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Abstract

The classification (attribution or detection) of malware binaries has an urgent need to
be automated. Due to the increase in the amount of malware and the sophistication
of this malware, the need for automation is greater than ever. Several attempts have
been made at creating machine learning models that can classify binaries. In this thesis
a new technique is created that builds upon these previous attempts, learning from its
mistakes and using its successes.

Finding a good dataset for this thesis, was a challenge. The dataset that was selected in
the end, was created by Boot [11] for his master thesis. It consists of malware samples
from 12 different APTs. Even though it was not the ideal dataset, it had sufficient data
to perform the experiments needed for this thesis.

The feature selected to train a machine learning model on was the disassembly of a
binary. This feature was chosen because of previous work using features that were
comparable or contained similar information and that had succes using these features,
similar to the partial disassembly used by Haddad Pajouh et al. [9] or the raw bytes
used by Raff et al. [8]. The dissembled code was extracted from the binary by means
of a custom disassembler plug that disassembled and reformatted the code to try and
maximise the context of the disassembled code. The disassembled code is then tokenised
and used as the input feature for the model. The model attributes the malware to the
APT that created it.

The model used in the thesis is a neural network architecture consisting of 4 layers.
It first has an embedding layer followed by a bidirectional LSTM and a dense layer that
then connect to the output layer that returns the attribution to an APT expressed in
its probability.

The performance of the model was good, having an 86% accuracy and an average F-
measure of 0.83. However, the model’s performance is not good enough for the model to
serve as a sole attributer. The model could play an advisory role in attributing malware.
Nevertheless, the model did show promise and can still be expanded upon greatly by
unpacking the malware samples and altering the model’s design.

The technique used in this thesis shows promise for binary analysis and using the disas-
sembly of a binary showed promising results, however, there is still a lot to be improved
upon.
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1 Introduction

With the start of the decade, the amount of malware has increased dramatically [10].
Figure 1 depicts the rapid increase of malware attacks. This large increase in attacks
brings new challenges with it, such as the need for fast detection and response, but also
finding out where the malware originated from, to hold the perpetrators responsible.
Not only is there more malware, but the sophistication of the malware has increased as
well. Since 2010 cyber-warfare has become a reality and state-sponsored malware groups
(also called APT, Chapter 1.2) and large hacking groups are becoming an ever-greater
threat [10][14]. This increasing threat calls for a new approach to managing malware.
When normally managing malware on users computers, it consists of 2 steps: malware
classification (based on detection) and malware removal. However, in this thesis, we will
focus on classification based on attribution to an APT. This means that the thesis will
focus on determining who made the malware and not the detection of malware

Figure 1: Amount of detected malware attacks since 2008 [10]

In literature, there are currently two methods to analysing malware, dynamic and static
methods[1]. In the process of dynamic classification, the malware is executed in a con-
trolled environment, that allows for the analysis of the behaviour and purpose or result
of the malware. This method is also called sandboxing.

Static analysis of a binary does not involve executing the binary. The content of the file
is analysed as such. Currently, the most used technique of static analysis is fingerprint-
ing[1]. With fingerprinting, the malware binary is characterised by the information that
is derived from the file such as compiler flags, the OS that it is written for or some ASCII
printable text that is in the binary. This information is used to create a “fingerprint” of
the malware. Fingerprints of different files can be compared in order to detect similar
binaries e.g. similar malware. Due to the never-ending security game between the cre-
ators of malware on one side and the creator of anti-virus software on the other side, this
technique has become less effective. Malware has become more obfuscated because of
the use of polymorphism and packers to hide its true purpose and circumvent detection
mechanisms like fingerprinting [2]. This has made it harder for deterministic techniques
and humans themselves to classify these binaries.

To meet this challenge there has been a shift from methods like fingerprinting towards
the use of machine learning to classify malware. There have been several attempts to
create effective machine learning models to classify malware [8][5][16][12][9].
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This thesis will explore the possibilities of a new static analysis technique, building
on previous attempts and improving upon them. This new technique will be using the
disassembly extracted from the malware binary by means of a disassembler. The data
that results from this will be used to train an RNN (Chapter 1.2 ) network based around
an LSTM (Chapter 1.2) to classify the malware based on its author, also called attri-
bution. Attribution differs from detection on only 1 thing, namely: instead of having
the binary choice of malware or non-malware, attribution has multiple classes that it
can be, one class for every malware creator. Due to time constraints and the lack of a
suitable dataset, training the model on detection will be left as future work.

The performance of the model will be evaluated on its F-measure and several other
metrics, using a model that was created by another student [15] based on the MalConv
model [8] as a benchmark. Furthermore, the model will be evaluated on its usability in
real-life scenarios.

1.1 Readers Guide

Chapter 2 This chapter discusses previous attempts at detecting malware using ma-
chine learning and the important lessons learnt in this research.

Chapter 3 This chapter gives a quick overview of the strategy used in this thesis and
why this strategy was chosen.

Chapter 4 This chapter goes over the needed tools for disassembling binaries and the
tools used for creating a model.

Chapter 5 In this chapter, the methods for malware sample collection and modification
are discussed, before finally discussing the architecture of the new model and the
training and evaluation of this new model.

Chapter 6 This chapter discusses the results obtained from the new model and evalu-
ates its performance.

Chapter 7 This chapter discusses the research that couldn’t be done in this thesis and
future improvements on this thesis.

Chapter 8 Finally, this chapter discusses the implications of this research and summa-
rize the results.
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1.2 Abbreviations used

APT Advanced Persistent Threat

API Application Programming Interface

Bi-LSTM Bidirectional Long Short Term Memory

CNN Convolutional Neural Network

ESN Echo State Network

GRU Gated Recurrent Unit, a form of LSTM with a type of ”forget” gate

LSTM Long Short Term Memory

RNN Recurrent Neural Network

PE header Portable Executable header

ELF header Extensible Linking Format header

Architecture Neural network layer design

Model A completed neural network, with all its layers combined

1.3 Basic concepts

1.3.1 What is a binary

A binary is a file built up of bytes that represents code in such a way that a computer
can interpret it and execute it. It consists of several sections of which a few are of
importance to this thesis.

header The header of a binary contains basic information about the environment for
which the binary is made. For example, if its a 32 bit or a 64 bit executable.
Windows executables use a PE and Linux executables use ELF (Section 1.2).

.text The .text section of a binary contains all its code.

There are many more sections in a binary however these two are of importance to this
thesis. An important fact about how sections are placed within a binary is that they
are positioned at an arbitrary offset within the binary.

1.3.2 Stripped binaries

A binary can be stripped. What this means is that the compiler removes all debug
symbols from the binary when compiling it. This is done to improve performance but
also makes it more difficult for humans to reverse engineer the binary, but has no affect
on the actual disassembly process.
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2 Prior work on malware detection and attribution

When researching the topic of classifying malware using machine learning, several papers
stood out because of the techniques used in them or the issues they encountered. These
papers gave useful information as to how to create an effective model and what to take
into consideration when doing so.
The most important takeaways of each paper are listed below:

2.1 Raff et al. [8] described a new way of analysing malware files by using the raw bytes
of the file. They faced several challenges while doing so, such as large sample sizes
and the placements of sections within a binary (Chapter 1.3.1).

2.2 Safar et al. [12] tried several types of machine learning architectures to see which one
would be most effective for classifying malware. They concluded that the CNN-
LSTM hybrid network performs best. However, a standalone LSTM performed
only slightly worse.

2.3 Vinayakumar et al.[7] exposed the benefits of an LSTM over an RNN when trying to
classify malware due to the need for correlation over long distances in a sequence.
They found that an LSTM has better performances over long sequences.

2.4 Pascanu et al.[5] introduces an interesting feature, based on API calls, that they
used to train their model. They furthermore introduced several useful techniques
for dealing with long sequence lengths, albeit of a different feature type.

2.5 Feng et al.[16] used a concept called Bi-LSTM to give a model the possibility to
learn correlations both going backwards through the input sequence as well as
going forwards. They furthermore introduce a variable-length RNN. However, the
implementation of this on the model made in this thesis will be left for future
work.

2.6 George et al.[3] research showed the importance of managing your dataset when
classifying malware. Their model’s performance was significantly affected by the
underrepresentation of a class within the dataset.

2.7 Haddad Pajouh et al.[9] used an interesting feature selection, using the core instruc-
tions of the ARM instruction set at their feature. However, it had some potential
weaknesses that could harm the effectiveness of their model.

This selection of papers is far from complete. However, the most important papers with
regards to this thesis are listed above. These papers were selected because of the tech-
niques and issues described within them. There are many more papers about malware
classification using machine-learning. A lot of them have a recurrent factor, namely that
the datasets used for the training of the model are often secret and unattainable for use
[8][7][5][16][6].
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2.1 MalConv

In 2017 Raff et al. [8] created a new model for classifying malware based on the raw
bytes. The model processes an entire binary in one go without any preprocessing of the
data. This brought some interesting and relevant challenges with it.

The first challenge they encountered was the random placement of elements within
the binary. In a binary the location of sections and the header (PE or ELF) is random
( 1.2 and 1.3.1). Therefore they decided on a CNN because it has the capacity to find
these randomly allocated sections. Furthermore, they use a fully connected layer so the
network can process these sections better.

The second challenge they faced was the size of the sample they try to analyse. Malware
can vary in size considerably. When analysing a binary directly and all at once, this
would cause the memory footprint to be too large to handle and this would lead to drops
in performance. Therefore they used a moving window of 500 bytes. This means that
they first process the first 500 bytes, then the next 500 and so forth.

A limitation that comes with using the raw bytes when analysing executables is the
fact that you are limited to a broad overview of what happens within the binary. If
you want a more precise overview of what happens you would have to disassemble the
binary. The reason for this is that for a model to be able to completely understand the
binary, it would have to learn the context that it is operating in. This is formed by
combining several sections from the binary.

Another model was trained, using the same structure as the original paper, but on
a different dataset, by Mulder [15]. In his thesis, he trained the model on an attribution
dataset [18]. This same dataset will be used to train the model made in this thesis for
an accurate comparison.

2.2 Comparing performance of neural networks

The use of machine learning and specifically the use of RNNs when classifying malware
was researched by Safar et al. [12]. They used a form of disassembly and applied it to
the Microsoft 2015 BIG malware dataset [20] and used the data resulting from this as
a dataset to train and compare the performance of several types of architectures. They
concluded that for non-hybrid networks, the LSTM network performed best. However,
on overall performance, the CNN-LSTM hybrid network performed better.

2.3 RNN vs LSTM

Vinayakumar et al. [7] created a model that could classify Android malware using the
Android permissions as a bag of words. They clearly describe the advantages of an
LSTM over a traditional RNN. An LSTM has the potential to make links across larger
distances of sequences. Because the sequence size used for the training of the model
made in this thesis relies on the size of the .text (Chapter 1.3.1) section of the original
binary, the model will need to be able to handle links across larger distances in the
sequence. This is necessary because the code won’t be structured in execution order.
So possible associations will have to be made over longer distances.
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2.4 Dealing with long sequences

A totally different approach for sequence feature selection was presented by Pascanu et
al. [5]. They put forward a way of detecting malware based on the API call sequence of
the malware. From the paper itself, it was not clear if this was done in a static or dy-
namic matter. What was clear from the paper was that the sequence size that resulted
from this form of feature extraction was too long for direct input. Their model was
based around a standard RNN and an ESN (Chapter 1.2). The memory windows, how
long they can ‘remember’ from earlier in the sequence, for these types of architecture is
too small for large sequences. Therefore they applied two techniques called half-frame
and max-pooling.

Half-frame is a technique that uses the intermediate states of an RNN as its output
instead of its final state and Max-pooling is a downsampling algorithm that can be used
as a way to give an abstraction of a previous layer.

A small improvement upon this paper was made by Athiwaratkuen et al. [6] by re-
placing the standard RNN with an LSTM and a GRU (Chapter 1.2), this improved the
model significantly.

Due to the fact that the technique developed in this thesis has even longer sequences of
more complex data, namely disassembly instead of API calls, than these paper, it might
be interesting to see the effects of applying the techniques used in these papers to the
model designed in this thesis.

2.5 Bi-LSTM

An interesting take on the normal LSTM model was done by Feng et al.[16]. They
proposed a different approach for detecting malware in .apk files (android applications).
The data generation they used has no relation to the one used in this thesis. However,
a very powerful technique used by Feng et al. is the bidirectional LSTM or Bi-LSTM
(Chapter 1.2).
A Bi-LSTM is particularly useful if you want the model to preserve information from
both forward and backwards in the sequence chain. This feature is useful when analysing
the disassembly that the model made in this thesis will use because of the fact that it
isn’t structured in execution order. Another concept introduced by Feng et al. is a
variable-length RNN. However, due to time constraints, the implementation of this will
be left as future work.

2.6 Unbalanced dataset

George et al.[3] found an interesting pitfall when classifying malware using machine
learning. They concluded that their model performed worse due to the way their dataset
was constructed. They had a dataset that was extremely unbalanced. This did not give
their model a chance to learn the correlations properly. Therefore the performance of
the model was harder to evaluate. The dataset used in this thesis is not a balanced
dataset either. However, if this is taken into consideration during the evaluation, the
effectiveness of the model can still be extrapolated.

2.7 Feature selection

With machine learning, feature selection is very important. Haddad Pajouh et al.[9]
used a questionable feature as their input sequence for an RNN. The feature they se-
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lected was the core ARM instruction of each instruction in the binary. This gave them
a representation of the binary in terms of mov, push, pop and so forth. However, what
they failed to take into account is that not all instructions are created equal. The in-
struction mov is proven to be Turing complete. This means that an entire binary can
consist of only the mov instruction.

Given this possibility, the technique created in this thesis uses the argument of each
instruction as well, as to give context to the neural network on which it can learn equiv-
alence between instructions in the hope to avoid such possible issues.
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3 Strategy

The technique developed in this thesis is based on the idea that a program e.g. binary
can be attributed to its creator based on the content of the binary and that a disas-
sembled binary serves this purpose better than the raw binary. If a model has sufficient
learning capacity, it would be able to distinguish two binaries from each other based
on the patterns that match a specific creator. This idea originated from reading prior
research that succeeded in detecting malware using ARM instruction and attributing
malware using the raw binary (Section 2.7 and 2.1).

Both of these two features used, ARM instruction and the raw binary, are less complete
then the full disassembly would be. This is because of the way a binary is structured.
Raff et all [8] used the raw binary. All information that is in the disassembly, is also
in the binary. However, it is randomly allocated and out of its proper context due to
the way binaries are structured (Section 1.3.1). Disassembling the binary would put
the information contained in the binary in proper context and may give a more useful
feature. Haddad Pajouh et al. [9] also used the disassembly, seeing it as a good fea-
ture to use for training a model. However, they stripped the disassembly instructions
of their corresponding arguments thus removing a possibly useful piece of information.
Therefore, the idea is to use the full disassembly thus providing the model with the most
complete picture of the internals of the binary.

Because of the success of the features used by Raff et al. [8] and Haddad Pajouh
et al. [9], it would follow that a feature that is more complete would have more success.

To create a model that can use this feature and utilize it to attribute the malware
binary to its creator, first the disassembly is extracted from a binary by a disassembler.
Applying this to an entire dataset is challenging but can be done by creating a custom
plugin for the disassembler used. Subsequently, the extracted disassembly should be
structured in a way such that the model can learn the context of a specific instruction
by its neighbouring instructions and its arguments.

The core architecture for the model in this thesis is the LSTM, specifically a bidirectional
LSTM. The LSTM architecture has the potential to keep track of important parts of the
disassembly sequence while learning to disregard the less important parts (Section 2.2).
This is also an advantage considering the large disassembly sequence sizes that can occur.

After construction, each separate element of this technique can be combined to cre-
ate an affective attirbution system for malware binaries.
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4 Binary Ninja and TensorFlow

For a few tasks in this thesis, two third-party software stacks were used. The first is
a binary analysis tool called ‘Binary Ninja’ that has a built-in disassembler that will
be utilised. The second is ‘TensorFlow’, a machine learning framework that has many
built-in systems that facilitates the creation of a neural network.

Both these tools are discussed in detail below.

4.1 Binary Ninja

As input sequence for the model developed in Section 5.5, the disassembly of the input
binary is used. To get this data, a disassembler is needed that is easily scriptable to
enable the creation of a plugin that can create sequences from the entire dataset and it
has to be fast in order to do this within a reasonable time.

When considering these requirements, only two major candidates remain. The first
candidate is IDA pro. IDA pro is a powerful binary analysis tool that has a built-in
disassembler that is scriptable using both c++ and Python3.

The second candidate is Binary Ninja. Binary Ninja is a more lightweight binary anal-
ysis tool that also has a built-in disassembler that is scriptable using Python3.
Binary Ninja was chosen, mainly because it has a well-documented API [19] and a good
support community. The second advantage of Binary Ninja over IDA pro is the rela-
tively low price.

The university purchased a GUI licence for Binary Ninja. On a personal note, the
GUI licence was a lot less practical to work with then a headless version. A headless
version would have made the development of the plugin for binary ninja a lot easier.

4.2 Tenserflow-Keras

There are 3 major Python frameworks for machine learning, Pytorch, Keras and MXnet.
The most used is Keras. An expanded version of Keras is maintained by Google under
the software stack TensorFlow under the name TensorFlow-Keras.

TensorFlow [21] is a framework that facilitates building and training neural networks. It
supports memory management for large datasets, GPU support, tokenisers, and many
more features. Keras itself already supports a wide range of neural network architec-
tures that can be easily fitted together into a complete model as well as the functions
needed to train and evaluate them.

The reason TensorFlow was chosen over MXnet and Pytorch is the ease of use of Tensor-
Flow, especially for relative novices in the field of machine learning. It is well documented
and there is a large support community.
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5 Process from raw binary to classification

To arrive from a binary to an attribution consists of many steps. Every step that the
binary has to go through is discussed in depth in this chapter. Per step, the different
options will be discussed and the final choices will be elaborated on. The entire process
is visualised in Figure 2.

Figure 2: Graph of the steps taken during this thesis

5.1 Data collection

To train the model created in this thesis, training data is needed. This data comes in
the form of a dataset. A dataset contains samples of the problem that the model has to
classify, in our case malware binaries. As mentioned in Chapter 2, many of the datasets
used in prior work are private datasets that were not available. An attribution dataset,
a dataset with malware and their creator attached as label, that is suitable for the model
to train on was available and contained usable samples.

5.1.1 APT Malware Dataset

This APT (Chapter 1.2) Malware dataset was constructed by Boot [11]. for his master
thesis. The dataset consists of a total of 3594 samples from a total of 11 APTs. These
APTs again originate from 5 countries. All of the malware samples were requested by
Boot from Virus Total [23], a large online database of malware samples. Although this
dataset consists solely of malware, not all malware comes in the shape of a binary. There-
fore, the non-binary malware files have to be removed. This is done by the disassembler
plugin, and will be be explained in Section 5.2. After eliminating the non-binary files a
dataset of 2911 binaries remained. However, the final dataset contained 2321 samples.
Why the additional 590 flies were removed will be explained in Section 5.3.
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5.2 Disassembler

The model requires an disassembly sequence that consists of the disassembled binary.
This chapter will go over the creation of the plugin that is used to extract this disas-
sembly sequence from the binary.

5.2.1 Previous attempts

The writing of the plugin took multiple attempts, each improving upon its previous
attempt until a stable plugin, that consistently worked, was created. The first attempt
was based on the idea that a chronological disassembly structure could be created by
using the entry function as a starting point. It would iterate over the disassembly until
a call or a jump instruction was found and then recursively jump into those functions
to disassemble them and add the instructions to the disassembly structure.

The flaw in this attempt became apparent when the plugin tried to disassemble a
stripped binary (Chapter 1.3.1) and it was not able to find the entry point of the binary,
thus resulting in an empty disassembly structure.

After this attempt, the second iteration of the plugin took care of this by checking
the function table for the entry point. However, the plugin still used the call and jump
instructions to create a chronological map.

Although this iteration performed better than the first attempt, there was still a fa-
tal flaw. The plugin did not take into account any conditional jumps or jumps and
calls that were obfuscated in such a way they would not be found. Therefore, the
chronological map would not be valid and the concept of the chronological maps was
abandoned and instead the choice for the use of an enumeration of all functions based
on the function table was made.

5.2.2 Proccess management

The disassembly of a single file takes between 5 and 20 seconds. For the entire dataset,
this would take approximately 10 hours. Therefore, there was a need for a more speedy
process. Multi-threading is the process of having multiple concurrent threads working on
the same problem. In this case, the disassembling of binaries. Binary Ninjas disassembler
didn’t allow multiple async disassemblers to run within the same instance of Binary
Ninja. Because of this, an out of the box solution was needed. Multi-threading consists
of a few basic components:

Resource When working with multiple threads there is often a shared resource or
shared queue of items that need to be processed by the threads. In our case, this
is a queue of binary files to be disassembled. This queue is represented in the form
of a file, that has the name of a binary file on each line. Popping an item of the
queue is done by taking the last line of the file, loading in that file, and deleting
the line from the queue file.

Workers The workers are the threads that do the task that is needed, they grab an
item from the queue and perform the task on that item and repeat this process
until the queue is empty. In this case, the workers are Binary Ninja instances that
disassemble a binary.

Master The master is a worker that takes back control of the program after the queue is
empty and all threads are finished. In this case, one of the Binary Ninja instances
is the master.

14



Using these components, a multi-threading system can be built without the Binary Ninja
instances knowing of each other’s existence or any direct communication between them.

However, one problem remains. When two Binary Ninja instances want to grab the
next file from the queue at the exact same time, there could be a case of duplicate work.
To avoid this mutex locks can be used. However, because the threads are not running in
the same environment, they can’t have a shared mutex lock. This is solved by creating
a ‘.lock’ file. If the ‘.lock’ file exists, it means another thread is currently using the file
that the Binary Ninja instance is trying to access. Until the ‘.lock’ file is deleted, the
thread will wait.

To keep a overview of all the processes running, a logging system was implemented
that registered when a file was processed, and what instance was working or had worked
on that file.

Using this system, a successful setup was made of 4 concurrent Binary Ninja instances
each running 1 thread. This sped up the processing of the dataset significantly.

5.2.3 Disassembling and Reformatting

The process of disassembling and reformatting the binary can be represented in six core
steps.

1. First, the binary is loaded in by the plugin. Binary Ninja then identifies if the file
is a binary and if not, discards the file.

2. Binary Ninja then disassembled the file using its internal disassembler.

3. The Binary Ninja internal disassembler hands control back to the plugin which
then does the following steps in preparation of the reformatting.

(a) First, the symbol table is rewritten. The symbol table is a lookup table
where function names are mapped to their address. This table contains all
the names and addresses of the functions used. From this table, all function
names can be extracted and it can then be inverted to function as a lookup
table where each address is mapped to a function name.

(b) Secondly, the functions that were found by the symbol table are checked for
their length and based on this, they are selected for in-lining. What in-lining
is or why it is done, will be explained later on in the process, where the
functions will be inlined.

Now that all preparations are done, the plugin goes on to the next step.

4. For the reformatting, all functions will have their instructions enumerated. This
is done in the following manner:

(a) All instructions and arguments are enumerated

(b) When a call or jump is found, the address to which is called or jumped is
looked up in the symbol lookup table constructed before and the address is
replaced with the function name at that address.

(c) If a call is made to a function that is selected for inlining, the function will
be in-lined right after the call or jump to that function. When inlining a
function, the disassembly of this function is taken and is injected into the
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function that calls it just after the call. This is done with smaller functions to
put their disassembly in the correct context where it is used. Thus providing
the model more context for identifying what APT created the binary. This is
illustrated in Figure 3. Even though the exact effectiveness of inlining hasn’t
been tested. It can logically only add more information to the model.

(d) Lastly, a check is done over all the disassembly if any memory addresses are
left. These will then be replaced by a tag that corresponds to the read-write-
execute privileges of the memory address.

5. When this process is done for every function, a sanity check is performed that
checks if all functions have been enumerated at least once. This is to avoid missing
a function that is selected for in-lining but never called directly.

6. Now that the reformatting of the disassembly is done, it is written to a file with
the same name as the binary but with the extension ”.decomp”.

The result of this process on a ”Hello world” program can be found in Appendix 10.1.

This disassembling of the binaries provides a clear overview of what code is present
in the binary. Because the data is now organised, the problem that Raff et al. [8] faced
with randomly located sections, is no longer an issue. Furthermore, because the entire
disassembly is enumerated, instructions and arguments, the instructions have more con-
text for the model to learn on, which gives the possibility for the model to understand
equivalence, unlike the approach used by Haddad Pajouh et al. [9]

Figure 3: Example of inlining a function

5.3 Filtering

Now that the binaries have been disassembled, another problem has to be confronted,
namely the size of the disassembled binares. From Figure 4 it is visible that the spread
of malware sizes differs between APTs. Because of this, the dataset is unbalanced. The
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larger the size of the disassembly, the more data it has for the model to train on. If an
APT has small samples, the model won’t have as much data to find a pattern in as for an
APT that has large samples. Therefore the model can’t train as wel on that APT as it
can on the APTs with larger samples. With having such an unbalanced dataset comes

Figure 4: Data size spread per APT

another problem. The largest malware disassembly was 30+ MB, while the smallest
was less than 1KB (Figure 4). Because in the next section (Section 5.4) the disassembly
sequences are padded to all have a uniform size, the difference between these two would
have to be filled up with zeros. This would then increase the overall size of the dataset.
If all disassembled malware would stay in the dataset and all other samples would be
padded to fit the size of the largest data file. The size of the dataset would then be
49 GB. The dataset would not only be impractical to work with, it would also mainly
consist of padding rather than actual data. To solve this, large samples can be excluded
from the dataset. Therefore the size limit of a data files was set to a maximum size
of 0.5 MB. The largest downside of this filtering was the loss of an entire class. The
APT called “Energetic Bear” has its mean at 1.6 MB (Figure 4) and would be largely
excluded from the dataset after the filtering for size. Because of this, it was decided that
the entire APT “Energetic Bear” would be excluded from the dataset. This filtering
brought the size of the dataset down to 658 MB after tokenisation (Section 5.4). A
dataset of this size is easy to manage and faster to load into memory.

5.4 Tokenisation

A machine learning model does not understand language and text as a human does, it
needs to be able to perform computations on its input. Because of this, the input of the
model has to be numerical. This is were a tokenizer comes in. A tokenizer replaces the
instructions and arguments in the disassembly from the binary with a continuous nu-
merical representation. A model can then use these numerical representations to create
an internal fingerprint for an APT without having to know the meaning of the text.

A tokeniser needs to create the mapping from instructions and arguments to their nu-
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merical representation. The process of creating this map is called fitting. When fitting
the tokenizer, it is important that it only uses the training data to fit the tokenizer.
This way, you can make sure that the model is completely unaware of the test data.

The tokeniser used in this thesis was limited to a maximum of 100 words, this means
that only the 100 most frequently used instructions and arguments get a unique numer-
ical representation. All other instructions and arguments get represented by an ”OOV”,
or out of vocabulary token. This is done to focus the model on the core differences of
the binary and not get stuck on potentially useless data.

5.4.1 Datastorage

Disassembling (Section 5.2), filtering (Section 5.3) and tokenising (Section 5.4) the entire
dataset is a time consuming process. Ideally this only has to be done once. Therefore,
after the data processes and is ready for use, it is saved to JSON files for easy retrieval
by a generator, to be later described in Section 5.5.2.

5.5 Neural Network

5.5.1 Model design

After researching several model designs from prior work (Chapter 2), the choice was
made to use a bidirectional LSTM as the core of the model created in this thesis. The
reason for this choice was mainly because the disassembly is not in execution order.
The bidirectional LSTM analyses its input sequence from front to back, but also back
to front. This gives the model a better chance of learning the differences between APTs
in the bigger picture. However, before the input data reaches the bidirectional LSTM it
first goes through an embedding layer. An embedding layer simplifies the language used
inside the neural network. It compresses large sequences into smaller sequences based
on objects that are found in close proximity and represent this as one object. After the
embedding layer and the bidirectional LSTM, the model has two dense layers. The first
dense layer is structured such that the model can effectively learn correlations through
the output of the bidirectional LSTM. The final layer of the model has as many nodes
as there are APTs to be learned on and is its output layer.

A lot of the measures to deal with long sequences, as described by Pascanu et al. [5]
were not implemented into the network due to a lack of time and will be left as future
work.

The next few sections will be discussing the training of the model and all requirements
that come with this. When speaking of the model in these chapters, it is regarding this
model.

5.5.2 Input pipeline

For a model to train, it needs training data. There are two methods of delivering this
data to the model. The first method would be to load the entire dataset into memory at
once and feed it to the model as one big data blob. However, due to the large sequence
size and the large model size that comes with this, the memory footprint would be too
large. Therefore, a second method exists that utilises generators.
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A generator is a function that, each time you call it, returns the next object from a
given list. The dataset that is used to train the model, is saved in JSON files, as de-
scribed before in Section 5.4.1. Therefore, the generator only has to open and read the
next JSON file in the directory every time it needs to provide a new sample.This way,
the minimal amount of data is in memory at any time.

5.5.3 TensorFlow dataset

Besides using generators, there is another thing that can be done to optimise data
management. TensorFlow has a useful built-in tool for creating a lightweight object that
utilises a generator and can create circular shuffled datasets with this. A circular shuffled
dataset is a self repeating dataset that comes in a randomly shuffled order each time,
this is done to improve the training process. Tensorflow-datasets are optimised to work
with the rest of the TensorFlow software stack including Keras and GPU accelerated
learning. This comes in useful because of the large network size, the TensorFlow-dataset
optimises the memory usage of the GPU so this doesn’t have to be reimplemented per
model.

5.5.4 Training the model

Now that the training data and the model are ready, the model can be trained. Initially,
the model was overfitted on a smaller dataset with only two classes to tweak the model’s
parameters like layer sizes and activation functions. When the model performed to
satisfaction, the model was trained on the entire dataset. When training a model, you
don’t know in advance how many epochs, where an epoch is the time it takes for the
model to go over the entire dataset once, it takes for the model to reach its optimal
performance. Therefore, a mechanism called early-stopping is implemented. Early-
stopping checks performance increases per epoch and decides to stop the training when
a delta change hasn’t been reached. This was after 26 epochs for the model trained on
the APT dataset.

5.5.5 Model evaluation

A machine learning model can be evaluated in many ways. The most common metric
for performance is the accuracy metric. However, because of the unbalanced dataset
that is used in this thesis, this metric would be unreliable. The reason for this is that
the accuracy score is based on the proportion of correctly predicted items. Take the
following example:
If a dataset contains 90% of sample A and 5% of sample B and 5% of sample C and
the model would identify 90% of A correctly and can’t distinguish B and C from one
another, the model would still have a 90% accuracy even though it is not an effective
model for its task. This would also be the case with our dataset if we were to use the
accuracy as sole metric for performance as is visible from Figure 5.
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Figure 5: Dataset sample count per APT

To still evaluate the model and get a measure of its performance, the following set
of metrics were used.

Recall What proportion of malware that was classified to be the correct APT in pro-
portion to all that APT’s samples.

Precision What proportion of malware that was classified to be of a given APT was
actually made by this APT. This gives a good indication of if the model can
distinguish between classes.

Accuracy The proportion of correctly predicted items.

F-measure The F-measure, also called the F1-score, is the harmonic mean of both the
recall and the precision. The F-measure is a good metric when a combination of
both recall and precision is needed.

Due to the goal of this model, namely attributing a given piece of malware, both the
recall and precision of the model are of importance. In a real-life scenario, if the model
would incorrectly predict the creator given a piece of malware and this results in wrong-
fully placing the blame on an innocent party. It could cause a diplomatic incident.
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6 Discussion of results

6.1 Sample size matters

From Figure 4 it was clear that one APT its samples, namely ”Energetic Bear”, were
nearly all the same size. This was the reason it was removed from the dataset used to
train the model. However, this near-constant size creates the possibility to manually
attribute malware coming from this APT, thus negating the need for sophisticated
techniques.

6.2 Model performance

As described in Chapter 5.5.5 the model will be evaluated using four main metrics,
namely recall, precision, accuracy and F-measure. The most important metric will be
the F-measure. This is because of the importance of both recall and precision and
F-measure being the harmonic mean of them gives an impression of the overall perfor-
mance.

All of the metrics that are used can be calculated using a confusion matrix of the
correct APT and the predicted APT given a malware sample as seen in Figure 6.

Figure 6: Confusion matrix for all APTs
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Table 1: Evaluation scores per APT
Evaluation metric APT 21 APT 10 Gorgon Group APT 1 Dark Hotel Winnti
Recall 1.00 0.67 0.85 0.86 0.73 0.90
Precision 0.80 0.78 0.68 0.86 0.88 0.97
F-measure 0.89 0.72 0.76 0.86 0.80 0.94
Train samples 82 161 202 325 180 325
Test samples 4 21 20 36 30 41

Evaluation metric APT 28 Equation Group APT 19 APT 29 APT 30
Recall 0.80 1.00 0.50 1.00 0.89
Precision 0.73 1.00 1.00 0.81 0.81
F-measure 0.76 1.00 0.67 0.90 0.85
Train samples 118 358 22 174 141
Test samples 10 37 2 13 19

Table 2: Evaluation score average from all APTs
Metric Value
Recall 0.84

Precision 0.85
F-measure 0.83
Accuracy 86%

6.3 Context of the results

6.3.1 Individual APTs evaluation

To determine how the model performed, a good interpretation of the metrics, with re-
gards to malware attribution, is needed. What do recall and precision mean in practice
with regards to malware attribution? When looking at malware, if an APT has a recall
of 0.6, then 40% of that APTs malware were attributed to another APT. A precision
of 0.6 means that 40% of the malware attributed to this APT were not made by that
APT. Using this, the results from Table 1 can be properly interpreted.

Overall, the network performs good, having an F-measure of 0.83 and an accuracy
of 86% (Figure 6 and Table 2). However, there are some interesting cases to look at.

1. The first APT 10 has 10% of its samples (2 samples) attributed the Gorgon group
and 10% of its samples attributed to APT 29 (Figure 6 and Table 1). the Gorgon
Group and APT 29 are both affiliated with different countries than APT 10 (Table
5). APT 29 does originate from a neighbouring country of APT 10. This might
indicate resource sharing within regions or more likely resource sharing between
historic allies. However, since the amount of data that is misattributed to these
2 APTs is 4 samples in total and 3 more samples were misattributed to 3 other
APTs, no real conclusions can be drawn from this. It is more likely that these
samples were misclassified based on some noise in the data.

2. The next interesting case that comes forward is APT 1. The model performs well
on samples from this APT. Only 5 of its 36 were misattributed. Given the size
of the training data ( Table 1), the model managed to get a relatively good grip
on this APT. The 5 samples that were not attributed correctly were most likely
misattributed due to noise in the samples.
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Figure 7: Confusion matrix of APTs per country

Table 3: Evaluation scores per country
Evaluation metric C1 C2 C3 C4 C5
Recall 0.91 0.91 1.00 0.73 0.85
Precision 0.94 0.78 1.00 0.88 0.68
F-measure 0.93 0.84 1.00 0.80 0.76

3. When looking at Dark Hotel, the first thing that comes forward is the fact that
13% of its samples (4 samples) were attributed to the Gorgon Group. Even though
these are only a few samples, it is interesting that they were all misattributed to
one specific APT. This could indicate that these APTs share resources or reuse
each other’s malware.

4. The model performed really well on the Equation Group (Figure 6). It managed
to attribute all of its samples correctly. This could indicate that this APT has a
specific style or type of malware that it uses that is not used by any other APT.

5. One APT that didn’t perform well at all was APT 19 (Figure 6). This can be
attributed to a lack of data. APT 19 only had 22 train samples and 2 test samples
(Table 2).

The amount of data used to train and test the model is not enough to make any con-
clusions on what caused possible misattribution if it was noise or any other correlation
between APTs. Nevertheless, the model can attribute several classes relatively consis-
tently. There are some factors which can explain this.

1. The first factor that might explain the performance is the fact that the malware
samples are not all written in the same programming language. Each programming
language compiles differently. Therefore, if an APT is more prone to have samples
that are of a specific programming language and this language is not used by other
APTs, then this can be a clear identifier for this APT.
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Table 4: Evaluation scores based on associated country
Evaluation metric Value

Recall 0.88
Precision 0.85

F-Measure 0.86
Accuracy 90%

Table 5: Countries with their affiliated APTs
Country Affiliated APTs
C1 APT 1, APT 10, APT 19, APT 21, APT 30, Winnti
C2 APT 28, APT 29
C3 Equation group
C4 Dark Hotel
C5 Gorgon Group

2. The second factor that comes into play is the coding styles of each group. Even
though after compiling, variable names and other personalizing features are stripped,
programming styles are still visible. These programming styles can be used as an
identifying feature of a group or individual person. This was also corroborated
by Caliskan Islam et al.[4]. Therefore APTs can be identified by their respective
programming styles.

Nevertheless, there are also some factors that have not yet been mentioned that could
have had a negative effect on performance.

1. As mentioned in Chapter 1, packers are used to obfuscate malware. Packers have
a relatively small amount of disassembly. Therefore, there is less data to identify
the APT with. A way to identify if this could be an actual performance hindrance
would be to have a dataset consisting of confirmed non packed malware samples
and compare its performance to the performance on the APT dataset (Section
5.1). A way to combat packers is by combining the approach used in this thesis
with a dynamic analysis approach that will be further elaborated on in future work
(Chapter 7)

2. Another possible performance hindrance is polymorphism. If the malware was
altered by a polymorphic engine, the model might not be able to link it to similar
malware due to its altered structure. To confirm that this is an actual problem, a
test has to be done with a non-altered dataset and a dataset that has been altered
by a polymorphic engine. This type of obfuscation can most likely not be solved
by using the disassembly as a feature, however using API calls could be useful in
combating this, like is done by Pascanu et al.[5].

Resource sharing and malware reuse are all speculative. What can be concluded from
this model is that it can not yet be relied upon as a sole attributer. What it can be
used for, is an advisory role. Its overall performance as can be seen from Table 2 is
relatively good given the dataset it was trained on. However, due to the sensitive nature
of malware attribution, the model doesn’t perform good enough to be seen as a reliable
attributer. When asking the model to attribute a piece of malware, it would be more
useful to look at the top 3 highest candidates that the model puts forward instead of
only looking at the highest. The model then gives a human a prime candiate and what
other candidates there are.
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Table 6: C1 APTs compared
APT Recall Precision F-Measure
c1-1 0.86 0.86 0.86
c1-2 0.67 0.78 0.72
c1-3 0.50 1.00 0.67
c1-4 1.00 0.80 0.89
c1-5 0.89 0.81 0.85
c1-6 0.90 0.97 0.94

The dataset that was used to train and test the model was unbalanced (Section 5.5.5).
Because of this, some APTs had more test and train samples than others. For the APTs
that have relatively few test samples, the results are less easy to interpret because the
probability that the model got lucky is higher.

6.3.2 Country evaluation

From Figure 7 it is visible that most of the APTs in the APT dataset originate from
C1. The APTs affiliated with C1 have some variation in performance (Table 6) taking
into account that some of these had a very limited amount of test samples, this could be
attributed to potential resource sharing between these APTs, but this conjecture isn’t
supported by the other results (Figure 6). Nevertheless, due to the secrecy surrounding
these APTs, it is unlikely this hypothesis can be tested.

The overall F-measure of the model when looking at the country data is 0.86 (Sec-
tion 6.3.1). However, when looking at the performance hindrances, another hindrance
might play a role, namely false flag attacks. A false flag attack is an attack meant to
misdirect the victim towards another country or organisation [17]. The possible inclu-
sion of false flag attacks in the dataset could have a negative effect on the performance
of the model. Confirming that this is an actual performance hindrance is problematic
due to the fact that there is no exact data available.

6.4 Strategy Evaluation

Overall the strategy discussed in Chapter 3 performed well. Getting all the parts work-
ing took quite some time. However, once everything was working it was stable and a
good system to work with. The speed-boost that the disassembler got by using multi-
threading (Section 5.2) helped a lot in speeding up the process.

6.5 Benchmark with previous work

As stated before, accuracy is not a good metric for looking at the performance of a model
trained on an unbalanced dataset. However, Mulders [15] used different performance
metrics, the only overlapping metric was the accuracy, therefore it is used for comparing
the performances of the model developed in this thesis and the model developed by
Mulders.

In previously done experiments on the APT dataset by Mulders [15] the accuracy for the
prediction per class was 85%. From the results of the new model, it is visible that the
accuracy is only slightly better at 86% (Table 2). However, the model used by Mulders
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wasn’t limited to only binaries and thus had a larger range of samples at its disposal.
This could be a good argument to support the method developed by Raff et al. [8].

When looking at the per country performance, there is a similar increase in 1% with
regards to accuracy, from 89% to 90% (Table 4). From these results, the effect of using
disassembly seems marginal. However, there are still a lot of improvements that can be
made upon the model as will be discussed in the next Chapter (Chapter 7).
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7 Future work

7.1 Packers

This new technique has not been tested to its full extent because of a technique used
by malware authors called packing. Packing is the practice of compressing the malware
executable code and encrypting it. The only thing the disassembler plugin will find is
the decompressing and decrypting code. The decompressing an decrypting code is not
useless for all cases. For example, it can still be useful when trying to identify the APT
that wrote the malware because different APTs use different methods of packing. A
promising way of getting around packers is by doing a memory dump of the program
after its first system call. This is usually a good indication that the malware is unpacked
and can then be dumped and decompiled.

7.2 Dataflow graphs

This thesis focused mainly on the code of the malware samples, however, a good addition
to the code would be data flow graphs. Data flow graphs were used by C. Meijer at
al.[13] to find crypto algorithms in binaries. Data flow graphs can also be useful to
identify malware authors because they are affected by the way the program is written.

7.3 Network

The LSTM architecture was not the best performing architecture in the experiments
performed by Safa et al. [12]. The CNN-LSTM hybrid network performed best. Using
a CNN-LSTM based model could improve performance. However, the model in its
current state is very minimalistic. Using only one bidirectional LSTM layer. Adding
more LSTM layers might improve performance also. The reason the CNN-LSTM wasn’t
implemented initially was due to my personal inexperience with machine learning and
the framework TensorFlow.

7.4 Max-pooling and Half-frame

Pascanu et al. used two interesting techniques that can be useful when analysing long
sequences. They used half-frame and max-pooling.

Half-frame is a technique that uses the intermediate states of an RNN as its output
instead of its final state and max-pooling is a downsampling algorithm that can be used
as a way to give an abstraction of a previous layer.

Applying these techniques could speed up the model and increase its performance.

7.5 Variable length RNN

Feng et al. [16] used a variable-length RNN. Applying this to the model developed in
this thesis increases the ability of the network to process larger malware samples. In
Section 5.3 many samples had to be removed from the dataset because of their size.
Using a variable RNN would enable the model to also process these samples without
having to pad the other samples to their size and thus keeping the dataset small.
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7.6 Inlining

During this process of disassembling and reformatting (Section 5.2), the functions are
inlined. This was done based on the assumption it would give the model more context to
learn on. However, to confirm this assumption, a study should be performed comparing
the performance of disassembly that has inlined functions to the performance of a model
that does not have inlined functions.

7.7 Performance on a raw binary

In this thesis, the network is used to process a disassembled binary. However, it would be
interesting to see the performance of a similar network structure but directly trained on
the raw binary as done by Raff et al. [8]. To get an accurate comparison of the models’
performances, both should first go through several of the future work steps noted above
( Section 7.3 and 7.4)

7.8 Malware detection

The technique for malware analysis in this thesis is applied to malware attribution.
However, it would be interesting to see the effectiveness of this same technique applied
to malware detection. An important factor to keep in mind when doing so is that the
malware should be unpacked first, how this is done is described in Section 7.1. This is
important to make sure the model trains on malware and not on packers.
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8 Conclusion

8.1 Data acquisition

During this thesis, there was a recurring problem with acquiring the datasets used by
other researchers due to those datasets being privately owned by companies. This was
solved by obtaining access to one open-source dataset that was used in another thesis
[15].

8.2 Strategy evaluation

8.2.1 Disassembly plugin evaluation

The process of extracting the disassembly was a process that needed a lot of attempts
before it was suitable for use. The effectiveness of using disassembly as a feature isn’t
yet fully clear. Therefore the same model used in this thesis should be trained on raw
binaries as well, as described in Section 7.7. What can be concluded is that the plugin
as it is structured now is a fast way of disassembling a large dataset and the time it
takes to disassemble one sample for real-life attribution is negligible.

8.2.2 Model evaluation

From the results discussed in Section 6 it can be concluded that the model has potential.
Its high F-measure of 0.83 and an accuracy of 86% show that the model can learn to
attribute APTs. However, the model doesn’t perform well enough to be used as a sole
attributer. The model’s performance could significantly improve given a better dataset.

When comparing the technique developed in this thesis, it performs slightly better than
the technique developed by Raff et al. [8] and adapted by Mulders [15]. However, the
technique developed in this thesis has some drawbacks. The technique is limited by
malware in the form of a binary. Because the technique is based on the disassembly of
that binary. The technique developed by Raff et al. doesn’t have this drawback. How-
ever, the technique developed in this thesis does have more possibilities to expand on
its analysis of the binary by unpacking packed binaries and creating a more complicated
network structure as described in Chapter 7.

8.3 Possible real life applications

Currently, the performance of the model is not good enough to be used as a sole at-
tributer. However, Chapter 6 shows that the model performs well enough to be used in
an advisory capacity.

The technique as developed in this thesis would be suitable for creating an applica-
tion, however, a few issues have to be addressed first.

1. The plugin needs to be rewritten for the Binary Ninja headless version such that
it can be integrated into a bigger piece of software.

2. The input pipeline to the model would have to be reformed to handle single files.

8.4 Personal lessons learned

During this thesis, I came across a lot of problems that I had not foreseen. If I or any
other student would have to continue this research or use aspects of it, here are the most
important takeaways of the process.
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8.4.1 Expectactions

Being a cyber-security student and more akin to low lever cyber-security, it is a big
change to look at machine learning. When I started with the subject I had no idea what
things would work and what would not. Therefore I decided to use something I did
know, namely binary analysis and disassembly in particular. When reading the prior
works like the work from Raff et al. [8] and Haddad Pajouh et al. [9] I came across
features and techniques used for malware classification using machine learning that, in
my experience with malware analysis, should not be valid features. After discussing with
friends and security experts like C. Meijer, I concluded for myself that these features
were indeed ambiguous. However, looking at the results that the models trained on these
features achieved, I was surprised by how well they performed. Another conclusion that
I came to when reasoning about these features, is that the features that should not work
for detecting malware, can work for attributing malware.

8.4.2 Disassembler

When I started with the disassembly phase of the thesis. I had the idea to integrate the
disassembler in the input pipeline of the actual model. However, the university bought
the GUI licence for Binary Ninja. Having to use the GUI over the headless version was a
huge time waste and I would advise anyone using the same strategy to buy the headless
version. It would make the disassembly process more streamlined and would avoid the
detour that had to be made to multithread and speedup this process.

8.4.3 Time lapse

The most time in this research I spent on developing and getting the model working.
Creating the Binary Ninja plugin was not a quick process, however, it was a familiar
subject to me and I knew how everything interacted. When I started creating the
model, I had no prior experience with machine learning or TensorFlow in general. This
inexperience caused me to make some stupid mistakes and was the cause of a lot of
double work. My advice to future researchers that don’t have experience with machine
learning would be to get familiar with the existing frameworks before you start properly
experimenting with them.

8.4.4 General remarks

Even though this thesis wasn’t easy for me to complete, I am convinced that machine-
learning will play a key role in future cyber-security and malware analysis.

Lastly, the disassembled APT dataset and model used with all associated code can
be found in a public repository on Github [22].
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10 Appendix

10.1 Hello world disassembled

The output of a simple hello world program in the language C disassembled by the
plugin described in this thesis.

sub_401000 sub_4016a0

push 0xffffffff push ebx

push sub_401d6b push ebp

mov eax [ fs : 0x0 ] push esi

push eax push edi

mov [ fs : 0x0 ] esp mov esi ecx

push ecx call sub_4019f0

mov eax [ rw-data ] mov edi [ esi + 0x4 ]

test eax eax push rw-data

jne r-xdata push rw-data

mov ecx [ esp + 0x4 ] push edi

mov [ fs : 0x0 ] ecx call [ FindResourceA@IAT ]

add esp 0x10 mov ebx eax

retn push ebx

push 0x620 push edi

call ??2@YAPAXI@Z call [ LoadResource@IAT ]

add esp 0x4 push eax

mov [ esp ] eax call [ LockResource@IAT ]

test eax eax push ebx

mov [ esp + 0xc ] 0x0 push 0x0

je r-xdata mov ebp eax

xor eax eax call [ SizeofResource@IAT ]

mov [ rw-data ] eax mov edi eax

mov ecx eax test edi edi

call sub_401070 jle r-xdata

mov [ rw-data ] eax pop edi

mov ecx [ esp + 0x4 ] pop esi

mov [ fs : 0x0 ] ecx pop ebp

add esp 0x10 pop ebx

retn retn 0x4

sub_401070 mov eax [ esp + 0x14 ]

mov edx ecx push edi

push esi push ebp

push edi push eax

mov ecx 0x41 mov ecx esi

lea esi [ edx + 0x8 ] call sub_401620

xor eax eax push 0x0

mov edi esi push 0x80

mov [ edx + 0x4 ] 0x0 push 0x2

[ edi ] push 0x0

mov ecx 0x41 push 0x0

lea edi [ esi + 0x104 ] add esi 0x51c

[ edi ] push 0x40000000

mov ecx 0x41 push esi

lea edi [ esi + 0x208 ] mov ebx eax

[ edi ] call [ CreateFileA@IAT ]
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mov ecx 0x41 lea ecx [ esp + 0x14 ]

lea edi [ edx + 0x51c ] push 0x0

mov [ edx ] r--data push ecx

[ edi ] mov esi eax

mov ecx 0x41 push edi

lea edi [ edx + 0x314 ] push ebx

[ edi ] push esi

mov ecx 0x41 call [ WriteFile@IAT ]

lea edi [ edx + 0x418 ] push esi

[ edi ] call [ CloseHandle@IAT ]

pop edi sub_401730

mov eax edx push ebp

pop esi mov ebp esp

retn push 0xffffffff

sub_401100 push sub_401d80

mov eax [ esp + 0x4 ] mov eax [ fs : 0x0 ]

mov edx [ esp + 0x8 ] push eax

mov [ ecx + 0x4 ] eax mov [ fs : 0x0 ] esp

lea eax [ ecx + 0x314 ] sub esp 0x350

push esi push ebx

mov esi 0x104 push esi

sub edx eax push edi

test esi esi xor edx edx

jne r-xdata mov ecx 0xe

mov [ eax ] cl xor eax eax

inc eax lea edi [ ebp - 0x4c ]

dec esi mov [ ebp - 0x50 ] edx

jne r-xdata [ edi ]

mov [ eax ] 0x0 mov ecx 0x40

pop esi lea edi [ ebp - 0x257 ]

retn 0x8 mov [ ebp - 0x258 ] dl

mov [ eax - 0x1 ] 0x0 mov [ ebp - 0x35c ] dl

pop esi [ edi ]

retn 0x8 stosw [ edi ]

mov cl [ edx + eax ] stosb [ edi ]

test cl cl mov ecx 0x40

je r-xdata xor eax eax

mov [ eax - 0x1 ] 0x0 lea edi [ ebp - 0x35b ]

pop esi mov [ ebp - 0x154 ] dl

retn 0x8 [ edi ]

sub_401180 stosw [ edi ]

push ecx stosb [ edi ]

push ebx mov ecx 0x40

push ebp xor eax eax

push esi lea edi [ ebp - 0x153 ]

push edi mov [ ebp - 0x10 ] esp

mov edi ecx [ edi ]

call sub_4018b0 stosw [ edi ]

mov ebx [ edi + 0x4 ] stosb [ edi ]

push rw-data lea eax [ ebp - 0x14 ]

push rw-data push r--data

push ebx push eax
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call [ FindResourceA@IAT ] mov [ ebp - 0x4 ] edx

mov esi eax mov [ ebp - 0x14 ] 0x6f

test esi esi call _CxxThrowException

je r-xdata sub_4018b0

pop edi sub esp 0x208

pop esi push ebp

pop ebp push esi

pop ebx mov ebp ecx

pop ecx push edi

retn mov ecx 0x40

push esi xor eax eax

push ebx lea edi [ esp + 0xd ]

call [ LoadResource@IAT ] mov [ esp + 0xc ] 0x0

test eax eax [ edi ]

je r-xdata stosw [ edi ]

push eax stosb [ edi ]

call [ LockResource@IAT ] lea eax [ esp + 0xc ]

mov ebp eax push 0x104

test ebp ebp push eax

je r-xdata push 0x0

push esi call [ GetModuleFileNameA@IAT ]

push 0x0 lea eax [ ebp + 0x8 ]

call [ SizeofResource@IAT ] lea edx [ esp + 0xc ]

mov ebx eax mov esi 0x104

test ebx ebx sub edx eax

jle r-xdata test esi esi

push 0x0 jne r-xdata

push 0x80 mov [ eax ] cl

push 0x2 inc eax

push 0x0 dec esi

push 0x0 jne r-xdata

add edi 0x10c mov [ eax ] 0x0

push 0x40000000 lea eax [ ebp + 0x210 ]

push edi lea edx [ esp + 0xc ]

call [ CreateFileA@IAT ] mov esi 0x104

mov esi eax sub edx eax

lea eax [ esp + 0x10 ] dec eax

push 0x0 mov cl [ edx + eax ]

push eax test cl cl

push ebx je r-xdata

push ebp jmp r-xdata

push esi test esi esi

call [ WriteFile@IAT ] jne r-xdata

push esi mov [ eax ] cl

call [ CloseHandle@IAT ] inc eax

sub_401210 dec esi

sub esp 0xc jne r-xdata

push ebx mov [ eax ] 0x0

mov ebx [ CreateDirectoryA@IAT ] lea edi [ esp + 0xc ]

push ebp or ecx 0xffffffff

mov ebp [ GetLastError@IAT ] xor eax eax

push esi [ edi ]
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push edi not ecx

mov [ esp + 0x10 ] rw-data dec ecx

mov [ esp + 0x14 ] rw-data mov al 0x5c

mov [ esp + 0x18 ] rw-data mov edx ecx

xor esi esi mov cl [ esp + edx + 0xa ]

lea edi [ esp + 0x10 ] sub edx 0x2

mov edx [ esp + esi * 4 + 0x10 ] cmp cl al

mov eax [ esp + 0x20 ] je r-xdata

mov esi 0x104 dec eax

sub edx eax mov cl [ edx + eax ]

call ebp test cl cl

cmp eax 0xb7 je r-xdata

je r-xdata jmp r-xdata

test esi esi mov ecx 0x40

jne r-xdata xor eax eax

mov [ eax ] cl lea edi [ esp + 0x111 ]

inc eax mov [ esp + 0x110 ] 0x0

dec esi [ edi ]

jne r-xdata stosw [ edi ]

inc esi lea esi [ esp + edx + 0xd ]

add edi 0x4 lea ecx [ esp + 0x110 ]

cmp esi 0x3 stosb [ edi ]

jb r-xdata mov edx esi

pop edi mov edi 0x104

pop esi lea eax [ esp + 0x110 ]

pop ebp sub edx ecx

mov [ eax ] 0x0 mov cl [ esp + edx + 0xb ]

pop ebx dec edx

add esp 0xc cmp cl al

retn 0x4 jne r-xdata

dec eax test edi edi

mov cl [ edx + eax ] jne r-xdata

test cl cl mov [ eax ] cl

je r-xdata inc eax

dec eax dec edi

pop edi jne r-xdata

pop esi lea edx [ esp + 0x110 ]

pop ebp push rw-data

mov [ eax ] 0x0 push edx

pop ebx mov [ eax ] 0x0

add esp 0xc call [ strstr@IAT ]

retn 0x4 add esp 0x8

mov eax [ edi ] mov [ eax + 0x4 ] 0x0

push 0x0 lea eax [ esp + 0x110 ]

push eax lea ecx [ esp + 0xc ]

call ebx push eax

cmp eax 0x1 push ecx

je r-xdata push rw-data

pop edi add ebp 0x10c

pop esi push 0x104

pop ebp push ebp

pop ebx mov [ esi ] 0x0
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add esp 0xc call sub_401a30

retn 0x4 add esp 0x14

sub_4012b0 pop edi

sub esp 0x694 pop esi

xor eax eax pop ebp

push ebx add esp 0x208

mov [ esp + 0x5 ] eax retn

push ebp dec eax

mov [ esp + 0xd ] eax mov cl [ edx + eax ]

push esi test cl cl

mov [ esp + 0x15 ] al je r-xdata

push edi jmp r-xdata

lea eax [ ecx + 0x10c ] sub_4019f0

xor ebx ebx push esi

push 0x2e mov esi ecx

push eax push edi

mov [ esp + 0x28 ] ecx lea edi [ esi + 0x418 ]

mov [ esp + 0x18 ] bl push edi

call [ strrchr@IAT ] call sub_401210

mov edx eax lea eax [ esi + 0x314 ]

lea eax [ esp + 0x18 ] add esi 0x51c

add esp 0x8 push eax

mov esi 0xa push edi

lea ecx [ esp + 0x10 ] push rw-data

sub edx eax push 0x104

cmp esi ebx push esi

jne r-xdata call sub_401a30

mov [ ecx ] al add esp 0x14

inc ecx pop edi

dec esi pop esi

jne r-xdata retn

mov [ ecx ] bl sub_401a30

mov ecx 0x40 mov eax [ esp + 0x8 ]

xor eax eax cmp eax 0x7fffffff

lea edi [ esp + 0x5a1 ] jbe r-xdata

mov [ esp + 0x5a0 ] bl push ebx

lea edx [ esp + 0x5a0 ] xor ebx ebx

[ edi ] push esi

lea ecx [ esp + 0x10 ] push edi

stosw [ edi ] test eax eax

push ecx jne r-xdata

push rw-data mov eax 0x80070057

push 0x104 retn

push edx mov ecx [ esp + 0x18 ]

stosb [ edi ] mov edi [ esp + 0x10 ]

call sub_401a30 lea esi [ eax - 0x1 ]

mov ecx 0x40 lea eax [ esp + 0x1c ]

xor eax eax push eax

lea edi [ esp + 0x4ad ] push ecx

mov [ esp + 0x4ac ] bl push esi

[ edi ] push edi

stosw [ edi ] call [ _vsnprintf@IAT ]
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mov esi [ RegOpenKeyExA@IAT ] add esp 0x10

add esp 0x10 test eax eax

stosb [ edi ] jl r-xdata

lea eax [ esp + 0x24 ] mov ebx 0x80070057

lea ecx [ esp + 0x10 ] pop edi

push eax mov eax ebx

push 0xf003f pop esi

push ebx pop ebx

push ecx retn

push 0x80000000 mov [ esi + edi ] 0x0

call esi mov ebx 0x8007007a

mov ecx [ esp + 0x24 ] cmp eax esi

mov ebp [ RegQueryValueExA@IAT ] ja r-xdata

lea edx [ esp + 0x2c ] jne r-xdata

lea eax [ esp + 0x49c ] pop edi

push edx mov eax ebx

push eax pop esi

push ebx pop ebx

push ebx retn

push ebx mov [ esi + edi ] 0x0

push ecx pop edi

mov [ esp + 0x44 ] 0x104 mov eax ebx

call ebp pop esi

mov edx [ esp + 0x24 ] pop ebx

push edx retn

call [ RegCloseKey@IAT ] sub_401aa0

mov ecx 0x40 push esi

xor eax eax push rw-data

lea edi [ esp + 0x8d ] push 0x0

mov [ esp + 0x8c ] bl push 0x0

[ edi ] call [ CreateMutexA@IAT ]

stosw [ edi ] mov esi eax

stosb [ edi ] test esi esi

mov ecx 0x40 je r-xdata

xor eax eax push ebx

lea edi [ esp + 0x191 ] push edi

mov [ esp + 0x190 ] bl call sub_401000

[ edi ] mov ecx [ esp + 0x10 ]

stosw [ edi ] push rw-data

stosb [ edi ] push ecx

lea eax [ esp + 0x49c ] mov ecx eax

mov edi 0x104 mov [ rw-data ] eax

push eax call sub_401100

push rw-data mov edi [ _beginthread@IAT ]

lea ecx [ esp + 0x198 ] push 0x0

push edi push 0x0

push ecx push sub_401b40

call sub_401a30 call edi

add esp 0x10 push 0x0

lea edx [ esp + 0x1c ] push 0x0

lea eax [ esp + 0x190 ] push sub_401b60

push edx mov esi eax
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push 0xf003f call edi

push ebx mov ebx [ WaitForSingleObject@IAT ]

push eax add esp 0x18

push 0x80000000 mov edi eax

call esi push 0xffffffff

lea ecx [ esp + 0x34 ] push esi

mov [ esp + 0x34 ] edi call ebx

push ecx push 0xffffffff

mov eax [ esp + 0x20 ] push edi

lea edx [ esp + 0x90 ] call ebx

push edx mov ecx [ rw-data ]

push ebx call sub_401730

push ebx call [ GetLastError@IAT ]

push ebx cmp eax 0xb7

push eax jne r-xdata

call ebp push esi

test eax eax call [ CloseHandle@IAT ]

je r-xdata or eax 0xffffffff

dec ecx pop esi

mov al [ edx + ecx ] retn 0x10

cmp al bl _start

je r-xdata push ebp

jmp r-xdata mov ebp esp

mov ecx [ esp + 0x1c ] push 0xffffffff

push ecx push r--data

call [ RegCloseKey@IAT ] push _except_handler3

mov ecx 0x10 mov eax [ fs : 0x0 ]

xor eax eax push eax

lea edi [ esp + 0x4c ] mov [ fs : 0x0 ] esp

mov [ esp + 0x294 ] bl sub esp 0x68

[ edi ] push ebx

mov ecx 0x40 push esi

lea edi [ esp + 0x295 ] push edi

[ edi ] mov [ ebp - 0x18 ] esp

stosw [ edi ] xor ebx ebx

xor edx edx mov [ ebp - 0x4 ] ebx

push rw-data push 0x2

mov [ esp + 0x40 ] edx call [ __set_app_type@IAT ]

mov [ esp + 0x4c ] 0x44 pop ecx

stosb [ edi ] or [ rw-data ] 0xffffffff

lea eax [ esp + 0x90 ] or [ rw-data ] 0xffffffff

mov [ esp + 0x44 ] edx call [ __p__fmode@IAT ]

push eax mov ecx [ rw-data ]

mov [ esp + 0x40 ] ebx mov [ eax ] ecx

mov [ esp + 0x4c ] edx call [ __p__commode@IAT ]

call [ strstr@IAT ] mov ecx [ rw-data ]

add esp 0x8 mov [ eax ] ecx

cmp eax ebx mov eax [ _adjust_fdiv@IAT ]

je r-xdata mov eax [ eax ]

lea ecx [ esp + 0x10 ] mov [ rw-data ] eax

push rw-data call sub_401d47

push ecx cmp [ rw-data ] ebx
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call [ strstr@IAT ] jne r-xdata

add esp 0x8 call sub_401d32

test eax eax push rw-data

je r-xdata push rw-data

mov ecx [ esp + 0x20 ] call _initterm

lea edx [ esp + 0x8c ] mov eax [ rw-data ]

lea eax [ ecx + 0x10c ] mov [ ebp - 0x6c ] eax

push eax lea eax [ ebp - 0x6c ]

push edx push eax

push rw-data push [ rw-data ]

lea eax [ esp + 0x2a0 ] lea eax [ ebp - 0x64 ]

push 0x104 push eax

push eax lea eax [ ebp - 0x70 ]

call sub_401a30 push eax

mov ecx 0x40 lea eax [ ebp - 0x60 ]

xor eax eax push eax

lea edi [ esp + 0x3ad ] call [ __getmainargs@IAT ]

mov [ esp + 0x3ac ] bl push rw-data

[ edi ] push rw-data

add esp 0x14 call _initterm

lea ecx [ esp + 0x398 ] add esp 0x24

stosw [ edi ] mov eax [ _acmdln@IAT ]

push 0x104 mov esi [ eax ]

lea edx [ esp + 0x298 ] mov [ ebp - 0x74 ] esi

push ecx cmp [ esi ] 0x22

push edx jne r-xdata

stosb [ edi ] push sub_401d44

call [ ExpandEnvironmentStringsA@IAT ] call [ __setusermatherr@IAT ]

mov edx [ esp + 0x20 ] pop ecx

lea eax [ esp + 0x38 ] cmp [ esi ] 0x20

lea ecx [ esp + 0x48 ] jbe r-xdata

push eax inc esi

add edx 0x418 mov [ ebp - 0x74 ] esi

push ecx mov al [ esi ]

push edx cmp al bl

push ebx je r-xdata

push ebx mov al [ esi ]

push ebx cmp al bl

push ebx je r-xdata

lea eax [ esp + 0x3b4 ] inc esi

push ebx mov [ ebp - 0x74 ] esi

push eax jmp r-xdata

push ebx cmp [ esi ] 0x22

call [ CreateProcessA@IAT ] jne r-xdata

mov [ eax ] bl cmp al 0x22

lea edx [ esp + 0x28 ] jne r-xdata

push edx mov [ ebp - 0x30 ] ebx

push 0xf003f lea eax [ ebp - 0x5c ]

push ebx push eax

push rw-data call [ GetStartupInfoA@IAT ]

push 0x80000000 test [ ebp - 0x30 ] 0x1

call esi je r-xdata

40



test eax eax cmp al 0x20

jne r-xdata jbe r-xdata

pop edi inc esi

pop esi mov [ ebp - 0x74 ] esi

pop ebp push 0xa

pop ebx pop eax

add esp 0x694 movzx eax [ ebp - 0x2c ]

retn jmp r-xdata

mov edx [ esp + 0x28 ] push eax

lea eax [ esp + 0x30 ] push esi

lea ecx [ esp + 0x8c ] push ebx

push eax push ebx

push ecx call [ GetModuleHandleA@IAT ]

push ebx push eax

push ebx call sub_401aa0

push ebx mov [ ebp - 0x68 ] eax

push edx push eax

mov [ esp + 0x48 ] edi call [ exit@IAT ]

call ebp sub_4010e0

test eax eax push esi

je r-xdata mov esi ecx

mov eax [ esp + 0x28 ] call sub_401150

push eax test [ esp + 0x8 ] 0x1

call [ RegCloseKey@IAT ] je r-xdata

push ebx mov eax esi

push rw-data pop esi

push rw-data retn 0x4

push ebx push esi

call [ MessageBoxA@IAT ] call ??3@YAXPAX@Z

pop edi add esp 0x4

pop esi sub_401150

pop ebp mov [ ecx ] r--data

pop ebx mov ecx [ rw-data ]

add esp 0x694 test ecx ecx

retn je r-xdata

sub_4015c0 mov [ rw-data ] 0x0

sub esp 0x54 retn

mov edx ecx mov eax [ ecx ]

push edi push 0x1

mov ecx 0x10 call [ eax ]

xor eax eax sub_401b2c

lea edi [ esp + 0x18 ] push esi

mov [ esp + 0x4 ] eax mov esi [ CloseHandle@IAT ]

[ edi ] call esi

mov [ esp + 0x8 ] eax push edi

lea ecx [ esp + 0x4 ] call esi

mov [ esp + 0xc ] eax pop edi

push ecx pop ebx

mov [ esp + 0x14 ] eax xor eax eax

lea eax [ esp + 0x18 ] pop esi

lea ecx [ edx + 0x418 ] retn 0x10

push eax sub_401b40
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push ecx mov ecx [ rw-data ]

push 0x0 call sub_401180

push 0x0 mov ecx [ rw-data ]

push 0x0 jmp sub_4012b0

push 0x0 sub_401b60

push 0x0 mov ecx [ rw-data ]

add edx 0x51c push 0xc

push 0x0 call sub_4016a0

push edx mov ecx [ rw-data ]

mov [ esp + 0x3c ] 0x44 jmp sub_4015c0

call [ CreateProcessA@IAT ] ??3@YAXPAX@Z

pop edi jmp [ operator delete@IAT ]

add esp 0x54 ??2@YAPAXI@Z

retn jmp [ operator new@IAT ]

sub_401620 __CxxFrameHandler

sub esp 0x20 jmp [ __CxxFrameHandler@IAT ]

mov ecx 0x7 sub_401ba0

xor eax eax push esi

push ebp mov esi ecx

push esi call ??1type_info@@UAE@XZ

push edi test [ esp + 0x8 ] 0x1

mov esi rw-data je r-xdata

lea edi [ esp + 0xc ] mov eax esi

[ edi ] [ esi ] pop esi

movsw [ edi ] [ esi ] retn 0x4

movsb [ edi ] [ esi ] push esi

lea edi [ esp + 0xc ] call ??3@YAXPAX@Z

or ecx 0xffffffff pop ecx

[ edi ] _CxxThrowException

not ecx jmp [ _CxxThrowException@IAT ]

dec ecx ??1type_info@@UAE@XZ

xor esi esi jmp [ type_info::~type_info@IAT ]

mov ebp ecx _XcptFilter

mov ecx [ esp + 0x38 ] jmp [ _XcptFilter@IAT ]

xor edi edi _initterm

test ecx ecx jmp [ _initterm@IAT ]

jbe r-xdata sub_401d32

mov eax [ esp + 0x34 ] push 0x30000

pop edi push 0x10000

pop esi call _controlfp

pop ebp pop ecx

add esp 0x20 pop ecx

retn 0xc retn

push ebx sub_401d44

mov ebx [ esp + 0x38 ] xor eax eax

mov eax edi retn

xor edx edx sub_401d47

div ebp retn

mov al [ esp + edx + 0x10 ] _except_handler3

mov dl [ esi + ebx ] jmp [ _except_handler3@IAT ]

add al dl _controlfp

mov dl [ esp + 0x34 ] jmp [ _controlfp@IAT ]
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xor al dl sub_401d60

mov [ esi + ebx ] al mov eax [ ebp - 0x10 ]

inc esi push eax

inc edi call ??3@YAXPAX@Z

cmp esi ecx pop ecx

jb r-xdata retn

xor edi edi sub_401d6b

test esi 0x3ff mov eax r--data

jne r-xdata jmp __CxxFrameHandler

mov eax ebx sub_401d80

pop ebx mov eax r--data

pop edi jmp __CxxFrameHandler

pop esi

pop ebp

add esp 0x20

retn 0xc
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