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Abstract

Neuromorphic computation systems are innovative architectures that intend to
eventually either replace or complement the ubiquitous von Neumann architecture
hardware. In machine learning applications, where the main focus lies, and for
more conventional numerical algorithms. Addition is a basic arithmetic operation
that is used in many algorithms. Hence, it is crucial to have a time-, space- and
energy-efficient neuromorphic addition algorithm. This paper proposes and com-
pares eleven spiking neural networks for integer addition. The five networks with
radix number representation turn out to be the most suitable for performing this
arithmetic operation because of their low complexities and other benefits.
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1 Introduction

Moore’s law [10] states that the number of transitions in the integrated circuits doubles
about every two years. Moore’s Intel colleague David House has even claimed that the
time efficiency doubles every 18 months [7]. The continuation of this progress is of high
importance for our digital economy. However, over the last decades, this advancement
seems to have slowed down industry-wide. People try to keep up with the pace of Moore’s
law. New materials were invented to make transistors smaller. (For example, the high-k
dielectric [6].) Parallelism is applied where possible. And new hardware architectures
were developed where the processing and data memory are more closely located to each
other, addressing the von Neumann bottleneck [3].

One of this innovative hardware is the so-called neuromorphic architecture. Neuromorphic
hardware is inspired by the structure of the brain. It is typically characterised by its high
levels of parallelism, co-located processing and memory and low power consumption [1].
Although the main focus lies on machine learning, neuromorphic computers can also be
successfully applied for more conventional numerical algorithms. The intention is that
these new neural computing technologies eventually either replace or complement the
popular von Neumann architecture hardware [12].

Addition is a basic arithmetic operation that is used in many algorithms. Hence, it is
crucial to have an addition algorithm that is time-, space- and energy-efficient. The aim
of this paper is to propose a good neuromorphic addition algorithm for a spiking neural
network. The so-called spiking neural networks (SNNs) form a subclass of neuromorphic
systems [1]. These SNNs can be seen as the equivalent of what Turing machines are for von
Neuman architectures [9]. Thus, this paper uses the SNN as the underlying computational
model for neuromorphic computers.

Eleven spiking algorithms for integer addition are proposed, analysed and compared in
this paper. The results of this paper may also contribute to a better understanding of the
potentials and limitations of the new neuromorphic architecture.

The remainder of this paper is organized is as follows: First, in section 2, the used
abstract model for SNN is described. Then, section 3 explains what a good network
means and defines some constraints that the eleven proposed networks must respect. The
eleven networks are discussed in sections 4, 5 and 6. There, the algorithms are defined,
described and individually analyzed. For network 4.1 all formal proofs are given. In other
sections, the proofs of most theorems, lemmas and complexities are left as an exercise
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for the reader. The eleven spiking algorithms are compared to each other in section 7.
Section 8 provides a discussion of the results and an outlook for future work. Finally, this
paper is concluded with section 9.

2 Abstract model

This paper uses the deterministic discrete-time model for SNN as proposed by Johand
Kwisthout and Nils Donselaar in their paper [9].

A spiking neural network is defined as finite directed graph S = (N,S) where N is the set
of neurons (nodes) and S is the set of synapses (nodes). Every neuron k ∈ N is a tuple
(Tk, Rk,mk), where Tk ∈ Q≥0 is the threshold, Rk ∈ Q≥0 the reset voltage and mk ∈ [0, 1]
the leakage constant. Each synapse s ∈ S is a tuple (k ∈ N, n ∈ N, dk→n ∈ N>0, wk→n ∈
Q), where k is the pre-synaptic neuron, n the post-synaptic neuron, dk→n the synaptic
delay and wk→n the synaptic weight. For convenience, the notation k → n = (dk→n, wk→n)
will be used in this paper to refer to a synapse.

The behaviour of neuron k at time t ∈ Z is defined by its membrane potential uk(t) ∈ Q≥0.
Neuron k spikes when this potential reaches the threshold Tk. Then two things happen:

1. For each neuron j such that k → j ∈ S, this signal from neuron k goes to j, reaches
j dk→j time-steps later and wk→j is added to j’s potential.

2. The potential of neuron k resets to Rk.

If neuron k does not spike at time t, then the leakage constant mk defines which part of
the current potential is carried over to the next time-step.

Thus, the potential uk(t) of neuron k at time j can be expressed as follows:

uk(t) =

max(0, Rk +
∑

j∈N∧k→j∈S wj→k ∗ 1{uj(t−dj→k)≥Tj}) if uk(t− 1) ≥ Tk

max(0,mk ∗ uk(t− 1) +
∑

j∈N∧j→k∈S wj→k ∗ 1{uj(t−dj→k)≥Tj}) if uk(t− 1) < Tk

Note that uk(t) ≥ Tk is equivalent to ”neuron k spikes at time t”.

Such a network S = (N,S) gets some input represented as spikes on particular input
neurons. The calculation is finished when this network returns some output, represented
by spiking behaviour of particular output neurons.

Furthermore, this paper uses the following conventions:

• The calculation of a network starts at time 0. The potential uk(0) of neuron k is
called the initial voltage or initial potential. By default, if not stated differently,
this initial voltage is 0 and ∀k ∈ N, ∀t < 0 : uk(t) = 0.

• By default, if not stated differently, neurons and synapses have parameters m =
R = 0 and T = d = w = 1. (However, if these parameters are not explicitly
specified, then they are probably not important. For example, it does matter what
the threshold of an input neuron is in section 5.2. It is sufficient to know that this
neuron spikes once at time Ai.)

• This paper contains some visual representations of the networks. A solid arrow in
these graphs indicates an excitatory synapse with a positive weight, and a dashed
arrow indicates an inhibitory synapse with a negative weight. The numbers on the
arrows are the weights of the corresponding synapses. If an arrow does not have a
number, then the weight is 1 by default (or −1 in case of an inhibitory synapse).
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• Number zero is both positive and negative. E.g., a positive variable can be equal to
0 and a non-negative variable is greater than 0.

3 A good network

As mentioned earlier, this paper aims to find a good network that can perform integer
addition. But what does this mean, a good network?

• A good network is efficient, or, equivalently, has low computational complexities.
One of the advantages of the neuromorphic computer systems is their low energy
consumption in comparison with the conventional von Neumann machines. There-
fore, besides the well-known time and space complexities, Kwisthout and Donselaar
introduced energy as a new complexity measure [9]. The resource constraints for
an SNN are defined as a tuple RS = (TIME, SPACE,ENERGY). TIME is here the
number of time steps S may use to calculate and return the expected output (time
complexity), SPACE the number of neurons |N | (space complexity), and ENERGY
the number of spikes (energy complexity). All three of them are functions on the
size of the input. An efficient network has a low time, space and energy complexity.

• A good network is general. It is useful if the same network can be applied for
different input values (within some boundaries and all represented in the same way).
Thus, in general, the input and the output should not be represented in the network
structure. For example, the input values should not be encoded as synaptic delays.
However, note that generality goes typically at the cost of efficiency [9].

• A good network has no significant practical limitations. Everything is possible in
theory, but there are a lot of physical constraints in practice. Think about limited
precision or maximal voltage a computer can use. A theoretical algorithm is useless
if it exceeds the boundaries of a real system on which it should be executed.

Besides the aspects mentioned above, each network can have other benefits and drawbacks.
These should also be borne in mind when comparing different circuits in section 7.

Furthermore, an addition-network must respect the following three constraints:

• The network must be non-hybrid. Some authors (for example, [2]) propose spiking
neural algorithms that are partly executed on an SNN and partly on another kind
of machine. However, the networks discussed in this paper are intended to be used
as building blocks for larger networks. Furthermore, there are already efficient
addition algorithms for conventional system (e.g., carry-lookahead adder, which has
a theoretical time complexity O(log n)). Hence, there is no point in using a hybrid
spiking neural algorithm for integer addition.

In [9] the SNN complexity classes are defined by two tuples: RS as explained above
and RT = (TIME, SPACE). RT are here the time and space constraints that a
Turing T machine would need to create the SNN S. However, this paper considers
only non-hybrid spiking algorithms. We do not know anything about this external
mechanism, which creates these spiking networks. Hence, this paper does examine
the complexities of T .

• The network should use the same representation on the input as on the output.

• The network should be an exact adder: it should return the exact sum of the given
input integers.
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4 Binary representation

Before algorithmically adding two (or more) numbers, the first thing you need to do
is decide how these numbers should be represented. The first two proposed networks
were inspired by the binary number representation in the paper [4]. In the abstract
model for SNN, a neuron gives deterministic binary information: it spikes, or it does not
spike. Hence, an obvious representation is the binary numeral system. In the first two
networks, an integer is represented by a sequence of neurons. If a neuron spikes, then the
corresponding bit is 1. If the neuron does not spike, then the corresponding bit is 0.

In practice, it is impossible to have an infinite number of neurons. So we choose an m ≥ 0
and define the input and output as (m + 1)-bit integers.

4.1 Add two integers in binary representation

The spiking neural network of this section adds two (m + 1)-bit integers in binary repre-
sentation.

Task

Take m ≥ 0. Given integers A = A0+A1 ·2+· · ·+Am ·2m and B = B0+B1 ·2+· · ·+Bm ·2m,
calculate C = (A+B) mod 2m+1 = C0 +C1 ·2+ · · ·+Cm ·2m, where Ai , Bi , Ci ∈ {0, 1}
for all bit-positions 0 ≤ i ≤ m.

Network S = (N,S)

Neurons N
For 0 ≤ i ≤ m, neuron a i = (1,0,0) gets an excitatory spike of weight 1 at time 0 if
Ai = 1
For 0 ≤ i ≤ m, neuron b i = (1,0,0) gets an excitatory spike of weight 1 at time 0 if
Bi = 1
For 0 ≤ i ≤ m, neuron c i = (1,0,0)
For 0 ≤ i ≤ m, neuron -2 i = (2,0,0)

Synapses S
For 0 ≤ i ≤ m, for i ≤ j ≤ m synapse a i→ -2 j = (1, 2i−j)
For 0 ≤ i ≤ m, for i ≤ j ≤ m synapse b i→ -2 j = (1, 2i−j)
For 0 ≤ i ≤ m, for i ≤ j ≤ m synapse a i→ c j = (2, 2i−j)
For 0 ≤ i ≤ m, for i ≤ j ≤ m synapse a i→ c j = (2, 2i−j)
For 0 ≤ i ≤ m, synapse -2 i→ c i = (1,−2)

Input

For 0 ≤ i ≤ m, neuron a i gets an excitatory spike of weight 1 at time 0 if Ai = 1 (thus,
ua i(0) = Ai)
For 0 ≤ i ≤ m, neuron b i gets an excitatory spike of weight 1 at time 0 if Bi = 1 (thus,
ub i(0) = Bi)

Output

For 0 ≤ i ≤ m, neuron c i spikes at time 2 if Ci = 1
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Figure 1: An example with m = 2.

How and why does this work?

In principle, this network uses the simple pencil-and-paper addition method with a carry-
lookahead mechanism.

Express the carry-over with variable carryi from Definition A.1 using M = N = 2, m = m,
A1 = A and A2 = B. Then from Lemma A.5 follows:

Ci = (Ai+Bi+b(Ai−1+Bi−1)·2+(Ai−2+Bi−2)·4+· · ·+(A0+B0)·2ic) mod 2 for 0 ≤ i ≤ m

Define Di = Ai + Bi + (Ai−1 + Bi−1) · 2 + (Ai−2 + Bi−2) · 4 + · · ·+ (A0 + B0) · 2i.

Without neuron -2 i, the potential of neuron c i would become Di at time 2. The
threshold of c i is 1. Thus c i would spike if Di ≥ 1. However, neuron -2 i gets a
potential Di at time 1. The threshold of -2 i is 2. Thus, if Di ≥ 2, neuron -2 i spikes
at time 1 and decreases the potential of c i with 2. Hence, the potential of c i becomes
Di − 1Di≥2. Furthermore, bDi − 1Di≥2c = bDic mod 2 = Ci. Hence neuron c i spikes at
time 2 if Ci = 1.

That was the algorithm, in short. Now, let us give more a formal proof that this circuit
works. We begin with the following lemma:

Lemma 4.1. For 0 ≤ i ≤ m, holds u-2 i(1) = Di.

Proof. u-2 i(0) = 0. Thus:

u-2 i(1) = max(0,
∑

j∈N∧j→-2 i∈S

wj→-2 i · 1{uj(1−dj→-2 i)≥Tj})

=
m∑
j=0

2j−i · (1{ua j(0)≥1} + 1{ub j(0)≥1})

=
m∑
j=0

2j−i · (1{Aj=1} + 1{Bj=1})

=
m∑
j=0

2j−i · (Aj + Bj) because Ai , Bi ∈ {0, 1}

= Di
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Now we can prove the following theorem:

Theorem 4.2. For 0 ≤ i ≤ m, neuron c i spikes at time 2 if Ci = 1

Proof. Take 0 ≤ i ≤ m. We know uc i(0) = 0. Thus:

uc i(1) = max(0,
∑

j∈N∧j→c i∈S

wj→c i · 1{uj(1−dj→c i)≥Tj})

= −2 · 1{u-2 i(0)≥2} +
m∑
j=0

2j−i · (1{ua j(−1)≥1} + 1{ub j(−1)≥1})

= 0

Hence:

uc i(2) = max(0,
∑

j∈N∧j→c i∈S

wj→c i · 1{uj(1−dj→c i)≥Tj})

= −2 · 1{u-2 i(1)≥2} +
m∑
j=0

2j−i · (1{ua j(0)≥1} + 1{ub j(0)≥1})

= −2 · 1{Di≥2} +
m∑
j=0

2j−i · (1{Aj=1} + 1{Bj=1}) (Lemma 4.1)

= Di − 2 · 1{Di≥2}

From Lemma A.4 follows 0 ≤ bDic ≤ 3. Thus:

buc i(2)c = bDi − 2 · 1Di≥2c
= bDic − 2 · 1Di≥2

= bDic mod 2

= Ci

The threshold of neuron c i is 1. Ci ∈ {0, 1}. Thus, neuron c i spikes at time 2 if Ci = 1.

Complexities

Space: Θ(m)
Time: O(1)
Energy: O(m)

Let us prove these complexities.

Theorem 4.3. The space complexity of this network is Θ(m).

Proof. The network contains the following neurons:

• m + 1 neurons a i

• m + 1 neurons b i

• m + 1 neurons c i

• m + 1 neurons -2 i
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Thus, there are 4m + 4 = Θ(m) neurons in total.

Theorem 4.4. The time complexity of this network is O(1).

Proof. We want to proof that ∀k ∈ N,∀t ≥ 3 : uk(t) = 0

Take t ≥ 2 and 0 ≤ i ≤ m. Then, by induction on i:

ua i(t− 1) =
∑

j∈N∧j→a i∈S

wj→a i · 1{uj(t−dj→a i)≥Tj}

= 0

and

ub i(t− 1) =
∑

j∈N∧j→b i∈S

wj→b i · 1{uj(t−dj→b i)≥Tj}

= 0

Then, by induction in i holds:

u-2 i(t) = max(0,
∑

j∈N∧j→-2 i∈S

wj→-2 i · 1{uj(t−dj→-2 i)≥Tj})

=
m∑
j=0

2j−i · (1{ua j(t−1)≥1} + 1{ub j(t−1)≥1})

=
m∑
j=0

2j−i · 0

= 0

Now, let us look at neurons c i. By induction on i:

uc i(t + 1) = max(0,
∑

j∈N∧j→c i∈S

wj→c i · 1{uj(t+1−dj→c i)≥Tj})

= −2 · 1{u-2 i(t)≥2} +
m∑
j=0

2j−i · (1{ua j(t−1)≥1} + 1{ub j(t−1)≥1})

= −2 · 0 +
m∑
j=0

2j−i · 0

= 0

Thus, indeed ∀k ∈ N, ∀t ≥ 3 : uk(t) = 0. Hence, no neurons spikes after time 2 and the
time complexity is 2 = O(1).

Theorem 4.5. The energy complexity is O(m)

Proof. The energy complexity is bounded above by the product of time complexity and
space complexity Θ(m) · O(1) = O(m). Furthermore, it is possible that all neurons a i
spike at time 0. Hence, the energy complexity is O(m).
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Benefits

• It may seem that this network adds only positive integers, but using two’s comple-
ment for negative numbers makes subtraction possible as well.

• If the sum of the input is too big to fit in the neurons c i (overflow), then this network
still gives modulo the correct answer. This is expressed above as C = (A + B)
mod 2m+1.

• This network is reusable. This network can add two (m + 1)-bit integers again and
again without changing its structure or resetting any parameters. It is even not
necessary to wait until the current computation has finished. Immediately after
neurons a i and b i have fired, they can get new input to calculate the sum.

Drawbacks

• This network has one significant practical limitation. The weights of the synapses
are defined as powers of 1

2
. The exponent can go to infinity in theory, but every

real system has a limited precision in practice. Thus, there is a maximum for the
number of c i neurons, or this network may give incorrect answers.

4.2 Add multiple integers in binary representation

The spiking neural network in this section adds multiple (m + 1)-bit integers in binary
representation.

Task

Take m ≥ 0. Given integers Ai = Ai,0 +Ai,1 · 2 + · · ·+Ai,m · 2m (for 1 ≤ i ≤M), calculate
C = (A1 + · · ·+AM) mod 2m+1 = C0 +C1 · 2 + · · ·+Cm · 2m, where Ai,j ,Cj ∈ {0, 1} for
all bit-positions 0 ≤ j ≤ m and integers 1 ≤ i ≤M .

Network S = (N,S)

Neurons N
For 1 ≤ i ≤ M , for 0 ≤ j ≤ m, neuron a i j gets an excitatory spike of weight 1 at
time 0 if Ai,j = 1
For 0 ≤ i ≤ m, neuron c i = (1,0,0)
For 0 ≤ i ≤ m, for 1 ≤ j ≤ bM + M · (1− 2−i)c, neuron S j i = (j, 0, 0)

Synapses S
For 0 ≤ i ≤ m, for 1 ≤ j ≤M , for 0 ≤ k ≤ i, for 1 ≤ p ≤ bM +M · (1− 2−i)c, synapse
a j k → S p i = (1, 2k−i)
For 0 ≤ i ≤ m, for 1 ≤ j ≤ bM + M · (1− 2−i)c, synapse S j i→ c i = (1, (−1)j−1)

Input

For 1 ≤ i ≤ M , for 0 ≤ j ≤ m, neuron a i j gets an excitatory spike of weight 1 at time
0 if Ai,j = 1 (thus, ua i j(0) = Ai,j)

Output

For 0 ≤ i ≤ m, neuron c i spikes at time 2 if Ci = 1
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Figure 2: An example with m = 1 and M = 3.

How and why does this work?

The idea is similar to the previous section.

Express the carry-over with variable carryi from Definition A.1 using M = M , N = 2,
m = m, and Ai = Ai for 1 ≤ i ≤M . Then from Lemma A.5 follows:

Ci =

⌊
i∑

j=0

(A1,j + · · ·+ AM,j) · 2j−i

⌋
mod 2

Define Di =
∑i

j=0(A1,j + · · ·+ AM,j) · 2j−i.

At time 1, each neuron S i j gets spikes from neurons a k p, where 1 ≤ k ≤ M and
0 ≤ p ≤ j, such that the potential of S i j becomes Dj. (From Lemma A.4 follows
0 ≤ Dj ≤ bM + M · (1− 2−j)c. This is why there are bM + M · (1− 2−j)c neurons S i j
for each bit position j.)

Lemma 4.6. ∀0 ≤ j ≤ m,∀1 ≤ i ≤ bM + M · (1− 2−j)c : uS i j(1) = Dj

The threshold of S i j is i. Thus S i j spikes if Dj ≥ i. These spikes from neuron S i j
go to neuron c j. At time 2, neuron c j gets inhibiting spikes from neurons S q j with
an even q and excitatory spikes from neurons S q j with an odd q. Thus the potential of

c j becomes
⌊
bDjc+1

2

⌋
−
⌊
bDjc
2

⌋
= bDjc mod 2 = Cj.

Lemma 4.7. ∀0 ≤ i ≤ m : uc i(2) = Ci

The threshold of c j is 1 and Ci ∈ {0, 1}. Thus, c j spikes at time 2 if Ci = 1.

Theorem 4.8. ∀0 ≤ i ≤ m : neuron c i spikes at time 2 if Ci = 1.
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Complexities

Space: Θ(M ·m)
Time: O(1)
Energy: O(M ·m)

This network has the same benefits and drawbacks as the previous network.

Benefits

• Using two’s complement for negative numbers makes subtraction possible.

• If the sum of the input is too big to fit in the neurons c i, then this network still
gives modulo the correct answer. This is expressed above as C = (A1 + · · · + AM)
mod 2m+1.

• This network is reusable. This network can add two (m + 1)-bit integers again and
again without changing its structure or resetting any parameters. It is even not
necessary to wait until the current computation has finished. Immediately after
neurons a i j have fired, they can get new input to calculate the sum.

Drawbacks

• This network has one significant practical limitation. The weights of the synapses
are defined as powers of 1

2
. The exponent can go to infinity in theory, but every

real system has a limited precision in practice. Thus, there is a maximum for the
number of c i neurons, or this network may give incorrect answers.

5 Time representation

In the next three spiking networks, a number is represented as the time when the corre-
sponding neuron spikes. All these three networks work on the same principle. Assume
we want to add M positive integers Ai (1 ≤ i ≤ M) and say C = A1 + · · · + AM . Then
(C − A1) + · · · + (C − AM) = C ∗ (M − 1). So, we could take a neuron with some high
potential N and gradually decrease its potential by M −1 with each step. Meanwhile, for
each 1 ≤ i ≤M , from time Ai, we increase the potential by 1. This way, the potential is
at its lowest at time max{A1, . . . , AM} – it is equal to N −C + max{A1, . . . , AM} then –
and the potential reaches N again at time C.

NB: the potential of a neuron is greater than or equal to 0. Thus, N should be greater
than or equal to C −max{A1, . . . , AM}.

5.1 Add two integers represented as the time when a neuron
spikes

The spiking neural network in this section adds two integers represented as the time when
a corresponding neuron spikes.

Task

Assume N ≥ 1. Given positive integers A and B such that N > min(A,B), calculate
C = A + B.

11



Network S = (N,S)

Neurons N
Neuron A gets an excitatory spike of weight 1 at time A (thus, uA(A) = 1)
Neuron B gets an excitatory spike of weight 1 at time B (thus, uB(B) = 1)
Neuron a = (1, 1, 0)
Neuron b = (1, 1, 0)
Neuron D = (2, 0, 1)
Neuron C = (N, 0, 1) with initial voltage N − 1
Neuron inf = (1, 1, 0) with initial voltage 1

Synapses S
Synapse A→ D = (1, 1)
Synapse B→ D = (1, 1)
Synapse A→ a = (1, 1)
Synapse B→ b = (1, 1)
Synapse D→ C = (1, 1)
Synapse a→ C = (2, 1)
Synapse b→ C = (2, 1)
Synapse inf→ C = (3,−1)

Input

Neuron A gets an excitatory spike of weight 1 at time A (thus, uA(A) = 1)
Neuron B gets an excitatory spike of weight 1 at time B (thus, uB(B) = 1)

Output

Neuron C spikes once at time A + B + 2 = C + 2 (thus, uC(C + 2) ≥ N and ∀t < C + 2 :
uC(t) < N)

Figure 3: A visualisation of the network.

How and why does this work?

Without loss of generality, assume A ≤ B. The idea is that the potential of C first
decreases to N − A − 1, then remains constant until time B + 3, and finally slowly
increases back to its threshold such that C spikes at time A + B + 2.

Neuron inf starts with potential 1. This neuron has threshold 1 and reset voltage 1. So
neuron inf begins constantly spiking at time 0.

Lemma 5.1. ∀t ≥ 0 : uinf(t) = 1

12



The threshold of inf is 1. Thus, inf is constantly spiking.

In the meanwhile, neuron A spikes at time A. Neuron A is connected to neuron a. Neuron
a has threshold 1 and reset voltage 1. So neuron a begins constantly firing when it receives
the spike from A at time A + 1.

Lemma 5.2. ∀t ≥ A + 1 : ua(t) = 1 and ∀t < A + 1 : ua(t) = 0

The threshold of a is 1. Thus, from time A + 1, neuron a is constantly spiking.

Similarly, neuron B and neuron b:

Lemma 5.3. ∀t ≥ B + 1 : ub(t) = 1 and ∀t < B + 1 : ub(t) = 0

The threshold of b is 1. Thus, from time B + 1, neuron b is constantly spiking.

Neuron A is connected to neuron D. At time A, neuron A spikes and sends this signal to
neuron D, increasing neuron D’s potential to 1. Neuron B is also connected to neuron D.
At time B ≥ A, neuron B spikes and sends this signal to neuron D, increasing neuron D’s
potential to 2. This potential is equal to the threshold of neuron D. So neuron D spikes at
time B + 1.

Lemma 5.4.

∀t ∈ Z : uD(t) =


1 if t ∈ [A + 1, B + 1)

2 if t = B + 1

0 else

The threshold of D is 2. Thus, neuron D spikes at time B + 1.

Thus, at any given time t, neuron C can receive four spikes:

1. an inhibitory signal from neuron inf if t ≥ 3 (follows from Lemma 5.1 and dinf→C =
3)

2. an excitatory signal from neuron a if t ≥ A + 3 (follows from Lemma 5.2 and
da→C = 2)

3. an excitatory signal from neuron b if t ≥ B + 3 (follows from Lemma 5.3 and
db→C = 2)

4. an excitatory signal from neuron D if t = B + 2 (follows from Lemma 5.4 and
dD→C = 1)

Hence, we can express the potential of neuron C as follows:

Lemma 5.5. ∀t ∈ [0, A + B + 2] :

uC(t) =

N − 1 if t = 0

uC(t− 1) + 1{t=B+2} + 1{t≥B+3} + 1{t≥A+3} − 1{t≥3} if A + B + 2 ≥ t ≥ 1

This expression above is equivalent to:

Lemma 5.6. ∀t ∈ [0, A + B + 2] : uC(t) = N − 1{t<B+2} − (t− 2) · 1{t≥3} + (t− A− 2) ·
1{t≥A+3} + (t−B − 2) · 1{t≥B+3}
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Proof. Proof by induction on t.

uC(0) = N − 1 by definition

= N − 1{0<B+2} − (0− 2) · 1{0≥3} + (0− A− 2) · 1{0≥A+3} + (0−B − 2) · 1{0≥B+3}

Take A+B + 2 ≥ t > 0. Assume uC(t− 1) = N − 1{t−1<B+2}+ (t− 1− 2) · 1{t−1≥3}+ (t−
1− A− 2) · 1{t−1≥A+3} + (t− 1−B − 2) · 1{t−1≥B+3}. Then:

uC(t) = uC(t− 1) + 1{t=B+2} + 1{t≥B+3} + 1{t≥A+3} − 1{t≥3}

= N − 1{t<B+3} − (t− 3) · 1{t≥4} + (t− 3− A) · 1{t≥A+4} + (t−B − 3) · 1{t≥B+4}

+ 1{t=B+2} + 1{t≥B+3} + 1{t≥A+3} − 1{t≥3}

= N − 1{0<B+2} − (t− 2) · 1{t≥3} + (t− A− 2) · 1{t≥A+3} + (t−B − 2) · 1{t≥B+3}

Use this lemma to prove the following two lemmas.

Lemma 5.7. uC(A + B + 2) = N

Proof.

uC(A + B + 2) = N − 1{A+B+2<B+2} − (A + B + 2− 2) · 1{A+B+2≥3}+

(A + B + 2− A− 2) · 1{A+B+2≥A+3}+

(A + B + 2−B − 2) · 1{A+B+2≥B+3}

= N − 0− (A + B) · 1{A+B≥1} + B · 1{B≥1} + A · 1{A≥1}
= N − 0− A−B + A + B

= N

Lemma 5.8. ∀0 ≤ t < A + B + 2 : uC(t) < N

Proof. We know:

uC(t) = N − 1{t<B+2} − (t− 2) · 1{t≥3} + (t− A− 2) · 1{t≥A+3} + (t−B − 2) · 1{t≥B+3}

There are four options:

1. A = B = 0

Then ∀0 ≤ t < 2 = A + B + 2 : uC(t) = N − 1 < N

2. A = 0 < 1 ≤ B

Then ∀0 ≤ t < B + 2 = A + B + 2 : uC(t) = N − 1 + (t− 2− (t− 2)) · 1{t≥A+3=3} =
N − 1 < N

3. 0 < 1 ≤ A = B

Then:

• ∀0 ≤ t < 3 ≤ B + 2 : uC(t) = N − 1 < N

• ∀3 ≤ t < B + 2 : uC(t) = N − 1− (t− 2) < N

14



• uC(B + 2) = N − A < N

• ∀B+3 = A+3 ≤ t < B+A+2 : uC(t) = N−(t−2)+(t−A−2)+(t−B−2) =
N + t− A−B − 2 < N

4. 0 < 1 ≤ A < B

Then:

• ∀0 ≤ t < 3 ≤ B + 2 : uC(t) = N − 1 < N

• ∀3 ≤ t < A + 3 ≤ B + 2 : uC(t) = N − 1− (t− 2) < N

• ∀A + 3 ≤ t < B + 2 : uC(t) = N − 1− A < N

• uC(B + 2) = N − A < N

• ∀B + 3 ≤ t < B + A + 2 : uC(t) = N − (t − 2) + (t − A − 2) + (t − B − 2) =
N + t− A−B − 2 < N

The following theorem follows directly from Lemma 5.7 and Lemma 5.8.

Theorem 5.9. Neuron C spikes once at time C + 2.

Complexities

Space: (1)
Time: Θ(A + B)
Energy: Θ(A + B)

The proof of these complexities are easy and are left as an exercise for the reader. A hint
for the energy complexity: it follows from Lemma 5.1, Lemma 5.2, Lemma 5.3, Lemma
5.4, Theorem 5.9 and the time complexity.

Benefits

• If indeed N > min(A,B), then there is no overflow possible at all.

Drawbacks

• This network has a practical limitation. The initial potential of neuron C has to be
N − 1 where N > min(A,B). In theory, this potential can go to infinity. However,
every real system has its physical boundary. Thus, there is a physical maximum for
the input.

• Subtraction (addition with negative integers) is not directly possible with this rep-
resentation. There are some ways around this. For example, assume A < 0. Use
use A+D instead of A where D such that A+D ≥ 0. In this case, neuron C would
at time A + D + B + 2, and, knowing what D is, A + B can be easily deduced.
However, this method may not always be applicable.

• There is no automatic cleanup after neuron C has spiked: neurons a, b and inf keep
firing. This can be easily fixed. Just add inhibiting synapses from C to neurons a,
b, inf and neuron C itself (because of the delays). This is done in the network in
the section 5.3. However, I do not like this solution. It is too ugly to my taste.
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• This problem with neurons a, b and inf makes the network also not directly reusable
when the calculation has finished. Just adding inhibiting synapses will not solve this.
All the potentials must be reset to correct initial values as well.

5.2 Add multiple integers represented as the time when a neuron
spikes

The spiking neural network in this section adds multiple integers represented as the time
when a corresponding neuron spikes.

Task

Assume N ≥ 1. Given positive integers A1, . . . AM (for M ≥ 1) such that N > A1 + · · ·+
AM −max(A1, . . . , AM), calculate C = A1 + · · ·+ AM .

Network S = (N,S)

Neurons N
For 1 ≤ i ≤ M , neuron A i gets an excitatory spike of weight 1 at time Ai (thus,
uA i(Ai) = 1)
For 1 ≤ i ≤M , neuron a i = (1, 1, 0)
Neuron D = (M, 0, 1)
Neuron C = (N, 0, 1) with initial voltage N − 1
Neuron inf = (1, 1, 0) with initial voltage 1

Synapses S
For 1 ≤ i ≤M , synapse A i→ D = (1, 1)
For 1 ≤ i ≤M , synapse A i→ a i = (2, 1)
Synapse D→ C = (1, 1)
For 1 ≤ i ≤M , synapse a i→ C = (1, 1)
Synapse inf→ C = (3,−(M − 1))

Input

For 1 ≤ i ≤M , neuron A i gets an excitatory spike of weight 1 at time Ai (thus, uA i(Ai) =
1)

Output

Neuron C spikes once at time A1 + · · · + AM + 2 = C + 2 (thus, uC(C + 2) ≥ N and
∀t < C + 2 : uC(t) < N)

How and why does this work?

Without loss of generality, assume A1 ≤ · · · ≤ AM . The idea is that the potential of C
first decreases to N −A1− · · ·−AM−1− 1, then remains constant until time AM + 3, and
finally slowly increases back to its threshold such that C spikes at time C + 2.

Neuron inf starts with potential 1. This neuron has threshold 1 and reset voltage 1. So
neuron inf begins constantly spiking at time 0.

Lemma 5.10. ∀t ≥ 0 : uinf(t) = 1
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Figure 4: An example with M = 3.

The threshold of inf is 1. Thus, inf is constantly spiking.

In the meanwhile, each neuron A i spikes at time Ai. Neuron A i is connected to neuron
a i. Neuron a i has threshold 1 and reset voltage 1. So neuron a i begins constantly firing
when it receives the spike from a i at time Ai + 2.

Lemma 5.11. ∀1 ≤ i ≤ M,∀t ≥ Ai + 2 : ua i(t) = 1 and ∀1 ≤ i ≤ M,∀t < Ai + 2 :
ua i(t) = 0)

The threshold of a i is 1. Thus, from time Ai + 2, neuron a i is constantly spiking.

Neuron A i is connected to neuron D. At time Ai +1, neuron A spikes and sends this signal
to neuron D, increasing neuron D’s potential with 1. Thus, at time AM + 1, the potential
of neuron D becomes M . This potential is equal to the threshold of neuron D. So neuron
D spikes at time AM + 1.

Lemma 5.12.

∀t ∈ Z : uD(t) =


i if t ∈ [Ai + 1, Ai+1 + 1) for 1 ≤ i < M

M if t = AM + 1

0 else

The threshold of D is M . Thus, neuron D spikes at time AM + 1.

Thus, at any given time t, neuron C receives the following spikes:

1. an inhibitory signal from neuron inf if t ≥ 3 (follows from Lemma 5.10 and dinf→C =
3)

2. for 1 ≤ i ≤ M , an excitatory signal from neuron a i if t ≥ Ai + 3 (follows from
Lemma 5.11 and da i→C = 1)

3. an excitatory signal from neuron D if t = AM + 2 (follows from Lemma 5.12 and
dD→C = 1)

Hence, we can express the potential of neuron C as follows:

Lemma 5.13. ∀t ∈ [0, C + 2] :

uC(t) =

N − 1 if t = 0

uC(t− 1) + 1{t=AM+2} + 1{t≥A1+3} + · · ·+ 1{t≥AM+3} − (M − 1) · 1{t≥3} if C + 2 ≥ t ≥ 1
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This expression above is equivalent to:

Lemma 5.14. ∀t ∈ [0, C + 2] : uC(t) = N − 1{t<AM+2} − (t− 2) · (M − 1) · 1{t≥3} + (t−
A1 − 2) · 1{t≥A1+3} + · · ·+ (t− AM − 2) · 1{t≥AM+3}

The proof is similar to Lemma 5.6.

The proofs of the following two lemmas are similar to Lemma 5.7 and Lemma 5.8, and
use Lemma 5.14.

Lemma 5.15. uC(C + 2) = N

Lemma 5.16. ∀0 ≤ t < C + 2 : uC(t) < N

The following theorem follows directly from Lemma 5.15 and Lemma 5.16.

Theorem 5.17. Neuron C spikes once at time C + 2.

Complexities

Space: Θ(M)
Time: Θ(A1 + · · ·+ AM)
Energy: Θ(M · (A1 + · · ·+ AM))

The proof of these complexities are easy and are left as an exercise for the reader. A
hint for the energy complexity: it follows from Lemma 5.10, Lemma 5.11, Lemma 5.12,
Theorem 5.17 and the time complexity.

This network has similar benefits and drawbacks as the network in the previous section.

Benefits

• If indeed N > A1 + · · ·+AM −max(A1, . . . , AM), then there is no overflow possible
at all.

Drawbacks

• This network has a practical limitation. The initial potential of neuron C has to be
N − 1 where N > A1 + · · ·+ AM −max(A1, . . . , AM). In theory, this potential can
go to infinity. However, every real system has its physical boundary. Thus, there is
a physical maximum for the input.

• Subtraction (addition with negative integers) is not directly possible with this rep-
resentation. There are some ways around this. For example, assume Ai < 0. Use
use Ai+D instead of Ai where D such that Ai+D ≤ 0. In this case, neuron C would
at time C + D + 2, and, knowing what D is, C can be easily deduced. However,
this method may not always be applicable.

• There is no automatic cleanup after neuron C has spiked: neurons a i and inf keep
firing. This can be easily fixed. Just add inhibiting synapses from C to neurons a i,
inf and neuron C itself (because of the delays). This is done in the network in the
section 5.3. However, I do not like this solution. It is too ugly to my taste.

• This problem with neurons a i and inf makes the network also not directly reusable
when the calculation has finished. Just adding inhibiting synapses will not solve this.
All the potentials must be reset to correct initial values as well.
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5.3 Add two integers represented as the time when a neuron
spikes using a radix

The networks in the two previous sections take a linear amount of time to calculate the
sum. This would be highly inefficient for large numbers. Using a radix could be a solution.
So, in this section, the spiking neural network adds two positive integers represented as
the time when a neuron spikes, applying radix N ≥ 2. The network from Section 5.1 is
used as a building block here.

In practice, it is impossible to have an infinite number of neurons. So we choose an m ≥ 0
and define the input and output as (m + 1)-digit integers.

Task

Given integers A = A0 + A1 ·N + · · ·+ Am ·Nm and B = B0 + B1 ·N + · · ·+ Bm ·Nm,
calculate C = (A+B) mod Nm+1 = C0+C1 ·2+ · · ·+Cm ·Nm, where 0 ≤ Ai, Bi, Ci < N
for all digit-positions 0 ≤ i ≤ m.

Network S = (N,S)

Neurons N
For 0 ≤ i ≤ m, neuron A i gets an excitatory spike of weight 1 at time Ai + (N + 1) · i
For 0 ≤ i ≤ m, neuron B i gets an excitatory spike of weight 1 at time Bi + (N + 1) · i
For 0 ≤ i ≤ m, neuron D i = (2, 0, 1)
For 0 ≤ i ≤ m, neuron a i = (1, 1, 0)
For 0 ≤ i ≤ m, neuron b i = (1, 1, 0)
For 0 ≤ i ≤ m, neuron sum i = (2 ·N, 0, 1) with initial voltage 2 ·N − 1
For 0 ≤ i ≤ m, neuron N i gets an excitatory spike of weight 1 at time (N + 1) · i
For 1 ≤ i ≤ m, neuron N+1 i = (2, 0, 1) with initial voltage 1
For 0 ≤ i ≤ m, neuron inf i = (1, 1, 0)
For 0 ≤ i ≤ m, neuron X i = (1, 1, 1)
For 0 ≤ i ≤ m, neuron x i = (N, 0, 1)
For 0 ≤ i ≤ m, neuron C i = (2, 0, 0)
Neuron END gets an excitatory spike of weight 1 at time (N + 1) ·m + 2 ·N + 2
Neuron E = (1, 1, 0)

Synapses N
For 0 ≤ i ≤ m, synapse A i→ a i = (1, 1)
For 0 ≤ i ≤ m, synapse A i→ D i = (1, 1)
For 0 ≤ i ≤ m, synapse B i→ b i = (1, 1)
For 0 ≤ i ≤ m, synapse B i→ D i = (1, 1)
For 0 ≤ i ≤ m, synapse D i→ sum i = (1, 1)
For 0 ≤ i ≤ m, synapse a i→ sum i = (2, 1)
For 0 ≤ i ≤ m, synapse b i→ sum i = (2, 1)
For 1 ≤ i ≤ m, synapse N i→ N+1 i = (1, 1)
For 0 ≤ i ≤ m, synapse N i→ inf i = (2, 1)
For 1 ≤ i ≤ m, synapse N+1 i→ sum i = (1,−1)
For 0 ≤ i ≤ m, synapse inf i→ sum i = (1,−1)
For 0 ≤ i ≤ m, synapse sum i→ X i = ((N + 1) · (m− i) + 1, 1)
For 0 ≤ i ≤ m− 1, synapse sum i→ N+1 (i + 1) = (1,−1)
For 0 ≤ i ≤ m, synapse sum i→ sum i = (1,−1)
For 0 ≤ i ≤ m, synapse sum i→ inf i = (1,−1)
For 0 ≤ i ≤ m, synapse sum i→ a i = (1,−1)

19



For 0 ≤ i ≤ m, synapse sum i→ b i = (1,−1)
For 0 ≤ i ≤ m, synapse X i→ x i = (1, 1)
For 0 ≤ i ≤ m, synapse x i→ C i = (1, 1)
For 0 ≤ i ≤ m, synapse E→ C i = (1, 1)
Synapse END→ E = (1, 1)

Input

For 0 ≤ i ≤ m, neuron A i gets an excitatory spike of weight 1 at time Ai + (N + 1) · i
For 0 ≤ i ≤ m, neuron B i gets an excitatory spike of weight 1 at time Bi + (N + 1) · i
For 0 ≤ i ≤ m, neuron N i gets an excitatory spike of weight 1 at time (N + 1) · i
Neuron END gets an excitatory spike of weight 1 at time (N + 1) ·m + 2 ·N + 2

Output

For 0 ≤ i ≤ m, neuron C i spikes once at time (N + 1) ·m + 2 ·N + Ci + 4.

Figure 5: An example with m = 2.

How and why does this work?

The idea is similar to the pen-and-paper method of addition. Use carryi from Definition
A.1 with N = N,M = 2,m = m,A1 = A and A2 = B.

To understand the whole circuit, let us look at a subnetwork that consists of neurons with
index i. Neuron A i spikes at time (N +1) · i+Ai, neuron B i spikes at time (N +1) · i+Bi

and neuron N i spikes at time (N + 1) · i activating inf i. We’ve already discussed how
D i, a i, b i, inf i and sum i work together in the previous sections. Without the synapse
from N+1 i to sum i, neuron sum i would spike at time (N + 1) · i + Ai + Bi + 2. This
happens for i = 0. Take i ≥ 1. If Ai−1 + Bi−1 + carryi−1 ≥ N , then Ci = Ai + Bi + 1. So
sum i should spike at (N + 1) · i+Ai +Bi + 2 + 1. Neuron N+1 i is there to regulate this.
At time (N +1) · i+1, neuron N+1 i sends an inhibiting signal to neuron sum i, decreasing
its potential to 2 · N − 2, such that neurons a i and b i need to spike one more time to
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make sum i reach its threshold. Thus, sum i spikes at (N +1) · i+Ai+Bi+2+1. If Ai−1+
Bi−1 +carryi−1 < N , then Ci = Ai +Bi and sum i should spike at (N +1) · i+Ai +Bi +2.
This is regulated by the connection sum (i− 1)→ N+1 i. If Ai−1 + Bi−1 + carryi−1 < N ,
then sum (i− 1) spikes before (N + 1) · i+ 1 inhibiting neuron N+1 i. Thus, neuron N+1 i
won’t spike at time (N + 1) · i+ 1 and won’t decrease the potential of sum i. Hence, sum i
spikes at (N + 1) · i + Ai + Bi + 2. Now, using induction can be easily proven that sum i
spikes at time (N + 1) · i + Ai + Bi + 2 + carryi for all indices i. To prevent sum i from
repeatedly spiking and inf i from unnecessary spiking, sum i sends an inhibiting signal
to itself, a i, b i and inf i.

Lemma 5.18. ∀1 ≤ i ≤ m : N+1 i spikes once at time (N + 1) · i + 1 if carryi = 1

Lemma 5.19. ∀0 ≤ i ≤ m : sum i spikes once at time (N + 1) · i + Ai + Bi + 2 + carryi

Neuron sum i activates neuron X i, which will constantly spike starting from time (N +1) ·
m+Ai+Bi+2+carryi+1. Those spikes go to neuron x i. Neuron x i behaves like a tumble
bucket that is gradually being filled with water. When such a bucket fills, it turns over and
spills all the water. Likewise, the potential of x i increases with each spike from X i until it
reaches the threshold. This happens at moments (N+1)·m+Ai+Bi+2+carryi+1+N ·k
with k ≥ 1. Then x i fires, its potential resets to 0, and the process starts over. In the
meanwhile, neuron END spikes at time (N + 1) · m + 2 · N + 2, activating neuron E. In
response, neuron E begins constantly firing from time (N + 1) ·m + 2 · N + 3. At time
(N + 1) ·m+ 2 ·N + ((Ai +Bi + carryi) mod N) + 4 = (N + 1) ·m+ 2 ·N +Ci + 4, two
signals reach neuron C i simultaneously making it fire.

Lemma 5.20. ∀0 ≤ i ≤ m : X i spikes constantly from time (N + 1) ·m + Ai + Bi + 2 +
carryi + 1

Lemma 5.21. ∀0 ≤ i ≤ m : x i spikes at times (N +1) ·m+Ai+Bi+2+carryi+1+N ·k
with k ≥ 1

Lemma 5.22. ∀0 ≤ i ≤ m : E spikes constantly from time (N + 1) ·m + 2 ·N + 3

Theorem 5.23. ∀0 ≤ i ≤ m : C i spikes once at time (N + 1) ·m + 2 ·N + Ci + 4

Complexities

The computation is finished when the last neuron C i has spiked.

Space: Θ(m)
Time: Θ(N ·m)
Energy: Θ(N ·m)

Benefits

• If the sum of the input is too big to fit in the C i neurons, then this network still gives
modulo the correct answer. This is expressed above as C = (A + B) mod Nm+1.

• Using N ’s complement makes addition with negative numbers possible as well. See
Appendix B.

Drawbacks

• This network has a practical limitation. The initial potential of neurons sum i has to
be 2 ·N − 1 and neurons x i should be able to keep a potential up to N . In theory,
these potentials can go to infinity. However, every real system has its physical
boundary. Thus, there is a physical maximum for the radix N .
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• Another practical limitation concerns the delays of the synapses sum i → X i. In
theory, this delay (N + 1) · (m − i) can go to infinity. However, in practice, the
delays are encoded in bits and have a physical boundary.

• There is no automatic cleanup after all neurons C i have spiked: some neurons keep
firing. This can be easily fixed. Just add inhibiting synapses where necessary. This
is partially done for neurons inf i, a i, b i and sum i. However, I do not like this
solution. It is too ugly to my taste.

• This problem with neurons that keep firing makes the network not directly reusable
when the calculation has finished. Just adding inhibiting synapses will not solve
this. All the potentials must be reset to correct initial values as well.

Other notes

• The time complexity is Θ(N ·m). This is because, unfortunately, it is impossible to
add all digits in parallel. You need carryi to calculate Ci. But carryi may be not
defined until time (N + 1) · (i− 1) +N + 2. This network can be changed to slightly
decrease the calculation time: if sum (i−1) spikes before (N+1)·(i−1)+N+2, then
we know that carryi = 0 and computations for sum i can start earlier. However, this
would make the network more complex and does not change the time complexity.

• Using the network from Section 5.2 instead of the network from Section 5.1, the
network from this section can be easily extended to add multiple numbers simulta-
neously.

• Besides the actual input for neurons A i and B i, this network also needs external
input for neurons N i and neuron END to make them spike at time (N + 1) · i and
(N + 1) ·m + 2 ·N + 2, respectively.

6 Neurons with predefined numerosities

Andreas Nieder and Stanislas Dehaene [11] and Brian Butterworth [5] discuss how num-
bers are represented in our brains. Monkeys have the so-called numerosity-selective neu-
rons that are tuned to specific numerosities. Such a neuron would fire with a higher
frequency to its prefered numerosity than it would to others.

For example, a monkey sees four bananas on a tree. Then both the neuron that is tuned
to fourness and the neuron that is tuned to fiveness start spiking. However, the fourness
neuron fires more frequently than the fiveness neuron. This way, the monkey realises that
it sees indeed four, not five, bananas. Next, the monkey turns its head and sees five other
monkeys looking at the bananas. Again, both the fourness neuron and the fiveness neuron
react. But now the fiveness neuron fires more frequently than the fourness neuron. The
monkey realises that five other monkeys are competing for these four bananas, decides it
is too many and chooses to eat something else.

The spiking neural networks in the following subsections are inspired by these numerosity-
selective neurons and try to simulate some aspects of the behaviour.

6.1 Add two integers represented as the number of spiking neu-
rons

The spiking neural network in this section adds two numbers represented as the number
of neurons that spike. It is impossible to have an infinite number of neurons in practice.
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Let us express the boundaries as positive integers a−, a+, b− and b+.

Task

Given integers A and B such that a− ≤ A ≤ a+ and b− ≤ B ≤ b+, calculate C = A + B.
Note: hence c− := a− + b− ≤ C ≤ c+ := a+ + b+.

Network S = (N,S)

Neurons N
For 1 ≤ i ≤ a+, neuron A+ i gets an excitatory spike of weight 1 at time 0 if i ≥ A
For 1 ≤ i ≤ a−, neuron A- i gets an excitatory spike of weight 1 at time 0 if i ≥ −A
For 1 ≤ i ≤ b+, neuron B+ i gets an excitatory spike of weight 1 at time 0 if i ≥ B
For 1 ≤ i ≤ b−, neuron B- i gets an excitatory spike of weight 1 at time 0 if i ≥ −B
For 1 ≤ i ≤ c+, neuron C+ i = (i, 0, 0)
For 1 ≤ i ≤ c−, neuron C- i = (i, 0, 0)

Synapses S
For 1 ≤ i ≤ a+, for 1 ≤ i ≤ c+, synpase A+ i→ C+ i = (1, 1)
For 1 ≤ i ≤ a+, for 1 ≤ i ≤ c−, synpase A+ i→ C- i = (1,−1)
For 1 ≤ i ≤ a−, for 1 ≤ i ≤ c+, synpase A- i→ C+ i = (1,−1)
For 1 ≤ i ≤ a−, for 1 ≤ i ≤ c−, synpase A- i→ C- i = (1, 1)
For 1 ≤ i ≤ b+, for 1 ≤ i ≤ c+, synpase B+ i→ C+ i = (1, 1)
For 1 ≤ i ≤ b+, for 1 ≤ i ≤ c−, synpase B+ i→ C- i = (1,−1)
For 1 ≤ i ≤ b−, for 1 ≤ i ≤ c+, synpase B- i→ C+ i = (1,−1)
For 1 ≤ i ≤ b−, for 1 ≤ i ≤ c−, synpase B- i→ C- i = (1, 1)

Input

For 1 ≤ i ≤ a+, neuron A+ i gets an excitatory spike of weight 1 at time 0 if i ≥ A
For 1 ≤ i ≤ a−, neuron A- i gets an excitatory spike of weight 1 at time 0 if i ≥ −A
For 1 ≤ i ≤ b+, neuron B+ i gets an excitatory spike of weight 1 at time 0 if i ≥ B
For 1 ≤ i ≤ b−, neuron B- i gets an excitatory spike of weight 1 at time 0 if i ≥ −B

Output

For 1 ≤ i ≤ c+, neuron C+ i spikes at time 1 if i ≤ C
For 1 ≤ i ≤ c−, neuron C- i spikes at time 1 if i ≤ −C

Figure 6: An example with a+ = b+ = 2 and a− = b− = 1.
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How and why does this work?

Each neuron C+ i spikes if its potential reaches its threshold i. At time 1, C+ i receives:

1. excitatory spikes from all neurons A+ i with 1 ≤ i ≤ A or inhibiting spikes from all
neurons A- i with 1 ≤ i ≤ −A and

2. excitatory spikes from all neurons B+ i with 1 ≤ i ≤ B or inhibiting spikes from all
neurons B- i with 1 <= i <= −B.

Thus, the potential of C+ i becomes A+B at time 1, making C+ i spike if A+B = C ≥ i.

Theorem 6.1. For 1 ≤ i ≤ c+, neuron C+ i spikes at time 1 if i ≤ C

Similarly for C- i. Each neuron C- i spikes if its potential reaches its threshold i. At time
1, C+ i receives:

1. inhibitory spikes from all neurons A+ i with 1 ≤ i ≤ A or excitatory spikes from all
neurons A- i with 1 ≤ i ≤ −A and

2. inhibitory spikes from all neurons B+ i with 1 ≤ i ≤ B or excitatory spikes from all
neurons B- i with 1 <= i <= −B.

Thus, the potential of C- i becomes −A − B at time 1, making C- i spike if −A − B =
−C ≥ i.

Theorem 6.2. For 1 ≤ i ≤ c−, neuron C- i spikes at time 1 if i ≤ −C

Complexities

Space: Θ(a+ + a− + b+ + b−)
Time: O(1)
Energy: O(a+ + a− + b+ + b−)

Benefits

• This network is reusable. This network can add two integers again and again without
changing its structure or resetting any parameters. It is even not necessary to wait
until the current computation has finished. Immediately after neurons A+ i, A- i,
B+ i and B- i have fired, they can get new input to calculate the sum.

• This network can add negative integers.

• If indeed a− + b− ≤ c− and a+ + b+ ≤ c+, then overflow is impossible.

6.2 Add two integers represented as the number of spiking neu-
rons using a radix

The network in section 6.1 has a linear space and energy complexity. This makes this
network inefficient for large integers. Just like with the time representation, let us try to
solve this problem with radix N ≥ 2.

In practice, it is impossible to have an infinite number of neurons. So we choose an m ≥ 0
and define the input and output as (m + 1)-digit integers.
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Task

Given integers A = A0 + A1 ·N + · · ·+ Am ·Nm and B = B0 + B1 ·N + · · ·+ Bm ·Nm,
calculate C = (A+B) mod Nm+1 = C0+C1 ·2+ · · ·+Cm ·Nm, where 0 ≤ Ai, Bi, Ci < N
for all digit-positions 0 ≤ i ≤ m.

For 0 ≤ i ≤ m, define function f(i) = (N − 1) · 2 + 1{i>0}

Network S = (N,S)

Neurons N
For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron A i j gets an excitatory spike of weight 1 at time
0 if Ai ≥ j
For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron B i j gets an excitatory spike of weight 1 at time
0 if Bi ≥ j
For 0 ≤ i ≤ m, for 1 ≤ j ≤ f(i), neuron S i j = (j, 0, 0)
For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron C i j = (j, 0, 0)

Synapses S
For 0 ≤ i ≤ m, for 1 ≤ j < N , for i ≤ k ≤ m, for 1 ≤ p ≤ f(k), synapse A i j →
S k p = (1, N i−k)
For 0 ≤ i ≤ m, for 1 ≤ j < N , for i ≤ k ≤ m, for 1 ≤ p ≤ f(k), synapse B i j →
S k p = (1, N i−k)
For 0 ≤ i ≤ m, for 1 ≤ j ≤ f(i), if j mod N 6= 0, synapse S i j → C i (j mod N) =
(1, 1)
For 0 ≤ i ≤ m, for 1 ≤ j ≤ f(i), if j mod N = 0, for 1 ≤ k < N , synapse
S i j → C i k = (1,−1)

Input

For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron A i j gets an excitatory spike of weight 1 at time
0 if Ai ≥ j
For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron B i j gets an excitatory spike of weight 1 at time
0 if Bi ≥ j

Output

For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron C i j spikes at time 2 if Ci ≥ j

How and why does this work?

Again, the idea is similar to the simple pen-and-paper method of addition.

Use carryi from Definition A.1 with N = N,M = 2,m = m,A1 = A and A2 = B. Define
Di = Ai +Bi + (Ai−1 +Bi−1) ·N−1 + · · ·+ (A0 +B0) ·N−i. Then from Lemma A.5 follows
Ci = bDic mod N .

The network computes C in two steps:

1. Calculate Di

2. Reduce Di modulo 2

Calculate Di

For each digit position 0 ≤ i ≤ m, the sum Di is calculated in neurons S i j. From
Lemma A.4 follows 0 ≤ carryi ≤ b2 · (1−N−i)c. Thus, for i ≥ 1 holds Di ≤ (N −1) ·2+1
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Figure 7: An example with m = 1 and N = 3.

and A0 +B0 ≤ (N − 1) · 2. That is why there are f(i) = (N − 1) · 2 + 1{i>0} neurons S i j
for each digit position i.

At time 0, for 0 ≤ i ≤ m, for 1 ≤ j < N , neuron A i j spikes if Ai ≥ j and neuron B i j
spikes if Bi ≥ j. Thus, at time 1, each neuron S i j gets:

1. For 0 ≤ k ≤ i, for 1 ≤ p < N , excitatory spike of weight Nk−i from neuron A k p if
Ak ≥ p

2. For 0 ≤ k ≤ i, for 1 ≤ p < N , excitatory spike of weight Nk−i from neuron B k p if
Bk ≥ p

So at time 1, the potential of neuron S i j becomes Di. S i j spikes if this potential
reaches the threshold j.

Lemma 6.3. ∀0 ≤ i ≤ m,∀1 ≤ j ≤ Di, neuron S i j spikes at time 1.

Reduce Di modulo 2
Di is reduced modulo 2 in neurons C i j. At time 2, neuron C i j receives:

1. excitatory signal from spiking neuron S i j

2. inhibiting signal from spiking neuron S i N

3. excitatory signal from spiking neuron S i (j + N) if j + N ≤ f(i)

Thus, at time 2, the potential of C i j becomes:

1{S i j spiked at time 1} − 1{S i N spiked at time 1} + 1{j+N≤f(i)∧S i (j+N) spiked at time 1}

= 1{Di≥j} − 1{Di≥N} + 1{j+N≤f(i)∧Di≥j+N}

= 1{N>Di≥j∨(j+N≤f(i)∧Di≥j+N)}

= 1{Ci≥j}

The threshold of C i j is 1. So, at time 2, C i j spikes if Ci ≥ j.

Theorem 6.4. For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron C i j spikes at time 2 if Ci ≥ j
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Complexities

Space: Θ(m ·N)
Time: O(1)
Energy: O(m ·N)

Benefits

• This network is reusable. This network can add two integers again and again without
changing its structure or resetting any parameters. It is even not necessary to wait
until the current computation has finished. Immediately after neurons A i j and
B i j have fired, they can get new input to calculate the sum.

• Using N ’s complement makes subtraction possible. (See appendix B.)

• If the sum of the input is too big to fit in the neurons C i j, then this network
still gives modulo the correct answer. This is expressed above as C = (A + B)
mod Nm+1.

Drawbacks

• This network has a practical limitation. The weights of some synapses are defined
as powers of 1

N
. The exponent can go up to infinity in theory, but every real system

has a limited precision in practice. Thus, there is a physical maximum for m, or
this network may give incorrect answers.

6.3 Add two integers represented by numerosity-selective neu-
rons

The spiking neural network in this section adds two integers represented by numerosity
neurons. Like in section 6.1 there are boundaries a−, a+, b−, b+ ≥ 0.

Task

Given integers A and B such that a− ≤ A ≤ a+ and b− ≤ B ≤ b+, calculate C = A + B.
Note: hence c− := a− + b− ≤ C ≤ c+ := a+ + b+.

Network S = (N,S)

Neurons N
For 1 ≤ i ≤ a+, neuron A+ i gets an excitatory spike of weight 1 at time 0 if i = A
For 1 ≤ i ≤ a−, neuron A- i gets an excitatory spike of weight 1 at time 0 if i = −A
For 1 ≤ i ≤ b+, neuron B+ i gets an excitatory spike of weight 1 at time 0 if i = B
For 1 ≤ i ≤ b−, neuron B- i gets an excitatory spike of weight 1 at time 0 if i = −B
For 1 ≤ i ≤ c+, neuron D+ i = (i, 0, 0)
For 1 ≤ i ≤ c−, neuron D- i = (i, 0, 0)
For 1 ≤ i ≤ c+, neuron C+ i = (1, 0, 0)
For 1 ≤ i ≤ c−, neuron C- i = (1, 0, 0)

Synapses S
For 1 ≤ i ≤ a+, for 1 ≤ i ≤ c+, synapse A+ i→ D+ i = (1, i)
For 1 ≤ i ≤ a+, for 1 ≤ i ≤ c−, synapse A+ i→ D- i = (1,−i)
For 1 ≤ i ≤ a−, for 1 ≤ i ≤ c+, synapse A- i→ D+ i = (1,−i)
For 1 ≤ i ≤ a−, for 1 ≤ i ≤ c−, synapse A- i→ D- i = (1, i)
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For 1 ≤ i ≤ b+, for 1 ≤ i ≤ c+, synapse B+ i→ D+ i = (1, i)
For 1 ≤ i ≤ b+, for 1 ≤ i ≤ c−, synapse B+ i→ D- i = (1,−i)
For 1 ≤ i ≤ b−, for 1 ≤ i ≤ c+, synapse B- i→ D+ i = (1,−i)
For 1 ≤ i ≤ b−, for 1 ≤ i ≤ c−, synapse B- i→ D- i = (1, i)
For 1 ≤ i ≤ c−, synapse D- i→ C- i = (1, 1)
For 1 ≤ i ≤ c+, synapse D+ i→ C+ i = (1, 1)
For 2 ≤ i ≤ c−, synapse D- i→ C- (i− 1) = (1,−1)
For 2 ≤ i ≤ c+, synapse D+ i→ C+ (i− 1) = (1,−1)

Input

For 1 ≤ i ≤ a+, neuron A+ i gets an excitatory spike of weight 1 at time 0 if i = A
For 1 ≤ i ≤ a−, neuron A- i gets an excitatory spike of weight 1 at time 0 if i = −A
For 1 ≤ i ≤ b+, neuron B+ i gets an excitatory spike of weight 1 at time 0 if i = B
For 1 ≤ i ≤ b−, neuron B- i gets an excitatory spike of weight 1 at time 0 if i = −B

Output

For 1 ≤ i ≤ c+, neuron C+ i spikes at time 2 if i = C
For 1 ≤ i ≤ c−, neuron C- i spikes at time 2 if i = −C

Figure 8: An example with a+ = b+ = 2 and a− = b− = 1.

How and why does this work?

At time 1, for 1 ≤ i ≤ c+, neuron D+ i gets:

1. an excitatory spike of weight A from neuron A+ A (if A > 0) or an inhibitory spike
of same weight from neuron A- (−A) (if A < 0)

2. an excitatory spike of weight B from neuron B+ B (if B > 0) or an inhibitory spike
of same weight from neuron B- (−B) (if B < 0)

Thus, at time 1, the potential of neuron D+ i becomes:

A · 1{A- (−A) spikes at time 0} + A · 1{A+ A spikes at time 0}

+ B · 1{B- (−B) spikes at time 0} + B · 1{B+ B spikes at time 0}

= A · 1{A<0} + A · 1{A>0} + B · 1{B<0} + B · 1{B>0}

= max(0, A + B)

Neuron D+ i has threshold i. Thus neuron D+ i spikes if max(0, A+B) ≥ i. This condition
is equivalent to A + B ≥ i.
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Thus:

Lemma 6.5. For 1 ≤ i ≤ c+, neuron D+ i spikes at time 1 if C ≥ i

At time 1, for 1 ≤ i ≤ c−, neuron D- i gets:

1. an inhibitory spike of weight −A from neuron A+ A (if A > 0) or an excitatory spike
of same weight from neuron A- (−A) (if A < 0)

2. an inhibitory spike of weight −B from neuron B+ B (if B > 0) or an inhibitory spike
of same weight from neuron B- (−B) (if B < 0)

Thus, at time 1, the potential of neuron D- i becomes:

− A · 1{A- (−A) spikes at time 0} − A · 1{A+ A spikes at time 0}

−B · 1{B- (−B) spikes at time 0} −B · 1{B+ B spikes at time 0}

= −A · 1{A<0} − A · 1{A>0} −B · 1{B<0} −B · 1{B>0}

= max(0,−A−B)

Neuron D- i has threshold i. Thus neuron D- i spikes if max(0,−A − B) ≥ i. This
condition is equivalent to −A−B ≥ i.

Thus:

Lemma 6.6. For 1 ≤ i ≤ c−, neuron D- i spikes at time 1 if −C ≥ i

At time 2, for 1 ≤ i ≤ c+, neuron C+ i gets:

1. an excitatory signal from D+ i if D+ i has spiked at time 1

2. if i < c+, an inhibitory signal from D+ (i + 1) if D+ (i + 1) has spiked at time 1

Thus, the potential of neuron C+ i at time 2 becomes:

1{D+ i has spiked at time 1} − 1{i<c+∧D+ (i+1) has spiked at time 1}

= 1{A+B≥i} − 1{i<c+∧B+A≥i+1}

= 1{A+B=i}

The threshold of neuron C+ i is 1. Thus, neuron C+ i spikes at time 2 if A + B = C = i.

Theorem 6.7. ∀1 ≤ i ≤ c+ neuron C+ i spikes at time 2 if i = C

At time 2, for 1 ≤ i ≤ c−, neuron C- i gets:

1. an excitatory signal from D- i if D- i has spiked at time 1

2. if i < c−, an inhibitory signal from D- (i + 1) if D- (i + 1) has spiked at time 1

Thus, the potential of neuron C- i at time 2 becomes:

1{D- i has spiked at time 1} − 1{i<c−∧D- (i+1) has spiked at time 1}

= 1{−A−B≥i} − 1{i<c−∧−B−A≥i+1}

= 1{−A−B=i}

The threshold of neuron C- i is 1. Thus, neuron C- i spikes at time 2 if −A−B = −C = i.

Theorem 6.8. ∀1 ≤ i ≤ c− neuron C- i spikes at time 2 if i = −C
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Complexities

Space: Θ(a+ + a− + b+ + b−)
Time: O(1)
Energy: O(a+ + a− + b+ + b−)

This network has the same benefits and drawbacks as te circuit from section 6.1.

Benefits

• This network is reusable. This network can add two integers again and again without
changing its structure or resetting any parameters. It is even not necessary to wait
until the current computation has finished. Immediately after neurons A+ i, A- i,
B+ i and B- i have fired, they can get new input to calculate the sum.

• This network can add negative integers.

• If indeed a− + b− ≤ c− and a+ + b+ ≤ c+, then overflow is impossible.

6.4 Add two integers represented by numerosity-selective neu-
rons using a radix

The network in section 6.3 has also a linear space and energy complexity. This makes
this network inefficient for large integers. Again, let us try to solve this problem with a
radix N ≥ 2.

In practice, it is impossible to have an infinite number of neurons. So we choose an m ≥ 0
and define the input and output as (m + 1)-digit integers.

Task

Given integers A = A0 + A1 ·N + · · ·+ Am ·Nm and B = B0 + B1 ·N + · · ·+ Bm ·Nm,
calculate C = (A+B) mod Nm+1 = C0+C1 ·2+ · · ·+Cm ·Nm, where 0 ≤ Ai, Bi, Ci < N
for all digit-positions 0 ≤ i ≤ m.

For 0 ≤ i ≤ m, define function f(i) = (N − 1) · 2 + 1{i>0}

Network S = (N,S)

Neurons N
For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron A i j gets an excitatory spike of weight 1 at time
0 if Ai = j
For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron B i j gets an excitatory spike of weight 1 at time
0 if Bi = j
For 0 ≤ i ≤ m, for 1 ≤ j ≤ f(i), neuron D i j = (j, 0, 0)
For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron C i j = (1, 0, 0)

Synapses S
For 0 ≤ i ≤ m, for 1 ≤ j < N , for i ≤ k ≤ m, for 1 ≤ p ≤ f(k), synapse A i j →
D k p = (1, j ·N i−k)
For 0 ≤ i ≤ m, for 1 ≤ j < N , for i ≤ k ≤ m, for 1 ≤ p ≤ f(k), synapse B i j →
D k p = (1, j ·N i−k)
For 0 ≤ i ≤ m, for 1 ≤ j ≤ f(i), if 1 ≤ j mod N < N , synapse D i j → C i (j
mod N) = (1, 1)
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For 0 ≤ i ≤ m, for 2 ≤ j ≤ f(i), if 1 ≤ (j − 1 mod N < N , synapse D i j → C i (j − 1
mod N) = (1, 1)

Input

For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron A i j gets an excitatory spike of weight 1 at time
0 if Ai = j
For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron B i j gets an excitatory spike of weight 1 at time
0 if Bi = j

Output

For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron C i j spikes at time 2 if Ci = j

Figure 9: An example with m = 1 and N = 3.

How and why does this work?

Again, the idea is similar to the simple pen-and-paper method of addition.

Use carryi from Definition A.1 with N = N,M = 2,m = m,A1 = A and A2 = B. Define
Di = Ai +Bi + (Ai−1 +Bi−1) ·N−1 + · · ·+ (A0 +B0) ·N−i. Then from Lemma A.5 follows
Ci = bDic mod N .

The network computes C in two steps:

1. Calculate Di

2. Reduce Di modulo 2

Calculate Di

For each digit position 0 ≤ i ≤ m, the sum Di is calculated in neurons D i j. From
Lemma A.4 follows 0 ≤ carryi ≤ b2 · (1−N−i)c. Thus, for i ≥ 1 holds Di ≤ (N −1) ·2+1
and A0 +B0 ≤ (N − 1) · 2. That is why there are f(i) = (N − 1) · 2 + 1{i>0} neurons D i j
for each digit position i.

At time 0, for 0 ≤ i ≤ m, for 1 ≤ j < N , neuron A i j spikes if Ai = j and neuron B i j
spikes if Bi = j. Thus, at time 1, each neuron D i j gets:
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1. For 0 ≤ k ≤ i, an excitatory spike of weight Ak ·Nk−i from neuron A k Ak if Ak > 0

2. For 0 ≤ k ≤ i, an excitatory spike of weight Bk ·Nk−i from neuron B k Bk if Bk > 0

So at time 1, the potential of neuron D i j becomes Di. D i j spikes if this potential
reaches the threshold j.

Lemma 6.9. ∀0 ≤ i ≤ m,∀1 ≤ j ≤ Di, neuron D i j spikes at time 1.

Reduce Di modulo 2
Di is reduced modulo 2 in neurons C i j. At time 2, neuron C i j receives:

1. an excitatory signal from firing neuron D i j

2. an inhibiting signal from firing neuron D i (j + 1)

3. an excitatory signal from firing neuron D i (j + N) if j + N ≤ f(i)

4. an inhibitory signal from firing neuron D i (j + 1 + N) if j + 1 + N ≤ f(i)

Thus, at time 2, the potential of C i j becomes:

1{D i j spiked at time 1} − 1{D i (j+1) spiked at time 1} + 1{j+N≤f(i)∧D i (j+N) spiked at time 1}

− 1{j+1+N≤f(i)∧D i (j+1+N) spiked at time 1}

= 1{Di≥j} − 1{Di≥j+1} + 1{j+N≤f(i)∧Di≥j+N} − 1{j+1+N≤f(i)∧Di≥j+1+N}

= 1{Di=j∨(j+N≤f(i)∧Di=j+N)}

= 1{Ci=j}

The threshold of C i j is 1. So, at time 2, C i j spikes if Ci = j.

Theorem 6.10. For 0 ≤ i ≤ m, for 1 ≤ j < N , neuron C i j spikes at time 2 if Ci = j

Complexities

Space: Θ(m ·N)
Time: O(1)
Energy: O(m ·N)

Benefits

• This network is reusable. This network can add two integers again and again without
changing its structure or resetting any parameters. It is even not necessary to wait
until the current computation has finished. Immediately after neurons A i j and
B i j have fired, they can get new input to calculate the sum.

• Using N ’s complement makes subtraction possible. (See appendix B.)

• If the sum of the input is too big to fit in the neurons C i j, then this network
still gives modulo the correct answer. This is expressed above as C = (A + B)
mod Nm+1.

Drawbacks

• This network a practical limitation. The weights of some synapses are defined as
powers of 1

N
. The exponent can go up to infinity in theory, but every real system

has a limited precision in practice. Thus, there is a physical maximum for m, or
this network may give incorrect answers.
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6.5 Add two integers represented by numerosity-selective neu-
rons with a zero-neuron

The zero value has no explicit representation in the previous four networks: it is repre-
sented as the absence of spikes. However, zero is a number as well. So, in this section,
the network has an explicit representation for zero.

Like in section 6.1 and section 6.3 there are boundaries a−, a+, b−, b+ ≥ 0.

Task

Given integers A and B such that−a− ≤ A ≤ a+ and−b− ≤ B ≤ b+, calculate C = A+B.
Note: hence −c− := −a− − b− ≤ C ≤ c+ := a+ + b+.

Network S = (N,S)

Neurons N
For −a− ≤ i ≤ a+, neuron A i gets an excitatory spike of weight 1 at time 0 if i = A
For −b− ≤ i ≤ b+, neuron B i gets an excitatory spike of weight 1 at time 0 if i = B
For −a− ≤ i ≤ a+, for −b− ≤ j ≤ b+, neuron D i j = (2, 0, 0)
For −c− ≤ i ≤ c+, neuron C i = (2, 0, 0)

Synapses S
For −a− ≤ i ≤ a+, for −b− ≤ j ≤ b+, synapse A i→ D i j = (1, 1)
For −b− ≤ i ≤ b+, for −a− ≤ j ≤ a+, synapse B i→ D j i = (1, 1)
For −a− ≤ i ≤ a+, for −b− ≤ j ≤ b+, synapse D i j → C (i + j) = (1, 1)

Input

For −a− ≤ i ≤ a+, neuron A i gets an excitatory spike of weight 1 at time 0 if i = A
For −b− ≤ i ≤ b+, neuron B i gets an excitatory spike of weight 1 at time 0 if i = B

Output

For −c− ≤ i ≤ c+, neuron C i spikes at time 2 if i = C

Figure 10: An example with a+ = b+ = 2 and a− = b− = 1.
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How and why does this work?

The working principle of this network is simple and can be expressed in the following
lemma and theorem.

Lemma 6.11. ∀ − a− ≤ i ≤ a+, ∀ − b− ≤ j ≤ b+, neuron D i j spikes at time 1 if i = A
and j = B.

NB: thus, only neuron D A B does spike at time 1.

From this lemma follows:

Theorem 6.12. ∀ − c− ≤ i ≤ c+, neuron C i spikes at time 2 if i = A + B.

NB: thus, only neuron C (A + B) spikes at time 2.

Complexities

Space: Θ((a− + a+) · (b− + b+))
Time: O(1)
Energy: O(1)

Benefits

• This network is reusable. This network can add two integers again and again without
changing its structure or resetting any parameters. It is even not necessary to wait
until the current computation has finished. Immediately after neurons A i, B i have
fired, they can get new input to calculate the sum.

• This network can add negative integers.

• If indeed a− + b− ≤ c− and a+ + b+ ≤ c+, then overflow is impossible.

6.6 Add two integers represented by numerosity-selective neu-
rons with a zero-neuron using a radix

The network in section 6.5 has a quadratic space complexity. This makes this network
inefficient for large integers. Again, let us try to solve this problem with a radix N ≥ 2.

In practice, it is impossible to have an infinite number of neurons. So we choose an m ≥ 0
and define the input and output as (m + 1)-digit integers.

Task

Given integers A = A0 + A1 ·N + · · ·+ Am ·Nm and B = B0 + B1 ·N + · · ·+ Bm ·Nm,
calculate C = (A+B) mod Nm+1 = C0+C1 ·2+ · · ·+Cm ·Nm, where 0 ≤ Ai, Bi, Ci < N
for all digit-positions 0 ≤ i ≤ m.

Network S = (N,S)

Neurons N
For 0 ≤ i ≤ m, for 0 ≤ j < N , neuron A i j gets an excitatory spike of weight 1 at time
0 if Ai = j
For 0 ≤ i ≤ m, for 0 ≤ j < N , neuron B i j gets an excitatory spike of weight 1 at time
0 if Bi = j
For 1 ≤ i ≤ m, neuron carry i = (N, 0, 0)
For 0 ≤ i ≤ m, for 0 ≤ j < N , for 0 ≤ k < N , neuron D i 0 j k = (2, 0, 0)
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For 1 ≤ i ≤ m, for 0 ≤ j < N , for 0 ≤ k < N , neuron D i 1 j k = (3, 0, 0)
For 0 ≤ i ≤ m, for 0 ≤ j < N , neuron C i j = (1, 0, 0)

Synapses S
For 0 ≤ i ≤ m, for 0 ≤ j < N , for 0 ≤ k < N synapse A i j → D i 0 j k = (2, 1)
For 1 ≤ i ≤ m, for 0 ≤ j < N , for 0 ≤ k < N synapse A i j → D i 1 j k = (2, 1)
For 0 ≤ i ≤ m, for 0 ≤ j < N , for 0 ≤ k < N synapse B i j → D i 0 k j = (2, 1)
For 1 ≤ i ≤ m, for 0 ≤ j < N , for 0 ≤ k < N synapse B i j → D i 1 k j = (2, 1)
For 0 ≤ i < m, for 0 ≤ j < N , for i + 1 ≤ k ≤ m synapse A i j → carry k =
(1, j ·N i+1−k)
For 0 ≤ i < m, for 0 ≤ j < N , for i + 1 ≤ k ≤ m synapse B i j → carry k =
(1, j ·N i+1−k)
For 1 ≤ i ≤ m, for 0 ≤ j < N , for 0 ≤ k < N synapse carry i→ D i 1 j k = (1, 1)
For 1 ≤ i ≤ m, for 0 ≤ j < N , for 0 ≤ k < N synapse carry i→ D i 0 j k = (1,−1)
For 0 ≤ i ≤ m, for 0 ≤ j < N , for 0 ≤ k < N synapse D i 0 j k → C i (j + k
mod N) = (1, 1)
For 1 ≤ i ≤ m, for 0 ≤ j < N , for 0 ≤ k < N synapse D i 1 j k → C i (1 + j + k
mod N) = (1, 1)

Input

For 0 ≤ i ≤ m, for 0 ≤ j < N , neuron A i j gets an excitatory spike of weight 1 at time
0 if Ai = j
For 0 ≤ i ≤ m, for 0 ≤ j < N , neuron B i j gets an excitatory spike of weight 1 at time
0 if Bi = j

Output

For 0 ≤ i ≤ m, for 0 ≤ j < N , neuron C i j spikes at time 3 if Ci = j

How and why does this work?

Again, the idea is similar to the simple pen-and-paper method of addition.

Use carryi from Definition A.1 with N = N,M = 2,m = m,A1 = A and A2 = B. Define
Di = Ai +Bi + (Ai−1 +Bi−1) ·N−1 + · · ·+ (A0 +B0) ·N−i. Then from Lemma A.5 follows
Ci = bDic mod N .

The network computes C in two steps:

1. Calculate carryi

2. Calculate Di

3. Reduce Di modulo 2

Calculate carryi

For i ≥ 1, the carryi is calculated in neuron carry i. From Lemma A.4 follows that
carryi ≤ b2 · (1 − N−i)c = 1. Thus, for each i, it is sufficient to have only one neuron
carry i, which spikes if carryi ≥ 1.

For each digit position j > 0, only neuron A j Aj and neuron B Bj spike at time 0.
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Figure 11: An example with m = 2 = N .

Hence, at time 1, the potential of neuron carry i becomes

i−1∑
j=0

(Aj + Bj) ·N j−i+1 = Di−1

Neuron carry i spikes if this potential reaches the threshold N . From Lemma A.3 follows
that carryi = bDi/Nc. Hence, neuron carry i fires if carryi = 1 = bDi/Nc.

Lemma 6.13. ∀1 ≤ i ≤ m, neuron carry i spikes at time 1 if carryi = 1
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Why is there no neuron carry 0? We know carry0 = 0. Hence, neuron carry 0 would
never spike and is not necessary.

Calculate Di

Di is calculated in neurons D i j k p. Neurons D i 0 k p are for carryi = 0 and D i 1 k p
are for carryi = 1.

Assume i ≥ 1.

At time 2, each neuron D i j k p receives:

1. an inhibiting signal from firing carry i

2. an excitatory signal from firing neuron A i k

3. an axcitatory signal from firing neuron B i p

Thus, at time 2, the potential of neuron D i 0 k p becomes:

1{A i k spiked at time 0}+1{B i p spiked at time 0}−1{carry i spiked at time 1} = 1{Ai=k}+1{Bi=p}−1{carryi=1}

The threshold of D i 0 k p is 2. Hence neuron D i 0 k p fires at time 2 if Ai = k, Bi = p
and carryi = 0.

At time 2, each neuron D i 1 k p receives:

1. an excitatory signal from firing carry i

2. an excitatory signal from firing neuron A i k

3. an axcitatory signal from firing neuron B i p

Thus, at time 2, the potential of neuron D i 1 k p becomes:

1{A i k spiked at time 0}+1{B i p spiked at time 0}+1{carry i spiked at time 1} = 1{Ai=k}+1{Bi=p}+1{carryi=1}

The threshold of D i 1 k p is 3. Hence neuron D i 1 k p fires at time 3 if Ai = k, Bi = p
and carryi = 1.

Now, let us look at i = 0. We know carry0 = 0. Thus, neurons D 0 1 k p are unnecessary
and neurons D 0 0 k p gets signals only from neurons A i k and A i p (and no signals from
non-existing neuron carry0).

At time 2, each neuron D 0 0 k p receives:

1. an excitatory signal from firing neuron A i k

2. an axcitatory signal from firing neuron B i p

Thus, at time 2, the potential of neuron D 0 0 k p becomes:

1{A 0 k spiked at time 0} + 1{B 0 p spiked at time 0} = 1{Ai=k} + 1{Bi=p}

The threshold of D 0 0 k p is 2. Hence neuron D 0 0 k p fires at time 2 if Ai = k and
Bi = p.

Hence:

Lemma 6.14. ∀0 ≤ i ≤ m only neuron D i carryi Ai Bi spikes at time 2.
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Reduce Di modulo 2
Di is reduced modulo 2 in neurons C i j. The threshold of each neuron C i j is 1. Thus,
from lemma 6.14, the structure of the network and Ci = carryi + Ai + Bi follows:

Theorem 6.15. ∀0 ≤ i ≤ m only neuron C i Ci spikes at time 3.

Complexities

Space: Θ(m ·N2)
Time: O(1)
Energy: Θ(m)

Benefits

• This network is reusable. This network can add two integers again and again without
changing its structure or resetting any parameters. It is even not necessary to wait
until the current computation has finished. Immediately after neurons A i j and
B i j have fired, they can get new input to calculate the sum.

• Using N ’s complement makes subtraction possible. (See appendix B.)

• If the sum of the input is too big to fit in the neurons C i j, then this network
still gives modulo the correct answer. This is expressed above as C = (A + B)
mod Nm+1.

Drawbacks

• This network has a practical limitation. The weights of some synapses are defined
as powers of 1

N
. The exponent can go up to infinity in theory, but every real system

has a limited precision in practice. Thus, there is a physical maximum for m, or
this network may give incorrect answers.

7 Compare networks

Eleven networks using spiking neurons have been developed to perform integer addition.
See table 1 for an overview of all the networks. In this section the networks will be
compared based on their benefits, practical limitations, drawbacks and complexities.

The networks do not all use the same number representations, with the consequence that
their complexities are functions on different variables. This makes it difficult to compare
the networks based on their complexities as expressed in table 1. So, let us try to express
these resource constraints differently. Assume the task is to add two positive integers
A and B. If radix N is applied, then A and B can be represented using logN(A) and
logN(B) digits, respectively. Thus, the complexities can be expressed as in table 2.

Now, which network is the best?

7.1 Binary representation

Let us compare the networks with binary number representation.

The networks 1 and 2 have the same practical limitation, benefits and time complexity. If
the sum of two integers is calculated, then the space and energy complexities are equal as
well. Repeatedly applying network 1, it is possible to add more numbers. However, then
the complexities increases: the network needs Θ(M) time-steps and O(M ·m) spikes to
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Table 1: Overview of all eleven networks.

INPUT BOUNDARIES
COMPLEXITIES PRACTICAL

LIMITATIONS
BENEFITS DRAWBACKS

space time energy

1 Two integers A and
B in (m+ 1)-bit bi-
nary representation

m ≥ 0

0 ≤ A < 2m+1

0 ≤ B ≤ 2m+1

Θ(m) O(1) O(m) Exponents of 1
2 as

weights of synapses
Using two’s comple-
ment makes subtrac-
tion possible

In case of overflow
returns (A + B)
mod 2m+1

Directly reusable

2 Multiple integers
A1, . . . , AM in
(m + 1)-bit binary
representation

m ≥ 0

∀1 ≤ i ≤M : 0 ≤ Ai ≤
2m+1

Θ(M ·m) O(1) O(M ·m) Exponents of 1
2 as

weights of synapses
Using two’s comple-
ment makes subtrac-
tion possible

In case of overflow re-
turns (A1 + · · · + AM )
mod 2m+1

Directly reusable

3 Two integers A and
B represented as
the time when the
corresponding neu-
rons spike

N ≥ 1

N > min(A,B)
A,B ≥ 0

O(1) Θ(A + B) Θ(A + B) Some neurons
should be able
to keep a high
potential

No overflow possible Subtraction impossi-
ble.

Some neurons keep
spiking after calcula-
tion has finished

Not reusable directly
after the calculation
has finished

4 Multiple integers
A1, . . . , AM repre-
sented as the time
when the corre-
sponding neurons
spike

N ≥ 1

N > A1 + · · · + AM −
max(A1, . . . , AM )
∀1 ≤ i ≤M : 0 ≤ Ai

Θ(M) Θ(A1 + · · ·+
AM )

Θ(M · (A1 +
· · ·+ AM ))

Some neurons
should be able
to keep a high
potential

No overflow possible Subtraction impossible

Some neurons keep
spiking after calcula-
tion has finished

Not reusable directly
after the calculation
has finished
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5 Two (m + 1)-digit
integers A and B
represented as the
time when the cor-
responding neurons
spike using radix N

m ≥ 0
N ≥ 2

0 ≤ A < Nm+1

0 ≤ B < Nm+1

Θ(m) Θ(N ·m) Θ(N ·m) Some neurons
should be able to
keep a high poten-
tial

Some synapses
have long delays

Using N ’s complement
makes subtraction
possible

In case of overflow
returns (A + B)
mod 2m+1

Some neurons keep
spiking after calcula-
tion has finished.

Not reusable directly
after the calculation
has finished.

6 Two integers A and
B represented as
the number of neu-
rons that spike

a−,a+,b−,b+ ≥ 0

a− ≤ A ≤ a+

b− ≤ B ≤ b+

Θ(a− + a+ +
b− + b+)

O(1) O(a− + a+ +
b− + b+)

No overflow possible

Subtraction is pos-
sible

Directly reusable

7 Two (m + 1)-digit
integers A and B
represented as the
number of neurons
that spike using
radix N

m ≥ 0
N ≥ 2

0 ≤ A < Nm+1

0 ≤ B < Nm+1

Θ(N ·m) O(1) O(N ·m) Exponents of N−1

as weights of some
synapses

Using N ’s complement
makes subtraction
possible

In case of overflow
returns (A + B)
mod 2m+1

Directly reusable

8 Two integers A
and B represented
by numerosity-
selective neurons

a−,a+,b−,b+ ≥ 0

a− ≤ A ≤ a+

b− ≤ B ≤ b+

Θ(a− + a+ +
b− + b+)

O(1) O(a− + a+ +
b− + b+)

No overflow possible

Subtraction is pos-
sible

Directly reusable

9 Two (m + 1)-digit
integers A and
B represented
by numerosity-
selective neurons
using radix N

m ≥ 0
N ≥ 2

0 ≤ A < Nm+1

0 ≤ B < Nm+1

Θ(N ·m) O(1) O(N ·m) Exponents of N−1

as weights of some
synapses

Using N ’s complement
makes subtraction
possible

In case of overflow
returns (A + B)
mod 2m+1

Directly reusable
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10 Two integers A
and B represented
by numerosity-
selective neurons
with an explicit
representation for
the zero value

a−,a+,b−,b+ ≥ 0

a− ≤ A ≤ a+

b− ≤ B ≤ b+

Θ((a−+a+) ·
(b− + b+))

O(1) O(1) No overflow possible

Subtraction is pos-
sible

Directly reusable

11 Two (m + 1)-digit
integers A and
B represented
by numerosity-
selective neurons
with an explicit
representation for
the zero value using
radix N

m ≥ 0
N ≥ 2

0 ≤ A < Nm+1

0 ≤ B < Nm+1

Θ(N2 ·m) O(1) Θ(m) Exponents of N−1

as weights of some
synapses

Using N ’s complement
makes subtraction
possible

In case of overflow
returns (A + B)
mod 2m+1

Directly reusable
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Table 2: Lowest possible complexities for given input A,B ≥ 0 and radix N ≥ 2

COMPLEXITIES

space time energy

1 Θ(log2(A) + log2(B)) O(1) O(log2(A) + log2(B))

2 Θ(2·(log2(A)+log2(B)) = Θ(log2(A)+log2(B)) O(1) O(2·(log2(A)+log2(B)) = O(log2(A)+log2(B))

3 O(1) Θ(A + B) Θ(A + B)

4 O(1) Θ(A + B) Θ(2 · (A + B)) = Θ(A + B)

5

Θ(max(logN (A), logN (B))) = Θ(logN (A) +
logN (B))

Minimal if N large.

Θ(N · max(logN (A), logN (B))) = Θ(N ·
(logN (A) + logN (B)))

Minimal if N = 3. Then Θ(log3(A) + log3(B)).

Θ(N · max(logN (A), logN (B))) = Θ(N ·
(logN (A) + logN (B)))

Minimal if N = 3. Then Θ(log3(A) + log3(B)).

6 Θ(A + B) O(1) O(A + B)

7

Θ(N · max(logN (A), logN (B))) = Θ(N ·
(logN (A) + logN (B)))

Minimal if N = 3. Then Θ(log3(A) + log3(B)).

O(1)

O(N · max(logN (A), logN (B))) = O(N ·
(logN (A) + logN (B)))

Minimal if N = 3. Then O(log3(A) + log3(B)).

8 Θ(A + B) O(1) O(A + B)

9

Θ(N · max(logN (A), logN (B))) = Θ(N ·
(logN (A) + logN (B)))

Minimal if N = 3. Then Θ(log3(A) + log3(B)).

O(1)

O(N · max(logN (A), logN (B))) = O(N ·
(logN (A) + logN (B)))

Minimal if N = 3. Then O(log3(A) + log3(B)).

10 Θ(A ·B) O(1) O(1)

11

Θ(N2 · max(logN (A), logN (B))) = Θ(N2 ·
(logN (A) + logN (B)))

Minimal if N small. N ≥ 2. Thus mini-
mal if N = 2. Then Θ(log2(A) + log2(B)).

O(1)

Θ(max(logN (A), logN (B))) = Θ(logN (A) +
logN (B))

Minimal if N large.
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add M numbers. It would still use Θ(m) neurons for this operation. Meanwhile, circuit
2 can add M numbers in constant time, but uses Θ(M ·m) neurons and O(M ·m) spikes.
Thus, network 2 can be M times faster than network 1. However, it would use also M
times more neurons. Thus, network 1 versus network 2 resulted in a draw.

7.2 Time representation

Let us compare the networks where numbers are represented as the time when corre-
sponding neurons spike.

Networks 3 and 4 have the same practical limitation, benefits and drawbacks. If the sum
of two integers is calculated, then the space, time and energy complexities are equal as
well. Network 3 can also be applied M times to add M numbers. (This would be harder to
do than with network 1, but it is not impossible.) However, the time complexity becomes
Θ(M ·A1+(M−1)·A2+· · ·+1·AM) then. This complexity is worse than Θ(A1+· · ·+AM)
if network 4 would be applied. Thus, to add multiple numbers, network 4 is preferred
over network 3, but if the task is to add only two integers, then these two networks are
equivalent.

Network 5 adds two numbers and is difficult to compare to network 4. Network 5 has
an important benefit over network 3: network 5 can add negative integers. Furthermore,
the maximal potential of neuron sum i in network 5 is less than the potential of neuron C

in network 3, and the time and energy complexities of network 5 are significantly lower.
On the other hand, network 5 has worse time complexity. However, the time complexity
of neuron 3 is less times better than the energy and space complexities are worse. Thus,
network 5 is preferred over network 3.

7.3 Neurons with predefined numerosities

Let us compare the networks that were inspired by the working of numerosity-selective
neurons in the brain.

Networks 7 and 9 with radix number representation would be probably preferred over
circuits 6, 8. The complexities of networks 7 and 9 are lower or equal to the complexities
of 6 and 8. On the other hand, networks with radix have a practical limitation: the
weights of some synapses are powers of 1/N. Thus these networks have limited precision.
There are Θ(logN(A)) digits needed to represent an integer C using radix N . Thus, to
add integers A and B, networks 7 and 9 should be able to work with weights as small as
Θ(N− logN (A+B)) = Θ(1/(A + B)). Meanwhile, networks 6 and 8 would need Θ(A + B)
neurons and O(A + B) spikes to perform the same calculation. However, it is probably
more convenient to implement precision Θ(1/(A+B)) than to use Θ(A+B) neurons and
O(A + B) spikes.

Network 11 with radix number representation would be probably preferred over network
10. These networks have the same time complexity and benefits. On the other hand, the
network with radix representation has a practical limitation: the weights of some synapses
are powers of 1/N. Thus this networks has limited precision. There are Θ(logN(A))
digits needed to represent an integer C using radix N . Thus, to add integers A and B,
network 11 should be able to work with weights as small as Θ(N− logN (A+B)) = Θ(1/(A+
B)). Furthermore, network 11 has a higher energy complexity. (Constant number of
spikes versus Θ(max(logN(A), logN(B))) = Θ(logN(A) + logN(B)).) Meanwhile, network
10 would need Θ(A · B) neurons and constant number of spikes to perform the same
calculation. However, it is probably more convenient to implement precision Θ(1/(A+B))
with logarithmic energy complexity than to use Θ(A ·B) neurons.
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Networks 6 and 8 have the same complexities and benefits (and no practical limitations
or drawbacks). The same holds for networks 7 and 9.

Networks 6 and 10 have the same benefits, practical limitations and time complexity,
but they differ in space and energy complexity. Network 6 has space complexity Θ(a− +
a+ + b− + b+) and energy complexity O(a− + a+ + b− + b+). Meanwhile, network 10 has
space complexity Θ((a−+ a+)(b−+ b+)) and constant energy complexity. Which network
is preferred depends on what is more important: to use as few neurons as possible or
to have an energy-efficient algorithm. Thus, let us call this a tie. The same holds for
networks 8 and 10.

Networks 7 and 11 have the same benefits, practical limitations and time complexity, but
they differ in space and energy complexity. Network 7 has space complexity Θ(N ·m) and
energy complexity O(N ·m). Meanwhile, network 11 has space complexity Θ(N2 ·m) and
energy complexity Θ(m). Which network is preferred depends on what is more important:
to use as few neurons as possible or to have an energy-efficient algorithm. Thus, let us
call this a tie. The same holds for networks 9 and 11.

7.4 Binary representation versus time representation

Which representation is better: binary representation or time representation? Networks
1, 3 and 5 get two integers as input, and networks 2 and 4 can add multiple numbers.
Furthermore, network 3 and 4 are equivalent if they both add only two numbers and
network 5 is preferred over network 3. Thus, we compare 1 with 5 and 2 with 4.

Networks 1 and 5 have both practical limitations, which define boundaries for the input
values. It is difficult to say which is harder to achieve on a real system: high precision
or high membrane potentials and long synaptic delays. This depends strongly on how
the parameters of an SNN are represented. In case of overflow, both networks return the
sum reduced modulo the radix and both networks can add negative integers. However,
the complexities of network 5 are worse, and network 5 is not reusable directly after the
computation has finished. Thus, network 1 is preferred over network 5.

Networks 2 and 4 have both practical limitations, which define boundaries for the input
values. It is difficult to say which is harder to achieve on a real system: high precision or
high membrane potentials. This depends strongly on how the parameters of an SNN are
represented. In case of overflow, network 2 returns the sum reduced modulo 2. Meanwhile,
overflow is impossible in network 4. However, network 4 can not subtract and is not
reusable directly after the computation has finished. The time complexity of network 4
is Θ(m) times lower. But the energy and time complexities of network 4 are relatively
much worse than those of network 2. Thus, network 2 is preferred over network 4.

7.5 Time representation versus numerosity-selective neurons

Which representation is better: time representation or numerosity-selective neurons? Net-
works 3, 5, 6, 7, 8, 9, 10 and 11 add two integers, while network 4 can get multiple numbers
as input. Network 3 and 4 are equivalent if they both add only two numbers and network
5 is preferred over network 3. Furthermore, networks 7, 9 and 11 would be probably
preferred over networks 6,8 and 10. Thus, we compare network 5 with 7, 9 and 11.

Networks 5 and 7 have both practical limitations, which define boundaries for the input
values. It is difficult to say which is harder to achieve on a real system: high precision or
high membrane potentials and long synaptic delays. In case of overflow, both networks
return the sum reduced modulo the radix and both networks can add negative integers.
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However, network 7 is reusable directly after the computation has finished. The two
networks have the same energy complexity. The space complexity of network 5 is Θ(N)
times lower. However, the time complexity of network 5 is Θ(N ·m) times higher than
that of network 7. Thus, network 7 is preferred over network 5. The same holds for
networks 5 and 9: network 9 is preferred over network 5.

Networks 5 and 11 have both practical limitations, which define boundaries for the input
values. It is difficult to say which is harder to achieve on a real system: high precision or
high membrane potentials and long synaptic delays. In case of overflow, both networks
return the sum reduced modulo the radix and both networks can add negative integers.
However, network 11 is reusable directly after the computation has finished. The time
complexity of circuit 11 is Θ(N2) times higher. Meanwhile, the time complexity of network
11 is Θ(N ·m) times lower and the energy complexity Θ(N) times lower. Thus, network
11 is preferred over network 5.

7.6 Binary representation versus numerosity-selective neurons

Which representation is better: binary representation or numerosity-selective neurons?
Networks 1, 6, 7, 8, 9, 10 and 11 add two integers, while circuit 2 can get multiple
numbers as input. However, network 1 and 2 are equivalent if they get both only two
input numbers. Furthermore, algorithms 7, 9 and 11 would be probably preferred over
networks 6, 8 and 10. Thus, we compare network 1 with 7, 9 and 11.

Networks 1 and 7 have the same practical limitation, time complexity and benefits (and
no drawbacks). Moreover, at best, they use an equivalent number of neurons and spike
(Θ(log3(A) + log3(B)) = Θ(log2(A) + log2(B))). Thus network 1 and network 7 are
equivalent. The same for 1 and 9.

Networks 1 and 11 have the same practical limitation, time complexity and benefits (and
no drawbacks). At best, they use an equivalent number of neurons: Θ(log2(A) + log2(B))
if radix N = 2. The energy complexity is then the same as well. Network 11 may have a
lower energy complexity for higher N . However, increasing N , the number of neurons that
circuit 11 needs grows quadratically. Thus, for network 11, radix N = 2 would probably
be preferred; in this case, circuits 1 and 11 are equivalent.

7.7 Verdict

Thus, in summary, among these eleven networks proposed in this paper, networks 1, 2,
7, 9 and 11 are probably the best to compute the sum of two integers. To add M > 2
integers, these networks can be applied Θ(M) times, or network 2 can perform the same
calculations, using Θ(M) times fewer time-steps but Θ(M) times more neurons.

8 Discussion and future work

In section 7, it was decided that the circuits with binary representation (section 4.1 and
4.2) and circuits with numerosity-selective neurons using radix representation (section
6.2, 6.4 and 6.6) are the best to perform integer addition. These circuits are the most
efficient, have no drawbacks and their practical limitations are not significant, compared
to the complexities and drawbacks of other networks.

The networks proposed in this paper were developed using the deterministic discrete-
time abstract model as described by J. Kwisthout and N. Donselaar [9]. In this model,
a neuron has a deterministic spiking behaviour: it spikes when its membrane potential
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reaches its threshold. As a subject of further investigation, it could be advantageous
to use stochastic neurons for integer addition. Such neurons spike according to some
probabilistic distribution. Typically, the closer their potential is to the threshold, the
higher the chance that these neurons would spike.

For example, stochastic neurons would be favourable for numerosity-selective neurons sim-
ulation. As was mentioned in section 6, a numerosity-selective neuron reacts to all num-
bers that are close enough to its preferred numerosity. However, the closer that number is
to the preferred numerosity, the higher the frequency with which the numerosity-selective
neuron spikes. This behaviour would be probably easy to mimic with a stochastic neuron.

In section 7 the networks were compared based on their benefits, drawbacks, practical
limitations and complexities. The energy complexity is defined as the number of spikes
that a network needs to return some expected output. However, this may be an over-
simplification of reality, because in practice, keeping the potential of a neuron at some
non-zero value does also cost some of energy. Especially for networks 5.1, 5.2, 5.3, it
may be interesting to use another model for energy complexities (for example [13]) and
to investigate the effects of keeping a high potential bellow the threshold.

In section 3, we have defined three constraints that the networks must respect. One of
those constraints was: the networks should be non-hybrid. As a consequence, this paper
did not consider the time and space that an external system would take to create the
proposed networks. However, in future work, it may be interesting to investigate these
resource constraints.

For example, the aim is to compare two spiking networks. Assume, both have a constant
time complexity. However, one network uses a quadratic number of neurons and a constant
number of spikes, and the other network needs a linear number of neurons and a linear
number of spikes. Using only the resource constraints RS , as defined in section 3, does
not help to decide which network is the most efficient. However, creating the first network
would take at least a quadratic time and the second at least a linear time. Thus in total,
the second network may turn out to be more efficient than the first one.

9 Conclusion

Eleven spiking algorithms were proposed to add integers. These networks were compared
to each other, and it turned out that the networks with radix number representation
(including binary representation) are the best to perform this basic arithmetic operation.
These networks have at best logarithmic space and energy complexities and a constant
time complexity. Furthermore, the networks can be used multiple times without changing
any parameters of the components, they can handle integer overflow and, using the radix
complements, these networks can subtract integers. However, all five algorithms have one
drawback: due to limited precision, the number of digits is bounded, or the networks may
return incorrect output.

A Appendix

Assume N ≥ 2 and m ≥ 0 and M ≥ 1. Given Ai = Ai,0 + Ai,1 ·N + · · ·+ Ai,m ·Nm (for
1 ≤ i ≤ M) and C = C0 + C1 · N + · · · + Cm · Nm = (A0 + · · · + AM) mod Nm+1 such
that 0 ≤ Ai,j, Cj < N for all i and all j.
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Definition A.1. Define carryi for 0 ≤ i ≤ m as follows:

carry0 = 0

For m ≥ i ≥ 1, carryi = max{k ∈ N|A1,i−1 + A2,i−1 + · · ·+ AM,i−1 + carryi−1 ≥ k ·N}

Lemma A.2. For 1 ≤ i ≤ m:

carryi =

⌊
A1,i−1 + A2,i−1 + · · ·+ AM,i−1 + carryi−1

N

⌋
Proof.

carry0 = 0

=

⌊
0

N

⌋

Assume m ≥ i > 0. From definition of carryi follows:

(carryi + 1) ·N > A1,i−1 + A2,i−1 + · · ·+ AM,i−1 + carryi−1 ≥ carryi ·N

carryi + 1 >
A1,i−1 + A2,i−1 + · · ·+ AM,i−1 + carryi−1

N
≥ carryi

From the definition of the floor function follows carryi =
⌊
A1,i−1+A2,i−1+···+AM,i−1+carryi−1

N

⌋
([8] Chapter 3)

Lemma A.3. For 1 ≤ i ≤ m holds:

carryi =
⌊
(A1,i−1 + A2,i−1 + · · ·+ AM,i−1) ·N−1 + · · ·+ (A1,0 + A2,0 + · · ·+ AM,0) ·N−i

⌋
Proof. Proof by induction on i.

carry1 =

⌊
A1,0 + A2,0 + · · ·+ AM,0 + carry0

N

⌋
=
⌊
(A1,0 + A2,0 + · · ·+ AM,0 + 0) ·N−1

⌋
Assume 2 ≤ i ≤ m. Assume:

carryi−1 =
⌊
(A1,i−2 + A2,i−2 + · · ·+ AM,i−2) ·N−1 + · · ·+ (A1,0 + A2,0 + · · ·+ AM,0) ·N−i

⌋
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Then:

carryi =

⌊
A1,i−1 + A2,i−1 + · · ·+ AM,i−1 + carryi−1

N

⌋

=


A1,i−1 + A2,i−1 + · · ·+ AM,i−1

+ b(A1,i−2 + A2,i−2 + · · ·+ AM,i−2) ·N−1 + · · ·+ (A1,0 + A2,0 + · · ·+ AM,0) ·N−ic
N



=


⌊
A1,i−1 + A2,i−1 + · · ·+ AM,i−1

+ (A1,i−2 + A2,i−2 + · · ·+ AM,i−2) ·N−1 + · · ·+ (A1,0 + A2,0 + · · ·+ AM,0) ·N−i
⌋

N


=


A1,i−1 + A2,i−1 + · · ·+ AM,i−1

+ (A1,i−2 + A2,i−2 + · · ·+ AM,i−2) ·N−1 + · · ·+ (A1,0 + A2,0 + · · ·+ AM,0) ·N−i

N


=
⌊
(A1,i−1 + A2,i−1 + · · ·+ AM,i−1) ·N−1 + · · ·+ (A1,0 + A2,0 + · · ·+ AM,0) ·N−i

⌋

The next lemma follows from Lemma A.3.

Lemma A.4. For 0 ≤ i ≤ m holds 0 ≤ carryi ≤ bM · (1−N−i)c < M .

Proof.

carryi ≤ b(N − 1) ·M ·N−1 + · · ·+ (N − 1) ·M ·N−ic
= b(N − 1) ·M · (N i−1 + · · ·+ 1) ·N−ic
= bM · (1−N−i)c
< M

Furthermore, all Ai,j are positive. Thus carryi ≥ 0.

Now, assume Ai are given and we want to calculate C. Remember how to add numbers?
For each digit position, starting from the least significant, add the corresponding bits
and the carry from the previous position (if any). Thus, for 0 ≤ i ≤ m holds Ci =
(A1,i + · · ·+ AM,i + carryi) mod N . The next lemma follows directly from Lemma A.3.

Lemma A.5. For 0 ≤ i ≤ m holds:

Ci = (A1,i + · · ·+ AM,i + b(A1,i−1 + A2,i−1 + · · ·+ AM,i−1) ·N−1 + . . .

+ (A1,0 + A2,0 + · · ·+ AM,0) ·N−ic) mod N

= bA1,i + · · ·+ AM,i + (A1,i−1 + A2,i−1 + · · ·+ AM,i−1) ·N−1 + . . .

+ (A1,0 + A2,0 + · · ·+ AM,0) ·N−ic mod N

B Appendix

This paper mentions multiple times the N ’s complement. An N ’s complement allows us
to represent negative numbers as positive and, thus, perform subtraction as addition. The
two famous special cases are the two’s complement (e.g. binary calculation) and nine’s
complement (e.g. Pascaline).
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Definition B.1. The N ’s complement of a m-digit integer A represented using radix N
is:

Nm − A− 1

We denote the complement of A as C(A).

Lemma B.2. C(C(A)) = A

Proof.

C(C(A)) = (Nm − (Nm − A− 1)Nm − 1)

= (Nm −Nm − 1 + 1 + A)N

= A

Now, assume we want to find the difference of two m-digit integers A and B represented
using radix N .

Lemma B.3. A−B = C(C(A) + B)

Proof.

A−B = Nm + A−B − 1−Nm + 1

= C(B − A + Nm − 1)

= C(C(A) + B)

C Simulations

Some network were simulated in python. This section contains the code of these simu-
lations. The classes for the network, neurons and synapses, which are used in the fol-
lowing simulations, are based on the code from ª https://gitlab.socsci.ru.nl/j.

kwisthout/neuromorphic-genetic-algorithm/-/tree/master/pySimulator.

C.1 Neurons

The neurons are programmed as follows:

class SimpleNeuron ( ) :

”””
V i n i t = i n i t i a l v o l t a g e
V rese t = r e s e t v o l t a g e
m = l e a k a g e cons tant
t h r = t h r e s h o l d
I = curren t p o t e n t i a l
”””
def i n i t ( s e l f , m=0. , V i n i t =0. , V re se t =0. , thr =1. , name

=’ ’ ) :
s e l f . name = name
s e l f .V = V i n i t
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s e l f . V re se t = V rese t
s e l f . thr = thr
s e l f .m = m
s e l f . I = 0

def s tep ( s e l f ) :
# p r i n t ( s e l f . name)
i f s e l f .V >= s e l f . thr :

s e l f .V = s e l f . V re se t
# p r i n t (”\ t1 −”, s e l f .V)

else :
s e l f .V = s e l f .V∗ s e l f .m + s e l f . I
s e l f .V = max(0 , s e l f .V)

# p r i n t (”\ t2 −”, s e l f .V)
s e l f . I = 0

Some networks use neurons that spike at a particular time. These are simulated as follows:

# use only f o r input neurons t h a t don ’ t r e c e i v e s p i k e s
class DelayedFi r s tSp ike ( SimpleNeuron ) :

def i n i t ( s e l f , m=0. , V re se t =0. , thr =1. , name=’ ’ , de lay
=0) :

s e l f . de lay = delay
i f delay == 0 :

SimpleNeuron . i n i t ( s e l f , m, V i n i t=thr , V re se t=
V reset , thr=thr , name=name)

else :
SimpleNeuron . i n i t ( s e l f , m, V i n i t =0. , V re se t=

V reset , thr=thr , name=name)

def s tep ( s e l f ) :
i f s e l f . de lay >= 0 :

s e l f . de lay −= 1
i f s e l f . de lay == 0 :

s e l f .V = s e l f . thr
e l i f s e l f . de lay < 0 :

super ( DelayedFirstSpike , s e l f ) . s t ep ( )

C.2 Synapses

The synapses are simulated as follows:

import numpy as np

class Synapse ( ) :
”””
Connection between two neurons

Parameters
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−−−−−−−−−−
pre : Neuron

Presynapt ic neuron
pos t : Neuron

P o s t s y n a p t i c neuron
w : f l o a t

Connection we igh t
d : i n t

Synapt ic d e l a y ( number o f t i m e s t e p s )
”””
def i n i t ( s e l f , pre , post , w, d) :

i f (d<1) :
raise ValueError ( ” Synapt ic de lay must be

at l e a s t 1” )
s e l f . pre = pre
s e l f . post = post
s e l f .w = w
s e l f . out pre = np . z e r o s ( ( d) ) # s t o r e output o f

the p r e s y n a p t i c neuron during d t i m e s t e p s
s e l f . index = 0

def s tep ( s e l f ) :
i f s e l f . pre .V >= s e l f . pre . thr :

s e l f . out pre [ s e l f . index ] = 1 # s t o r e
curren t output o f pre

else :
s e l f . out pre [ s e l f . index ] = 0

s e l f . index = ( s e l f . index + 1) % len ( s e l f . out pre
)

s e l f . post . I += s e l f .w ∗ s e l f . out pre [ s e l f . index ]
# add w∗ pr e { t−d} to pos t

C.3 Network

Neurons and synapses create a spiking neural network:

import numpy as np

class Network ( ) :

””” Network c o n t a i n i n g a l i s t o f nodes and synapses

Parameters
−−−−−−−−−−
nodes : l i s t

L i s t o f nodes in the network
synapses : l i s t

L i s t o f synapses connect ing nodes
”””
def i n i t ( s e l f , nodes , synapses ) :

s e l f . nodes = nodes
s e l f . synapses = synapses
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def s tep ( s e l f ) :
for synapse in s e l f . synapses : # update a l l

synapses
synapse . s tep ( )

for node in s e l f . nodes : # update a l l nodes
node . s tep ( )

C.4 Add two integers in binary representation

The code below simulates the circuit from section 4.1. This example adds 5 and 6 reduced
modulo 4.

import numpy as np

from pySimulator . nodes import SimpleNeuron
from pySimulator . connect ions import Synapse
from pySimulator . networks import Network

def c r e a t e i n p u t n e u r o n s ( input , thr =1. , name=’ ’ ) :

A= [ ]
n=0
for i in input :

A. append ( SimpleNeuron (m=0, V i n i t=i , thr=thr , name=name+
str (n) ) )

n+=1

return A

def c r ea t e output neurons ( s i z e , thr =1. , name=’ ’ ) :

A= [ ]
for i in range ( s i z e ) :

A. append ( SimpleNeuron (m=0, V i n i t =0, thr=thr , name=name+
str ( i ) ) )

return A

def c r e a t e s y n a p s e s t o o u t ( input , out , connect ions , d ) :

for i in range ( len ( input ) ) :
# p r i n t ( s t r ( i ) )
for j in range ( i , len ( out ) ) :

# p r i n t (”\ t”+ s t r ( j ) )
connect ions . append ( Synapse ( input [ i ] , out [ j ] , w=(0.5

∗∗ ( j−i ) ) ,d=d) )

def c r e a t e s y n a p s e s i n t e r n (O, C, connect i ons ) :
for i in range ( len (O) ) :

connect ions . append ( Synapse (O[ i ] , C[ i ] , w=−2, d=1) )
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#Input : m−b i t array A t h a t con ta ins input number A
# n−b i t array B t h a t con ta ins input number B
# k−b i t array C f i l l e d wi th 0
#Output : C = A+B mod 2ˆ( k+1) as k−b i t array .
#NB: l e a s t s i g n i f i c a n t b i t f i r s t
def SUM bitarray ( inputA , inputB , output ) :

A = c r e a t e i n p u t n e u r o n s ( inputA , name=’ a ’ )
B = c r e a t e i n p u t n e u r o n s ( inputB , name=’b ’ )
O = crea t e output neurons ( len ( output ) , 2 , name=’ o ’ )
C = crea t e output neurons ( len ( output ) , name=’ c ’ )

print ( ”NEURONS” )
neurons = [ ]
neurons . extend (A)
neurons . extend (B)
neurons . extend (O)
neurons . extend (C)

for i in neurons :
print ( i )

connect ions = [ ]
print ( ”\nSYNAPSES” )
c r e a t e s y n a p s e s t o o u t (A, O, connect ions , 1)
c r e a t e s y n a p s e s t o o u t (B, O, connect ions , 1)
c r e a t e s y n a p s e s t o o u t (A, C, connect ions , 2)
c r e a t e s y n a p s e s t o o u t (B, C, connect ions , 2)
c r e a t e s y n a p s e s i n t e r n (O, C, connect i ons )

for i in connect ions :
print ( i )

SUM = Network ( neurons , connec t i ons )

SUM. step ( )
SUM. step ( )
output = [ ( 1 i f n .V >= n . thr else 0) for n in C]

return output

print ( SUM bitarray ( [ 1 , 0 , 1 , 0 , 0 ] , [ 0 , 1 , 1 ] , [ 0 , 0 ] ) )

C.5 Add multiple integers in binary representation

The code below simulates the circuit from section 4.1. This example adds 29, 5 and 4
reduced modulo 4.

import numpy as np

from pySimulator . nodes import SimpleNeuron
from pySimulator . connect ions import Synapse

53



from pySimulator . networks import Network

def c r e a t e o v e r f l o w n e u r o n s ( output s i z e , input , thr =1. , name=’ ’ )
:
O = [ ]
for i in range ( len ( input ) ∗2) :

O. append ( [ ] )
for j in range ( o u t p u t s i z e ) :

O[ i ] . append ( SimpleNeuron (m=0, V i n i t =0, thr=i +1,
name=name+str ( i )+” ”+str ( j ) ) )

return O

def c r e a t e s y n a p s e s t o o u t ( input , out , connect ions , d ) :
for i in range ( len ( input ) ) :

# p r i n t ( s t r ( i ) )
for j in range ( i , len ( out ) ) :

# p r i n t (”\ t”+ s t r ( j ) )
connect ions . append ( Synapse ( input [ i ] , out [ j ] , w=(0.5

∗∗ ( j−i ) ) ,d=d) )

def c r e a t e s y n a p s e s i n t e r n (O, C, connect i ons ) :
for i in range ( len (O) ) :

for j in range ( len (O[ i ] ) ) :
connect ions . append ( Synapse (O[ i ] [ j ] , C[ j ] , w=((−1)∗∗ i

) , d=1) )

def SUM N bitarray ( input , output ) :
I = [ ]
for i in range ( len ( input ) ) :

I . append ( c r e a t e i n p u t n e u r o n s ( input [ i ] , name=str ( i )+” ” )
)

O = c r e a t e o v e r f l o w n e u r o n s ( len ( output ) , input , 2 , name=’ o ’ )

C = crea t e output neurons ( len ( output ) , name=’ c ’ )

print ( ”NEURONS” )
neurons = [ ]

for i in I :
for j in i :

neurons . append ( j )

for i in O:
for j in i :

neurons . append ( j )

neurons . extend (C)

for i in neurons :
print ( i )
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connect ions = [ ]
print ( ”\nSYNAPSES” )
for j in range ( len ( I ) ) :

for i in range ( len (O) ) :
c r e a t e s y n a p s e s t o o u t ( I [ j ] , O[ i ] , connect ions , 1)

c r e a t e s y n a p s e s i n t e r n (O, C, connect i ons )

for i in connect ions :
print ( i )

SUM N = Network ( neurons , connect ions )

SUM N. step ( )
SUM N. step ( )
output = [ ( 1 i f n .V >= n . thr else 0) for n in C]

return output

print ( SUM N bitarray ( [ [ 1 , 0 , 1 , 1 , 1 ] , [ 1 , 0 , 1 ] , [ 0 , 0 , 1 ] ] , [ 0 , 0 ] ) )

C.6 Add two integers represented as the time when a neuron
spikes

The code below simulates the circuit from section 5.1. This example adds 0 and 1 using
N = 4.

import numpy as np

from pySimulator . nodes import SimpleNeuron , De layedFi r s tSp ike
from pySimulator . connect ions import Synapse
from pySimulator . networks import Network

N=4

def SUM int ( inputA , inputB ) :
A = DelayedFi r s tSp ike ( 0 . , 0 . , 1 . , ”A” , inputA )
B = DelayedFi r s tSp ike ( 0 . , 0 . , 1 . , ”B” , inputB )

i n f = SimpleNeuron ( 0 . , 1 . , 1 . , 1 . , ” i n f ” )
D = SimpleNeuron ( 1 . , 0 . , 0 . , 2 . , ”D” )

a = SimpleNeuron ( 0 . , 0 . , 1 . , 1 . , ”a” )
b = SimpleNeuron ( 0 . , 0 . , 1 . , 1 . , ”b” )

C = SimpleNeuron ( 1 . , N−1, 0 , N, ”C” )

neurons = [A,B, in f ,D, a , b ,C]

synapses = [
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Synapse (A, D, 1 . , 1) ,
Synapse (B, D, 1 . , 1) ,
Synapse (A, a , 1 . , 1) ,
Synapse (B, b , 1 . , 1) ,
Synapse (D, C, 1 . , 1) ,
Synapse ( a , a , 1 . , 1) ,
Synapse (b , b , 1 . , 1) ,
Synapse ( a , C, 1 . , 2) ,
Synapse (b , C, 1 . , 2) ,
Synapse ( in f , C, −1. , 3) ]

SUM = Network ( neurons , synapses )

count = 0

while C.V +C. I < N:
SUM. step ( )
count+=1

return count

SUM int (1 , 0 )

C.7 Add multiple integers represented as the time when a neuron
spikes

The code below simulates the circuit from section 5.2. This example adds 0, 0, 1, 1 and
1 using N = 10.

import numpy as np

from pySimulator . nodes import SimpleNeuron , De layedFi r s tSp ike
from pySimulator . connect ions import Synapse
from pySimulator . networks import Network

N=10

#input = l i s t o f i n t e g e r s
def SUM int (INPUT) :

A = [ De layedFi r s tSp ike ( 0 . , 0 . , 1 . , ”A”+str ( i ) , INPUT[ i ] )
for i in range ( len (INPUT) ) ]

i n f = SimpleNeuron ( 0 . , 1 , 1 . , 1 , ” i n f ” )
D = SimpleNeuron ( 1 . , 0 , 0 . , f loat ( len (INPUT) ) , ”D” )
a = [ SimpleNeuron ( 0 . , 0 , 1 . , 1 , ”a”+str ( i ) ) for i in range (

len (INPUT) ) ]
C = SimpleNeuron ( 1 . , N−1, 0 , N, ”C” )

neurons = [C,D, i n f ]
neurons = np . append ( neurons , [A, a ] )

synapses = [ ]
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synapses . extend ( [ Synapse (x , D, 1 . , 1) for x in A] )
synapses . extend ( [ Synapse (A[ i ] , a [ i ] , 1 . , 1) for i in

range ( len (A) ) ] )
synapses . extend ( [ Synapse (D, C, 1 . , 1) ] )
synapses . extend ( [ Synapse (x , x , 1 . , 1) for x in a ] )
synapses . extend ( [ Synapse (x , C, 1 . , 2) for x in a ] )
synapses . extend ( [ Synapse ( in f , C, f loat (1− len (INPUT) ) , 3)

] )

SUM = Network ( neurons , synapses )

count = 0

while C.V +C. I < N and count <1000:
SUM. step ( )
count+=1

return count

SUM int ( [ 0 , 0 , 1 , 1 , 1 ] )
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