
Bachelor thesis
Computing Science

Radboud University

Axiomatising Trace Semantics for an
Algebra with Parallel Composition

Author:
Cas Haaijman
s4372662

First supervisor/assessor:
dr. J. C. (Jurriaan) Rot

jrot@cs.ru.nl

Second supervisor:
drs. J. (Jana) Wagemaker
J.Wagemaker@cs.ru.nl

Second assessor:
prof. dr. F. W. (Frits)

Vaandrager
F.Vaandrager@cs.ru.nl

May 25, 2021

Abstract

Process algebra is a research area that uses algebras and calculi to study
concurrent systems. Two processes are called trace equivalent if every se-
quence of actions that can be taken in one can also be taken in the other.
Recent work by Aceto et al. showed the existence of an axiomatisation for
trace equivalence for the algebra BCCSP‖. It was part of a large collection
of axiomatisations for many different notions of equivalence.

In this thesis we prove that the axiomatisation for BCCSP‖ is sound
and ground-complete using a mostly stand alone, ground-up approach. For
soundness we construct a relation between the grammar and the language
this grammar generates. For completeness we prove that the approach the
work by Aceto et al. suggests holds. Finally we show completeness modulo
completed trace semantics using a similar method, but use a normal form
for the terms.

Contents

1 Introduction 2
1.1 Our Contribution . 3
1.2 Outline . 3

2 Preliminaries 5
2.1 The Language BCCSP‖ . 5
2.2 Traces . 6
2.3 Operations on sequences and languages 6
2.4 Homomorphism . 8
2.5 Substitution . 9
2.6 Equations and Their Logic . 9
2.7 Soundness and Ground-Completeness 9
2.8 The Language BCCSP . 10

3 The Proofs 11
3.1 Soundness . 11

3.1.1 Preliminary Lemmas 12
3.1.2 Proof that T is a Homomorphism 16
3.1.3 Soundness . 20

3.2 Ground-Completeness . 23
3.2.1 Reduction to BCCSP 24
3.2.2 Ground-Completeness 27

3.3 Ground-Completeness of BCCSP‖ modulo Completed Trace
Semantics . 27
3.3.1 The Normal Form of BCCSP Terms 28
3.3.2 Reduction to BCCSP 30

4 Related Work 35

5 Conclusions 36
5.1 Future Work . 36

1

Chapter 1

Introduction

The world of computer science has used formal methods to enhance its un-
derstanding of both software and hardware for many years. Before process
algebra, formal reasoning about software was mainly done using out of three
styles of semantics: Operational semantics, Denotational semantics or Ax-
iomatic semantics [3]. It turned out, however, that these styles were not
ideal for describing the behaviour of programs that contained multiple parts
running in parallel. Out of the need to describe these types of programs, the
field of process algebras was born.

In process algebra, the term process refers to the behaviour of a sys-
tem [3]. Often this system is a computer system, such as a network pro-
tocol [4], a software program [2], or a hardware specification [2]. It has,
however, also been used to refer to other systems. For example, the be-
haviour of biological systems has been described using process algebra [9].
For example, one study in the field of systems biology looked at the move-
ment in response to chemicals (chemotaxis) of E. coli using process algebra.
In this example, the process in question was the behaviour of the bacteria.

An algebra is a mathematical object used to construct these processes.
The algebra calculus of communicating systems (CCS) was one of the first
algebras to be developed and remains one of the most influential. For exam-
ple, the tool called Conurrency Workbench was originally developed for CCS.
This tool allows software developers to analyse and manipulate a concurrent
model of their code [6]. The algebra CCS uses symbols for a few different
concepts. Some of these concepts are inactive processes, actions the pro-
cess can perform and non-deterministic choice. It has a slightly larger set
of operations (grammar) than the algebra we will be using in this thesis,
BCCSP‖.

Most of these algebras describe a graph for each process in the algebra.
Just like in finite automata are there nodes and edges for these graphs, and
sometimes even loops or accepting nodes. These graphs are usually generated
from algebraic terms that belong to one of the algebras. This is similar to

2

how regular expressions generate automata.
Alongside of the development of these algebras, many notions of equiv-

alence were being developed. Some examples of these semantics are (com-
pleted) trace semantics, failure equivalence and bisimulation. These different
notions of equivalence have different properties. For example, Trace seman-
tics is unable to distinguish whether or not a process has ended in a deadlock
or completed in some cases. Bisimulation is often seen as the most accurate
semantics, and became the standard way to compare terms. It is also one of
the more computationally hard notions of equivalence.

In order to make computation of equivalence easier, sets of equations
which are called axiom systems might be used. When an axiom system is
sound and complete for a specific algebra and notion of equivalence it is called
an axiomatisation of that algebra and equivalence. Such an axiomatisation is
sound and complete if and only if the set of equations say that two processes
are equivalent, then that means that they actually are equivalent. Sometimes
these axiomatisations are finite, but often this is not possible [1], [5].

The algebra we describe in this thesis is BCCSP‖. It extends the algebra
called BCCSP with the parallel interleaving operator ‖. BCCSP itself is
smaller than CCS, as it consist of only the more basic operators of CCS
and another algebra called CSP, which was developed around the same time
as CCS. Perhaps because of this simpler nature of BCCSP, it has been
explored quite thoroughly in the context of the many notions of equivalence
in for example [8]. Recently, a paper by Aceto et al. has done a similarly
extensive investigation into the language BCCSP‖. This investigation was
very influential to this thesis and is its main inspiration.

1.1 Our Contribution

In this thesis we show that an axiomatisation for BCCSP‖ modulo trace
semantics is sound and complete. Unlike the previous proof, we do this
using a mostly stand alone, ground-up approach. Our method for proving
soundness specifically is an approach we did not see before. Our approach
for completeness is similar but more in detail. We also go more in detail for
completeness modulo completed trace semantics of another axiomatisation
for BCCSP‖.

1.2 Outline

First we set up the basic notions we need for our algebra in the Preliminaries
section. The goal of this is to hopefully make the thesis accessible to people
who are unfamiliar to the field. We explain, for example, how the algebra
BCCSP‖ is defined and what trace semantics are. Then we give a set of
axioms which we show to be sound and ground-complete for the algebra

3

BCCSP‖ modulo trace semantics. We start of by relating the symbols used
to construct terms in BCCSP‖ to the languages those terms generate. This
helps us to prove the soundness part of the proof. Then we show we can
reduce each term in BCCSP‖ to a BCCSP term. We will use this property
to prove the ground-completeness part of the proof. Finally we will look at
a different axiomatisation for a different notion of equivalence, completed
trace semantics. We will once again proof ground-completeness by reduction
to BCCSP. This time, however, we introduce a normal form of our terms in
the process.

4

Chapter 2

Preliminaries

2.1 The Language BCCSP‖
We start by defining the process algebra BCCSP‖, which is the classical
algebra BCCSP enriched with the interleaving parallel composition operator.
For this algebra we first define a syntax. The set P(V) is the set of all terms
generated by the following grammar:

t ::= 0 | v | a.t | t+ t | t‖t

Here v ranges over a countably infinite set of variables V and a. ranges over a
set of unary operators where a represents an element of a finite set of actions
A. We adopt standard convention that prefixing binds strongest and + binds
weakest. A BCCSP‖ term is closed if it does not contain any variables. A
set of closed terms generated by this grammar (P(∅)) will be abbreviated to
P. We refer to a closed term as a process.

Now that we have a syntax, we define a semantics to describe how pro-
cesses behave in our algebra. The a. symbols indicates that some action a
can be taken. The ‘+’ symbol represents a non-deterministic choice. Finally,
the ‘‖’ symbol means that the left and right terms are running in parallel.
This all leads to the the semantics shown in table 2.1. For our algebra we will
equip processes with these semantics. We can now use these rules to create
a labeled state transition system (P, A, →). The transitions →⊆ P×A×P

(s1)
a.x

a−→ x
(s2)

x
a−→ x′

x+ y
a−→ x′

(s3)
y

a−→ y′

x+ y
a−→ y′

(s4)
x

a−→ x′

x‖y a−→ x′‖y
(s5)

y
a−→ y′

x‖y a−→ x‖y′

Table 2.1: Semantics of BCCSP‖ terms where x, x′, y and y′ are processes.

5

are restricted by the terms that can be derived using the rules as defined
above. That is to say, (p, a, p′) ∈→ if and only if its inclusion can be proven
using these rules. From now on we will use p a−→ p′ to indicate (p, a, p′) ∈→.
As an example, the proof tree shown in fig. 2.1 proves that the transition
a.0+ b.0‖c.0 a−→ 0‖c.0 holds.

(s1)
a.0

a−→ 0
(s2)

a.0+ b.0
a−→ 0

(s4)
a.0+ b.0‖c.0 a−→ 0‖c.0

Figure 2.1: Proof of transition a.0+ b.0‖c.0 a−→ 0‖c.0

We can now use this proof and combine it with similar proofs to construct
the transition system that belongs to the process a.0+b.0‖c.0. The transition
system that follows is shown in figure 2.2. Each transition has the rules used
to prove its existence written next to it. The example from figure 2.1 is
highlighted by a thicker line in the transition diagram.

2.2 Traces

A sequence of actions w = a1a2 · · · ak (k ≥ 0) is a trace of p0 if there
exists a sequence of transitions p0

a1−→ p1
a2−→ · · · ak−→ pk where all pi with

i ∈ {0, 1, . . . , k} are processes. We use p0
w−→ pk as an abbreviation. The

set of all possible finite sequences of actions in A will be denoted as A∗
and any subset of A∗ will be called a language. For the sequence with zero
actions (k = 0) we will use ε. This sequence is also known as the empty
trace. Clearly, the empty trace is a trace of all processes as it is always
possible to use no rule at all and end up where you started. The function
that maps a process to its set of all traces will be denoted as T and has
type P → P(A∗) such that T(x) is the set of all traces from x, if x ∈ P.
The example process pex = a.0 + b.0‖c.0 a−→ 0‖c.0 from figure 2.2 has
T(pex) = {ε, a, b, c, ac, bc, ca, cb} as the set of all traces.

Two processes p1 and p2 are trace equivalent if their sets of traces are
the same: T(p1) = T(p2), denoted by p1 ∼T p2. For example, process qex =
c.0‖b.0+ a.0 also has T(qex) = {ε, a, b, c, ac, bc, ca, cb}. This is the same set
as T(pex), so pex ∼T qex.

2.3 Operations on sequences and languages

We define the operators ·, ∗ , ‖ and |||||| on sequences of actions and languages.

Definition 1.

6

a.0+ b.0‖c.0

0‖c.0 a.0+ b.0‖0

0‖0

(s1), (s3), (s4)

b

a
(s1), (s2), (s4)

c
(s1), (s5)

b
(s1), (s3), (s4)

(s1), (s2), (s4)

a

(s1), (s5)

c

Figure 2.2: State transition diagram constructed from the operational
semantics of the process a.0+ b.0‖c.0. The s-numbers in brackets indicate
the rules used for each transition. The thicker line is highlighted because

the proof for this transition is shown in fig. 2.1

7

(·) : The operator · : A × P(A∗) → P(A∗) (pronounced as ‘before’) binds
stronger than ∪ and is defined as:

a · L = {aw | w ∈ L} (2.1)

where a ∈ A and L ⊆ A∗.

(∗) : Via the operator · we define the operator ∗ : A×P(A∗)→ P(A∗) as:

a∗L = a · L ∪ {ε} (2.2)

where a ∈ A and L ⊆ A∗ again.

(||||||) : The interleaving operator |||||| : A∗ ×A∗ → P(A∗), is recursively defined
as:

v |||||| ε := {v}
ε ||||||w := {w} (2.3)

av |||||| bw := a · (v |||||| bw) ∪ b · (av ||||||w)

where v, w ∈ A∗ and a, b ∈ A

(‖) : Via this operator we define an interleaving operator ‖ : P(A∗)×P(A∗)→
P(A∗):

L‖M :=
⋃

v∈L,w∈M
v ||||||w (2.4)

where L,M ∈ P(A∗)

2.4 Homomorphism

One of the main efforts of this thesis is trying to show that T is a homomor-
phism between processes and their sets of traces. A homomorphism between
two algebraic structures is a map that preserves the operations in these
structures. For this thesis those two algebraic structures are the grammar of
BCCSP‖ terms and languages. Specifically, we show in lemma 9 that T is a
homomorphism by showing that the following relations hold:

T(0) = {ε}
T(a.x) = a∗f(x)

T(x+ y) = x ∪ y
T(x‖y) = x‖y

8

2.5 Substitution

A substitution σ is a function with type P(V) → P(V ′) that satisfies the
following equations:

σ(0) = 0

σ(v) = z

σ(a.x) = a.σ(x)

σ(x+ y) = σ(x) + σ(y)

σ(x‖y) = σ(x)‖σ(y)

with x and y any term in P(V), v any variable in V. A substitution is there-
fore defined by its mapping from variables to terms. A closed substitution
maps every variable to a closed term, so the type of a closed substitution
becomes P(V)→ P.

2.6 Equations and Their Logic

An equation is a pair (t, u) denoted by t ≈ u where we say that t is equation-
ally similar to u. We want the semantics of equations to have the properties
reflexivity, symmetry, transitivity, substitution and closure under BCCSP‖
contexts. To achieve that, we equip equations with the rules of equational
logic shown in table 2.2. An equation t ≈ u is now derivable from a set of
equations E when t ≈ u can be proven using the rules of equational logic and
E . We will use the notation E ` t ≈ u to say that t ≈ u is derivable from E .

(e1) t ≈ t (e2)
t ≈ u

u ≈ t
(e3)

t ≈ u u ≈ v

t ≈ v
(e4)

t ≈ u

σ(t) ≈ σ(u)

(e5)
t ≈ u

a.t ≈ a.u
(e6)

t ≈ u t′ ≈ u′

t+ t′ ≈ u+ u′
(e7)

t ≈ u t′ ≈ u′

t‖t′ ≈ u‖u′

Table 2.2: Rules of equational logic

2.7 Soundness and Ground-Completeness

The equation t ≈ u with t and u BCCSP‖ terms is said to be sound modulo
T if σ(t) ∼T σ(u) for all closed substitutions σ. An axiom system E is a set
of equations. This axiom system E is sound modulo T if and only if all of its
equations are sound modulo T.

For ground-completeness, we say that E is ground-complete modulo T if
p ∼T q implies E ` p ≈ q for all closed terms p, q.

9

When an axiom system is sound and ground-complete modulo some be-
havioural equivalence we call it an axiomatisation of that behavioural equiv-
alence.

2.8 The Language BCCSP

The process algebra BCCSP‖ is an extension of the language BCCSP from [8].
BCCSP has the same grammar and semantics as BCCSP‖, except it does
not have the interleaving parallel operator ‖. Specifically, the grammar for
BCCSP terms is:

t ::= 0 | v | a.t | t+ t

where again a ranges over a finite set of actions A and v ranges over a
countably infinite set of variables V. The semantics of BCCSP are defined
by the rules (s1), (s2) and (s3). We will use the B symbol to represent the set
of all closed BCCSP terms. Since the derivation rules of BCCSP are included
entirely in BCCSP‖, any process in BCCSP‖ without a ‖ operator is also a
BCCSP term. An important property of BCCSP is that the following axiom
system EB is ground-complete modulo trace equivalence for BCCSP [8]:

EB = {(A0), (A1), (A2), (A3), (P0), (P1), (TD)} (2.5)

Here the elements (A0), . . . , (TD) are defined in table 3.1.

Theorem 1. The set of axioms EB is ground-complete modulo trace equiva-
lence:

∀p, q ∈ B, p ∼T q =⇒ EB ` p ≈ q

10

Chapter 3

The Proofs

In this chapter we proof the soundness and ground-completeness modulo
trace semantics of the axiom system shown in table 3.1 for BCCSP‖. We
begin by setting up some preliminary lemmas. Then we use those for a proof
that T is a homomorphism. From this the soundness modulo trace semantics
quickly follows. For ground-completeness modulo trace semantics we reduce
to BCCSP terms. Completeness then follows from this reduction together
with the soundness of the axiom system. Finally we introduce a different
semantic equivalence called completed trace semantics and proof ground-
completeness modulo completed trace semantics using a similar method as
for regular trace semantics.

3.1 Soundness

In this thesis we prove that the set of axioms ET from [1], shown here in
table 3.1, is sound and ground-complete modulo trace equivalence. For the
soundness of the axiom system we first prove some properties of our newly
defined operators. Then we move on with a proof that there exists a homo-
morphism between these operators and the grammar of processes. We do
this by giving a lemma for each of the operators and the 0 symbol from our
grammar and show that T maps each of these to an operator for languages
as mentioned before in section 2.4. Next we show that the equations from

(A0) x+ 0 ≈ x (A1) x+ y ≈ y + x

(A2) (x+ y) + z ≈ x+ (y + z) (A3) x+ x ≈ x
(P0) x‖0 ≈ x (P1) x‖y ≈ y‖x
(TD) a.x+ a.y ≈ a.(x+ y) (TP) (x+ y)‖z ≈ x‖z + y‖z
(EL1) a.x‖b.y ≈ a.(x‖b.y) + b.(a.x‖y)

Table 3.1: the set of axioms ET

11

ET translated to languages hold for all languages of which ε is an element of
that language. Finally in this section we prove the actual soundness.

3.1.1 Preliminary Lemmas

We start with some preliminary lemmas that give some simple properties
of |||||| that we need for some of the other lemmas. We also give show that
T could be defined recursively by giving such an identity. The first lemma
will be useful for the soundness of axiom (P1). It says that |||||| is a symmetric
relation.

Lemma 1. For all sequences v, w ∈ A∗, the following property holds:

v ||||||w = w |||||| v

Proof. We inspect cases for v and w:

• v = ε ∨w = ε :
If v = ε then v ||||||w = {w} = w |||||| v. If w = ε then v ||||||w = {v} = w |||||| v.

• v = av′ ∧w = bw′ :
If both v = av′ and w = bw′ with arbitrary a, b ∈ A and v′, w′ ∈ A∗
then v ||||||w = av′ |||||| bw′ = a · (v′ |||||| bw′)∪ b · (av′ ||||||w′) = b · (av′ ||||||w′)∪ a ·
(v′ |||||| bw′) = bw′ |||||| av′ = w |||||| v.

The next lemma says that a ·(v ||||||w) is a subset of both av ||||||w and v |||||| aw
for arbitrary action a and sequences v and w. We use it in lemma 8.

Lemma 2. For all actions a ∈ A and sequences v, w ∈ A∗, the following
property holds:

a · (v ||||||w) ⊆ av ||||||w ∩ v |||||| aw

Proof. Take arbitrary a ∈ A, v, w ∈ A∗. We inspect cases for v and w:

• v = ε ∧w = ε :
If both v and w are ε then it follows that a · (v ||||||w), v |||||| aw and av ||||||w
are all equal to {a} so the lemma holds.

• v = bv′ ∧w = ε :
If only w is ε and v = bv′ with arbitrary b ∈ A and v′ ∈ A∗, then we see

a · (v ||||||w) = a · (v |||||| ε) = a · {v} = {av}
av ||||||w = av |||||| ε = {av}
v |||||| aw = bv′ |||||| aw = b · (v′ |||||| aw) ∪ a · (bv′ ||||||w)

= b(v′ |||||| aw) ∪ a · {bv′} = b · (v′ |||||| aw) ∪ {av}

12

Since the underlined part of each set is equal to a · (v ||||||w) it follows
that both a · (v ||||||w) ⊆ av ||||||w and a · (v ||||||w) ⊆ v |||||| aw.

• v = ε ∧w = bw′ :
If instead v is ε and w = bw′ with arbitrary b ∈ A and w′ ∈ A∗, the
proof is analogous to the previous case because of symmetry.

• v = bv′ ∧w = cw′ :
If both v = bv′ and w = cw′ then the lemma follows from expanding
the definitions of the three sets:

a · (v ||||||w) = a · (bv′ |||||| cw′)
av ||||||w = abv′ |||||| cw′ = a · (bv′ |||||| cw′) ∪ c · (abv′ ||||||w′)
v |||||| aw = bv′ |||||| acw′ = b · (v′ |||||| acw′) ∪ a · (bv′ |||||| cw′)

Since once again the underlined part of each set is equal to a · (v ||||||w).
It follows that both a · (v ||||||w) ⊆ av ||||||w and a · (v ||||||w) ⊆ v |||||| aw.

The next lemma says that if a sequence au starts with an action a and is
an element of v ||||||w, that there exist two cases. Namely v = av′ starts with
an a and then the rest of the word u is an element of v′ ||||||w or the symmetric
other case. We also use this lemma in lemma 8.

Lemma 3. For all actions a ∈ A and sequences u, v, w ∈ A∗, the following
property holds:

au ∈ v ||||||w =⇒(
∃v′ ∈ A∗, v = av′ ∧ u ∈ v′ ||||||w

)
∨
(
∃w′ ∈ A∗, w = aw′ ∧ u ∈ v ||||||w′

)
Proof. Take arbitrary u, v, w ∈ A∗ and a ∈ A such that au ∈ v ||||||w. Note
that v and w can not both be ε at the same time, as that would mean
au ∈ {v ||||||w} = {ε}, which is false. We separate remaining cases for v and
w:

• v = ε ∧w = bw′ :
If v = ε and w = bw′ with arbitrary b ∈ A and w′ ∈ A∗, then v ||||||w =
{w} = {bw′}. Since au ∈ v ||||||w that means au ∈ {bw′}. Clearly this
can only be the case if a = b and u = w′. Therefore ∃w′ ∈ A∗, w = aw′

and u ∈ {u} = {w′} = ε ||||||w′ = v ||||||w′, so the conclusion of the lemma
becomes true as well.

• v = bv′ ∧w = ε :
The case where v = bv′ and w = ε with arbitrary b ∈ A and v′ ∈ A∗ is
analogous to the previous case because of symmetry.

13

• v = bv′ ∧w = cw′ :
Take v = bv′ and w = cw′ with arbitrary b, c ∈ A and v′, w′ ∈ A∗.
Now v ||||||w = bv′ |||||| cw′ = b · (v′ |||||| cw′) ∪ c · (bv′ ||||||w′). Since au ∈ v ||||||w
there are two cases:

– au ∈ b · (v′ |||||| cw′) :
If au ∈ b ·(v′ |||||| cw′) then it is clear that a = b so ∃v′ ∈ A∗, v = av′.
From the premise of this case it is also clear that u ∈ v′ |||||| cw′ =
v′ ||||||w. Therefore the conclusion of the lemma also follows.

– au ∈ c · (bv′ ||||||w′) :
If au ∈ c · (bv′ ||||||w′) then it is similarly clear that a = c so ∃w′ ∈
A∗, w = aw′. From the premise of this case it is also similarly
clear that u ∈ bv′ ||||||w′ = v ||||||w′. Again the conclusion of the
lemma follows.

The next lemma can be seen as a recursive definition of T rather than as
a lemma. Since recursive definitions usually demand a set to be the smallest
set for which a property holds, we do that here as well. The lemma is useful
to get a sense of the structure of T. It is also used in the lemmas that work
towards a proof of the existence of a homomorphism between processes and
sets of traces, namely lemmas 6, 7 and 8.

In natural language, the lemma says that the set of traces of a process
is the empty trace combined with the sets of traces from the subprocesses
where each element of that set is preceded with the action that led to the
subprocess from the original process.

Lemma 4. T is the smallest function of type P→ P(A∗) with the property

∀x ∈ P, T(x) =

 ⋃
x

a−→x′

a · T(x′)

 ∪ {ε}
Here ‘smallest’ means that for all processes x in the domain of T, T(x) ⊆ f(x)
for any function f of type P→ P(A∗) with the same property.

Proof. First we reformulate the property so that we can talk about the se-
quences that are elements of both languages. The property becomes

∀w ∈ A∗,∀x ∈ P, w ∈ T(x) ⇐⇒ w ∈

 ⋃
x

a−→x′

a · T(x′)

 ∪ {ε}
Now we show that this property holds for T. We inspect two cases for w.

14

• w = ε :
If w = ε, then w ∈ T(x) because the empty trace is always possible
from any process. from w ∈ {ε} it follows that w ∈

(⋃
x

a−→x′ a · T(x
′)
)
∪

{ε}. So both sides of the equivalence are true and therefore also the
equivalence relation itself.

• w = bw′ :
If w is some bw′ we separate two cases of the equivalence relation.

– w ∈ T(x) =⇒ w ∈
(⋃

x
a−→x′ a · T(x′)

)
∪ {ε} :

If w ∈ T(x) then we know some p exists such that x w−→ p.
Furthermore, since w = bw′ we can break this up into two steps
to conclude that there exists some p′ such that

x
b−→ p′

w′
−→ p

Now we can see that w′ ∈ T(p′) and x b−→ p′. From w′ ∈ T(p′),
it follows that w = bw′ ∈ b · T(p′). Together with x b−→ p′ it now
follows that

w ∈ b · T(p′) ⊆

 ⋃
x

a−→x′

a · T(x′)

 ∪ {ε}
– w ∈

(⋃
x

a−→x′ a · T(x′)
)
∪ {ε} =⇒ w ∈ T(x) :

If instead w ∈
(⋃

x
a−→x′ a · T(x

′)
)
∪ {ε} we know that w /∈ {ε} as

w 6= ε. Therefore there exists some p′ and c such that w ∈ c ·T(p′)
and x c−→ p′. For w = bw′ ∈ c · T(p′) to be possible, c has to be b,
as all sequences in c · T(p′) start with c while bw′ starts with b. It
now follows from bw′ ∈ b · T(p′) that w′ ∈ T(p′). From w′ ∈ T(p′)

it follows that there exists some p such that p′ w′
−→ p. We already

knew that x b−→ p′ so together we get

x
b−→ p′

w′
−→ p

Therefore w = bw′ ∈ T(x).

Next we have to show T is the smallest function with this property. Take
an arbitrary function f with the following property:

∀w ∈ A∗,∀x ∈ P, w ∈ f(x) ⇐⇒ w ∈

 ⋃
x

a−→x′

a · f(x′)

 ∪ {ε}
Now we would have to prove

∀w ∈ A∗, ∀x ∈ P, w ∈ T(x) =⇒ w ∈ f(x)

15

Take arbitrary x. We will use induction over words w to prove the property
for all words.

Base case:
We assume w = ε ∈ T(x). From w ∈ {ε} it follows that

w ∈ {ε} ⊆

 ⋃
x

a−→x′

a · f(x′)

 ∪ {ε}
And using the property of f therefore also w ∈ f(x).

Inductive case:
We assume w = bw′ ∈ T(x). The IH becomes:

∀x ∈ P, w′ ∈ T(x) IH
=⇒ w′ ∈ f(x)

Using the property of T and the fact that w 6= ε it follows that

w ∈
⋃

x
a−→x′

a · T(x′)

Therefore there exists c and x′ such that w ∈ c · T(x′) and x c−→ x′.
Since w = bw′ ∈ c·T(x′) it follows that b = c and w′ ∈ T(x′) again. Now
using the IH it follows that w′ ∈ f(x′). Since w = bw′ and x b−→ x′ we
can combine this to see that

w = bw′ ∈ b · f(x′) ⊆

 ⋃
x

a−→x′

a · f(x′)

 ∪ {ε}
Using the property of f it now follows that w ∈ f(x)

3.1.2 Proof that T is a Homomorphism

For the soundness of ET we show that T is a homomorphism. The following
four lemmas all deal with one of the symbols of the grammar of processes.

The first of these lemmas shows that the process 0 corresponds with the
language {ε}.

Lemma 5. The following property holds:

T(0) = {ε}

Proof. Since 0 has no possible transitions from it, its only trace is the empty
trace.

16

The second of these lemmas shows that a. on processes corresponds with
a∗ on languages for every action a.

Lemma 6. For all actions a ∈ A and processes x ∈ P the following property
holds:

T(a.x) = a∗T(x)

Proof. Take arbitrary a and x. The process a.x only has one transition
according to the operational semantics:

(s1)
a.x

a−→ x

Therefore using lemma 4 it follows that the following holds.

T(a.x) =

 ⋃
a.x

a−→x

a · f(x)

 ∪ {ε} = a · T(x) ∪ {ε} = a∗T(x)

The third of these lemmas shows that + on processes corresponds with
∪ on languages.

Lemma 7. For all processes x, y ∈ P the following property holds:

T(x+ y) = T(x) ∪ T(y)

Proof. Take arbitrary x, y ∈ P. Only two rules of the semantics apply di-
rectly to the process x+ y:

x
a−→ x′

(s2)
x+ y

a−→ x′

y
b−→ y′

(s3)

x+ y
b−→ y′

Take arbitrary w ∈ A∗. If w ∈
⋃
x+y

c−→p c · T(p) then there exists c and p

such that x+ y
c−→ p and w ∈ c · T(p). Hence, x c−→ p from (s2) or y

c−→ p

from (s3), which results in w ∈
(⋃

x
c−→p c · T(p)

)
∪
(⋃

y
c−→p c · T(p)

)
If instead w ∈

(⋃
x

c−→p c · T(p)
)
∪
(⋃

y
c−→p c · T(p)

)
then similarly it fol-

lows that there exists c and p such that x c−→ p or y c−→ p which in both
cases leads to x+ y

c−→ p. Therefore now w ∈
⋃
x+y

c−→p c · T(p) Together it
follows that

w ∈
⋃

x+y
c−→p

c · T(p) ⇐⇒ w ∈

 ⋃
x

c−→p

c · T(p)

 ∪
 ⋃
y

c−→p

c · T(p)

(3.1)

17

Using lemma 4 it now follows that

T(x+ y) =

 ⋃
x+y

c−→p

c · T(p)

 ∪ {ε} (lemma 4)

=

 ⋃
x

c−→p

c · T(p)

 ∪
 ⋃
y

c−→p

c · T(p)

 ∪ {ε} (3.1)

=

 ⋃
x

c−→p

c · T(p)

 ∪ {ε}
 ∪

 ⋃
y

c−→p

c · T(p)

 ∪ {ε}

= T(x) ∪ T(y) (lemma 4)

The fourth and last of these lemmas shows that ‖ on processes corre-
sponds with ‖ on sets of traces.

Lemma 8. For all x, y ∈ P, the following property holds:

T(x‖y) = T(x)‖T(y)

Proof. Take arbitrary processes x and y. We use induction on sequences w
to prove the rewritten property w ∈ T(x‖y) ⇐⇒ w ∈ T(x)‖T(y) for all
sequences w ∈ A∗.

Base case:
For w = ε notice that w ∈ T(x‖y), w ∈ T(x) and w ∈ T(y) because
the empty trace is always a possible trace from any process. Now it
becomes clear that w ∈ T(x)‖T(y):

w = ε ∈ ε |||||| ε ⊆
⋃

u∈T(x),v∈T(y)
u |||||| v = T(x)‖T(y)

Inductive case:
For the inductive case w = aw′ we have the following IH:

∀x, y ∈ P, w′ ∈ T(x‖y) IH⇐⇒ w′ ∈ T(x)‖T(y)

We separate the equivalence relation in two cases

– w ∈ T(x‖y) =⇒ w ∈ T(x)‖T(y) :
If w ∈ T(x‖y), then there exists p such that x‖y aw′

−→ p so also p′

such that
x‖y a−→ p′

w′
−→ p

From x‖y a−→ p′ and the operational semantics we have two pos-
sible cases:

18

∗ p′ = x′‖y ∧ x
a−→ x′ :

For the case that follows from (s4), p′ = x′‖y and x
a−→ x′

hold. Hence we can write

x‖y a−→ x′‖y w′
−→ p

Therefore we also know that x′‖y w′
−→ p, so w′ ∈ T(x′‖y).

Using the IH we now see that w′ ∈ T(x′)‖T(y). This means
that there exists t ∈ T(x′), u ∈ T(y) such that w′ ∈ t ||||||u from
(2.4). Since w = aw′ it follows that w ∈ a · (t ||||||u). Using
lemma 2 it follows that w ∈ at ||||||u. Note that, since t ∈ T(x′),
this implies there exists a q such that x′ t−→ q. Combining
this with the fact from our assumption that x a−→ x′, it
follows that:

x
a−→ x′

t−→ q

And therefore at ∈ T(x). Now it becomes clear that w ∈
T(x)‖T(y):

w ∈ at ||||||u ⊆
⋃

r∈T(x),s∈T(y)
r |||||| s = T(x)‖T(y)

∗ p′ = x‖y′ ∧ y
a−→ y′ :

For the case that follows from (s5), p′ = x‖y′ and y
a−→ y′

hold. Because of the symmetry of the equations and the
lemma, the proof of this case is analogous to the previous
case.

– w ∈ T(x)‖T(y) =⇒ w ∈ T(x‖y) :
If w ∈ T(x)‖T(y) then there exists some t ∈ T(x), u ∈ T(y) such
that w ∈ t ||||||u. Now, since w = aw′, from lemma 3 it follows that
there are two cases.

∗ ∃t′,w′ ∈ t′ ||||||u ∧ t = at′ :
For the first case ∃t′, w′ ∈ t′ ||||||u ∧ t = at′ holds. Take this t′.
Since t = at′ ∈ T(x) it follows that x′ and q exists such that:

x
a−→ x′

t′−→ q

So t′ ∈ T(x′). So now it becomes clear that w′ ∈ T(x′)‖T(y):

w′ ∈ t′ ||||||u ⊆
⋃

u∈T(x′),v∈T(y)
u |||||| v = T(x′)‖T(y)

Now we can use the IH to conclude that w′ ∈ T(x′‖y). We
already know that x a−→ x′ so using rule (s4) we see that

19

x‖y a−→ x′‖y. Together with lemma 4 we see:

w = aw′ ∈ a · T(x′‖y) ⊆

 ⋃
x‖y b−→p

b · T(p)

 ∪ {ε} = T(x‖y)

∗ ∃u′,aw′ ∈ a · (t ||||||u′) ∧ u = au′ :
The case where ∃u′, aw′ ∈ a · (t ||||||u′) ∧ u = au′ holds is anal-
ogous to the previous case because of symmetry.

Next we combine the last few lemmas to prove that T is indeed a homo-
morphism.

Lemma 9. T is a homomorphism such that it preserves the algebraic struc-
ture between processes and languages according to the following relations:

f(0) = {ε} (3.2)
f(a.x) = a∗f(x) (3.3)

f(x+ y) = x ∪ y (3.4)
f(x‖y) = x‖y (3.5)

Proof. The lemmas 5 - 8 prove the relations 3.2 - 3.5 respectively.

3.1.3 Soundness

In the previous subsection we showed that T is a homomorphism from pro-
cesses to languages. Now we create a new axiom system Eg derived from
ET , where all processes are replaced with languages and the operations on
those terms are replaced with the corresponding operations according to the
homomorphism T. The axiom system that follows from this transformation
is displayed in table 3.2. The following lemma then proves that the equations
that follow from this replacing of terms hold for all languages with {ε} as an
element.

(A0g) L ∪ {ε} = L (A1g) L ∪M =M ∪ L
(A2g) (L ∪M) ∪N = L ∪ (M ∪N) (A3g) L ∪ L = L

(P0g) L‖{ε} = L (P1g) L‖M =M‖L
(TDg) (a∗L) ∪ (a∗M) = a∗(L ∪M) (TPg) (L ∪M)‖N = L‖N ∪M‖N
(EL1g) (a∗L)‖(b∗M) = a∗

(
L‖(b∗M)

)
∪ b∗

(
(a∗L)‖M

)
Table 3.2: the set of equations Eg that hold for any language of which {ε}
is an element

20

Lemma 10. The set of equations Eg in table 3.2 is valid if L,M,N ∈ P(A∗)
are arbitrary languages and ε is an element of each language.

Proof. (A0g) follows from our assumption that ε ∈ L. (A1g), (A2g) and
(A3g) follow from the associativity, commitivity and idempotency of ∪ re-
spectively. The rest we separate:

(P0g):

L‖{ε} =
⋃

v∈L,w∈{ε}

v ||||||w (2.4)

=
⋃
v∈L

v |||||| ε

=
⋃
v∈L
{v} (2.3)

= L

(P1g):

L‖M =
⋃

v∈L,w∈M
v ||||||w (2.4)

=
⋃

w∈M,v∈L
w |||||| v (lemma 1)

=M‖L

(TDg):

(a∗L) ∪ (a∗M) = (a · L ∪ {ε}) ∪ (a ·M ∪ {ε}) (2.2)
= (a · L ∪ a ·M) ∪ {ε}
= a · (L ∪M) ∪ {ε} (2.1)
= a∗(L ∪M) (2.2)

(TPg):

(L ∪M)‖N =
⋃

v∈L∪M,w∈N
v ||||||w (2.4)

=

 ⋃
v∈L,w∈N

v ||||||w

 ∪
 ⋃
v∈M,w∈N

v ||||||w

= L‖N ∪M‖N (2.4)

21

(EL1g):

(a∗L)‖(b∗M)

= (a · L ∪ {ε})‖(b ·M ∪ {ε}) (2.2)

=
⋃

v∈(a·L∪{ε}),w∈(b·M∪{ε})

v ||||||w (2.4)

=

 ⋃
v′∈L,w′∈M

av′ |||||| bw′
 ∪(⋃

v′∈L
av′ |||||| ε

)
∪

(⋃
w′∈M

ε |||||| bw′
)
∪ ε |||||| ε

=

 ⋃
v′∈L,w′∈M

a · (v′ |||||| bw′) ∪ b · (av′ ||||||w′)

 ∪(⋃
v′∈L
{av′}

)

∪

(⋃
w′∈M

{bw′}

)
∪ {ε} (2.3)

=

 ⋃
v′∈L,w′∈M

a · (v′ |||||| bw′)

 ∪
 ⋃
v′∈L,w′∈M

b · (av′ ||||||w′)

∪

(⋃
v′∈L

a · {v′}

)
∪

(⋃
w′∈M

b · {w′}

)
∪ {ε} (2.1)

= a ·

 ⋃
v′∈L,w′∈M

(v′ |||||| bw′)

 ∪ b ·
 ⋃
v′∈L,w′∈M

(av′ ||||||w′)

∪ a ·

(⋃
v′∈L

(v′ |||||| ε)

)
∪ b ·

(⋃
w′∈M

(ε ||||||w′)

)
∪ {ε} (2.1)

= a ·

 ⋃
v′∈L,w′∈M

(v′ |||||| bw′)

 ∪(⋃
v′∈L

(v′ |||||| ε)

)
∪ b ·

 ⋃
v′∈L,w′∈M

(av′ ||||||w′)

 ∪(⋃
w′∈M

(ε ||||||w′)

) ∪ {ε}
= a ·

 ⋃
v′∈L,w∈b·M∪{ε}

(v′ ||||||w)

 ∪ b ·
 ⋃
v∈a·L∪{ε},w′∈M

(v ||||||w′)

 ∪ {ε}
= a ·

(
L‖(b ·M ∪ {ε})

)
∪ b ·

(
(a · L ∪ {ε})‖M

)
∪ {ε} (2.4)

=
[
a ·
(
L‖(b ·M ∪ {ε})

)
∪ {ε}

]
∪
[
b ·
(
(a · L ∪ {ε})‖M

)
∪ {ε}

]
= a∗

(
L‖(b∗M)

)
∪ b∗

(
(a∗L)‖M

)
(2.2)

22

Now we finally prove the soundness of our axiom system using the homo-
morphism and the fact that the axioms translated using the homomorphism
hold.

Theorem 2. The set of axioms ET is sound modulo trace equivalence: For
all closed substitutions σ, BCCSP‖ terms t and u and axioms in ET ,

ET ` t ≈ u =⇒ T(σ(t)) = T(σ(u))

Proof. From lemma 9 it follows that T is a homomorphism between BCCSP‖
terms and their sets of traces:

T(0) = {ε}
T(a.x) = a∗T(x)

T(x+ y)) = T(x) ∪ T(y)
T(x‖y) = T(x)‖T(y)

where x, y are processes. Take arbitrary BCCSP‖ terms t, u. Since σ is a
closed substitution, σ(t) and σ(u) are both processes. Since ε ∈ T(x) for
any x, we can use lemma 10 on sets of traces. The set of equations Eg
(table 3.2) is exactly those that you get if you apply T to each side of each
equation from our axiom system ET (table 3.1). Therefore each equation of
ET can be proven by applying T and then using the corresponding equation
from Eg which is proven to hold in lemma 10. For example, the equation
corresponding to axiom (TD) does indeed hold:

T(σ(a.x+ a.y)) = T(a.σ(x) + a.σ(y))) (σ)
= T(a.σ(x))) ∪ T(a.σ(y)) (lemma 9)
= (a∗T(σ(x))) ∪ (a∗T(σ(y))) (lemma 9)
= a∗(T(σ(x) ∪ T(σ(y))) (TDg)
= a∗(T(σ(x) + σ(y))) (lemma 9)
= T(a.(σ(x) + σ(y))) (lemma 9)
= T(σ(a.(x+ y))) (σ)

We can use similar reasoning for every equation t ≈ u to see that T(σ(t)) =
T(σ(u)) holds, so therefore the theorem holds.

3.2 Ground-Completeness

Our proof for ground-completeness is much shorter that that for soundness.
We first prove that all processes can be reduced to BCCSP terms with our
axiom system ET . Then we use the ground-completeness of the axiom system
EB modulo trace equivalency for BCCSP terms to show that ET is indeed
ground-complete modulo trace equivalency for BCCSP‖ terms.

23

3.2.1 Reduction to BCCSP

We reduce BCCSP‖ to BCCSP in lemma 13. For this lemma we first need
the following two lemmas.

Technically, the ground-completeness of EB modulo trace semantics from [8]
uses a different definition of the function T. In their proof traces are only
defined for BCCSP terms, so this version of the trace function maps only
BCCSP terms to their sets of traces. We will call this functions TB for now.
Clearly, when we apply T to any BCCSP term, the result will be the same as
if we had applied TB to that term. In the spirit of the ground-up approach of
this thesis, we use a lemma to make it clear that they are indeed the same.

Lemma 11. For all BCCSP terms p ∈ B, the following property holds:

T(p) = TB(p)

Proof. (s4) and (s5) are the only rules that are part of the semantics of
BCCSP‖ terms, but not of the semantics of BCCSP terms. Neither rule
is applicable on any term p ∈ B, since BCCSP terms never contain the ‖
operator. Therefore if we derive the set of all traces using the semantics of
either algebra we will get the same result, so the functions are identical for
p.

Since T(p) = TB(p) for BCCSP terms p we simply use T for both BCCSP
terms and BCCSP‖ terms from now on. The next lemma says that if you
take two closed BCCSP terms p, q, then there exists a closed BCCSP term
equationally similar to p‖q. This lemma basically unfolds all the interleaving
terms using the axioms (TP) and (EL1) to get a much more complicated
term without any interleaving.

Lemma 12. For all BCCSP terms p, q ∈ B, there exists another BCCSP
term r ∈ B such that the following property holds:

ET ` p‖q ≈ r

Proof. We use induction over processes p to prove the lemma for all p ∈ B.

Base case (p):
Take p ≈ 0. For r ≈ q it is now clear that r ∈ B and

p‖q ≈ 0‖q ≈ q‖0 ≈ q ≈ r

Inductive cases (p):

– p ≈ p1 + p2:
Take p ≈ p1+p2 with arbitrary p1, p2 ∈ B. The IHs then become:

∀q ∈ B,∃r1 ∈ B, ET ` p1‖q
IH
≈ r1

24

∀q ∈ B,∃r2 ∈ B, ET ` p2‖q
IH
≈ r2

Take these p1‖q
IH
≈ r1 ∈ B and p2‖q

IH
≈ r2 ∈ B. Now if we take

r1 + r2 ≈ r ∈ B we see:

p‖q ≈ (p1 + p2)‖q ≈ p1‖q + p2‖q
IH
≈ r1 + r2 ≈ r

– p ≈ a.p′

Take p ≈ a.p′ with arbitrary a ∈ A and p′ ∈ B. The IH then
becomes:

∀q ∈ B,∃rp ∈ B, ET ` p′‖q
IH
≈ rp (3.6)

We now need to prove the property

∀q ∈ B, ∃r ∈ B, ET ` a.p′‖q ≈ r

We do this by induction over process q:
Base case (q):
Take q ≈ 0. For r ≈ a.p′ it is clear that r ∈ B and

a.p′‖q ≈ a.p′‖0 ≈ a.p′ ≈ r

Inductive cases (q):
· q ≈ q1 + q2:
Take q ≈ q1 + q2 with arbitrary q1, q2 ∈ B. The IHs are:

∃r1 ∈ B, ET ` a.p′‖q1
IH
≈ r1

∃r2 ∈ B, ET ` a.p′‖q2
IH
≈ r2

Take these a.p′‖q1
IH
≈ r1 ∈ B and a.p′‖q2

IH
≈ r2 ∈ B. Now

if we take r1 + r2 ≈ r ∈ B we see:

a.p′‖q ≈ a.p′‖(q1 + q2)

≈ (q1 + q2)‖a.p′

≈ q1‖a.p′ + q2‖a.p′

≈ a.p′‖q1 + a.p′‖q2
IH
≈ r1 + r2

≈ r

· q ≈ b.q′:
Take q ≈ b.q′ with arbitrary b ∈ A and arbitrary q′ ∈ B.
The IH is:

∃rq ∈ B, ET ` a.p′‖q′
IH
≈ rq (3.7)

25

Take p′‖q ≈ p′‖b.q′
IH
≈ rp ∈ B from the first IH (3.6)

and a.p′‖q′
IH
≈ rq ∈ B from the second IH (3.7). Now for

a.rp + b.rq ≈ r ∈ B we see:

a.p′‖q ≈ a.p′‖b.q′

≈ a.(p′‖b.q′) + b.(a.p′‖q′)
IH
≈ a.rp + b.rq

≈ r

The next lemma says that BCCSP‖ can indeed be reduced. Given the
previous result this becomes somewhat trivial, as all operators except for ‖
already are in BCCSP and the case of ‖ follows directly from the previous
lemma.

Lemma 13. Every BCCSP‖ term is equivalent to a BCCSP term:

∀p ∈ P, ∃q ∈ B, ET ` p ≈ q

Proof. We use induction over processes p to prove the lemma for all p ∈ P.

Base case:
Take p ≈ 0. For q ≈ 0 ∈ B it is clear that p ≈ q so also ET ` p ≈ q.

Inductive case:

– p ≈ a.p′

For p ≈ a.p′ with arbitrary action a and process p′, the IH is

∃q′ ∈ B, ET ` p′
IH
≈ q′

Take q ≈ a.q′ ∈ B. Now it follows that p ≈ a.p′
IH
≈ a.q′ ≈ q

– p ≈ p1 + p2

For p ≈ p1 + p2 with arbitrary processes p1, p2, the IHs are

∃q1 ∈ B, ET ` p1
IH
≈ q1

∃q2 ∈ B, ET ` p2
IH
≈ q2

Take q1 + q2 ≈ q ∈ B with q1
IH
≈ p1 and q2

IH
≈ p2. Now it follows

that p ≈ p1 + p2
IH
≈ q1 + q2 ≈ q

26

– p ≈ p1‖p2

Take p ≈ p1‖p2 with arbitrary processes p1, p2, the IHs are

∃q1 ∈ B, ET ` p1
IH
≈ q1

∃q2 ∈ B, ET ` p2
IH
≈ q2

Take these p1
IH
≈ q1 ∈ B and p2

IH
≈ q2 ∈ B from the IHs. From

lemma 12 it follows that there exists q ∈ B such that q1‖q2 ≈ q.
It follows that p ≈ p1‖p2

IH
≈ q1‖q2 ≈ q.

3.2.2 Ground-Completeness

Now we know that BCCSP‖ can be reduced to BCCSP. We combine this
with the properties that BCCSP is ground-complete and BCCSP‖ is sound
to prove the ground-completeness modulo trace equivalence of BCCSP‖.

Theorem 3. The set of axioms ET is ground-complete modulo trace equiva-
lence:

∀p, q ∈ P, p ∼T q =⇒ ET ` p ≈ q

Proof. Take arbitrary p and q such that T(p) = T(q). From lemma 13 it
follows that there exists p′, q′ ∈ B such that ET ` p ≈ p′ and ET ` q ≈ q′.
Using the soundness of ET we now see that T(p) = T(p′) and T(q) = T(q′)
(theorem 2). From the original assumption therefore also T(p′) = T(q′) holds.
Using the property that EB is ground-complete modulo trace equivalency
(theorem 1), it follows that EB ` p′ ≈ q′. Since EB ⊆ ET , it follows that
ET ` p′ ≈ q′ as we can simply ignore the extra axioms. Therefore ET ` p ≈
p′ ≈ q′ ≈ q

3.3 Ground-Completeness of BCCSP‖ modulo Com-
pleted Trace Semantics

Next we look at a different axiomatisation. Specifically we prove the ground-
completeness modulo completed trace semantics of BCCSP‖. A sequence w
is a completed trace of process p0 if there exists the sequence of transitions
p0

w−→ pk, but no transitions from pk exist. The function CT : P → P(A∗)
maps a process to its set of completed traces. In completed trace semantics,
two processes p, q are equivalent if their sets of completed traces are the
same, denoted by p ∼CT q. The following two example processes p = a.b.0
and q = a.b.0+ a.0 demonstrate why traces and completed traces differ and

27

why we can not use the same axiom system as before. Specifically, the sets
of traces of both processes are the same:

T(a.b.0) = {ε, a, ab} = T(a.b.0+ a.0)

While their sets of completed traces are different:

CT(a.b.0) = {ab} 6= {a, ab} = CT(a.b.0+ a.0)

Clearly the axiomatisation of BCCSP‖ modulo completed trace equivalence
must also be different to the axiomatisation of BCCSP‖ modulo trace equiv-
alence. The following table 3.3 displays the new axiomatisation ECT . We
show this axiomatisation to be ground-complete for BCCSP‖ modulo com-
pleted trace semantics. It uses mostly the same axioms, but the axioms
(TD) and (TP) from ET are replaced with (CTD) and (CTP).

(A0) x+ 0 ≈ x (A1) x+ y ≈ y + x

(A2) (x+ y) + z ≈ x+ (y + z) (A3) x+ x ≈ x
(P0) x‖0 ≈ x (P1) x‖y ≈ y‖x

(CTD) a.(b.x+ z) + a.(c.y + w) ≈ a.(b.x+ c.y + z + w)

(CTP) (a.x+ b.y + w)‖z ≈ (a.x+ w)‖z + (b.y + w)‖z
(EL1) a.x‖b.y ≈ a.(x‖b.y) + b.(a.x‖y)

Table 3.3: the set of axioms ECT

For the proof of completeness we once again reduce BCCSP‖ terms to
BCCSP terms, as ground-completeness for BCCSP‖ modulo completed trace
semantics has also been proven in [8] for the following axiom system ECT,B:

ECT,B = {(A0), (A1), (A2), (A3), (P0), (P1), (CTD)} (3.8)

Theorem 4. The set of axioms ECT,B is ground-complete modulo trace equiv-
alence:

∀p, q ∈ B, p ∼T q =⇒ ECT,B ` p ≈ q

3.3.1 The Normal Form of BCCSP Terms

This time our proof that BCCSP‖ terms can be reduced to BCCSP terms
uses a slightly different strategy. Instead of proving it directly with nested
proofs by induction, we first prove that each BCCSP term can be rewritten
to a useful normal form. The set of all BCCSP terms that are in normal
form is generated by the following rules:

1. the term 0 is an element of the set

28

2. if for all i ∈ I, xi is an element of the set and ai ∈ A, then the term∑
i∈I

ai.xi

is also an element of the set.

We denote this set as Bnorm. Since this set is defined recursively we can
use it for a proof by induction. First we prove that each BCCSP term can
indeed be rewritten to a term in normal form

Lemma 14. Every BCCSP term p is equivalent to a term in normal form:

∀p ∈ B, ∃q ∈ Bnorm, ECT,B ` p ≈ q

Proof. We use structural induction on BCCSP terms p, to show that the
property holds for all p.

Base Case:
Take p ≈ 0. The normal form for p is p itself, as 0 is a term in normal
form.

Inductive Cases:

– p = a.x :
Take p = a.x where a is an arbitrary action and x an arbitrary
BCCSP term in normal form. According to the induction hy-
pothesis, x can be rewritten to a term x̂ ∈ Bnorm. In this case
p = a.x ≈ a.x̂ is in normal form.

– p = x+ y :
Take p = x+y with x, y arbitrary BCCSP terms. Take x̂, ŷ which
are normal forms of x and y respectively according to the IH. If
both x̂ = 0 and ŷ = 0 then the normal form of p is 0:

p = x+ y ≈ xn + yn ≈ 0+ 0 ≈ 0

If either x̂ = 0 or ŷ = 0 but not both, then the normal form of p
can be constructed like this:

p = x+ y ≈ 0+ y ≈ y ≈ ŷ or p = x+ y ≈ x+ 0 ≈ x ≈ x̂
Otherwise, x̂ must be of the form

∑
i∈I ai.xi and ŷ must be of the

form
∑

j∈J aj .xj . In this case, we can construct the normal form
of p like this:

p = x+ y ≈ x̂+ ŷ

≈
∑
i∈I

ai.xi +
∑
j∈J

aj .xj

≈
∑
i∈I∪J

ai.xi

29

3.3.2 Reduction to BCCSP

The next lemma makes a process by placing two BCCSP terms in normal
form around a parallel composition operator. We show that we can ‘break
apart’ the partial terms of the left-hand term: The process is equivalent to a
sum of those partial terms all individually parallel to the original right-hand
term.

Lemma 15. For all BCCSP terms q that are in normal form and p =∑
i∈I ai.xi with arbitrary ai ∈ A, xi ∈ Bnorm and |I| > 0, the following

property holds:
ECT ` p‖q ≈

∑
i∈I

(ai.xi‖q)

Proof. We use induction on the size of I, to prove the property for all sizes
of I larger than 0.

Base case:
Take |I| = 1. This means that p = a.x for some a ∈ A and x ∈ Bnorm.
Immediately it follows that p‖q ≈ a.x‖q is of the form we desire.

Inductive case:
Take |I| = n > 1. Our induction hypothesis is that for all sets of
indices with |J | = n− 1,

ECT `
∑
j∈J

aj .xj‖q
IH
≈
∑
j∈J

(aj .xj‖q)

We call the first two elements of I 1 and 2. Take K = I \ {1, 2}. We
can now rewrite p to the following:

p = a1.x1 + a2.x2 +
∑
k∈K

ak.xk

with arbitrary a1, a2 ∈ A and arbitrary x1, x2 ∈ Bnorm. Note that this
is possible because we have at least two terms ai.xi and if there are
exactly two terms we can use (A0) to say that the K term is 0. Now

30

we see that

p‖q ≈

(∑
i∈I

ai.xi

)
‖q

≈
(
a1.x1 + a2.x2 +

∑
k∈K

ak.xk

)
‖q

≈

((
a1.x1 +

∑
k∈K

ak.xk

)
‖q

)
+

((
a2.x2 +

∑
k∈K

ak.xk

)
‖q

)
(CTP)

≈

 ∑
j∈({1}∪K)

(aj .xj) ‖q

+

 ∑
j∈({2}∪K)

(aj .xj) ‖q

IH
≈

 ∑
j∈({1}∪K)

(aj .xj‖q)

+

 ∑
j∈({2}∪K)

(aj .xj ‖q)

 (*)

≈
∑

i∈({1,2}∪K)

(ai.xi‖q) (A1), (A2), (A3)

which is the form we desire.
(∗): |{1} ∪ K| = n − 1 and |{2} ∪ K| = n − 1, so we can use the
induction hypotheses.

Now we can use these lemmas to prove a lemma similar to lemma 12,
only now we apply it to BCCSP terms that are in normal form.

Lemma 16. For all terms p, q ∈ Bnorm, there exists another term r ∈ Bnorm
such that the following property holds:

ECT ` p‖q ≈ r

Proof. We use induction on p to prove the property for all terms p. We do
this induction using the structure of BCCSP terms that are in normal form.

Base Case:
Take p = 0. We can now choose r = q, as

p‖q ≈ 0‖q ≈ q

Inductive Case: Take p =
∑

i∈I ai.xi with |I| > 0. The induction
hypotheses become for all i ∈ I that

∀qi ∈ Bnorm,∃ri ∈ Bnorm, xi‖qi ≈ ri (3.9)

31

Using lemma 15 we see that

p‖q ≈
(∑
i∈I

ai.xi

)
‖q ≈

∑
i∈I

(ai.xi‖q) (3.10)

We now prove that for each i ∈ I, the following property holds:

∃r′i ∈ (Bnorm \ {0}), r′i ≈ ai.xi‖q (3.11)

We do this using induction on q to prove the property for all terms q.
We once again use the structure of BCCSP terms that are in normal
form for this induction.

Base Case:
Take q = 0. We can now construct r′i like this:

ai.xi‖q ≈ ai.xi‖0
≈ ai.xi (P0)
≈ r′i ∈ (Bnorm \ {0})

Inductive Case:
Take q =

∑
j∈J bj .yj with arbitrary bj ∈ A, yj ∈ Bnorm and

|J | > 0. The induction hypotheses become for all yj :

∃ri,j ∈ (Bnorm \ {0}), ri,j ≈ ai.xi‖yj (3.12)

We now take these ri,j,1 ≈ ai.xi‖yj for each yj from (3.12) and
also take ri,j,2 ≈ xi‖bj .yj for each yj from (3.9). Then we can
construct r′i like this:

ai.xi‖q ≈ ai.xi‖
(∑
j∈J

bj .yj

)
≈
(∑
j∈J

bj .yj

)
‖ai.xi

≈
∑
j∈J

(bj .yj‖ai.xi) (lemma 15)

≈
∑
j∈J

bj .(yj‖ai.xi) + ai(bj .yj‖xi) (EL1)

≈
∑
j∈J

bj .(ai.xi‖yj) + ai(xi‖bj .yj) (P1)

IH
≈
∑
j∈J

bj .ri,j,1 + ai.ri,j,2

= r′i ∈ (Bnorm \ {0})

32

So now we have shown for each ai.xi‖q that there exists an r′i that is
in normal form and not 0. If we sum these r′i, then it follows from
associativity that the result will be in normal form as well. We can
therefore combine this with (3.10) to construct r:

p‖q ≈
∑
i∈I

(ai.xi‖q) (3.10)

≈
∑
i∈I

r′i (3.11)

= r ∈ Bnorm

We have shown that we can construct a BCCSP term from combining
two BCCSP terms with an interleaving parallel operator. However, all the
BCCSP terms have to be in normal form. Luckily, we have already shown
that every BCCSP term is equationally similar to one in normal form in
lemma 14. Using these two we can now easily show that every BCCSP‖
term can also be reduced to a BCCSP term in normal form. The proof of
this is so similar to the one in lemma 13, that it is mostly left out.

Lemma 17. For every BCCSP‖ term p there exists BCCSP term q in normal
form for which the following holds:

ECT ` p ≈ q

Proof. The cases where p = 0, p = a.p′ and p = p1+ p2 are analogous to the
same cases of the proof for 13.

p = p1‖p2 :
Take p ≈ p1‖p2 with arbitrary processes p1, p2. The induction hy-
potheses are

∃q1 ∈ B, ECT ` p1
IH
≈ q1

∃q2 ∈ B, ECT ` p2
IH
≈ q2

Take these p1
IH
≈ q1 ∈ B and p2

IH
≈ q2 ∈ B from the IHs. From lemma 14

it follows that there exists q1 ≈ q′1 ∈ Bnorm and q2 ≈ q′2 ∈ Bnorm. From
lemma 16 it follows that there exists q ∈ B such that q′1‖q′2 ≈ q. It
follows that p ≈ p1‖p2

IH
≈ q1‖q2 ≈ q′1‖q′2 ≈ q.

Now we can use this reduction very similarly to the proof of theorem 3
to prove ground-completeness for BCCSP‖ modulo closed trace equivalence.
For this proof we assume that the axiomatisation is sound modulo completed
trace semantics.

33

Theorem 5. The set of axioms ECT is ground-complete modulo trace equiv-
alence:

∀p, q ∈ P, p ∼T q =⇒ ECT ` p ≈ q

Proof. This proof of this theorem is analogous to the proof of theorem 3,
but uses theorem 4 instead of theorem 1, lemma 17 instead of lemma 13,
soundness modulo completed trace semantics instead of soundness modulo
trace semantics and ECT instead of ET

34

Chapter 4

Related Work

Until very recently, the main attempts at describing the axiomatisability
of the parallel composition operator were done modulo bisimulation [1].
Then [1] took a thorough look at the language BCCSP. It showed for
the whole spectrum of semantical equivalence whether or not the language
BCCSP‖ had a finite, ground complete axiomitisation. Our thesis borrows
a lot of ideas from that paper. For example, the paper suggests to reduces
BCCSP‖ terms to BCCSP for the proof of ground-completeness for trace
semantics. Our thesis does a more thorough exploration of the proof for
soundness. Traditionally, soundness is mostly left out of a proof for an ax-
iomatisation [8]. The approach [1] takes for proving correctness modulo both
trace semantics as completed trace semantics is similar to the approach in
this paper. It reduces to BCCSP terms as well, but the reducability follows
from an earlier result that another axiom system was reducable and the fact
that these other axioms were specific versions of that axiom system.

Besides this recent paper, axiomatisation of algebras with a parallel
composition operator modulo bisimulation semantics have been explored
before[7], but no systematic exploration modulo the rest of the spectrum
of semantics had been done [1].

35

Chapter 5

Conclusions

First we explored the basics of process algebra using some examples of CCS.
Then we more thoroughly explored a part of process algebra, by expanding on
the axiomatisability of BCCSP modulo trace semantics. For soundness, we
showed that the function that maps a BCCSP term to its set of traces is ac-
tually a homomorphism. For ground-completeness, we showed that BCCSP‖
terms can indeed be reduced to BCCSP terms using the axioms we provided.

5.1 Future Work

It may be interesting to investigate whether the CT function is a homomor-
phism as well, or if another approach to proving soundness has to be taken
for completed trace semantics.

The algebra BCCSP‖ is very similar to CCS, as it has most terms of
CCS, but leaves out the ‘renaming’ and ‘restriction’ operators. Perhaps the
axiomatisations for trace and completed trace semantics could be extended
to work for CCS as well, which might especially be interesting given the
popularity of CCS. Some challenges in doing this might be that the semantics
of both parallel composition and non-deterministic choice is slightly different
or the fact that recursive processes are often allowed in CCS. Both of these
differences might lead to very different axiomatisations if they exist at all.

36

Bibliography

[1] Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, Bas Luttik, and
Mathias Ruggaard Pedersen. On the axiomatisability of parallel compo-
sition: A journey in the spectrum. In Igor Konnov and Laura Kovács, ed-
itors, 31st International Conference on Concurrency Theory, CONCUR
2020, September 1-4, 2020, Vienna, Austria (Virtual Conference), vol-
ume 171 of LIPIcs, pages 18:1–18:22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[2] J.C.M. Baeten, editor. Applications of Process Algebra (2nd ed). Cam-
bridge University Press, United Kingdom, 2005.

[3] Jos C. M. Baeten. A brief history of process algebra. Theor. Comput.
Sci., 335(2-3):131–146, 2005.

[4] Ansgar Fehnker, Rob van Glabbeek, Peter Höfner, Annabelle McIver,
Marius Portmann, and Wee Lum Tan. A Process Algebra for Wireless
Mesh Networks. In Helmut Seidl, editor, Programming Languages and
Systems, pages 295–315, Berlin, Heidelberg, 2012. Springer Berlin Hei-
delberg.

[5] Robin Milner. Communication and concurrency. PHI Series in computer
science. Prentice Hall, 1989.

[6] F. Moller and P. Stevens. Edinburgh concurrency workbench user
manual(version 7.1). http://www.dcs.ed.ac.uk/home/cwb/. Accessed:
2021-05-24.

[7] David Michael Ritchie Park. Concurrency and automata on infinite se-
quences. In Peter Deussen, editor, Theoretical Computer Science, 5th GI-
Conference, Karlsruhe, Germany, March 23-25, 1981, Proceedings, vol-
ume 104 of Lecture Notes in Computer Science, pages 167–183. Springer,
1981.

[8] Rob J. van Glabbeek. The linear time - branching time spectrum I. In
Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors, Handbook
of Process Algebra, pages 3–99. North-Holland / Elsevier, 2001.

37

[9] Nicolas Wua. Applications of process algebra in systems biology. Life
Sciences Interface Doctoral Training Centre Student Projects, Brasenose
College, University of Oxford, Oxford, UK, 2006.

38

	Introduction
	Our Contribution
	Outline

	Preliminaries
	The Language BCCSP
	Traces
	Operations on sequences and languages
	Homomorphism
	Substitution
	Equations and Their Logic
	Soundness and Ground-Completeness
	The Language BCCSP

	The Proofs
	Soundness
	Preliminary Lemmas
	Proof that T is a Homomorphism
	Soundness

	Ground-Completeness
	Reduction to BCCSP
	Ground-Completeness

	Ground-Completeness of BCCSP modulo Completed Trace Semantics
	The Normal Form of BCCSP Terms
	Reduction to BCCSP

	Related Work
	Conclusions
	Future Work

