in A, where uk ∈ {A,E,X, a, b, c}∗,
for k = 1, ..., n.

Let C = {X, a, b}∗
Let D = {E,X, a, b}∗

We define an invariant, the property we will use for our proof:
∀(k ∈ N)∃(x, y ∈ C)(uk = xzy ∧ |x| = |y| ∧ (z = A ∨ ∃(v ∈ D)(z = cva)))

When un ∈ {a, b, c}∗,
then un is of the form xcvay,
with x, y, v ∈ {a, b}∗ and |x| = |y|,
and therefore un ∈ L6.2.

Base case: length of the derivation is 2
Let w ∈ {a, b, c}∗ and |w| ≥ 2.
Let A⇒∗ w.

1. Then the derivation of w is A⇒ cEa⇒ ca.

2. Then w is of the form xcvay, with x, v, y ∈ {a, b}∗ and |v| = |x| =
|y| = 0.

3. From 2 it follows that the property holds for the base case.

34

Induction step: length of the derivation is i+ 1.
Suppose that ∃(x, y ∈ C)(ui = xzy∧|x| = |y|∧ (z = A∨∃(v ∈ D)(z = cva)))
for some i (Induction Hypothesis) and that ui ⇒ ui+1.

To prove: ∃(x, y ∈ C)(ui+1 = xzy∧ |x| = |y| ∧ (z = A∨∃(v ∈ D)(z = cva))).

There are three cases to be considered:

Case 1: ui ⇒ ui+1 is of the form xzy ⇒ x′zy.
Then one of two production rules was used:

1. Suppose the production rule X→ a was used.

(i) Then x′ ∈ C.
(ii) Then |x′|X = |x|X − 1 and |x′|a = |x|a + 1, and thus |x′| = |x|.
(iii) From (ii) it follows that |x′| = |y|.
(iv) From the Induction Hypothesis it follows that z = A ∨ ∃(v ∈

D)(z = cva)

(v) From (i), (iii), (iv) and the Induction Hypothesis it follows that
the property holds when this production rule was used.

2. Suppose the production rule X→ b was used. This proof is similar to
the one above and is therefore ommitted.

The property holds in this case.

Case 2: ui ⇒ ui+1 is of the form xzy ⇒ xz′y.
From the Induction Hypothesis we know that z = A ∨ ∃(v ∈ D)(z = cva).

Case 2.1: z = A
Then one of two production rules was used:

1. Suppose the production rule A→ XAX was used.

(i) The derivation is xAy ⇒ xXAXy

(ii) From (i) it follows that |xX| = |Xy|.
(iii) We can then define a z′′ = A.

(iv) From (ii), (iii) and the Induction Hypothesis it follows that there
exists x′′ = xX, y′′ = Xy, z′′ = A such that the property holds.

2. Suppose the production rule A→ cEa was used.

(i) The derivation is xAy = xcEay.

(ii) We define v = E.

35

(iii) From (i) and (ii) it follows that ∃(v ∈ D)(z′ = cva).

(iv) From (iii) and the Induction Hypothesis it follows that the prop-
erty holds when this production rule is used.

The property holds in Case 2.1.

Case 2.2: ∃(v ∈ D)(z = cva)
Then one of two production rules was used:

1. Suppose the production rule E→ XE was used.

(i) The derivation is xcvay ⇒ xcv′ay

(ii) Then v′ ∈ D.
(iii) From (ii) it follows that ∃(v′ ∈ D)(z′ = cv′a).

(iv) From (iii) and the Induction Hypothesis it follows that the prop-
erty holds.

2. Suppose the production rule E→ ε was used.

(i) The derivation is xcvay = xcvay.

(ii) From (i) and the Induction Hypothesis it follows that the property
holds when this production rule is used.

The property holds in Case 2.2, and therefore holds in Case 2.

Case 3: ui ⇒ ui+1 is of the form xzy ⇒ xzy′. This case is similar to case 1
and is therefore ommitted.

This concludes step 1 of the proof.

Step 2
In this step we want to prove that all the words in language L6.2 can be
generated by grammar G6.2. This can be proven by induction on the length
of v and induction on the length of x and y.

However, we can easily see that E⇒∗ v, for all v ∈ {a, b}∗.
Furthermore, we observe that A⇒∗ XnAXn for all n ∈ N.
Combining this we get A ⇒∗ XnAXn ⇒ XncEaXn ⇒∗ xcvay for any
x, v, y ∈ {a, b}∗ ∧ |x| = |y|. This shows that for every word w ∈ L6.2,
we have A⇒∗ w.

This concludes the proof of Lemma 5.8.

36

Corollary 5.9 (CFG produces language xcvby)
The following context-free grammar G6.3 generates the language L6.3 =
{xcvby | x, v, y ∈ {a, b}∗, |x| = |y|}, with Σ = {a, b, c}, where B is the
starting symbol:

B → XBX | cEb
E → XE | ε
X → a | b

This grammar is similar to the grammar G6.2.

Part 3
Lemma 5.10 (CG produces language uczu)

The following conjunctive grammar G6.4 generates the language
L6.4 = {uczu | u, z ∈ {a, b}∗}, where D is the starting symbol:

D → aA & aD | bB & bD | cE
A → XAX | cEa
B → XBX | cEb
E → XE | ε
X → a | b

The shortest derivation in D is D ⇒ cE ⇒ c. Then we see that c is of the
form uczu, with |u| = |z| = 0. So c ∈ L6.4.

The longer derivations in D are of the form

D⇒ α1β1 & α1D⇒∗ α1β1 &...& α1...αiβi &...& α1...αnβn & ucE

where αk ∈ {a, b} ∧ βk =

A if αk = a

B if αk = b

and u = α1...αn ∧ |u| = n
and where i, k, n ∈ N ∧ 1 ≤ i, k ≤ n

A word w generated by D must be representable by every conjunct in the
derivation sequence. In this case, the word generated by D must fit in the
following forms:

• α1β1, which is a word of the form α1x1cv1α1y1 (according to Lemma 5.8
and Corollary 5.9), where x1, v1, y1 ∈ {a, b}∗ ∧ |x1| = |y1|.

• ...

37

• α1...αiβi, which is a word of the form α1...αixicviαiyi, where xi, vi, yi ∈
{a, b}∗ ∧ |xi| = |yi|.

• ...

• α1...αnβn, which is a word of the form α1...αnxncvnαnyn, where xn, vn, yn ∈
{a, b}∗ ∧ |xn| = |yn| = 0, so of the form α1...αncvnαn.

• ucE, which is a word of the form α1...αnct, where t ∈ {a, b}∗.

This means that w, conform all the conjuncts, is of the form

α1x1cv1α1y1 = ... = α1...αixicviαiyi = ... = α1...αncvnαn = α1...αnct

This leads to the following conclusions:

• α1x1 = ... = α1...αixi = ... = α1...αn = u.

• v1α1y1 = ... = viαiyi = ... = vnαn = t.

• t is of the form v1α1...αn = v1u.

Combining these observations, we conclude that every conjunct is of the form
ucvu. So whenever D⇒∗ w, w must be of the form uczu, with u, z ∈ {a, b}∗
which means that w ∈ L6.4.

The other way around also holds. Suppose that a word w ∈ L6.4, where
|w| = 1. Then we can construct the derivation sequence D⇒ cE⇒ c.

Now suppose we know for some word w = uzcu ∈ L6.4, with |u| = i, it
is the case that D⇒∗ uczu. This is our Induction Hypothesis.

We need to prove that for a word w′ = u′cz′u′, with u′, z′ ∈ {a, b}∗ and
|u′| = i+ 1, we can construct a derivation sequence with the grammar.

Let u′ = αu, with α ∈ {a, b}. Then we need to construct a derivation
sequence D⇒∗ αucz′αu.

Applying the Induction Hypotheses, where we take z′α as z, we can con-
struct a derivation sequence D⇒∗ ucz′αu. Dependent on whether α is an a
or a b, we insert the production rule D → aA & aD or D → bB & bD. We
will only prove one of these cases, as their proof is almost identical.

Suppose α = a. We get D⇒ aA & aD. We know that we can construct the
sequence aD⇒∗ aucz′au.

We still need to show that aA ⇒ aucz′au. From Lemma 5.8 we know

38

that we can construct the derivation sequence A ⇒∗ xcvay, where x, v, y ∈
{a, b}∗ ∧ |x| = |y|. If we take x = y = u, and v = z′, we can construct the
derivation sequence A⇒∗ ucz′au.

This means that we can construct a derivation sequence D⇒ aA & aD⇒∗
aucz′au & aucz′au, which is what we had to prove.

This concludes the proof of Lemma 5.10.

Part 4

Recall the Theorem:

Theorem 5.6 (CG produces language wcw)
The following conjunctive grammar G6 generates the language
L6 = {wcw | w ∈ {a, b}∗}, with Σ = {a, b, c}:

S → C & D
C → XCX | c
D → aA & aD | bB & bD | cE
A → XAX | cEa
B → XBX | cEb
E → XE | ε
X → a | b

Every word generated by this grammar is a word that occurs both in L6.1

and in L6.4. These are words of the form xcy, with x, y ∈ {a, b}∗ ∧ |x| = |y|,
and words of the form uczu, with u, z ∈ {a, b}∗. So when xcy = uczu, it
must be the case that x = u, and y = zu, and therefore, |z| = 0. These are
words that are of the form wcw, which is exactly what the Theorem states.
This concludes the proof of Theorem 5.6.

39

5.2 Conjunctive grammars in terms of a Formal De-
duction System

Similar to context-free grammars, we can define the meaning of conjunctive
grammars in terms of a formal deduction system.

Definition 5.11 (Formal deduction system for conjunctive grammars [14])

For a conjunctive grammar G = (Σ, N,R, S) a formal deduction sys-
tem `G can be defined as follows. Production rules that don’t use the
conjunction operation are defined the same as the production rules in
context-free grammars (see Definition 4.4). For every production rule
A → α1 &...& αn in G, there is a corresponding inference rule in `G,
where w ∈ Σ∗:

α1(w) ... αn(w)
[rulename]

A(w)

A word w is in the language generated by the grammar when an in-
ference tree can be constructed with S(w) as its conclusion (where S is
the startsymbol of the grammar).

In Section 4.2 we observed that in context-free grammars, applying an in-
ference rule on some term results in "slicing" the term. Take rule [A1] of
Table 5.1: when applying this rule to word w, it results in three terms above
the line: u1, u2 and u3. All these branches take a part of w, and they do not
overlap.

But in conjunctive grammars there is another possibility. For example, ap-
plying rule [S1] of Table 5.1 to a word w results in two branches that take
the same term. This is because of the conjunction. In order to prove that
word w can be produced by S, it needs to be shown that the word can be
generated by both the nonterminals H and Y.

One might think that this means that it is harder to parse conjunctive gram-
mars. However, the difficult part of parsing the grammars is no different
than in context-free grammars: finding the right position to cut the term.
Although the inference trees for conjunctive grammars are likely to have
more branches than context-free grammars, the upper bounds on the time
complexity of parsing algorithms remain the same, as stated by Okhotin [11].

Below we sketch an example of a conjunctive grammar, first in terms of
rewriting, followed by corresponding formal deduction system. Furthermore,
an inference tree is included to show how the inference rules can be applied
to a term.

40

Example 5.12

The following conjunctive grammar G7 generates the language
L7 = {(wc)|w| | w ∈ {a, b}∗}, with Σ = {a, b, c}:

S → H & Y | ac | bc | ε
H → aHG | bHG | ac | bc
G → aG | bG | c
Y → YG & GY | Fc
F → C & D
C → XCX | c
D → aA & aD | bB & bD | cE
A → XAX | cEa
B → XBX | cEb
E → XE | ε
X → a | b

Language L7 uses the language L6 = {wcw | w ∈ {a, b}∗}, which is rep-
resented by the nonterminal F.

Table 5.1 lists the inference rules for grammar `G7 .

Table 5.1: The inference rules for the conjunctive grammar `G7

Rule Rule name

` a(a) [axioma]

` b(b) [axiomb]

` c(c) [axiomc]

` S(ε) [S0]

` E(ε) [E0]

H(w) Y(w)

S(w)
[S1]

a(a) c(c)

S(ac)
[S2]

b(b) c(c)

S(bc)
[S3]

a(a) H(u1) G(u2)

H(aw)
where w = u1u2 [H1]

41

Table 5.1 (continued)

Rule Rule name

b(b) H(u1) G(u2)

H(bw)
where w = u1u2 [H2]

a(a) c(c)

H(ac)
[H3]

b(b) c(c)

H(bc)
[H4]

a(a) G(w)

G(aw)
[G1]

b(b) G(w)

G(bw)
[G2]

c(c)

G(c)
[G3]

Y(u1) G(u2) G(v1) Y(v2)

Y(w)
where w = u1u2 = v1v2 [Y1]

F(w) c(c)

Y(wc)
[Y2]

C(w) D(w)

F(w)
[F1]

X(u1) C(u2) X(u3)

C(w)
where w = u1u2u3 [C1]

c(c)

C(c)
[C2]

a(a) A(w) a(a) D(w)

D(aw)
[D1]

b(b) B(w) b(b) D(w)

D(bw)
[D2]

c(c) E(w)

D(cw)
[D3]

X(u1) A(u2) X(u3)

A(w)
where w = u1u2u3 [A1]

c(c) E(w) a(a)

A(cwa)
[A2]

X(u1) B(u2) X(u3)

B(w)
where w = u1u2u3 [B1]

c(c) E(w) b(b)

B(cwb)
[B2]

42

Table 5.1 (continued)

Rule Rule name

X(u1) E(u2)

E(w)
where w = u1u2 [E1]

a(a)

X(a)
[X1]

b(b)

X(b)
[X2]

We construct a proof tree to show that the word bbacbbacbbac is in the lan-
guage L7:

b(b)

b(b)

a(a) c(c)
[H3]

H(ac)

SUBTREE 1
G(bbac)

[H2]
H(bacbbac)

SUBTREE 1
G(bbac)

[H2]
H(bbacbbacbbac)

SUBTREE 2
Y(bbacbbacbbac)

[S1]
S(bbacbbacbbac)

SUBTREE 1:

b(b)

b(b)

a(a)

c(c)
[G3]

G(c)
[G1]

G(ac)
[G2]

G(bac)
[G2]

G(bbac)

SUBTREE 2:

SUBTREE 3
Y(bbacbbac)

SUBTREE 1
G(bbac)

SUBTREE 1
G(bbac)

SUBTREE 3
Y(bbacbbac)

[Y1]
Y(bbacbbacbbac)

SUBTREE 3:

b(b)

X(b)

b(b)

X(b)

a(a)

X(a)

c(c)

C(c)

b(b)

X(b)

C(acb)

b(b)

X(b)

C(bacbb)

a(a)

X(a)
[C1]

C(bbacbba)
SUBTREE 4
D(bbacbba)

[F1]
F(bbacbba) c(c)

[Y2]
Y(bbacbbac)

43

In SUBTREE 3, the [C1] rule is used multiple times in a row. The rule
name was ommitted for a clearer overview. The rule names [X1], [X2] and
[C2] are left out as well.

SUBTREE 4:

b(b)

b(b)

X(b)

a(a)

X(a)

c(c) E(ε) b(b)

B(cb)

b(b)

X(b)

B(acbb)

a(a)

X(a)
[B1]

B(bacbba) b(b)

SUBTREE 5
D(bacbba)

[D2]
D(bbacbba)

In SUBTREE 4 the [B1] rule is used multiple times in a row. The rule
name is ommitted from the tree. The rule names [X1], [X2] and [B2] are left
out as well. This also holds for SUBTREE 5.

SUBTREE 5:

b(b)

a(a)

X(a)

c(c)

b(b)

X(b) E(ε)
[E1]

E(b) b(b)

B(cbb)

a(a)

X(a)
[B1]

B(acbba) b(b)

SUBTREE 6
D(acbba)

[D2]
D(bacbba)

SUBTREE 6:

a(a)

c(c)

b(b)

X(b)

b(b)

X(b) E(ε)

E(b)

E(bb) a(a)
[A2]

A(cbba) a(a)

c(c)

b(b)

X(b)

b(b)

X(b)

a(a)

X(a) E(ε)

E(a)

E(ba)

E(bba)
[D3]

D(cbba)
[D1]

D(acbba)

In SUBTREE 6 the rule names [E1], [X1] and [X2] are ommitted, to en-
sure a better overview of the tree itself.

44

5.3 Conjunctive grammars in terms of Language
Equations

Definition 5.13 (Language equations for conjunctive grammars [13])

For every conjunctive grammar G = (Σ, N,R, S) a system of equations
with languages as unknowns EG can be defined as follows. We write

A =
⋃

A→ α1 &...& αm∈R

m⋂
i=1

αi

for all nonterminals A ∈ N as unknown languages, and for all a ∈
Σ ∪ {ε}, a denotes {a}.

Such a system has a least solution (Corollary 5.19). A word w ∈ Σ∗

is in the language generated by the grammar when it is in the least
solution (for the startsymbol S).

In comparison to Definition 4.10 an intersection is added to the formula, to
include the conjunction operation.

Example 5.14
Recall the conjunctive grammar G3, that generates the language
L3 = {anbncn | n ≥ 0}, with Σ = {a, b, c}:

S → AB & DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

The corresponding system of language equations EG3 is:

S = AB ∩DC

A = {a}A ∪ {ε}

B = {b}B{c} ∪ {ε}

C = {c}C ∪ {ε}

D = {a}D{b} ∪ {ε}

45

We consider the function F : (P(Σ∗))5 → (P(Σ∗))5, derived from the gram-
mar EG3 :

F (S,A,B,C,D) = (AB ∩DC, {a}A ∪ {ε}, {b}B{c} ∪ {ε},
{c}C ∪ {ε}, {a}D{b} ∪ {ε})

Iterating with the emptyset gives:

• F 0(∅, ∅, ∅, ∅, ∅) = (∅, ∅, ∅, ∅, ∅)

• F 1(∅, ∅, ∅, ∅, ∅) = (∅, {ε}, {ε}, {ε}, {ε})

• F 2(∅, ∅, ∅, ∅, ∅) = ({ε}, {ε, a}, {ε, bc}, {ε, c}, {ε, ab})

• F 3(∅, ∅, ∅, ∅, ∅) = ({ε, abc}, {ε, a, aa}, {ε, bc, bbcc}, {ε, c, cc}, {ε, ab, aabb})

• F 4(∅, ∅, ∅, ∅, ∅) = ({ε, abc, aabbcc}, {ε, a, aa, aaa}, {ε, bc, bbcc, bbbccc},
{ε, c, cc, ccc}, {ε, ab, aabb, aaabbb})

• ...

Lemma 5.15 (CG - Monotonically increasing function)

Let F : (P(Σ∗))5 → (P(Σ∗))5 be the function with Σ = {a, b, c} and
F (S,A,B,C,D) = (AB ∩DC, {a}A ∪ {ε}, {b}B{c} ∪ {ε},

{c}C ∪ {ε}, {a}D{b} ∪ {ε})
F is a monotonically increasing function.

Proof:
Let (S,A,B,C,D) ⊆ (S′,A′,B′,C′,D′). Then we need to show that F (S,A,B,C,D) ⊆
F (S′,A′,B′,C′,D′).

We have F (S,A,B,C,D) = (AB ∩DC, {a}A ∪ {ε}, {b}B{c} ∪ {ε},
{c}C ∪ {ε}, {a}D{b} ∪ {ε})

and F (S′,A′,B′,C′,D′) = (A′B′ ∩D′C′, {a}A′ ∪ {ε}, {b}B′{c} ∪ {ε},
{c}C′ ∪ {ε}, {a}D′{b} ∪ {ε})

But since AB ∩DC ⊆ A′B′ ∩D′C′

{a}A ∪ {ε} ⊆ {a}A′ ∪ {ε}
{b}B{c} ∪ {ε} ⊆ {b}B′{c} ∪ {ε}
{c}C ∪ {ε} ⊆ {c}C′ ∪ {ε}
{a}D{b} ∪ {ε} ⊆ {a}D′{b} ∪ {ε}

We observe that F (S,A,B,C,D) ⊆ F (S′,A′,B′,C′,D′). This proves Lemma 5.15.

46

Proposition 4.14 states that the function over the language equations of
context-free grammars is Scott continuous. In the conjunctive grammars
intersection is added. In order to apply Kleene’s Fixed Point Theorem, we
need to show that this operation is also Scott continuous.

Proposition 5.16 (Scott continuous function of several variables [17])

For a partially ordered set (P(Σ∗),⊆) that is a complete lattice, function
F : P(Σ∗)n → P(Σ∗)n is a Scott continuous function if and only if
function Fi : P(Σ∗)n → P(Σ∗) is Scott continuous for every i, where
F (X1, ..., Xn) = (F1(X1, ..., Xn), ..., Fn(X1, ..., Xn)).

Lemma 5.17 (CG - Scott continuous function)

Let F : (P(Σ∗))5 → (P(Σ∗))5 be the function with Σ = {a, b, c} and
F (S,A,B,C,D) = (AB ∩DC, {a}A ∪ {ε}, {b}B{c} ∪ {ε},

{c}C ∪ {ε}, {a}D{b} ∪ {ε})
F is Scott continuous.

Proof:
The nonterminals A,B,C,D only use Scott continuous operations, so accord-
ing to Proposition 5.16 we only need to show that the function
F : P(Σ∗)→ P(Σ∗) with F (S) = AB ∩DC is Scott continuous.

We consider the chain
F 0(∅) ⊆ F 1(∅) ⊆ F 2(∅) ⊆ F 3(∅) ⊆ F 4(∅) ⊆ ... = ∅ ⊆ ∅ ⊆ {ε} ⊆ {ε, abc} ⊆
{ε, abc, aabbcc} ⊆ ...
If F is Scott continuous, we have F (

⋃
i F

i(∅)) =
⋃
i F (F i(∅)).

F (
⋃
i

F i(∅)) = F (∅ ∪ ∅ ∪ {ε} ∪ {ε, abc} ∪ {ε, abc, aabbcc} ∪ ...)
= F ({anbncn | n ≥ 0})
= ({a}A ∪ {ε}({b}B{c} ∪ {ε}) ∩ ({c}C ∪ {ε})({a}D{b} ∪ {ε})
= a∗{bmcm | m ≥ 0} ∩ {ambm | m ≥ 0}c∗

= {anbncn | n ≥ 0}⋃
i

F (F i(∅)) = F (∅) ∪ F (∅) ∪ F ({ε}) ∪ F ({ε, abc}) ∪ F ({ε, abc, aabbcc}) ∪ ...
= ∅ ∪ {ε} ∪ {ε, abc} ∪ {ε, abc, aabbcc} ∪ {ε, abc, aabbcc, aaabbbccc} ∪ ...
= {anbncn | n ≥ 0}

This proves Lemma 5.17.

Proposition 5.18 (Intersection operation is Scott continuous [17])
The intersection operation, used in conjunctive grammars, is Scott con-
tinuous in the partial ordering (P(Σ∗),⊆).

47

Corollary 5.19 (CG - Least solution)

Since (P(Σ∗),⊆) is a partially ordered set and a complete lattice, we
have for every conjunctive grammar EG that the least solution of the
language equations is

⋃
k≥0 F

k(∅), with the Scott continuous function
F : P(Σ∗)|N | → P(Σ∗)|N | over the nonterminals N of G, derived from
the system of equations EG. The least solution consists of exactly the
languages generated by the nonterminals.

Example 5.20

The solution for the grammar EG3 is
⋃
i≥0 F

i(∅) = (S,A,B,C,D) with
S = {anbncn | n ≥ 0},
A = a∗,

B = {bmcm | m ≥ 0},
C = c∗,

D = {ambm | m ≥ 0}
as shown below:

F (S,A,B,C,D) = (AB ∩DC,
{a}A ∪ {ε},
{b}B{c} ∪ {ε},
{c}C ∪ {ε},
{a}D{b} ∪ {ε})

= (a∗{bmcm | m ≥ 0} ∩ {ambm | m ≥ 0}c∗,
{a}a∗ ∪ {ε},
{b}{bmcm | m ≥ 0}{c} ∪ {ε},
{c}c∗ ∪ {ε},
{a}{ambm | m ≥ 0}{b} ∪ {ε})

= ({anbncn | n ≥ 0},
a∗,

{bmcm | m ≥ 0},
c∗,

{ambm | m ≥ 0})
= (S,A,B,C,D)

In conclusion, it is a fixed point of F and it can be shown that it is
a least fixed point of F , and therefore the least solution of EG3 .

48

Chapter 6

Boolean Grammars

Boolean grammars were introduced by Okhotin in 2004 [10]. They extend
the conjunctive grammars by adding the possibility to use the negation op-
eration, represented by complementation. With this extension, some compli-
cated languages can be defined more easily, since it is possible to introduce
a production rule that ensures that a term complies with a property, and
explicitly not comply with another property. It remains an open problem
whether boolean grammars represent more languages than conjunctive gram-
mars [11].

An example is the language {ambncn | m,n ≥ 0,m 6= n} over input al-
phabet Σ = {a, b, c}. The language can be defined by taking the intersection
of the context-free language {aibjck | j = k} with the complement of the
context-free language {aibjck |i = j}.

This chapter elaborates on the definition of boolean grammars as given by
Okhotin [10]. We will show that it is difficult to give a sound definition
of boolean grammars in terms of rewriting in Section 6.1, since we want to
avoid the possibilty to define grammars that logically contradict themselves.
In Section 6.2 we discuss a sound definition in terms of language equations.
Finally, we will discuss some limitations of this definition.

49

6.1 Boolean grammars in terms of Rewriting

Where a conjunctive grammar is a context-free grammar with the conjunc-
tion operation added, a boolean grammar is a conjunctive grammar with yet
another operation included: negation, represented by the complement oper-
ation. With this extension, complex languages can be defined more easily. It
is possible to define a language where every word in that language complies
with rule A, and explicitly not complies with rule B.

Definition 6.1 (Boolean grammars [11])

A boolean grammar is a quadruple G = (Σ, N,R, S) where:

• Σ is the alphabet.

• N is a finite set of nonterminal symbols.

• R is a finite set of grammar rules of the form

A → α1 & α2 & ... & αn & ¬β1 & ¬β2 & ... & ¬βm

where A ∈ N, n,m ≥ 0,m + n ≥ 1 and αi, βj ∈ (Σ ∪ N)∗. A
conjunct αi is called a positive conjunct, and a conjunct βj is called
a negative conjunct.

• S ∈ N is the startsymbol.

Definition 6.2 (Derivation sequence for BG)
We extend the definition of the derivation sequence for conjunctive gram-
mars (Definition 5.2):

We use the notation w ⇒ v1 &...& vn & ¬u1 &...& ¬um if w = xAy,
and for all i with 1 ≤ i ≤ n: vi = xαiy, and for all j with 1 ≤ j ≤ m:
uj = xβjy, for some x, y, αi, βj ∈ (Σ∪N)∗, A ∈ N , with production rule
A→ α1 &...& αn & ¬β1 &...& ¬βm in R.

Definition 6.3 (The language generated by a BG - Intuitive definition)
Intuitively, we define a word w ∈ Σ∗ to be in the language generated by
the grammar when for all v1, ..., vm, if

S ⇒∗ w &...& w & ¬v1 &...& ¬vm

then vi 6= w, with 1 ≤ i ≤ m.

50

Definition 6.3 can lead to a logical contradiction, since it is possible to define
a recursive rule where nonterminals depend on each other in a circular way,
while using negation. We will show this shortcoming later in Example 6.6.
For now, we can illustrate what the intention is of boolean grammars with
some examples.

Example 6.4
The following boolean grammar G8 generates the language
L8 = {ambncn | m,n ≥ 0,m 6= n}, with Σ = {a, b, c}:

S → AB & ¬DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

Note that L8 = {ambncn | m,n ≥ 0,m 6= n} = {aibjck | j = k ∧ i 6= j} =

{aibjck | j = k}∩{aibjck | i = j}, and it can be shown that AB generates
the language L8.1 = {aibjck | j = k}, and that DC generates the language
L8.2 = {aibjck | i = j}.

Example 6.5
The following boolean grammar G9 generates the language
L9 = {ww | w ∈ {a, b}∗}, with Σ = {a, b}:

S → ¬AB & ¬BA & C
A → XAX | a
B → XBX | b
C → XXC | ε
X → a | b

It can be shown that the nonterminal A generates the context-free lan-
guage L9.1 = {uav | u, v ∈ {a, b}∗, |u| = |v|}, and that the nonterminal
B generates the context-free language L9.2 = {ubv | u, v ∈ {a, b}∗, |u| =
|v|}.

Combined, we observe that AB generates the context-free language
L9.3 = {uavxby | u, v, x, y ∈ {a, b}∗, |u| = |x|, |v| = |y|}. It contains all
strings of even length, where on the left side of the word there is an a at
a position where on the right side of the word there is a b at the same
position (when cutting the word in half).

The context-free language generated by BA is similar:

51

L9.4 = {ubvxay | u, v, x, y ∈ {a, b}∗, |u| = |x|, |v| = |y|}. It contains all
the strings of even length where there is a b on the left side of the word
at some position, and on the right side there is an a at that same position.

The nonterminal C generates the context-free language
L9.5 = {xy | x, y ∈ {a, b}∗, |x| = |y|}. This language contains all strings
of even length.

Language L9 defines the set of strings of even length without any mis-
matches:
L9 = L9.3 ∩ L9.4 ∩ L9.5 = {ww | w ∈ {a, b}∗}

Although boolean grammars allow us to define languages that are "context-
free" (in the sense that the context is not important for applying a rule),
Definition 6.3 is not a waterproof definition. Consider Example 6.6:

Example 6.6
Let G10 be a boolean grammar, defined in terms of rewriting:

S → ¬S

Suppose that we want to know for some word w whether w ∈ S. The gram-
mar states that w ∈ S, whenever w /∈ S. This obviously is a contradiction.
We do not want to allow grammars like these. This calls for a stricter defi-
nition of boolean grammars.

Definition 6.3 shows the intention of the extension to conjunctive grammars,
but should not be used as a formal definition. With simpler grammars, like
Example 6.4 and Example 6.5, the definition is sufficient [11]. But for more
complex grammars a better definition is needed.

Defining boolean grammars in terms of rewriting is not easy. It is easier
to define these grammars in terms of language equations, as we show in the
next section.

52

6.2 Boolean grammars in terms of Language
Equations

Suppose we extend Definition 5.13 (Language equations for conjunctive gram-
mars [13]) to include the complement function. Then we would say that for
the system of language equations EG there exists a least solution. However,
this only holds if the function F : P(Σ∗)|N | → P(Σ∗)|N | is still Scott contin-
uous.

Lemma 6.7 (Complement operation is not Scott continuous)

Let F : P(Σ∗) → P(Σ∗) be the function with F (A) = A and Σ = {a}.
Function F is not Scott continuous.

Proof:
We consider the chain A1 ⊆ A2 ⊆ ... = {a} ⊆ {a, aa} ⊆ ...
If the function is Scott continuous, it should hold that F (

⋃
iAi) =

⋃
i F (Ai).

However,
F (
⋃
iAi) = F (Σ∗) = Σ∗ = ∅ and⋃

i F (Ai) = F ({a}) ∪ F ({a, aa}) ∪ ... = {a} ∪ {a, aa} ∪ ...
= (Σ∗ \ {a}) ∪ (Σ∗ \ {a, aa}) ∪ ... = Σ∗ \ {a}

.

But ∅ 6= Σ∗ \ {a}, so the function is not Scott continuous.

This proves Lemma 6.7.

Lemma 6.7 shows that the complement function is not Scott continuous.
This means that Kleene’s Fixed Point Theorem generally does not apply to
boolean grammars that use the complement operation, and that there is no
least solution for these grammars.

This becomes a problem when there are systems with multiple solutions.
The question rises what solution should be selected as the solution of the
language equations. It does not make sense to allow multiple solutions, be-
cause it would become unclear what language the grammar is defining, which
is the whole point of a formal grammar.

To resolve this problem, one approach is to define a boolean grammar as
a grammar with a unique solution [11]. Grammars that have multiple solu-
tions or none are not considered well-defined boolean grammars.

53

Example 6.8

Let EG11 be a boolean grammar with Σ = {a} and the following system
of equations: S = S ∩ {a}A

A = A

The unique solution for this system can be found with the function F :
P(Σ∗)2 → P(Σ∗)2 where F (S,A) = (S,A). The solution is S = A = ∅.

Since the language generated by S is defined by the complement of the
language generated by S, the only solution for S is the empty set ∅. We get
S = ∅ = ∅ ∩ {a}A = Σ∗ ∩ {a}A. In order for the equation ∅ = Σ∗ ∩ {a}A
to hold, the only solution is that A = ∅. We know from Definition 3.9
that concatenating with the empty set results in the empty set, and it is
obvious that Σ∗ ∩ ∅ = ∅ = S.

In conclusion, the system has a unique solution with S = A = ∅.

But something strange is happening in this example. Suppose we have a
word w ∈ A. We get the following equations:S = S ∩ {a}w

w = w

In order to have aw ∈ S, it must be that aw ∈ S. This is a contradiction, so
the conclusion must be that w /∈ A.

In order to reach this conclusion, we had to consider the word aw. But
this word is longer than w. This differs significantly from the context-free
grammars that we want to extend without losing important properties of
these grammars. The context-free grammars define the words recursively.
But in this case the string w does not depend on a shorter substring, but
rather on a larger string.

This shows that it is not enough to restrict the definition of boolean gram-
mars in terms of language equations to have a unique solution. In order to
soundly define boolean grammars, Okhotin introduces a second restriction
[10]. Instead of considering the strings of any length, we only consider the
strings of length up to abd including ` (see Definition 3.4).

54

Definition 6.9 (Well-formed boolean grammars [11])

Let G = (Σ, N,R, S) be a boolean grammar. We consider the associated
system of equations EG:

A =
⋃

A→ α1 &...& αm
& ¬β1 & ... & ¬βn∈R

 m⋂
i=1

αi ∩
n⋂
j=1

βj

for all nonterminals A ∈ N as unknown languages, and for all a ∈
Σ ∪ {ε}, a denotes {a}.

For every ` ≥ 0 we consider the function over the nonterminals N :
F` : P(Σ≤`)|N | → P(Σ≤`)|N |, derived from the equations of EG.

In this thesis we call G a well-formed boolean grammar if F` has a
unique solution (fixed point) for every `. Then EG is said to have a
strongly unique solution, which is the union of the solutions for every `.

A word w ∈ Σ∗ is in the language generated by the grammar when
it is in the strongly unique solution (of the startsymbol S).

Example 6.10

Recall the boolean grammar EG11 , with Σ = {a} and the following system
of language equations: S = S ∩ {a}A

A = A

The function F : P(Σ≤`)2 → P(Σ≤`)2 has two solutions where F (S,A) =
(S,A):

The first solution is the same as in Example 6.8: S = A = ∅
The second solution is S = ∅,A = {a`}, because:

S = ∅ = ∅ ∩ {a}{a`}
= ∅ ∩ {a`+1}
= ∅ ∩ ∅ because |a`+1| > `

= ∅

A = {a`} = {a`}

Since there are two solutions, the grammar is not well-formed according
to Definition 6.9.

55

Example 6.11
The following boolean grammar EG9 generates the language
L9 = {ww | w ∈ {a, b}∗}, with Σ = {a, b}:

S = AB ∩ BA ∩ C

A = XAX ∪ {a}

B = XBX ∪ {b}

C = XXC ∪ {ε}

X = {a} ∪ {b}

The function F : P(Σ≤`)5 → P(Σ≤`)5 has a unique solution where
F (S,A,B,C,X) = (S,A,B,C,X), and it can be shown that it is:

S = {ww | w ∈ {a, b}∗}
A = {xay | x, y ∈ {a, b}∗, |x| = |y|}
B = {xby | x, y ∈ {a, b}∗, |x| = |y|}
C = {xy | x, y ∈ {a, b}∗, |x| = |y|}
X = {w | w ∈ {a, b}}

When ` = 4 we get the following:

• The nonterminal X generates the set {a, b}.

• The nonterminal C generates the set
{aa, ab, bb, ba, aaaa, aaab, aabb, abbb, bbbb, bbba, bbaa, baaa}.

• The nonterminal B generates the set {b, aba, abb, bbb, bba}.

• The nonterminal A generates the set {a, aaa, aab, bab, baa}.

• The nonterminals AB generate the set {ab, aaba, aabb, abbb, abba}.

• The nonterminals BA generate the set {ba, baaa, baab, bbab, bbaa}.

• The resulting language generated by the startsymbol S is the set
{aa, bb, aaaa, aabb, bbbb, bbaa}.

56

6.2.1 Limitations

Definition 6.9 provides a way to extend the conjunctive grammars. This
allows for more languages to be defined. But this definition has several lim-
itations as stated by Okhotin [11].

First of all, some grammars are deemed ill-formed according to the defini-
tion, while they obviously should be accepted to the definition. The easiest
example of this fact is that the grammar with production rule S → S has
many solutions. This result is not preferable, it would be better to define
boolean grammars in such a way that there exists a least solution, rather
than a unique one (as is the case with context-free grammars and conjunc-
tive grammars).

Another great limitation is that it cannot be effectively decided whether
a boolean grammar satisfies the conditions of being well-formed [10, Theo-
rem 2].

Kountouriotis [7] has shown that the definition of Okhotin behaves strangely.
Consider the following example:

Example 6.12 (Kountouriotis [7])

Let EG12 be a boolean grammar with Σ = {0, 1}, and the following system
of language equations: S = S ∩A

A = {0} ∩ {1}

This system of equations has no solution, and is therefore according to
Definition 6.9 deemed ill-formed.

However, when we augment grammar EG12 with the production rule
A → A, which intuitively does not add any value to the grammar, the
system has a unique solution: (S,A) = (∅,Σ∗), and is therefore consid-
ered well-formed.

But if we instead augment the grammar with the production rule S→ S,
which similarly does not add any value to the grammar, the system has
a different unique solution: (S,A) = (Σ∗, ∅), and also considered well-
formed.

These three seemingly equivalent grammar definitions have three com-
pletely meanings according to Definition 6.9. The last two solutions are
each other’s complement. Obviously, this is not preferable behaviour.

57

Finally, Kountouriotis [7] shows that it is possible to define languages that
are considered well-formed according to Definition 6.9, but generate strange
languages. That is why he proposed a different definition of boolean gram-
mars, which we consider in Chapter 7.

58

Chapter 7

Related Work

In this chapter we examine some related work to the conjunctive and boolean
grammars.

7.1 Three-valued languages

In 2009, Kountouriotis [7] introduced an alternative for Okhotin’s definition
of boolean grammars (Definition 6.9). He proposed that, instead of basing
the definition on two-valued languages, it would be better to base it on three-
valued languages. Two-valued languages define a value for every word for a
grammar: the word is either in the language generated by the grammar, or
is not. The definitions of context-free grammars, conjunctive and boolean
grammars as shown in this thesis, are based on this logic.

Kountouriotis proposes to consider instead three-valued languages. The
three values are: a word is in the language (denoted by 1), a word is not
in the language (denoted by 0), or a word is undefined in the language (de-
noted by 1

2). Defining boolean grammars in terms of three-valued language
equations has a very big advantage: the solution of the system can be found
through a least fixed point.

A three-valued language L is denoted by a pair (L1,L2), with L1 ⊆ L2 ⊆ Σ∗,
where L1 represents the lower bound and L2 the upper bound of the three
valued language. Whenever L1 = L2, the language is said to be completely
defined, and L = (∅,Σ∗) denotes a language where all the words are unde-
fined. Determining the value of a word over such a three-valued language
goes according to these rules, for any word w:

• w /∈ L1 ∧ w /∈ L2 implies that w is not a member of the three-valued
language, we write L(w) = 0.

• w /∈ L1 ∧ w ∈ L2 implies that it is undefined whether w is a member

59

of the three-valued language, we write L(w) = 1
2 .

• w ∈ L1 implies that w ∈ L2, and therefore w is a member of the
three-valued language, we write L(w) = 1.

Kountouriotis defines two partial orderings on the three-valued languages, on
which a pair of languages L = (L1,L2) and K = (K1,K2) can be compared.

Figure 7.1: Venn diagram for the
truth ordering

Figure 7.2: Venn diagram for the
information ordering

The first ordering is based on the degree of truth: the truth ordering, denoted
by L vT K, where L1 ⊆ K1 and L2 ⊆ K2. The relation L vT K is defined as
follows:

• L(w) = 0 implies that K(w) = 0 ∨K(w) = 1
2 ∨K(w) = 1.

• L(w) = 1
2 implies that K(w) = 1

2 ∨K(w) = 1.

• L(w) = 1 implies that K(w) = 1.

Figure 7.1 shows the Venn diagram for the two languages in this partial or-
dering. The least element of the truth ordering of the language equations is
(∅, ∅)|N |, over the nonterminals N of the grammar: every language is com-
pletely defined as ∅. The greatest element is (Σ∗,Σ∗)|N |. The operations
concatenation, union and intersection are Scott continuous with respect to
the truth ordering. Complementation is not monotone.

The second ordering is with respect to the degree of information: the in-
formation ordering, denoted by L vI K, where L1 ⊆ K1 and K2 ⊆ L2. The
relation L vI K is defined as follows:

• L(w) = 0 implies that K(w) = 0.

• L(w) = 1
2 implies that K(w) = 0 ∨K(w) = 1

2 ∨K(w) = 1.

60

• L(w) = 1 implies that K(w) = 1.

Figure 7.2 shows the Venn diagram for the two languages in this partial or-
dering. The least element of the information ordering of the language equa-
tions is (∅,Σ∗)|N |, over the nonterminals N of the grammar: every language
is completely undefined. The operations concatenation, union, intersection
and complementation are Scott continuous with respect to the information
ordering.

Kountouriotis uses both the orderings to define boolean grammars in terms
of language equations in such a way that there is a two-level fixed point, and
therefore a solution to the system.

61

7.2 The Chomsky hierarchy

Chomsky [2] has defined a famous hierarchy of classes of formal languages
in 1959. Table 7.1 shows this hierarchy. It should be noted that Type-3 ⊆
Type-2 ⊆ Type-1 ⊆ Type-0.

Grammar Type Language

Type-0 Recursively enumerable

Type-1 Context-sensitive

Type-2 Context-free

Type-3 Regular

Table 7.1: The Chomsky hierarchy

Context-sensitive grammars have proven to be hard to parse [3], and there-
fore hardly ever used in practice. Okhotin [10] proposes therefore to ommit
this hierarchy, and classify grammars differently, based on their computa-
tional complexity classes of the membership problem: the complexity of cal-
culating whether some word is a member of the language that the grammar
describes. For context-sensitive grammars the computational complexity
class is in PSPACE [6]. That of conjunctive and boolean grammars is in P [10].

His proposal is shown in Figure 7.3, for the language specification formalisms:
finite automata (Reg), linear context-free grammars (LinCF), context-free
grammars (CF), linear conjunctive grammars (LinConj), conjunctive gram-
mars (Conj), boolean grammars (Bool), deterministic context-sensitive gram-
mars (DetCS) and context-sensitive grammars (CS). Note that Conj lan-
guages ⊆ Bool languages ⊆ DetCS languages ⊆ CS languages.

Figure 7.3: The proposed hierarchy of Okhotin [10]

62

Chapter 8

Conclusions

We have shown that the extensions to context-free grammars offer possibil-
ities to define more languages than just context-free languages, while still
maintaining the main principle of context-free grammars: the production
rules can always be applied, regardless of the context in which they occur.

The definition of conjunctive grammars allows us to freely use the con-
junction operation, similar to how disjunction can be used in context-free
grammars. The result is that many languages that are not context-free can
be defined using the conjunctive grammars, while remaining as intuitive to
use as context-free grammars are.

We have seen multiple examples of conjunctive grammars, the easier ones
define the intersection of two context-free grammars. For a more complex
conjunctive grammar, we have proven what language it generates. Further-
more, we have concluded that parsing conjunctive grammars has the same
upper bounds as context-free grammars.

We have shown that extending conjunctive grammars with the negation op-
eration is not as simple as extending the context-free grammars with the
conjunction operation. The definition of well-formed boolean grammars as
defined by Okhotin [10] is not perfect. However, it illustrates that using the
negation operation in grammars provides a method to define grammars for
complex languages.

These relatively new definitions are still being refined, but show great promise.
They encourage to further investigate how to define formal grammars, and
challenge the standard convention of formal grammars.

63

8.1 Future work

As this field of study is relatively new, refinements can still be made. In 2006
Okhotin presented 9 theoretical open problems for conjunctive and boolean
grammars1. Since then, two of those problems have been solved. He offers a
reward for solving each of the remaining problems.

1. Are there any languages recognized by deterministic linear bounded
automata working in time O(n2) that cannot be specified by Boolean
grammars?

2. Do conjunctive grammars over a one-letter alphabet generate only reg-
ular languages? (solved negatively by Jeż in 2007) [5]

3. Are the languages generated by Boolean grammars contained in DTIME(n3−ε)
for any ε > 0? (solved positively by Okhotin in 2009) [9]

4. Are the languages generated by Boolean grammars contained in DSPACE(n1−ε)
for any ε > 0?

5. Is it true that for every Boolean grammar there exists a Boolean gram-
mar in Greibach normal form that generates the same language?

6. Is the family of conjunctive languages closed under complementation?

7. Do there exist any inherently ambiguous languages with respect to
Boolean grammars?

8. Does there exist a number k0 > 0, such that, for all k ≥ k0, Boolean
LL(k) grammars generate the same family of languages as Boolean
LL(k0) grammars?

9. Does there exist a number k ≥ 0, such that every language generated
by any Boolean grammar can be generated by a k-nonterminal Boolean
grammar?

1https://users.utu.fi/aleokh/boolean/nine_open_problems.html

64

Bibliography

[1] Jean-Michel Autebert, Jean Berstel, and Luc Boasson. “Context-Free
Languages and Pushdown Automata”. In: Handbook of Formal Lan-
guages: Volume 1 Word, Language, Grammar. Ed. by Grzegorz Rozen-
berg and Arto Salomaa. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1997, pp. 111–174. isbn: 978-3-642-59136-5. doi: 10.1007/978-
3-642-59136-5_3. url: https://doi.org/10.1007/978-3-642-
59136-5_3.

[2] Noam Chomsky. “On certain formal properties of grammars”. In: In-
formation and Control 2.2 (1959), pp. 137–167. issn: 0019-9958. doi:
https://doi.org/10.1016/S0019-9958(59)90362-6. url: https://
www.sciencedirect.com/science/article/pii/S0019995859903626.

[3] Elias Dahlhaus and Manfred K. Warmuth. “Membership for growing
context-sensitive grammars is polynomial”. In: Journal of Computer
and System Sciences 33.3 (1986), pp. 456–472. issn: 0022-0000. doi:
https://doi.org/10.1016/0022-0000(86)90062-0. url: https://
www.sciencedirect.com/science/article/pii/0022000086900620.

[4] Seymour Ginsburg and H Gordon Rice. “Two families of languages re-
lated to ALGOL”. In: Journal of the ACM (JACM) 9.3 (1962), pp. 350–
371.

[5] Artur Jeż. “Conjunctive grammars generate non-regular unary lan-
guages”. In: International Journal of Foundations of Computer Science
19.03 (2008), pp. 597–615.

[6] Richard M. Karp. “Reducibility among Combinatorial Problems”. In:
Complexity of Computer Computations: Proceedings of a symposium on
the Complexity of Computer Computations, held March 20–22, 1972,
at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York, and sponsored by the Office of Naval Research, Mathemat-
ics Program, IBM World Trade Corporation, and the IBM Research
Mathematical Sciences Department. Ed. by Raymond E. Miller, James
W. Thatcher, and Jean D. Bohlinger. Boston, MA: Springer US, 1972,
pp. 85–103. isbn: 978-1-4684-2001-2. doi: 10.1007/978- 1- 4684-
2001-2_9. url: https://doi.org/10.1007/978-1-4684-2001-2_9.

65

https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/10.1007/978-3-642-59136-5_3
https://doi.org/https://doi.org/10.1016/S0019-9958(59)90362-6
https://www.sciencedirect.com/science/article/pii/S0019995859903626
https://www.sciencedirect.com/science/article/pii/S0019995859903626
https://doi.org/https://doi.org/10.1016/0022-0000(86)90062-0
https://www.sciencedirect.com/science/article/pii/0022000086900620
https://www.sciencedirect.com/science/article/pii/0022000086900620
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

[7] Vassilis Kountouriotis, Christos Nomikos, and Panos Rondogiannis.
“Well-founded semantics for Boolean grammars”. In: Information and
Computation 207.9 (2009), pp. 945–967. issn: 0890-5401. doi: https:
//doi.org/10.1016/j.ic.2009.05.002. url: https://www.
sciencedirect.com/science/article/pii/S0890540109001473.

[8] H.R. Nielson and F. Nielson. Semantics with Applications: An Appe-
tizer. Undergraduate Topics in Computer Science. Springer London,
2007. isbn: 9781846286919. url: https://books.google.nl/books?
id=3dudDAEACAAJ.

[9] Alexander Okhotin. “A Tale of Conjunctive Grammars”. In: Develop-
ments in Language Theory. Ed. by Mizuho Hoshi and Shinnosuke Seki.
Cham: Springer International Publishing, 2018, pp. 36–59. isbn: 978-
3-319-98654-8.

[10] Alexander Okhotin. “Boolean grammars”. In: Information and Com-
putation 194.1 (2004), pp. 19–48. issn: 0890-5401. doi: https : / /
doi . org / 10 . 1016 / j . ic . 2004 . 03 . 006. url: https : / / www .
sciencedirect.com/science/article/pii/S0890540104001075.

[11] Alexander Okhotin. “Conjunctive and Boolean grammars: The true
general case of the context-free grammars”. In: Computer Science Re-
view 9 (2013), pp. 27–59. issn: 1574-0137. doi: https://doi.org/10.
1016/j.cosrev.2013.06.001. url: https://www.sciencedirect.
com/science/article/pii/S157401371300018X.

[12] Alexander Okhotin. “Conjunctive grammars”. In: Journal of Automata,
Languages and Combinatorics 6.4 (2001), pp. 519–535.

[13] Alexander Okhotin. “Conjunctive grammars and systems of language
equations”. In: Programming and Computer Software 28.5 (2002), pp. 243–
249.

[14] Alexander Okhotin. “The dual of concatenation”. In: Theoretical Com-
puter Science 345.2 (2005). Mathematical Foundations of Computer
Science 2004, pp. 425–447. issn: 0304-3975. doi: https://doi.org/
10.1016/j.tcs.2005.07.019. url: https://www.sciencedirect.
com/science/article/pii/S0304397505004056.

[15] K.H. Rosen and K. Krithivasan. Discrete Mathematics and Its Applica-
tions. McGraw-Hill, 2013. isbn: 9780071315012. url: https://books.
google.nl/books?id=ZO8iMAEACAAJ.

[16] Stephen Scheinberg. “Note on the boolean properties of context free
languages”. In: Information and Control 3.4 (1960), pp. 372–375. issn:
0019-9958. doi: https://doi.org/10.1016/S0019-9958(60)90965-
7. url: https://www.sciencedirect.com/science/article/pii/
S0019995860909657.

66

https://doi.org/https://doi.org/10.1016/j.ic.2009.05.002
https://doi.org/https://doi.org/10.1016/j.ic.2009.05.002
https://www.sciencedirect.com/science/article/pii/S0890540109001473
https://www.sciencedirect.com/science/article/pii/S0890540109001473
https://books.google.nl/books?id=3dudDAEACAAJ
https://books.google.nl/books?id=3dudDAEACAAJ
https://doi.org/https://doi.org/10.1016/j.ic.2004.03.006
https://doi.org/https://doi.org/10.1016/j.ic.2004.03.006
https://www.sciencedirect.com/science/article/pii/S0890540104001075
https://www.sciencedirect.com/science/article/pii/S0890540104001075
https://doi.org/https://doi.org/10.1016/j.cosrev.2013.06.001
https://doi.org/https://doi.org/10.1016/j.cosrev.2013.06.001
https://www.sciencedirect.com/science/article/pii/S157401371300018X
https://www.sciencedirect.com/science/article/pii/S157401371300018X
https://doi.org/https://doi.org/10.1016/j.tcs.2005.07.019
https://doi.org/https://doi.org/10.1016/j.tcs.2005.07.019
https://www.sciencedirect.com/science/article/pii/S0304397505004056
https://www.sciencedirect.com/science/article/pii/S0304397505004056
https://books.google.nl/books?id=ZO8iMAEACAAJ
https://books.google.nl/books?id=ZO8iMAEACAAJ
https://doi.org/https://doi.org/10.1016/S0019-9958(60)90965-7
https://doi.org/https://doi.org/10.1016/S0019-9958(60)90965-7
https://www.sciencedirect.com/science/article/pii/S0019995860909657
https://www.sciencedirect.com/science/article/pii/S0019995860909657

[17] Dana Scott. “Continuous lattices”. In: Toposes, Algebraic Geometry
and Logic. Ed. by F. W. Lawvere. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1972, pp. 97–136. isbn: 978-3-540-37609-5.

[18] Stuart M. Shieber, Yves Schabes, and Fernando C.N. Pereira. “Prin-
ciples and implementation of deductive parsing”. In: The Journal of
Logic Programming 24.1 (1995). Computational Linguistics and Logic
Programming, pp. 3–36. issn: 0743-1066. doi: https://doi.org/10.
1016/0743-1066(95)00035-I. url: https://www.sciencedirect.
com/science/article/pii/074310669500035I.

[19] Thomas A. Sudkamp. Languages and Machines: An Introduction to
the Theory of Computer Science (3rd Edition). USA: Addison-Wesley
Longman Publishing Co., Inc., 2005, pp. 41–102. isbn: 0321322215.

[20] Detlef Wotschke. “The Boolean Closures of the Deterministic and Non-
deterministic Context-Free Languages”. In: GI Gesellschaft für Infor-
matik e. V.: 3. Jahrestagung Hamburg, 8.–10. Oktober 1973. Ed. by
Wilfried Brauer. Berlin, Heidelberg: Springer Berlin Heidelberg, 1973,
pp. 113–121. isbn: 978-3-662-41148-3. doi: 10.1007/978- 3- 662-
41148-3_11. url: https://doi.org/10.1007/978-3-662-41148-
3_11.

67

https://doi.org/https://doi.org/10.1016/0743-1066(95)00035-I
https://doi.org/https://doi.org/10.1016/0743-1066(95)00035-I
https://www.sciencedirect.com/science/article/pii/074310669500035I
https://www.sciencedirect.com/science/article/pii/074310669500035I
https://doi.org/10.1007/978-3-662-41148-3_11
https://doi.org/10.1007/978-3-662-41148-3_11
https://doi.org/10.1007/978-3-662-41148-3_11
https://doi.org/10.1007/978-3-662-41148-3_11

List of Theorems

2.1 Definition (Partial ordering [15]) 7
2.2 Definition (Partially ordered set/poset [15]) 7
2.3 Definition (Upper bound/lower bound [15]) 8
2.4 Definition (Least upper bound/greatest lower bound [15]) . . 8
2.5 Definition (Chain [8]) . 8
2.6 Definition (Lattice [15]) . 8
2.7 Definition (Bottom [8]) . 8
2.8 Proposition (Every complete lattice has a bottom [8]) 9
2.9 Proposition (Poset (P(S),⊆) is a complete lattice [15]) 9
2.11 Definition (Monotonically increasing function [8]) 10
2.12 Definition (Scott Continuity [17]) 10
2.13 Definition (Fixed point [8]) 10
2.14 Theorem (Kleene’s Fixed Point Theorem) 10

3.1 Definition (Alphabet [19]) . 12
3.2 Definition (Empty string [19]) 12
3.3 Definition (Set of strings over Σ [19]) 12
3.4 Definition (Strings of length up to ` [19]) 12
3.5 Definition (Language [19]) . 13
3.6 Definition (Union of languages [19]) 13
3.7 Definition (Intersection of languages [19]) 13
3.8 Definition (Complement of a language [10]) 13
3.9 Definition (Concatenation of words and languages [19]) 13
3.10 Definition (Kleene’s star [19]) 13
3.11 Definition (Reversal of a word [19]) 14

4.1 Definition (Context-free grammars in terms of Rewriting [19]) 16
4.2 Definition (Derivation sequence [19]) 17
4.4 Definition (Formal deduction system for context-free gram-

mars [18]) . 18
4.5 Definition (Inference tree [18]) 19
4.8 Definition (Parsing a word for a CFG) 21
4.9 Definition (Constant languages [19]) 22

68

4.10 Definition (Language equations for context-free grammars [1,
4]) . 22

4.12 Lemma (CFG - Monotonically increasing function) 23
4.14 Proposition (Scott continuity in operations of CFGs [17]) . . . 24
4.15 Corollary (CFG - Least solution) 24

5.1 Definition (Conjunctive Grammars in terms of Rewriting [11]) 27
5.2 Definition (Derivation sequence for CG) 27
5.6 Theorem (CG produces language wcw) 30
5.7 Lemma (CFG produces language xcy) 31
5.8 Lemma (CFG produces language xcvay) 34
5.9 Corollary (CFG produces language xcvby) 37
5.10 Lemma (CG produces language uczu) 37
5.6 Theorem (CG produces language wcw) 39
5.11 Definition (Formal deduction system for conjunctive gram-

mars [14]) . 40
5.13 Definition (Language equations for conjunctive grammars [13]) 45
5.15 Lemma (CG - Monotonically increasing function) 46
5.16 Proposition (Scott continuous function of several variables [17]) 47
5.17 Lemma (CG - Scott continuous function) 47
5.18 Proposition (Intersection operation is Scott continuous [17]) . 47
5.19 Corollary (CG - Least solution) 48

6.1 Definition (Boolean grammars [11]) 50
6.2 Definition (Derivation sequence for BG) 50
6.3 Definition (The language generated by a BG - Intuitive defi-

nition) . 50
6.7 Lemma (Complement operation is not Scott continuous) . . . 53
6.9 Definition (Well-formed boolean grammars [11]) 55

69

	Introduction
	I Preliminaries
	Order Theory
	Languages
	Context-free grammars
	Context-free grammars in terms of Rewriting
	Context-free grammars in terms of a Formal Deduction System
	Context-free grammars in terms of Language Equations

	II Extensions of context-free grammars
	Conjunctive Grammars
	Conjunctive grammars in terms of Rewriting
	Proving that a conjunctive grammar produces a Language

	Conjunctive grammars in terms of a Formal Deduction System
	Conjunctive grammars in terms of Language Equations

	Boolean Grammars
	Boolean grammars in terms of Rewriting
	Boolean grammars in terms of Language Equations
	Limitations

	Related Work
	Three-valued languages
	The Chomsky hierarchy

	Conclusions
	Future work

	Bibliography
	List of Theorems

